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Foot slip is one of the major causes of falls in human locomotion. Analytical bipedal
models provide an insight into the complex slip dynamics and reactive control strategies
for slip-induced fall prevention. Most of the existing bipedal dynamics models are built
on no foot slip assumption and cannot be used directly for such analysis. We relax the
no-slip assumption and present a new bipedal model to capture and predict human walk-

ing locomotion under slip. We first validate the proposed slip walking dynamic model by
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1 Introduction

Foot slip is one of the major causes for human falls and injuries.
Slip-induced falls cause enormous economic and societal costs
[1]. The direct costs for nonfatal fall-related injuries among U.S.
elderly (>65years) were $19 billion in the year 2000 [1] and
increased to over $31 billion in the year 2015 [2]. Among the
occupational population in the U.S., slips, trips, and falls repre-
sented 27% of all nonfatal occupational injuries in the year 2015
[3]. To develop effective fall prevention strategies and technolo-
gies, it is critical to understand human locomotion and balance
recovery under slip. Modeling of human walking locomotion with
slip is an effective approach to assist in the design and control of
new wearable assistive devices. Slip-and-fall has been extensively
studied in the past two decades, for example, Refs. [4,5] and refer-
ences therein. Most of these studies focus on human subjects and
clinical experiments and a few use human locomotion dynamics
to analyze the slipping mechanism. Simulation-based dynamic
models are used to study motion stability of slip and fall. In Ref.
[5], a seven-link, nine-degrees-of-freedom (DOF) walking model
in the sagittal plane with a 16-element foot model is used to simu-
late the human reaction control to a novel slip in gait. In Ref. [6],
a simulation model is optimized with human experiments. Using
this model, stability results are obtained and compared with the
dynamic balance analyses by a simple invented pendulum model.
The 2D musculoskeletal model in the sagittal plane is also dis-
cussed in Ref. [7] to determine the impact of the reduced required
coefficient of friction (RCOF) on gait kinematics. Kinematic and
muscle activity-based data-driven analysis (e.g., Lyapunov expo-
nents) is used to capture the walking stability [8].

Robotic bipedal models [9,10] were recently presented for
study of human walking gait [11,12], for design of prosthetic devi-
ces for lower-limbs [11] and control of robotic walkers. In Ref.
[13], a bipedal model is proposed to study human gaits with fixed
ankle joints. Both the single- and double-stance phases are
included in the model and a hybrid zero dynamic (HZD) control is
designed to track the human gait profile. Although the kinematic
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tuning and optimizing the model parameters to match the experimental results. The
results demonstrate that the model successfully predicts both the human walking and
recovery gaits with slip. Then, we extend the hybrid zero dynamics (HZD) model and
properties to capture human walking with slip. We present the closed-form of the HZD
for human walking and discuss the transition between the nonslip and slip states through
slip recovery control design. The analysis and design are illustrated through human
walking experiments. The models and analysis can be further used to design and control
wearable robotic assistive devices to prevent slip-and-fall. [DOI: 10.1115/1.4043360]

variables such as hip; knee; and head, arms, and trunk (HAT) joint
angles match the human gaits, the predicted ground reaction
forces (GRFs) have large discrepancies with experiments. In Ref.
[12], only single-stance locomotion is considered in the model
without the HAT. The models in Refs. [12] and [13] use the circu-
lar curved foot-floor contact that was developed in Ref. [14].
However, all of the above-mentioned bipedal models are built on
the assumption that the foot-floor contact friction forces are large
enough to prevent the foot from slipping, and thus, cannot be
directly used to study slip-and-fall walking gaits. Bipedal walking
is commonly described by a hybrid dynamics framework with
continuous dynamics during the single- or double-stance periods
with discrete mappings to capture the foot contact impacts. Using
the HZD concept [15], a low-dimensional normal human walking
model is presented in Ref. [13] and a state feedback control is
designed to track the gait profile parameterized by the stance
phase variable, rather than time [9]. The repetitive human walking
gait is captured by the HZD when the gaits follow the desired
profiles.

The goal of this study is to develop an analytic bipedal model
and extend the HZD approach for human walking with slip. The
model extends the bipedal framework in Refs. [9,11], and [12] by
relaxing the foot no-slip assumption and using the circular rolling
feet to capture the foot rolling characteristics. The proposed
human walking model is built on a seven-link robotic bipedal
dynamics model with actuated ankle joints. The model includes
the dynamics of both the single- and double-stance motion. The
model explicitly considers the foot slipping displacement, and
therefore, can predict the human gait under slips. Moreover, we
explicitly calculate and present the HZD that consists of dynamics
of the gait progression variable and the slipping distance. The
inclusion of the latter parameter is new compared to the existing
HZD models. The HZD stability conditions and properties are
also discussed under a set of slip recovery gaits that are obtained
from human subject experiments. This paper extends the previous
conference publications [16,17] by providing additional details in
bipedal model derivation, model validation, and detailed HZD
analyses of slip recovery stability examples and experiments.

The main impact of this work lies in the development of bipedal
model and HZD slip analysis that provides an important insight
into slip balance recovery analysis. This analytic analysis enables
determination of the outcome of the balance recovery and distin-
guishing between successful versus unsuccessful slip balance
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recovery, based on a current state/posture and angular momentum
of the human model. The slip balance recovery analysis can be
used in controller design of wearable robotic assistive devices for
slip-and-fall prevention. Information of the required angular
momentum for successful slip recovery based on the current states
(i.e., joint angles, foot placement, and center of pressure (COP))
can be used to determine the required assistive torques provided
by the device or repositioning of the foot placement to prevent
falls.

The measurement of slipperiness and the devices to obtain the
shoe-floor friction are discussed in Ref. [18]. Force plate is the
most commonly used device to measure the GRF and used to cal-
culate the foot contact COP. However, force plates cannot be used
for monitoring daily activities outside the laboratory. In recent
years, wearable insole pressure measurement devices were devel-
oped to obtain the GRF (e.g., Refs. [19] and [20]). In this work,
we use an integrated sensor suite inside each shoe to measure the
3D GRF and torques. The details of these sensors are discussed in
Ref. [21]. Combining with the wearable motion sensors (e.g., Ref.
[22]), we obtain the limb poses and forces in indoor or outdoor
environments.

