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Abstract—Knee joint actuation plays a critical role to
keep human walking locomotion and balance under abnormal
conditions, such as foot slip or work-related musculoskeletal
disorders etc. Wearable assistive robotic knee devices provide
additional support and actuation for human walkers. We
present assist-as-needed control strategy for a lightweight,
highly-backdrivable soft knee assistive device. The control
design takes advantages of the custom-built high-performance
knee assistive device and the muscle synergy-based human
walking actuation model. A model predictive control (MPC)
design is used for real-time tuning physical human-robot in-
teractions. Human-in-the-loop simulation results are presented
to demonstrate the performance of the robotic control systems
under normal walking condition.

I. INTRODUCTION

Knee joint actuation plays a critical role in human loco-
motion and balance under abnormal conditions, such as foot
slip [1], [2] or work-related musculoskeletal disorders [3]
etc. Wearable assistive robotic knee devices provide addi-
tional support and actuation for human walkers [4], [5].
Predicting human performance, dynamic variations and noise
are a few of the challenges encountered when developing
real-time controllers. The goal of this work is to develop an
assist-as-needed control of wearable knee robotic device.
Various control strategies have been proposed for control

of wearable assistive robotic devices [6]–[8]. Combining
impedance control with series elastic actuators (SEA) or
similar robotic mechanisms, e.g., [9], [10] is common. In
these designs, specified torque profiles are used as the
tracking targets and the human applied torques is obtained
by measurements (e.g., electromyography (EMG) sensors
used in [11], [12]). Optimization is another design approach
(e.g., [4], [13]). However optimization is only effective for
regularly periodic human motion at steady-state walking
locomotion. Therefore it is difficult to use in the design of
a controller for perturbed gait profiles such as foot slip or
trip.
For everyday usage, wearable assistive devices are re-

quired to be light-weight, highly-backdrivable with a large-
bandwidth for quick responses. The design of wearable knee
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and hip assistive devices in [14], [15] use the custom-
built drive motor to satisfy the previously mentioned re-
quirements. Instead of using SEA mechanisms like many
exoskeletons or wearable assistive devices (e.g., [9], [10]),
quasi-direct drive (QDD) actuation is used to achieve the
desired performance without need of high-ratio gearbox.
The desired torque profiles in the preliminary testings are
obtained by simply interpolating human walking profiles
in [16]. A similar design is demonstrated in other high-
performance legged robotics [17]. We use the prototype
model in [15] for the human-in-the-loop study in this work.
To predict the human reaction under normal or perturbed

walking conditions without using EMG or other muscle
activity sensors, we consider the muscle synergy model-
based joint torque estimation. Muscle synergy represents a
group of relationship-fixed muscle activities during human
motion and the muscle synergies for normal walking and foot
slip are presented in [18] and [19], respectively. In [20], [21],
the muscle synergy model is used to predict the upper-limb
strength capacity without using the muscle activation sensors
such as EMG. We take the advantages of these developments
and estimate the knee joint torques under normal walking
conditions and incorporate them into the wearable assistive
device control.
In this paper, we present an assist-as-needed control

strategy for a lightweight, highly-backdrivable knee assistive
device. The control design is built on the dynamics model
for the QDD device and a muscle synergy-based human
actuation prediction. A model predictive control (MPC) is
designed to integrate the human actuation prediction and
the QDD device to achieve the desired human-robot inter-
actions properties. We implement and simulate the design
using OpenSim environment [22] with motion and force
data from human walking experiments. The human-in-the-
loop (HIL) simulation results demonstrate the control design
performance. The main contribution of the work lies in
the MPC assist-as-needed control of wearable knee robotic
device with human joint torque estimation without need of
real-time muscle activation measurements. Integrated with
the lightweight, highly-backdrivable, high-bandwidth device
design, the proposed control system provides an enabling
tool for potential implementation for wearable assistive
devices in personal daily activities.

