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Muscle Synergy-Based Control of Human-Manipulator Interactions
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Abstract— One challenge of designing robot-assisted con-
trol is to identify and estimate human intention force and
motion under dynamic disturbances. We present a robotic
control design to help human in manipulator-assisted upper-
limb movement applications. The control design uses a muscle
synergy-based neural network method to predict human force
and intention motion. A disturbance observer-based controller
is designed to eliminate the influence of disturbances and
allows human operators to achieve task by using their normal
efforts. The control design takes advantage of predicted human
force and intention motion to provide proper assistance in the
human-manipulator interactions. Human subject experiments
are presented to demonstrate the control robustness and per-
formance of disturbance rejection. The comparison results with
a benchmark controller also confirm that the proposed design
provides manipulator-assisted capability to save human effort
when there are additional loads and unknown disturbances.

I. INTRODUCTION

The paradigm assist-as-needed design tries to help human
with necessarily required assistance to finish physical tasks
in many human-robot interactions applications. The amount
of needed assistance is commonly calculated as the capa-
bility gap between that needs to achieve the required task
and human intention or capability [1]. Additionally, robotic
assistance should also be robust to the changing environment
and external disturbances. The motivation of this work lies
in many applications in which robotic manipulators would
augment human capability (e.g., strength and accuracy) as
well as disturbance rejection. One of direct applications
is the robot-assisted grit-blasting process, in which human
operators provide guidance to the manipulator to conduct
forceful grit-blasting task, while the process generates a large
reactive disturbance force to the human-robot interface [2].
Under the robot assistance, the human operators would
ideally apply their nominal forces (e.g., voluntary move-
ment) to guide the robot without significant influence by the
reactive process disturbance force. The goal of this paper is
to present a human muscle synergy model-based assist-as-
needed manipulator control for human-robot interactions in
the above-mentioned blasting process.

Muscle synergy model was an enabling tool for human
effort estimation [3], [4]. Muscle synergy represents a group
of relationship-fixed muscle activities during a particular
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human limb motion [5]. Human limb motion and its forceful
interactions with environment can be captured as a set
of muscle synergy combination. For example, using four
muscle synergies, approximately 90% of all muscle activ-
ities and variability can be reconstructed during a postual
task [6]. Electromyography (EMG) measurements are com-
monly used to construct muscle synergies [5]. However, it
is not convenient to wear EMG probes in many human-
robot interactions to monitor and obtain muscle activation
in practical applications. We take advantages of muscle
synergy model and estimate human forces without using
EMG sensors.

To achieve a proper assistance in human-manipulator
interaction tasks, it is desirable to obtain human force and
intention motion. Neural networks method is particularly
suitable for human intention motion estimation because of its
capability to handle highly uncertain, nonlinear and complex
systems [7], [8]. Combining with the muscle synergy models,
the neural network design can accurately predict the human-
robot interaction forces. One rationale for this design is the
feasibility to use a same set of muscle synergies to model
human arm motion and endpoint force [9].

Impedance control [10] and learning control [11] are
usually considered for physical human-robot interactions.
Gribovskaya et al. construct a learning task model to gen-
erate reference kinematic signals [12]. To reject known
disturbances, a combined feedforward and compensatory
control was designed in [13] to achieve pursuit tracking.
Disturbance-rejection ability is critical for many human-
robot interactions, such as robot-assisted grit-blasting pro-
cess aforementioned, in which disturbance reaction force can
be large enough to hurt human operators if the manipulator
does not share these forces completely or partially. More-
over, individual persons have distinctive muscle strength
capacities and thus, the robot control needs to be robust to
deal with these variations.

In this paper, we develop a muscle synergy-based force
control of human-manipulator interactions. Using the muscle
synergy models, supervised neural networks are used to
predict the human force and intention motion trajectory
without use of EMG device. Under the proposed control, the
robot follows human intention motion and provide necessary
assistance to compensate for external load and unknown dis-
turbances. The control performance is demonstrated through
multi-subject experiments. The main contribution of the
work lies in the muscle synergy-based robotic control for
disturbance rejection and human effort assistance.
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II. MUSCLE SYNERGY-BASED HUMAN FORCE AND
INTENTION MOTION ESTIMATION

A. Synergy-Based Human Force Model

Fig. 1(a) shows an example of manipulator-assisted hu-
man material handling applications. Fig. 1(b) illustrates the
modeling schematic for the arm-manipulator interactions.
For simplicity, the motion of manipulator end-effector O is
under guidance of human operator in the vertical plane, that
is, the X Z-plane in Fig. 1(b). Human operator is assumed to
only knows a set of target points (not entire trajectory), with
positions denoted as <. Human operators plan the trajectory
and try to use voluntary motion to guide the robot to pass
these target points.
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Fig. 1. (a) Human-manipulator interactions experiment setup. The right
zoom-in picture shows the set of target points to follow and current end-
effector position (in the vertical plane) indicated by a laser pointer. (b) The
schematic of the human upper-limb model and its interaction with a robotic
manipulator in the planar motion.