The results in this paper complement the existing literature on
human bipedal models and gait control. The main contributions of
this work are threefold. First, this work extends the robotic bipedal
models to study human walking under foot slip. The new model
not only predicts the human gait with slip but also helps to under-
stand the motion stability during slip. Second, besides relaxing the
assumption of nonslip foot-floor contact, the new model brings
innovative features and properties compared with the existing
bipedal models. For example, compared with the bipedal models
with a point, a flat or multicontact foot in Refs. [9] and [23-25],
the new model includes an experimentally validated foot-floor
contact circular shaped foot. Unlike the bipedal model in Ref.
[12] that only deals with a single-stance human locomotion, the
proposed model includes the human trunk (e.g., seven-link) and
also the double-stance phase, which is crucial for slips and fall
motion. Compared with the work in Refs. [11] and [13], the pro-
posed model includes the active ankle joints and also generates
the matched GRF with the experiments. Third, we present the new
HZD model and its application to human walking under foot slip.
The HZD can be used to analytically investigate the slip balance
stability and recovery strategies that are otherwise not possible
through clinical studies.

The rest of the paper is organized as follows. We first present
the bipedal dynamic model for normal walking gait without slip
in Sec. 2. In Sec. 3, we present the bipedal model for walking
with slips. Section 4 presents hybrid zero dynamics for no-slip
walking and slip gait. The experiments and results are presented
in Sec. 5. The discussion of the results is presented in Sec. 6. We
conclude the paper and discuss the future work in Sec. 7.

2 Bipedal Walking Model Without Slips

2.1 System Configuration. Figure 1(a) illustrates the setup
of the coordinates for bipedal modeling of human walking. The
human motion is considered only in the sagittal plane. The human
body is considered as a seven-link rigid body. The HAT is consid-
ered as one link that is connected to the left and the rightthigh.
The model has two active hip joints, two active knee joints, and
two active ankle joints. Similar to those in Ref. [12], we use rela-
tive angles ¢;, i =2, ...,7, to define the configuration of the sys-
tem and the absolute angle ¢, denotes the leading stance leg
orientation with respect to the vertical position.

We define the joint angle vector g, = [q -+ ¢7]'. The foot-
floor contact is considered as a circular disk with radius R rolling
on the solid ground; see Fig. 1(b). To capture the slip motion of
the foot, we denote the position of the rotating center O, of the
foot as [x, y,J7 and a slipping vector g, = [x;,ys]"
=[x, +R(¢p — ¢g), v, — R]", where ¢ is the absolute rolling
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Fig. 1 (a) Schematic of the seven-link human walking model
with curved foot contact and (b) schematic of the foot-contact
model

angle of the stance foot with respect to the vertical direction and
o is the initial value of ¢. ¢, = [, +R¢,y,|" is the slipping
velocity. When the stance foot is purely rolling on the ground,
q, = 0. We use ¢, and ¢, (i.e., foot rotating angle) to calculate the
stance foot-floor contact point C. To completely determine the
walking gait with slip, we define the generalized coordinate

[ T o TT
qe - [qa qs] °

A human walking cycle consists of a series of repeated sequen-
tial movements and events [9], namely a single-stance, a double-
stance, and the foot impact phases. During the single-stance
phase, the stance foot rolls on the ground, while the swing foot
moves in the air from positions behind to front of the stance foot.
Once the swing foot impacts on the ground (i.e., heel-touch), the
joint velocity suddenly changes and the joint configuration is rela-
beled due to the switching role of the stance and swing legs. The
double-stance phase refers to the stage when both legs roll on the
ground. Finally, the trailing stance foot leaves the ground (i.e.,
toe-off) and the pose returns to the single-stance phase. Hybrid
models shown in Fig. 2 are used to capture the above-mentioned
discrete-continuous dynamics.

2.2 Single- and Double-Stance Models and Gait Control-
ler. The nonslip single-stance dynamics are described as [9]

Y Dy(q,)4, +Cs(q,,4,)4, + Gs(q,) = Bsu ey

where D;(q,), Cs(4,,4.), Gs(q,), and B are the inertia, Coriolis,
gravity, and input mapping matrices, respectively. There are six
joint torque inputs u € R® and the system is underactuated since
absolute joint angle ¢, is not controlled by any joint torque.

Fig. 2 Finite state diagram of human walking gait with slips
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Therefore, we have B, = [0, I,,,l]T, where 0, = [0 - -- 0]T IS
R" is a zero column vector and I, is an n-dimensional identity
matrix, where n represents a total number of joint angles (n =7 in
this paper). A feedback linearization approach is adopted to con-
trol the joint angles ¢, to follow a desired trajectory that is speci-
fied by a progression variable 0 = cq,, where ¢ is a constant
progression vector. During the single-stance phase, 0 monotoni-
cally increases and the desired trajectory of actuated joint angles
is expressed by 0. The feedback linearization controller enforces
the virtual constraint specified by

y=h(q,) = Hog, — hy(0) =0 2)

where H) is a constant matrix and h,(0) is the desired trajectories
of actuated joint angles described by the Bézier polynomials [9].
If u is properly chosen by feedback linearization to drive
y =1y =0, only the dynamics of 0 is left as the zero dynamics [9].

To calculate the GRF for single-stance walking, we consider
the dynamics of the individual link expressed as a function of joint
angles, angular velocities, and accelerations. We sum these contri-
butions to compute the instantaneous horizontal and vertical
accelerations of the center of mass using forward kinematics. The
external forces acting on the center of mass are the ground reac-
tion forces and the gravitational force. Using Newtonian mechan-
ics, it is straightforward to obtain the normal F, and tangential
force F, at foot/ground contact points. This force calculation
method is also generalized to the single-stance slip case discussed
in Sec. 3.2.

During the double-stance phase, both the leading and trailing
feet are in contact with the ground at contact points C; and C,,
respectively; see Fig. 1(a). We consider a general modeling
apgroach by defining slipping vectors g;(g,) € R? and g,(g,) €
R” of contact points C; and C,, respectively. Note that both g;(q,)
and g,(q,) are determined as functions of ¢,. Because of the foot-
floor contact constraints, the equations of motion during the
double-stance are expressed as

EL/ : Dé’(qe)‘.].e + Ce(qmq.e)QE + Gé‘(qe) = Bt’u + EZF? (3)

where D,(q,), C.(q.,q,.), G.(q,), and B, are the inertia, Coriolis,
gravity, and input mapping matrices, respectively. Matrix E, =
[(9%,(4.)/94,) (9%,(4.)/9q,)) € R**® describes the contact con-
straints and F, = [Fy F,, Fyy Fy] is a vector of the collection of
the tangential and normal forces at C, and C,, respectively. With
nonslip conditions at C; and C,, we have four kinematic con-
straints E.q, = 0 and the degrees-of-freedom given by Eq. (3) are
9—-4=5.