II. MUSCLE SYNERGY MODELS FOR HUMAN WALKING
AND QDD ASSISTIVE DEVICE

A. Muscle Synergy Model-based Torque Estimation

Muscle synergy represents a group of muscles that act
together at a fixed activation ratio among them. Considering

2020 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM), Boston, USA
(Virtual Conference), July 6-9, 2020

978-1-7281-6793-0/20/$31.00 ©2020 IEEE 1477



(a)

IMU

Two 6-DOF force
sensors

Insole

Smart shoe sensing system

(b) (c)

Fig. 1. (a) The light-weight, highly-backdrivable wearable knee assistive device developed by City University of New York (CUNY) [14]. (b) The slip
and fall experimental setup with various sensor suites. (c) Schematic of the wearable device with human lower-limb during walking gait.

the joint angle vector qh, muscle activation is expressed as
the summation of spatial and temporal patterns of muscle
synergies as

M (qh, t) =

n∑
i=1

ci(t)wi = W (qh)C(t), (1)

where M (qh, t) ∈ R
N is the muscle activation vector, N

is the number of muscles, matrix W (qh) = [w1 · · · wn] ∈
R

N×n represents n muscle synergies, and activation level
CT (t) = [c1(t) · · · cn(t)]T ∈ R

n. The applied human knee
torque τh (as shown in Fig. 1(c)) can be written as

τh(qh, q̇h) = AF (qh, q̇h)C(t), (2)

where AF (qh, q̇h) ∈ R
1×n is the gain matrix and each

column of AF is a base force vector for synergy direction.
To estimate the joint torque τh by using (2), we obtain

the predicted values of AF (qh, q̇h) offline and C(t) in real-
time. Using ground reaction forces (GRF) and measurements
from EMG sensors, we obtain an estimate of AF (qh, q̇h)
off-line using the method of least-squares. The real-time
prediction of C(t) is obtained by training a neural network.
We consider C(t) = C(Δqh,Δq̇h,Δq̈h), where Δqh(t) =
qh(t)−qd

h(t) and q
d
h(t) is the human normal gait profile. For

a neural network to estimate C(t), a radial basis function
is used to obtain the predictions as C(W ,ν) = W TS(ν),

where S(ν) = {si(ν)}, si(ν) = exp
[
−(ν−μi)

T (ν−μi)
η2
i

]
,

i = 1, . . . , p, is the base function and p is the total number
of base functions. Parameters ν andW are the network input
and weight vector, respectively, and μk and ηk are constants.
We use νC = [Δqh Δq̇h Δq̈h]

T .
In this work a total of eight muscle activities are measured

by the EMG sensors, including rectus femoris (RFEM),
vastus medialis (VMED), vastus lateralis (VLAT), semitendi-
nosus (SEMT), biceps femoris long head (BFLH), lateral
gastrocnemius (LGAS), medial gastrocnemius (MGAS), and
tibialis anterior (TA). The synergy activation and EMG data
process are reconstructed through non-negative factorization
(NNMF) method.

B. QDD Wearable Assistive Device

Fig. 3 presents the dynamic model of the assistive device
(as shown in Fig. 1(a)) coupled with the human lower
limb. Similar to [15], the model consists of three parts: the
electromechanical module, torque transmission and human-
device interface modules. The electromechanical module
includes a DC motor and the torque transmission is a
gearbox unit connected to the motor.
For the electromechanical system, we denote the input

voltage, current and generated torque as Vc, i, and τm,
respectively and the dynamic model is given as

Vc − kbθ̇m = L
di

dt
+ iR, τm = kti, (3)

where kt and kb are motor torque and back-electromotive
constants, respectively. L and R are motor inductance and
resistance, respectively, and θm denotes motor output angle.
From the gearbox ratio n and applied load torque τ 1 to the
rotor shaft, we obtain