To design an assist-as-needed strategy, it is critical to
estimate human applied forces and motion and muscle
synergy is used as a modeling tool. Muscle force f;, at a
joint can be expressed as a function of arm posture as [14]

fo = alt)F™ fi(qn) fo(gh) cos a, (1

where ¢, represents the joint angle, a(t) is a muscle activa-
tion factor, F'™®* is the maximum force that can be generated
from the muscle. Functions f;(qn) and f,(qgn) capture the
force-length and force-velocity relationships, respectively.
Variable « is the pennation angle and is assumed constant.

Muscle synergy represents a group muscles that activate
together at a relative fixed activation ratio. From model-
ing and control purposes, muscle synergy provides a low-
dimensional representation of muscle activities for human

movement. Upper-limb motion is driven by multiple muscles
and synergies and the muscle activation is expressed as a
linear summation of spatial and temporal patterns of muscle
synergies as [15]
n
Mgy, t) = ci(thw; = W(q,)C(t), )
i=1
where g, is the arm joint angle vector (e.g., elbow and
shoulder angles). M (q,,,t) € RY is the muscle activation
vector at time ¢ and q;, N is the number of muscles,
Wi(q,) = [w1 - w,] € RVN*" is the spatial pattern of the
muscle synergy matrix, n is the number of muscle synergies,
and CT(t) = [c1(t) -+ ea(t)]T € R™ is temporal pattern
vector of the muscle synergy. w; and ¢;(t) denote the ith
muscle synergy and activation level, respectively.

For voluntary movement, we used an optimization method
to explain the observation that solution of minimizing AFE',
would result in a synergy model. Within time duration AT,
human effort AE}, is estimated as [16]

1 AT

3)
where Ej,(t) = 3277, M7(t), M; > 0 is the jth element of
muscle activation vector M (qy,, t).

From [3], human force at end-effector O is written as

frlan,a,) = Ar(q,,a,)C(1), 4)

where Ar(qy,,q,) € R3*™ is the gain matrix that depends
on muscle force model (1) and Jacobian matrix from the
joint rates to the endpoint velocity of O. We use human
nominal force measurements f ;, and synergy activation C'(t)
that was obtained from EMG measurements to estimate the
value of Ar(qy,q,) off-line by regression method (e.g.,
least-square) and then use (4) to compute human force in real
time. To estimate the value of A r(qy,, q;,), we take multiple
subjects data that cover the variance of synergy model.

B. Human Force and Intention Motion Estimation

To estimate the human force by (4), we need to predict
human neuro-control activation level C(t). For planar move-
ment, we construct a relationship between synergy activation
and tracking error as C(t) = C(Aq,,Aqy,, Aqy,), where
Ag,(t) = qn(t) — g} (t), qf(t) = inv(r,(t)) is the human
arm joint angle profile for intention trajectory r,.(¢) in Carte-
sian space (i.e., working space), and inv(-) is the inverse
kinematic mapping of the two-link human arm. We use a
neural network approach to estimate muscle activation level
C(t) in real time. Radial basis function neural networks are
considered to obtain the predictions. The prediction output
¢(A, v) of neural networks is expressed as

P(A,v) =ATS(v), )

where S(v) = [s1(v) s, sp(v) =
T

exp [W‘j is the base function, k = 1,...,p, p
k

is the total number of base functions, v is the input of the

668



Target Reference

Manipulator Disturbance Force

. Desired .
Points Trajectory Human States Human Force Input Force fais
T'd qn 1 fd frob l
- h
Intention ESO w/ -
Trajectory Is-luman I\lil/lus:jzle| + Disturbance | tAdr'r:llttar:\;ed |
. ner ode - nteraction Mode
Generation ynerey Observer