Since there are six active joints and five degrees-of-freedom,
the bipedal system is overactuated. Using a similar derivation as
in Ref. [13], the constrained dynamics is reformulated as

Dyig i + Cuiqy + Gai = Myiu 4)

where subscript “di” denotes double-stance independent variable
dynamics and q; = [q1 2 ¢3 ¢s q7]T and M,; € R>*6 map the
six joint torques into the five-dimensional dynamics. To predict
double-stance human gaits by Eq. (4), a Bézier polynomial is used
to parameterize the desired trajectory of g% [9]. The control input
u is designed such that §, = D3'(Myu— Cugy— Ga)
=§% —K)(qy — q%) — Ka(qq — qjl.), where K, and K, are con-
stant gain matrices. To solve u in the above equation, we need an
additional constraint because of the overactuation configuration.
In our implementation, we assume a simple linear constraint of
the joint torques pTw =0, and p € RS is determined by the
single-stance joint torque profiles. This constraint is based on the
underlying physical principle assumption that humans minimize
the effort for walking. The linear constraint pTu =0 is equivalent
to minimizing the effort u"(pp")u.

To calculate the ground reaction forces F,, we take time deriva-
tive of the kinematic constraint E,q, = 0. Stacking with the
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dynamics in Eq. (3), we obtain (argument variables in the coeffi-
cient matrices are dropped for clarity)

g 4. B, C. |. G,
R R G
D,

Since matrix Dey is full rank, both ¢, and forces F, are obtained
with the known u from the above controller design.

2.3 Impacting Model. The impact dynamics are obtained by
integrating the double stance dynamics equation (3) over the
instantaneous impact time with certain neglections [9]

D.(q,)q; —D.(q;)q, =E., (g, )0Fc+M

where superscripts “+°" and “-” indicate the instants just after and
before the impact event, respectively. The impulse due to the
impact on the leading foot is 0F, = fo* F,(t)dt, where F,; con-
tains both the normal and tangential ground reaction forces. The
GREF applied on the trailing foot F,, is not an impact force. The
integration of Coriolis term C, and the gravitational term G, are
relatively smebl+l and therefore neglected. The integration of input
torque M = [ B.u(t)dt is a constant determined from the experi-
mental data. After the impact, the swing leg sticks on the ground
and thus

Eeld: =0

where E,(q,) = (08,/04,)(q.) is the Jacobian matrix of impact-
ing foot contact point velocity g, with respect to ¢,.

We clearly express the impact mapping Hf as the pre-impact
joint velocity ¢, of the single-stance phase to the postimpact joint
velocity ¢, of the double-stance phase as

D.(q, )4, M
0 :|+ L’J (6)

D('(q;) _EZI
E, 0

q;
OF,

HE =

s

For periodic walking gait, M can be neglected due to the insignifi-
cant input torque u applied during the impact time. However, for
slip recovery process, M cannot be neglected for the intentional
effort to keep balance.

The matrix on the left-hand side of Eq. (6) is invertible, and
after considering the relabeling of stance foot, we have

q.;r = An(q;)q; +b, 7

where A, is the impact mapping calculated from Eq. (6) and b, is
a constant vector that is related to M. Because the new stance foot
sticks to the ground, ¢ = [(¢.)" 0,]", and if the previous step is
also nonslip, ¢, = [(¢,)" 0,]". More detailed discussion can be
found in Refs. [9] and [12].

Same as Refs. [9,13], a relabeling process is applied to the joint
angles and their velocities after the impact. For the transition from
the double-stance to single-stance phases, the transition is
obtained as

Hy: g, =4q,,4 =4, ®)

2.4 Model Optimization for Human Walking Gait. To
apply the bipedal model to human gait, we need to tune the model
parameters to fit the human walking data. During the human walk-
ing experiments, all joint angles and the GRF information are col-
lected and obtained [21,22].

For single-stance dynamics (1), we need to identify and match
the virtual constraint k(q,) in (2) from the collected joint angles.
We use Hy = [0 Ig], to choose the active joints [9]. The desired
trajectory hy is parameterized by the Bézier polynomial. To fit the
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double-stance model (3), we choose to optimize the Bézier spline
parameters o, such that the desired trajectory qgi = qgi(ocd, 1)
approximates human walking and also avoids unrealistic high
joint-angular acceleration. We take the joint angular acceleration
into the optimization process because the GRF matching is one of
the targets besides the joint angles matched. Therefore, we mini-
mize the following objective function:

(1]

Ja(ag) = J s (o 1) — P+ 91 a2 )

fo

where y > 0 is a weighting factor and [#, #] is the time interval, and
q¢; is the measured joint angle profiles. By the property of the Bézier
polynomials, we analytically express both g% and ¢ as functions of
oy, and therefore, the optimal «, is obtained using a scaled conjugate
gradient method. We will demonstrate the results in Sec. 5.

While in general it is possible to use arbitrary function to para-
metrize the joint angle trajectories, we specifically chose to use
the Bézier polynomials, due to their wide use in modeling smooth
curves that requires only few parameters particularly for biped
walking model [9]. We particularly chose the fifth-order Bézier
polynomials that are determined by six points. Two of these are
determined as the starting and end points of the joint angle trajec-
tory that are determined from the experiments. This simplifies the
parameter estimation process. The remaining parameters are tuned
based on minimizing the objective function J, ().

3 Bipedal Walking Model With Foot-Floor Contact
Slip
In this section, we extend the bipedal model from Sec. 2 to con-

sider the foot-floor contact slip. We first present an overview of the
extended hybrid model and the detailed dynamics are then discussed.

3.1 Hybrid Model for Walking With Slip. Figure 2 shows
the finite state diagram of the hybrid bipedal model for human
walking with foot-floor contact slip. For the normal walking gait,
the hybrid dynamics contain two states: nonslip single-stance and
double-stance phases shown as S and S», respectively. The heel-
touch and toe-off events trig(%er the switching between Sy and S,
with the impact mappings ¢ and 7, respectively.

The foot slip can happen during the single- and double-stance
phases. Therefore, two new states are introduced for the gaits with
slip: single-stance slip phase S; and double-stance slip phase Sy.
State Sy includes the cases when slip happens on the stance leg
only, the swing leg only, or both legs simultaneously. The transi-
tions among S1,i = 1,2,3,4, shown in Fig. 2 represent the human
slip recovery strategies. For example, as we will show in the case
study in Sec. 5, one slip recovery strategy can be represented in
the sequence of S| — S4 — S3 — Sy. The details of each transi-
tion in the finite state diagram are parts of the required human slip
recovery strategies. These slip recovery strategies are out of the
scope of this paper and we omit the discussion here.