τ1 = τm − Jmθ̈m − bmθ̇m, (4)

where Jm is the motor moment of inertia and bm the viscous
friction coefficient of the motor bearing. From Fig. 3, let
θ2 and τd denote the gearbox output angle and torque,
respectively. We then obtain θ2 = θ1

n , θm = θ1, and τ2 =
nτ1. We further denote the stiffness and damping coefficients
of the transmission system as kc and bc, respectively. The
applied torque at the knee joint is then obtained as

τd = bc(θ̇2 − θ̇k) + kc(θ2 − θk), (5)

where θk = θt − θs is the knee rotation angle, θt and θs are
the thigh and shank angles, respectively; see Fig. 1(c). The
equation of motion of the knee joint is described as

Jhθ̈k = τh + τd = τh + bc(θ̇2 − θ̇k) + kc(θ2 − θk) (6)

where τh is the human applied torque at the knee joint
estimated by the synergy model in real time and Jh is the
total mass moment of inertia around the knee joint.
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Fig. 2. Schematic flow of the proposed wearable knee device control design.

Fig. 3. The schematic of the dynamic model of the human-exoskeleton
interactions.

Assuming L = 0 in (3) results in i = Vc−kbθ̇m
R and

a reduction in the order of the dynamic model. Defining
the state variable q = [θm θ̇m θk θ̇k]

T and output y =
[θk θ̇k τd]

T , the state space model of the human-device
interaction is obtained as

q̇ = Aq +BvVc +Bτ τh, y = Cq (7)

where

A =

⎡
⎢⎢⎣

0 1 0 0
−ktkbn

2−kcR
n2JmR

−bmn2−bc
n2Jm

kc

nJm

bc
nJm

0 0 0 1
kc

nJh

bc
nJh

−kc

Jh

−bc
Jh

⎤
⎥⎥⎦ ,

Bv =

⎡
⎢⎢⎣

0
kt

JmR

0
0

⎤
⎥⎥⎦ , Bτ =

⎡
⎢⎢⎣
0
0
0
1
Jh

⎤
⎥⎥⎦ , C =

⎡
⎣
0 0 1 0
0 0 0 1
kc

n
bc
n −kc −bc

⎤
⎦ .

III. ASSIST-AS-NEEDED CONTROL DESIGN

Fig. 2 illustrates the assist-as-needed control design.
The main control components include the human muscle
synergy-based torque prediction, physical human-assistive
device interactions, and the MPC system.
Although the QDD motor provides a low back-drivability

feature, it is desired that it exhibit a specific response external
disturbance and excitation. We define the desired impedance
model as

Jdθ̈m + bmd θ̇m − bsdθ̇k + kmd θm − ksdθk = τc, (8)

where Jd, bmd , b
s
d, k

m
d and ks

d are the desired inertia, viscous
and stiffness coefficients and τc is the new control input
to stimulate the system. We design a controller for (7) to

regulate its behavior as by the desired impedance model (8).
From the second equation of (7), we obtain

θ̈m = f(q) +
kt

JmR
Vc, (9)

where f(q) = −
(

ktkbn
2+kcR

n2JmR

)
θm −

(
bmn2+bc
n2Jm

)
θ̇m +

kc

nJm
θs +

bc
nJm

θ̇s. Using (8), we obtain

Vc = −JmR

kt

[
f(q)− 1

Jd

(
bmd θ̇m − bsdθ̇k + kmd θm −

ksdθk − τc
)]
.