Actual Interaction

States
T

f Actual Interaction
™ Force Measurement

Fig. 2. Schematic of the human-robot interactions control design.
neural network, A is an adjustable weight vector, and p;, and
7, are constant parameters. To estimate C(t) by (5), the in-
puts of the neural networks is v = [Agn Ag), Ag, qi]”
1 =1,..., Ly, Ly is the size of training data set for intention
force estimation, and g¢ is the targeted arm motion profile.
Human operators only know to reach a set of target points
r?, not the entire desired trajectory r,. Therefore, we use
and extend the approach in [17]. Human intention motion 7.
is estimated by the interaction force f, actual end-effector
position 7 and velocity 7 and (discrete) target points <. We
take v, = [fr, rL #l *4T,i=1,..., Ly, L, is the size of
training data set. The training process is conducted off-line
and the intention predictions are implemented in real time.

E

I1II. HUMAN-ROBOT INTERACTION CONTROL

The robotic manipulator is considered by a three-link rigid
body and the dynamics model is expressed as [18]

qu+qu+Gr = JT(fh+fl+fdis)+Trob7 (6)
where g = [p1 2 3] is the joint angle vector, M ,., D,.,
and G, are the manipulator’s inertia, Coriolis, and gravity
matrices, respectively. Due to page limit, we omit details
of these matrices here. In (6), f;, is the human applied
force, f; is the known load, f ;; is the unknown disturbance
force, and 7., is the robot input torque vector of the fully-
actuated manipulator. J is the Jacobian matrix between the
end-effector velocity 7 and joint rate q.

Considering » = Jg and © = JJ_1++JQ, we rewrite (6)
into the end-effector motion as

M%+D7;+G:femt+fdis+frob’

where f., In+ fio Frov J_TTTOID M
J'M, g, D=J "D, - M, J'J)J !, and G =
JT@G,. Note that human force f 5, 18 estimated using (4).
The force sensor mounted at the end-effector directly obtains
the measurement of total force f,, = f..i + fais-

The control goal is to generate a desired admittance model
between external force f,,, and the end-effector position
7 [19]. Under known force f_,, and a desired admittance
model, the end-effector motion is obtained by

(N

M i+ Dgrr + Kqr = f ., 3

where M4, Dy, K € R3%3 are (symmetric and positive
definite) desired inertia, damping, and stiffness matrices,
respectively. When robot dynamics (7) is known, the control

input w is designed as u = f,. ., = — f,+ M#+Di+G—wv,
where f ,, 1s the estimate of force f, by the synergy-based
model and v is the auxiliary control input that will be
designed later in this section. Plugging into (7) and (8), we
have

Mg+ Dgi+ Kgr = f, +v — f .. )

The human-robot interaction should have the desired admit-
tance between the desired human force f;ll and the reference
motion 7,., namely, M 47, + D47+ K41, = fﬁ, where f‘fil
is desired human force and 7, is the end-effector position
reference. Defining error e = r,. — r and using (9) and the
above equation, we obtain

Fais = F1n = Fi + (M4é + Daé+ Kqe) +v = g + Bo,
(10)
where B = I3 and

g=1Fn—Ft+ (Mgé+ Dgé+ Kge). (11)

We design a manipulator controller to assist human
achieving desired interaction admittance along the trajectory
and reject disturbances. Fig. 2 illustrates the control design
structure. The controller is built on an extended state ob-
server (ESO) to maintain the human desired force and reject
the disturbance. To design an ESO, we first introduce state
variables &1 = f,;, € R?, 23 = g € R3, and then write (10)
into an extended state space form

1 =x2+ Bv, 22 =g, y = xo, (12)
Using (12), an ESO is constructed as follows.
. |0 I3 B .
Z= [0 0} zZ+ [0} v+ Ly—9), =2, (13)

where z = [2T 2117 € RS is the estimate vector of & =

[T 117, § is the estimate of y(¢) by using z and L =
L; ® I is the observer gain vector, L; = [L 1], I = [I; I2]7,
® represents the Kronecker product, and I,, represents the
n x n identity matrix. The values of /1 and [ are chosen
such that the observer poles are placed at —wg (wg > 0),
namely, 52 + I15 + lo = (s + wp)?.

With the proper ESO design, the estimate of z converges
to an neighborhood of « if ||g| is small. A proportional-
derivative (PD) control structure is designed for the auxiliary
input v to drive z to zero, namely,

v = ky(—21) + ka(—22), (14)
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where k, and kg are the positive gain matrices. The
stability of the controller design is obtained through the
separation principle of the linear systems for (13) under
the approximation g ~ 0. If 2 = g is bounded around
0 uniformly, we can show that ||z — x| and |z2] is
bounded around zero closely as t — oo. Then || f, — f7 +
(M 4é 4+ Dgé + K 4e) || is bounded around zero, and thus,
accordingly both force || f, — f¢|| and position ||e|| are
bounded around zero. We omit the detailed convergence
proof due to page limit.