3.2 Single-Stance Slip Model and Gait Controller. Due to

foot slijp, we use thTe extended configuration coordinate g, =

[qF ¢ =g x; y;] to describe the motion. The dynamic

model is obtained as

10)
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where D, € R, C,, € R”, G,; € R, and B,; € R™ are
the inertia, Coriolis, gravity, and input mapping matrices, respec-
tively. We define matrices DY, CY, and GV, where indexes i = 1,
2, and 3 represent, respectively, the first seven, the eighth, and the
ninth row and indexes j =1 and 2 represent, respectively, the first
eighth and the ninth column of the matrices D,y, C.s, and G;.
External force F,3 = [Fy F,,}T is the frictional (tangential) and
normal forces at the stance foot.

The stance foot is always in contact with the ground during
slipping (i.e., y,=0), and therefore, we have constraint
q, =[x v =[x O]T. Also, we have F, = —uF,, where p is the
friction coefficient between the shoe sole and the ground floor.
With these constraints, we further simplify Eq. (10) by defining
new coordinate ¢,, = [q, xS}T € R® and eliminating external
force F, and finally obtain

Zf : Di’.séies J'» Cisq.l’s + Gf’A = Bf’\u (1 1)
where
D, Ciy
s 3 s 8x8
D, = 21 31 e = 21 31 € R™,
Des+luDex Ces+lucs
G B,
G,=| = |eR B,= € R¥
Ges + IUGes 0

The system given by Eq. (11) has eight state variables and six
joint torques as inputs, and therefore, it is underactuated. The
absolute joint angle ¢; and the slipping distance x; are underactu-
ated variables. To use model (11) for human gait prediction,
we adopt a similar controller as for the nonslip case. A
six-dimensional holonomic virtual constraint y = h(q,) =
Hyq, — hy(0;) is used to design the control system, where 05 =
¢sq, and ¢y is chosen to ensure [HOT c;r}T is full rank. Similar to
the nonslip case, letting # = h(q,), the control u is chosen to regu-
late n = = 0 and the zero dynamics are obtained. Specifically,
we define & = (D!!),4,, where (D!!), is the first seven elements
of the first row of matrix D;é' and it corresponds to the unactuated
variable ¢,. The dynamics of ¢ and X, are indeed the zero dynam-
ics of the system and will be presented in Sec. 4. Compared with
the nonslip single-stance case, the zero dynamics of the slip walk-
ing model contain one additional variable X;.

3.3 Double-Stance Slip Model and Gait Controller. During
the double-stance slip gait, either (i) only one of two feet slips
while the other foot purely rolls on the ground, or (ii) both feet
slide on the ground. These two situations share the same equations
of motion given by Eq. (3) but with different governing con-
straints. For the first case, we always define the nonslipping leg as
the stance leg, and from the stance leg, we define the absolute
joint angle ¢y; see Fig. 1(a). For the second case, we take either
leg as the stance leg.

By such arrangements, for case (i), without loss of generality,
we assume that the trailing leg is nonslip and also the stance leg.
Therefore, we have kinematic constraints g,(¢,) =0 and
(81(4.)), = 0. where (g,(,));, i = L1, j = x,y, represents the jth
coordinate of slipping vector g;(q,). Moreover, we have the
kinetic constraints F,; = —uF,; for slipping foot. Similarly, for
case (i), we have the kinematic constraints (g,(q,)), =
(g/(g.)), =0 and the kinetic constraints F, = —uF, and
Fy = —uF,. In the following, we only present the dynamics for
case (i) and similar results can be obtained for case (ii).

Because of constraints g,(¢,) = 0 and (g(q.)), = 0, we obtain
(0g:/0q.)4, = 0 and (9(g,(q.)),/0q.)4, = 0. Using the defini-
tion of E, in Eq. (3), these kinematic constraints are written into
compact form E,q, =0, where E, := (E,) 124] € R*> is a
matrix formed by taking rows 1, 2, and 4 of E,. Similarly, the

Transactions of the ASME

610z Jequiaydeg /| uo Jasn Aysienun siebiny Aq ypd-zo0L0L 0L ¥L0 PUY/6ZE6ZYS/Z00L0L/0L/YL/APd-8joiie/eauluouleuoleindwoo /B0 swse uonos|joofelbipswse;//:sdiy woly pspeojumoq



kinetic constraint Fy; = —uF,; is used to rewrite the external force
vector in Eq. (3) as

1o
01 Fy
F,= Fu| =CrFg3 (12)
00 —p F
00 1 nl
—— F,
c

f

Similar to the treatment to obtain Eq. (5), by taking derivative of
velocity constraint E,g, = 0 and stacking with the simplified
Egs. (3) and (12), we obtain

D, —E'c 4. | _ [B. u—|C%\g — |G
Ee 0 ||Fs|~ |o B |97 o
——— N —

D; B;

ext ext

c

ext

Matrix Dy, is full rank, and therefore, ¢, and F,.3 are uniquely
determined once the current state variables and joint torques u are
given. Since the three-dimensional constraints E.g, =0 are
enforced, the degrees-of-freedom of the system are 9 —3 = 6.
Therefore, the system is fully actuated.

Letting ¢, = [¢1 ¢2 45 ¢4 g5 q7]" = Sq, be the independent
variables, where S € R® is a constant transformation matrix
from g, to g;, we express §; = S(D%, ~'BS u+ D} ~'CS), where
SD:, ~'B, € R is a full rank matrix. To track a given trajec-

tory qj-” , the controlled joint torque is designed as u = (SDéxt‘l

S 4 . . s —1ps
Bi‘,xt) (qzd - KI’ (ql - qii) - Kd(qi - q:d) - SD;xl IC;xl)’ where
K, and K; are constant gain matrices.

3.4 Impact Model for Walking Gait With Slip. The impact
model under slip is obtained from the extension of the nonslip
case in Sec. 2.3. The main difference is that the slip can happen
right after the impact, and therefore, the velocity of heel-touch
contact point C; is possibly nonzero, unlike zero in nonslip case.
From the discussion in Sec. 3.3, we have the velocity constraint
E.q, = vgip = [0 0 vgp O]T, where vy, is the slipping velocity
of point C; (along the x-axis direction) after the heel-touch impact.
Therefore, we obtain

D.(q;) -E;
E, 0

D.(q, )4,

Vslip

q;
oF,

H -

n

} (13)

Compared with Eq. (6), one more unknown x/ is introduced.