We consider an MPC design for control input torque τc.
Using the discrete-time model the cost function J(k) for the
MPC design at the kth step is described as

J(k) =

k+H∑
i=k

[
wa(τ

d
d (i)− τd(i))

2 + wcΔτc(i)
2
]
, (10)

where wa, wc > 0 are positive weights of the output torque
difference eτ (i) = τdd (i)−τd(i) and control torque difference
Δτc(i) = τc(i + 1) − τc(i), i = k, . . . , k + H , H ∈ N is
the control horizon. τ d

d is the desired reference torque for the
robotic device. The cost function is subject to the constraints

θmin
k ≤ θk ≤ θmax

k , θ̇min
k ≤ θ̇k ≤ θ̇max

k , τmin
d ≤ τd ≤ τmax

d ,

where τmin
d (τmax

d ), θmin
k (θmax

k ), and θ̇min
k (θ̇max

k ) are the
lower (upper) bounds of the knee joint torque, joint angle
and joint angular velocity, respectively.
To obtain the desired reference torque τ d

d , we define the
normal knee torque as τ d

h as

τdh = τh + τdd , (11)

where τdh is estimated by the muscle synergy model. We
use τdd = ατdh , 0 ≤ α ≤ 1, to select an assistive torque
τdd . Intuitively it follows that under this design, we assume
that τh = (1 − α)τdh and it would reduce the human
energy expenses. In the simulation experiments, we vary the
parameter α to demonstrate the device’s effectiveness.

IV. HIL-SIMULATION AND RESULTS

Table I lists the parameter values of the human-
exoskeleton system. Most of these values are taken from
the physical systems and experiments in [15]. Using the
Matlab API, we simulate the assistive device that is attached
to subject’s thigh and shank in the OpenSim model.
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Fig. 4. Experimental results for multiple subjects. (a) Muscle synergy pattern for normal walking. Human lower-limb synergies. Each synergy contains
eight muscles: RFEM, VMED, VLAT, SEMT, BFLH, LGAS, MGAS, and TA. (b) Human muscle synergy activation from EMG-based reconstruction
method. (c) Averaged joint angles of the right knee for multiple subjects. The top figure displays the hip angle profile, the middle figure presents the knee
profile and the bottom illustrates the ankle profile.

TABLE I

TYPICAL PARAMETERS OF THE HUMAN-EXOSKELETON SYSTEM

Parameter Value Unit

Rated Voltage 42 V

Rated Current 7.5 A

Rated Torque 2.165 Nm

Motor Resistance 0.58 Ω

Motor Inductance 0.21 mH

Motor Friction Coefficient 0.08 Nm · s/rad
Torque Constant 0.2886 Nm/A

Motor Inertia 895 g · cm2

Gear Ratio 8 : 1 -

Transmission Stiffness 500 Nm/rad

Transmission Damping 0.01 Nm · s/rad

We briefly explain the relationship of muscle synergies
and muscle activation. Four synergies are selected for the
human lower-limb motion as they can reliably reproduce
more than 90 % of EMG signals from experiments. Fig. 4(a)
shows the synergy patterns as a histogram and the variances
of each muscle excitation level. The four synergies used here
are related to the knee and ankle movements. The first five
muscles in the synergy are crucial for knee extension and
retraction (Synergies 1 and 4) while the remaining are linked
to the ankle movement (Synergies 2 and 3). From these
results, we observe that different subjects indeed experience
a similar synergy pattern during normal walking.
As shown in the Fig. 4(b), three synergy activation levels

ci(t), i = 1, 2, 4, achieve their peak values at different time
moments. For example, synergy w1 mostly contributes at
the start of the cycle and is related to stride initiation. In
Fig. 4(b), the blue shaded area is one standard deviation
from average synergy activation of all the subjects. Each
synergy pattern is associated with a base synergy force vector

(a) t = 0.5 s (b) t = 1 s (c) t = 1.5 s (d) t = 2 s

Fig. 5. Snapshot of unassisted walking of a subject from left to right at
t = 0.5, 1, 1.5, 2 s.

AF and we predict joint torques by using the relationship
in (2). Fig. 4(c) shows the hip, knee and ankle joint angles
over stride during normal walking. The stride starts with
a right foot heel strike and ends at the next heel strike.
The blue curve shows the average angle profile in our
normal walking experiments. The blue shaded area shows
one standard deviation from average angles.