IV. EXPERIMENTS AND RESULTS

Ten subjects were recruited for experiments (nine male
and one female, age: 28.4 4 2.5 years, height: 172.1 + 4.4
cm, weight: 71.3 + 7.3 kg). The subjects were identified
as healthy and capable to hold and move objects using
upper-limbs. Fig. 1(a) shows the human upper-limb inter-
actions with a 3-DOF manipulator (from Schunk GmhH
& Co, Germany). In experiment, the subjects were trained
to operate the manipulator by grasping the handle at the
end-effector. The subject’s hand can move freely with the
end-effector handle and the manipulator was run under
a compliance controller, denoted as benchmark controller,
which is described in [20]. Under the benchmark control,
the robotic manipulator follows human intention motion
trajectory with a desired admittance. An informed consent
form was signed by all the subjects and the testing protocol
was approved by the Institutional Review Board (IRB) at
Rutgers University.

The upper-limb movements were obtained by the motion
capture system at sampling frequency of 100 Hz (7 Bonita
cameras, Vicon, Inc., Oxford Metrics, Oxford, UK). The
human-robot interaction force was measured by a 6-DOF
force sensor (sample rate of 1000 Hz; model Mini45 from
ATI Inc.) mounted at the end-effector. The disturbance force
was generated from a motor pulling a steel cable in both
horizontal and vertical directions. The disturbance force was
measured by a load cell (Model XTS4: S-Type from Load
Cell Central) at a sampling frequency of 200 Hz. Both
the benchmark and proposed controllers were implemented
and running at 200 Hz. To estimate muscle synergies, a
surface EMG system (MyoMuscle, Noraxon Inc.) was used
to measure the muscle activities and sampling rate of EMG
system was 1500 Hz. Eight muscle activities are measured,
including Brachialis (BRD), Biceps (BI), Medial triceps
(MTRI), Lateral triceps (LTRI), Anterior deltoid (ADELT),
Medial deltoid (MDELT), Posterior deltoid (PDELT), and
Pectoralis major (PECT).

The main goal for conducting experiments is to validate
and demonstrate the feasibility of the proposed modeling and
control systems design. The human subjects were instructed
to guide the robotic end-effector in planar motion in the
vertical plane. In experiments, the subjects moved the end-
effector to pass a set of target points (i.e., discrete points)
using their preferred motion and trajectory and they were
not asked to enforce precisely motion strictly. The manipu-
lator passively follows human intention to reach the target

points. The actual end-effector trajectory was shown on a
computer monitor and its actual position was also physically
projected on a nearby paperboard by using a laser pointer;
see Fig. 1(a). The subjects repeated the exact same task for
multiple times in experiments and they also practiced several
times before actual experiment.

Disturbances were introduced and applied to the end-
effector at random time in experiments. Under disturbances,
two sets of experiments were conducted: human subjects
tried to correct and overcome disturbance forces under the
benchmark controller and the proposed controller. Each type
of experiments was repeated for three trials and subjects took
a brief rest (5-10 mins) between each trial. Before each trial,
the subject was asked whether they feel tired or if they need
additional rest to start the experiments.

1 -
Synergy w;

Synergy ws

Synergy ws

Activation level

Fig. 3.  Human upper-limb synergies (w;, wz and wg3) obtained from
upper-limb movement in planar motion of the end-effector. Each synergy
contains eight muscles: BRD, BI, MTRI, LTRI, ADELT, MDELT, PDELT,
and PECT. The muscle activation variances of each synergy pattern are
calculated from multi-subjects tests.

Three synergies are selected for human upper-limb mo-
tion. We chose three synergies because they can reliably
reproduce more than 90% of EMG activities [6] and there-
fore can capture arm muscle activities in planar motion in
experiments. Fig. 3 shows the synergy patterns (i.e., denoted
as wi, wa, and ws) as a histogram and the variances of each
muscle activation level are shown as vertical bars. These
synergy patterns are obtained by measuring all subjects
experiments.