We here use the friction coefficient to relate impulses F5, =
—uF5, because of the friction model and the integration over
instantaneous impact time. Considering relabeling, we have

g =% | =Aa)4, (14)

where A, denotes the foot-slip impact mapping matrix.

4 Hybrid Zero Dynamics of Slip Recovery

In this section, we first present the HZD for bipedal walking
with foot slip. Then, we discuss a set of slip recovery phases that
are observed in the experiments. Finally, we introduce the stabil-
ity of slip recovery sequence. Since single-stance phase takes
main stance gait duration, and due to the complexity of the
double-stance dynamics, only single-stance dynamics are consid-
ered in the HZD analysis. This simplification helps highlight the
HZD of slip recovery process in later discussion, and also allows
us to consider only the continuous nonslip and slip dynamics, S
and Sz, and their respective impact mapping transitions. For
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completeness, two additional return impact mappings are
required: 7}, and 7} transitions back to the nonslip single-stance
phase (S;) and the slip single-stance (S3), respectively. These are
all defined in domain 7yp as shown in Fig. 2.

4.1 Zero Dynamics of Nonslip Single-Stance Phase. The
nonslip single-stance zero dynamics is obtained by enforcing the
states of Eq. (1) onto the virtual constraint (2). Following a similar
treatment in Ref. [12], we define x, = [qg qz] and rewrite (1)
into a first-order form

X, = f(xa) +g(xs)u (15)

where  f(x,) = 076 } We

qq
_ ! , g(x,) = _
stl(csanrGS)} §(xa) [D,lBs
consider a coordinate transformation
él = e(qa)7

nm =h(q,), 1. =Lrh(q,),

where Lgh(q,) is the Lie derivative of h(q,) along f, and D,(q) is
formed by the row of Dy(q) that corresponds to the unactuated
joint angle ¢,. Choosing u = (Lgth)f1 (ij%h + v) and v to regu-
late #; =1, = 0 exponentially, the output dynamics become
1, =112, 1, = v. The zero dynamics is given as

q, = ki(&)é,

: a7

&= 4y %4, — Caly — Ga = ka(&1,5)
a

. T .
The transformation of output 5 := [tﬁ nﬂ and internal states
& =& éz]T to x, is obtained as

Oh(q,)
[m] _ {h(qa)} o) {'Iz} |24, i, a®
& H(qa) 62 D,(q,)

and the inverse transformation is

n Ohig) ] A
qacbl({lD, g, = | 04, [ ] (19)
61 Da(ll,,) 52

When y = 0, x, is a function of only & and the right-hand side of
Eq. (17) can be written as a function of &.

To maintain stable gaits, the pre-impact states should be
mapped to zero dynamics space under the impact mapping (7) [9],
that is

ASNZ,)CZ, (20)

where S is the double-stance configuration space and Z,, is the
single-stance zero dynamics space under normal walking gait pro-
file o,. Assuming the pre-impact zero dynamics state is &, the
pre-impact full state is x; by applying Eq. (19) with n = 0. The
postimpact state is obtained x; by Eq. (7). The hybrid invariant
set requires that the after-impact state is still on the zero dynamic
space, namely

m=hg)=0 m=——I(q;)4; =0

oq,

4.2 Zero Dynamics of Single-Stance Phase With Slip. The
slip single-stance phase dynamics (11) has 2 deg of underactuation,
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i.e., the absolute joint angle ¢, and the slip distance x,. The six
dimension virtual constraint for slip single-stance phase is

y="hy(q,)=0 (21

Similar to the nonslip case, defining x., = [g] qZY]T, Eq. (11) is
written as

xes :fx (xex) + & (xex)u (22)

where f; and g, are similar to those in Eq. (15) with corresponding
coefficient matrices from X, in Eq. (11). Defining the state
transformation n, = [y, n3,| = [hs(q4) Ly, h,]T, we use the
feedback linearization to obtain the output dynamics
11y = N, oy = W, Where w is the new control input to drive #, to
zero exponentially. The zero dynamics states are defined as

623‘ =D;

fls = Qs(qa)v psqqesv Xy = Xgy,  Xpg = Dfmflm (23)

where Dy, and Dy, are the rows in Dy  that correspond to the
unactuated angle ¢, and slip distance x;, respectively. Note that
D3, does not depend on x;.

Similar to Eq. (18), we obtain the transformation between the
new coordinates 1, &, and x; = [X1s sz]T with the original states

Xeg QS

Ut Lp) Oh,
REREICO I | .
éls = y | Cas | = D, (4.) qes = }“(qa)qes
X sg(da
Xis Xog D;(4a)
———
A(44)

where ®;(q,) = I HS]T = [nfs 518]T and the inverse transforma-
tion is

_ s
_ qq _ q)sl . _ a1
e = L‘s] B { Xs }7 Ao ™ ’ (qa) )E-(js o9

The zero dynamics is given as

: a0; . . .
éls:a_qaqav X1s = Xy,
oDs,)"
525 = qz%qa - C;\-qqs - Gi.sq = st(élxa 5257){23‘)7
es
D)
X2s = q;l; (0;“) qs — Ci'.s'xqs - Gi'sx (25)
s

From the property of robot motion (10) [26], we obtain

C* - T a(D ixx)T

=q, —F— 26
esx qS 6q5 ( )

We simplify the zero dynamics by substituting Eq. (26) into Eq.
(25) with Eq. (24) and , = 0, and obtain

: 0, Ov-1 ¢

1s e — =

. — aqa ) I(qa) fzs = kls(‘fls) )

X1y 017\; 1 o X2s (27)

éZs = kZS(él_w 6257){23)7 XZ& - _Gi’sx = k3s(£ly)

where k(&) and ks (&) are defined as the coefficients in the
above equations.
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4.3 Multistep Slip Recovery Process and Stability. A slip
recovery process can be considered a series of walking gaits. We
here use a recovery gait sequence as an example to illustrate the
principles and stability of the recovery process, and the results can
be extended to other gait sequences.