A total of 4 subjects with an average mass of 80.75 kg
were selected to acquire EMG, GRF and motion data using
a Vicon Motion Capture system. Force sensors are placed on
the heel and instep of each shoe. Fig. 5 shows the snapshots
of the OpenSim results at t = 0.5, 1, 1.5 and 2 s. We present
the results with assistive torque ratio α = 0%, 25% and 50%.
A torque ratio α = 0 serves as the reference, i.e., normal
walking without any assistance. The estimated knee torque
is derived from the neural network predictor that was trained
using a combination of EMG readings, knee, hip and ankle
angle data. Fig. 6 shows the torque prediction result. It is
clear that the predicted torque matches with the ground truth
closely.

Fig. 7 shows the human applied torques at knee, ankle and
hip joints under various α values. These results indicate that
the knee assistive robot reduces the human applied torque
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Fig. 7. Human joint torques under different levels of assistance α = 0, 0.25, 0.5. (a) Knee torque. (b) Ankle torque. (c) Hip torque.
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Fig. 8. Human joint angles under different levels of assistance α = 0, 0.25, 0.5. (a) Knee angle. (b) Ankle angle. (c) Hip angle.
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Fig. 6. Knee torque prediction performance.

(Fig. 7(a)). The ankle and hip joint torques are unchanged
as α varies; see Figs. 7(b) and 7(c). Figs. 8(a)-8(c) show
the corresponding knee, ankle and hip joint angles under
α = 0, 0.25, 5, respectively. It is clear that even with varying
knee torques, all joint angles are the same under different
levels of knee joint assistance.
Fig. 9 shows the synergy activation levels ci, i = 1, 2, 3, 4

under various assistance levels. Notice that the synergy level
c1 has a large variation under different α values, while no
significant changes are observed in synergy activation levels

c2, c3 and c4. This is due to the fact that only synergy w 1

has an impact on knee torque and other three synergies have
almost no significant effects. With a large α value, a reduced
synergy activation level c1 (for w1) is observed. Indeed, the
synergy activation c1 is decreased by 13.4% and 61.3% for
α = 0.25 and 0.5, respectively.
The metabolic cost is an indication of the energy con-

sumed by a subject and we expect an inverse relationship
with the assistive torque. Note that the first synergy w1 is
associated with the MGAS and BFLH muscles and synergy
w1 mainly contributes to knee torque generation. Figs. 10(a)
and 10(b) show the instantaneous and accumulated metabolic
costs of the MGAS muscle. Similarly, Figs. 10(c) and 10(d)
demonstrate the instantaneous and accumulated metabolic
costs of the BFLH muscle. All of these results have con-
firmed that under a large assistance provided by the knee
exoskeleton, the human energy expenses are reduced.

V. CONCLUSION

We presented an assist-as-needed interface control of a
QDD knee exoskeleton for human walking. The QDD ac-
tuation provided high-torque, high-backdrivability and high-
bandwidth and it is attractive for wearable human assistive
devices. An MPC design was presented to integrate the
design with predicted human motion intention and joint
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Fig. 9. Synergy activation level under various assistance levels α = 0, 0.25, 0.5. (a) c1. (b) c2. (c) c3. (d) c4.
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Fig. 10. Metabolic cost of two muscles under various assistance levels α = 0, 0.25, 0.5. (a) Instantaneous profile of the MGAS muscle. (b) Accumulated
profile of the MGAS muscle. (c) Instantaneous profile of the BFLH muscle. (d) Accumulated profile of the BFLH muscle.

torque. We used experimental data from normal walking and
simulated the control design in OpenSim. The results from
the simulations indicated that under the assistance by the
knee exoskeleton, the human applied torque was reduced.
Our future work involves the testing and validation of our
design in this paper. Exploring how to select values of α its
relationship to the reduction of metabolic cost and synergies
is a part of our future.
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