TABLE 1
ROOT MEAN SQUARE (RMS) ERRORS FOR VARIOUS PREDICTIONS

NN predicted force (N)|Reconstructed force (N
X -direction| Z-direction| X -direction| Z-direction| X -direction Z-directior
324+04|37+03|51+14|56+1.4]|3.0+1.1|29+0.5

Predicted traj (mm)

With the synergy-based force and intention prediction,
Fig. 4 demonstrates the control performance under external
disturbance force. For comparison purpose, we also include
the results under the benchmark controller, under which the
robot follows human motion passively with a desired ad-
mittance. Fig. 4(a) shows the end-effector trajectory profiles
along the X- and Z-direction. In the figure, four curves
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Fig. 4. Experimental results under disturbance force by one subject. (a) End-effector motion trajectory. The top plot shows the trajectory in the X -direction
and the bottom for the Z-direction. (b) Human and disturbance forces profiles at the end-effector. The top plot shows the force £ along the X -direction

and the bottom f, for the Z-direction.
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(a) End-effector motion trajectory error profiles comparison for all ten subjects. The top figure shows the X-direction position error ¢ and the

bottom for Z-direction position error profile e,. The thick curves are the mean value profiles and the shaded areas show the one standard deviation around
the mean values of all subject experiments. (b) Human force error profiles comparison for all ten subjects. The top figure shows the X-direction force

error e, and the bottom for Z-direction force error profile e .

are plotted: nominal trajectory (black solid curves), neural
network-based human intention motion trajectory (red dotted
curves), actual trajectories under the benchmark (blue dash-
dotted curves) and the proposed controllers (magenta dash
curves). Fig. 4(b) shows the corresponding human forces
comparison in experiments.

Fig. 5(a) further shows the statistics of the position errors
of all ten subjects (using the nominal force obtained in
experiments without disturbance as the reference). It is clear
from these results that under the proposed control, both
the position errors and variances are much smaller than
these under the benchmark controller. The force control
performance in Fig. 4(b) shows that under the benchmark
controller, the human have to respond to the disturbance with
large applied force and delay in both the X - and Z-direction.
Table II lists the RMS errors for the trajectory tracking
and human-robot interaction forces under the benchmark
and the proposed controllers for all subjects. The estimated
disturbance force also follows the actual force closely.

We conducted additional experiments with lifting a weight
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TABLE II
ROOT MEAN SQUARE (RMS) ERRORS FOR CONTROL PERFORMANCE

Human force (N)  |End-effector position (mm)

Control methods

X -direction

Z-direction

X -direction|

Z-direction

Benchmark control

12.6 £2.4

16.4 £2.0

14.1+8.4

14.0£7.0

Proposed control

6.6 £1.6

6.4+£1.0

8.6+£3.4

8.5+4.0

with f; = 9.8 N (i.e.,, 1 kg) with the same experimental
protocol. Fig. 6(a) shows that with or without load f;, human
forces were similar to conduct the same movement task.
To demonstrate the effectiveness of the proposed control,
we compute the human efforts F; defined by (3) during
the aforementioned experiments. Fig. 6(b) shows the human
effort comparison results. The plots include the statistical
profiles of E;, by all subjects under the benchmark and the
proposed controllers with disturbance, and also those under
the benchmark controller without disturbance for comparison
purpose. It is clearly shown by these results that under the
proposed controller, the human effort under the disturbance
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(a) Human force comparison with and without load for multiple subjects. The top figure shows the X -direction applied human and robotic forces

and the bottom for the Z-direction forces. The thick curves are the mean value profiles and the shaded areas show the one standard deviation around
the mean values of all subject experiments. The same notation is used in all subigures. (b) Human effort 4, comparisons under the benchmark and the

proposed controllers. The results are obtained from all subject experiments.

(roughly from 6.5 to 10 s period) is much smaller than that
under the benchmark controller.

V. CONCLUSION

We developed a muscle synergy-based force control of
robotic manipulator for assist-as-needed physical human-
robot interactions. The muscle synergy model and the neural
network approach were used to predict the muscle activation
and then estimate human applied forces in human-robot
interactions. A disturbance observer was designed to esti-
mate the unknown external disturbance forces, and then an
admittance control was applied to the manipulator to simul-
taneously follow human intention motion and to compensate
for working load and undesired disturbances. The proposed
force estimation did not need any EMG sensors, which
was attractive in many physical human-robot interactions.
This study mainly focuses on planar arm-manipulator motion
tasks and some muscle properties are simplified. 3D motions,
muscle fatigue and co-contraction in experiments are not
considered which is one limitation of the proposed method.
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