As shown in Fig. 2, considering myzp, the normal walking
dynamics are described by nonslip continuous dynamics S; and
transition through nonslip foot impact 7. The normal gait profile
(virtual constraints) is denoted by o,,. When slip happens, phase
S with gait o, transits through the slip impact 7, to slip single-
stance phase S3. In S3, human tries to touch down the swing foot
as soon as possible to find the new support and the gait is
described as o. Once the swing foot touches down, phase S3 tran-
sits back to phase S; through impact H}. A recovery gait profile
o, is adopted during this phase. Finally, the gait is successfully
recovered back to S; with gait profile o,. From the above descrip-
tion, the slip recovery process is summarized as

H, H, H,
Sl (OC,,) — 83(053) — Sl(fxr) — 81(06,1) (28)

Note from Fig. 2 that a stable cyclic gait exists for single-stance
slip phase S3 with gait profile o, and impact ;. This gait does
not happen usually in human walking locomotion because it
requires skills to regulate highly dynamic motion under foot slip.
One example for such gaits is used in figure skating skills in
which both stepping and foot slipping co-exist for stable gaits. To
demonstrate the capabilities of the extended HZD, we present the
results of skating motion later in Sec. 5.

The nonslip or slip single-stance zero dynamics controllers only
drive the system states onto the zero dynamics space of certain
phase. To build a zero dynamics space covering the entire slip
recovery process, it is necessary to guarantee that the zero dynam-
ics space is invariant under slip (7{;) and recovery impacts (Hy).
Similar to Eq. (20), the following conditions should be satisfied
for the recovery sequence in Eq. (28):

A(SNZ,)CZ,,

A(SNZ,)CZ,, A(SNZ,)CZ,

(29

where Z, and Z,, are the slipping and recover step zero dynamics
spaces, respectively.

Assuming pre-impact zero dynamics state under a normal walk-
ing gait o, is given as &~ € SNZ, , the pre-impact full state is
then x,(&") by applying Eq. (19) with § = 0. After the slip impact
(14), the initial full state of slip swing phase is x5 (¢7). Condi-
tion (29) requires that n,(xf) =hy (q)) =0 and
My (x&5) = (0h,,/0q,) (45)4., = 0. Meanwhile, in the HZD

. T .
space, after the impact, [éj xﬂ € Z,, is related to the pre-
impact state &~ € SN Z,, as

0.(q;) [ 0(Tq (&) ]
& D, (4})4.: D3, (Tq,(¢))Ad. (&)
xt - xt B 0 (30)
| D5 (90)4e | [ Doe(Tqu(E)A(5) |
=:5,(¢)

where T is the relabel matrix and the above equation is obtained
by applying Eqgs. (14), (19), and (23).

To compute the ending state in the slip single-stance phase, we
integrate Eq. (27) with respect to time, until either &;; = 51+5 (start
of the step) or &y = &), (ending of the step), which implies,
respectively, either not being able to complete this step and return
to the initial configuration of this phase, or a complete step is
achieved. We denote the ending state as
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sz] =W, (& x]31y) 31)

Xs

where W (&, xo;t) represents the solution (flow) of the zero
dynamics (27) from initial condition (&, xo) at r=0to (£ ,3") at
t=t,. At the end of slip single-stance phase, the swing foot
impacts on the ground and the slipping foot lifts immediately. The
pre-impact zero dynamic state is [£, Jnc;]T €SNZ,. The full
state is xs(&, , x, ) according to Eq. (24) under condition 5, = 0.
After the stick impact, the initial state of recovery step is x7 from
Eq. (7). Condition (29) re%uires that n; =h, (q;) =0 and
. — (0h, /0g,) (g7 )4 — 0.

The initial HZD state of the recovery step swing phase & €
Z,, is related to the pre-impact state [~ x*]T eSNZ, as

0(Tq,(¢1,))

S Du(Ta () (M (6 1) + 1)

= 8(E . x)) (32)

where Eqgs. (7), (16), and (24) are used to obtain the above equa-
tion. The continuous recovery zero dynamics is described by Eq.
(17). We solve Eq. (17) with respect to time until either &, = ff
or ¢, = &, which indicates either not being able to complete this
recovery step and returning to the initial configuration of this
phase, or a complete recovery step is achieved, respectively. We
denote the ending state as &; = @, (E7).

At the end of recovery step, the HZD state is & € SN Z,, and
the full state is x,(&7). After the impact, the initial state is x
from Eq. (7). Condition (29) requires that #, = h,, (¢/) = 0 and
n, = (0h,,/0q,)(q})q; =0. Meanwhile, state &" €Z, is
related to pre-impact state & € SNZ,, as

0(Tq, (1))

S Dy(Tq,(&1) (Anda(E7) + ba)

=8(E) (33

where Eqgs. (7), (16), and (24) are used to obtain the above equa-
tion. Finally, we integrate Eq. (17), respectively, until either &; =
¢l or ¢ = &/, which implies either not being able to complete a
step and returning to the initial configuration of this step, or a
complete step is achieved. We denote the final state as
& =, (&).

The entire slip recovery process is therefore represented by
state transiting in the HZD space. Starting from the moment right
before the slip impact, the initial zero dynamics state & €
SNZ,, is mapped by 8, ¥, d,, D, , &), and D, successively.
The returned value of &, after the slip recovery process is
expressed as the composition of these mappings, namely

H=0, 0800, 08 oW, 05(&) = (&) (4

For stable periodic normal walking gait, choosing Poincaré sec-
tion as & € SNZ,,, from Ref. [9], the Poincaré first return map
has a stable fixed point &, , namely

& =,,00,(&5) =p(&) (35)
and
dp .
5?2(‘52) <1 (36)

These properties guarantee the existence of an invariant region
R C SNZ,, such that for a given &, € R, any ¢, € R satisfies

p(&) - &I <186 - & @7

*We here use the subscript to virtual constraint & to indicate the gait profile o,.
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Fig. 3 The slip and fall experimental setup with various sensor
suites

In the HZD space, the successful slip recovery to the normal gait
is equivalent to & = p,(&,) € R.

5 Experiments and Results

We conducted the indoor walking experiments on a wooden
platform. Figure 3 shows the experimental setup of this study. The
human subjects walked on the wooden platform in the laboratory.
The human subject was first asked to walk on the platform to
become familiar with the testing environment before the slip trial.
A portion of the platform was painted with a soap film to create
slip and recovery gaits when the subject stepped on the slippery
surface. The segment with the reduced coefficient of friction was
not noticeable to the subject such that the subject kept the normal
gait before slip started.

The human walking gait was captured by the optical motion
tracking system (8 Bonita cameras from Vicon Inc., Oxford Met-
rics, Oxford, UK) A small wireless inertial measurement unit
model slimAHRS from Motion Sense Inc., Hangzhou, China) was
also attached to each shoe to obtain the kinematic information of
the foot and potentially for slip detection. Two 6DOF force/torque
sensors (model SS-1 from INSENCO Co., Ltd, Hangzhou, China)
were located inside the shoe to measure the 3D GRF and torques
of the foot-floor contact; see Fig. 3. These 6DOF force sensors are
thin (around 12—-17 mm in thickness) and the human kept normal
walking gait when wearing the shoes with embedded force sen-
sors. The force and torque measurements were transmitted
through wireless network to the host computer. The GRF sensors
and the motion capture system were synchronized for data collec-
tion. The details of discussion about the experimental setup are
reported in Ref. [21].

We first test and validate the foot rolling geometry using the
normal walking motion data. Figure 4(a) shows the foot COP tra-
jectory in the ankle frame. The data confirm the circular shape of
the rolling model with radius R =0.22 m with its center located at
(0.015,0.096) m in the ankle frame. We use these estimated val-
ues in the bipedal model. Figure 4 shows the comparison results
of the seven joint angles by the model prediction and the experi-
ments of normal walking gait. We present these results over a nor-
malized stance S due to the symmetry between the left and right
legs. The stance is defined as the time duration from stance foot
heel-touch to toe-off. The human subject walks at a speed of
around 1.2m/s and the double-stance consists of around 28% of
the entire gait cycle. As shown in Fig. 4, the model predictions
(solid lines) match the experiments (dash lines) closely for both
the single-stance and double-stance phases. Figure 5 further shows
the comparison results of the GRF (i.e., F,, and F,) of the stance
leg. Unlike the diverge results in the literature (e.g., Ref. [13]), the
model prediction results follow the trend of the measurements
from the force sensors. The discontinuity of the predicted GRF
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Fig. 4 (a) Experimental data to calculate the foot-floor contact rolling geometry. The red stars indicate the COP trajectory in
the ankle frame and the blue curve is the fitting circular rolling shape. (b)—(h) Joint angle (g;—g;) comparison between the
model prediction and the experiments during normal gait over one stance. The solid lines represent the model predictions

and the dash lines show the experimental data.
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Fig. 5 The GRF (F, and F,) of the stance leg during the walking
gait without slips

takes place at the phase switching moments due to the calculation
errors of the joint angle accelerations from the single-stance and
the double-stance models.

We next demonstrate the model prediction results for slip
recovery gait experiment. Figure 6(a) shows a video snapshot of
the slip recovery gait. The human subject starts the normal gait
with a single-stance phase (i.e., S; in Fig. 2) at t=0s. At
t=0.32s, the (left) swing leg touches down on the slippery floor
and then starts slipping. At this moment, the (right) foot is still in
touch with the floor without slip and the human gait lies in
double-stance slip phase (S4). Then at r=0.61 s, the (right) swing
foot leaves the ground (toe-off) and the (left) stance foot still slips.
Therefore, the gait enters the single-stance slip phase (S3). The
subject quickly notices and reacts to the slip occurrence. At
t=0.96s, the (right) swing foot touches down, the (left) stance
foot leaves the ground and the gait becomes a recovered single-
stance phase without slipping (S;). Figures 6(b) and 6(c) show the
human skeleton poses measured by the motion capture system and
constructed by the model predicted joint angles, respectively.

Figure 7 shows the seven joint-angle comparison results of the
measurements by the motion capture system and the model pre-
dictions considering double-support stance phase. The results

101002-8 / Vol. 14, OCTOBER 2019

clearly confirm that the model prediction follows the experiments
closely during the entire gait recovery process. Figure 7(/) shows
the slipping distance results and the model prediction follows the
profiles from the experiments. Figures 8(a) and 8(b) show the nor-
mal and tangential GRF for both feet. The GRF comparison shows
that except for the double-stance slip phase during 7= 0.32-0.61 s,
the normal and tangential GRF predictions match the measure-
ments. During the double-stance slip period, the force prediction
are however not accurate. Possible improvement of these double-
stance force calculations could be achieved by increasing the
order of the Bézier polynomials, adding additional term in the
objective function (9) to .follow the COM acceleration with
respect to the gait oy (COM(2y)), or enhancing the GRF distribu-
tion between the legs by imposing additional force constraints.
Figure 8(c) shows the RCOF, computed as RCOF = F,/F,, of the
stance-foot contact during the slip recovery process. Before slip
starts (at around 0.32s), the values of RCOF lie in a range of
|[RCOF| < 0.2, which is far less than the available foot-floor fric-
tion coefficient (measured close to 1 of the dry rubber-wood con-
tact [21]). At r=0.32s, the available COF is less than 0.05 due to
the soap film on the surface. As shown in Fig. 8(¢c), the RCOF is
nearly constant at around 0.05, which is lower than the available
COF. Therefore, slip starts immediately when the foot touches
down.

Next, we present a HZD prediction results for a multistep slip
recovery. Figure 9 demonstrates a complete transition starting
from normal walking stance (0-0.81s), followed by a single-
stance slip phase (0.81-1.28 s) and then single-stance recovery
phase (1.28-2.40 s) and finally transitions back to a periodic nor-
mal walking gait. Figures 9(a)-9(g) show the joint angle compari-
son results of the model prediction and experiments, while
Fig. 9(h) shows the slipping distance comparison. Note that the
simulation results consider only a single-stance and impact map-
ping neglecting double-stance. The entire recovery follows the
process given in Eq. (28). The HZD model prediction results
match the experiments during the slip recovery and transition to
the periodic walking gait process. The slight difference in phase
timings of the HZD model prediction might be due to the inaccu-
rate parameters values used in the simulation comparing with the
experiments. The simulation of the single-stance recovery phase
predicts a shorter duration as compared to the experiments. We
suspect that in the experiment, the subject might apply a flat foot
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Fig.6 A snapshot of the recovery human gait from slip. (a) Video snapshot. (b) Human 7-link skeleton from the optical motion
capture system. The empty-circle dots indicate the reflective optical marker locations. (c) Skeleton prediction by the bipedal
model. In (b) and (c), a red triangle is plotted to indicate the location where the left leg starts slipping. The right leg and trunk
are represented by a solid blue line and the left leg by a black dash line.
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((a)-(g)) Joint angle (g1—g-) comparisons between the model prediction and the experiments during slip recovery gait.

The solid lines represent the model predictions and the dash lines show the experimental data. (h) Slipping distance x; of the

(left) stance leg during the slip recovery experiment.

and it can be viewed as a fully actuated inverted pendulum with
ankle torque control. This ankle torque control can reshape the
time constant of the used underactuated inverted pendulum model.
Our simulation does not consider this effect and instead adopts
circular shaped feet during the slip recovery process.

Figure 10 shows the phase portraits of the zero dynamics for
the recovery process. Figure 10(a) illustrates the 3D phase portrait
in the & /&,~&/&—x, coordinates and Fig. 10(b) shows the
phase portrait in the £,—¢, plane. Comparing with the normal
walking gait, it is clear that the walking with foot slip generates
much richer zero dynamics characteristics. The slip recovery pro-
cess is on a high-dimensional manifold and consists of multiple

Journal of Computational and Nonlinear Dynamics

portions of the phase portraits in 3D space as shown in Fig. 10(a).
The HZD model predictions for the normal walking S, (gait pro-
file o, i.e., solid blue curves) and foot-slip gait S, (impact H; and
gait profile «y, i.e., solid red curve) match with the experiments,
that is, solid blue and empty red circular markers, respectively.
Moreover, as shown in Fig. 10(b), after the single-stance slip
phase S;, the subject tried to recover from the slip by taking non-
slip impact (blue dash-dot line) and then slip-to-normal recovery
gait S, () (black dot curve for model prediction and square dots
for experiments).

In Fig. 10(b), we also mark each individual mapping
o), ¥y, d;, @, , 9, and @, , which together forms the composite
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Fig. 8 Comparison results of the GRF and the RCOF during the slip recovery. (a) Normal GRF F,,, (b) tangential GRF F,, and
(c) RCOF of the stance leg foot. In (a) and (b), the model prediction forces for the left and right legs are plotted as the blue solid
and red circle lines, respectively, and the experiments are plotted as the blue dotted and the red dash lines. In (c), the model
predicted and experimental RCOF in nonslip phase is plotted by the red empty circle and the dash lines, respectively, and
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contracting return mapping p, in Eq. (34) from pre-impact state
&, to recovery state py(&, ). These mappings clearly show the slip
recovery process and also the invariant region R defined by Eq.
(37). We further analyze the HZD for various motions and gaits
and show that the model can predict stable and unstable recovery.
Figure 11(a) shows a collection of the phase portraits of the nor-
mal walking gait, slip recovery gait, and skating gaits in the
&1~Er—x, space. The steady skating gait is generated by consider-
ing both slipping and walking gaits as the skilled human motor
locomotion. It is clear that the zero dynamics of the normal walk-
ing gait are located in the £,—¢, plane, while the skating gait is in
the 3D space with motion in the x; direction. The slip recovery
gait consists of a series of transient motion that deviates from and
then returns to the normal walking gaits. Figure 11(b) further
illustrates the slip recovery gaits in which both successful, stable
recovery (blue and black curves) and unsuccessful, unstable
recovery (dash and solid red curves) gaits are plotted. Both sets of
recovery gaits are obtained by enforcing the same virtual con-
straints. The only difference between these two trajectories is the
value of b, in Eq. (7) of the impact from slip gait to recover gait.
The difference of b, in Eq. (7) gives different initial &, values for
the recovery gait, which indicates the falling angular moments.
Once the value of &, passes through zero and becomes positive,
the progression variable ¢, =0 is in a decreasing trend and this
implies that the gait cannot be completely recovered. Figure 6(c)
demonstrates the gait profiles for a successful slip recovery.

6 Discussion

One of the main goals of this study was the development of a
bipedal model for analytical analysis of slip balance recovery. We
recruited a single subject in our experiments and that is sufficient to
serve the validation of the model development. The bipedal model
and analysis can be applied to study walking and slip gait of any
subject for whom the kinematic data are known. The model param-
eters (i.e., link lengths and masses) and joint angle trajectories are
subject specific and need to be tuned for each individual. This paper
does not provide generalization of slip balance recovery strategies
across a wide population, since this would require analysis of multi-
subject slip balance recoveries and is out of the scope of this paper.

During normal walking, the deviation between model and
experimental results of the ankle angle (ge) trajectory (see
Fig. 4(g)) is primarily due to the approximation of using curved
feet compared to the realistic human feet that have multi-DOFs.
The circular feet can only roll on the ground and have a single
point contact that coincides with the COP location. This is differ-
ent compared to the human foot, which during single stance phase

Journal of Computational and Nonlinear Dynamics

lays flat while COP progresses forward. These differences reflect
also in the GRF profiles as shown in Fig. 5, where discrepancies
between the model and experimental results exist primarily during
double stance phase. At that instant, the toes of the swing (trail-
ing) foot push-off the ground and generate additional forces, while
the circular foot only rolls forward and does not have these capa-
bilities. These differences originate from the discrepancies
between the actual foot-floor rollover shape and circular foot
approximation during the end of the stance as shown in Fig. 4(a).
The differences between the model’s rigid circular foot and the
human’s flexible foot complicate exact matching of the ankle
angles during double stance slip phase. Slip occurrence during
that phase further complicates exact matching. The use of circular
foot was validated to be a reasonable approximation but however
it is impossible to guarantee exact matching of all the joint angles
throughout the whole stance, due to the reduced number of
degrees-of-freedom compared to the human anatomical foot. The
differences between foot orientation in the experiments and the
model’s circular foot in Fig. 6 are due to the reason that the mod-
el’s circular foot is rolling on the ground and has a point contact,
compared to the human foot that can lay flat on the ground while
changing location of a COP within the foot support.

The limitation of this work is that the model considers only sag-
ittal plane motion. While this captures the most important walking
and slip characteristic, the inclusion of motion and foot placement
in a lateral plane can further explain overall slip balance recovery
and provides a complete analysis of the human response during
slip perturbations.

7 Conclusions and Future Work

This paper presented a robotic bipedal dynamic model and the
extended HZD for human walking gait with foot slip. We relaxed
the nonslip assumption used in the existing bipedal robotic models
and explicitly modeled the foot slipping on the ground. A general
hybrid bipedal model and the gait controllers were developed for
human walking with foot slip. The presented HZD was an exten-
sion of the existing dynamics for normal walking locomotion. We
explicitly derived and presented the HZD for human walking with
foot slip that contains two additional zero dynamics states. It is
interesting to show that the HZD under foot slip presented rich
human motor skills, including the normal walking, slip recovery
gaits, and highly skilled skating motion. Stability condition for
slip recovery gait was discussed, and the HZD-based recovery
simulation and experiments were also successfully demonstrated.

We plan to extend the HZD model to further analyze the motion
stability and dependency on the model parameters and motion
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variables. We are also working on how to design virtual gait con-
straints and slip recovery strategies that can lead to stable HZD
under foot slip. Integration of the modeling and analysis of the sta-
ble HZD and the gait control under foot slip with robotic assistive
devices is another future research direction.
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