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Bipedal Model and Hybrid Zero
Dynamics of Human Walking
With Foot Slip
Foot slip is one of the major causes of falls in human locomotion. Analytical bipedal
models provide an insight into the complex slip dynamics and reactive control strategies
for slip-induced fall prevention. Most of the existing bipedal dynamics models are built
on no foot slip assumption and cannot be used directly for such analysis. We relax the
no-slip assumption and present a new bipedal model to capture and predict human walk-
ing locomotion under slip. We first validate the proposed slip walking dynamic model by
tuning and optimizing the model parameters to match the experimental results. The
results demonstrate that the model successfully predicts both the human walking and
recovery gaits with slip. Then, we extend the hybrid zero dynamics (HZD) model and
properties to capture human walking with slip. We present the closed-form of the HZD
for human walking and discuss the transition between the nonslip and slip states through
slip recovery control design. The analysis and design are illustrated through human
walking experiments. The models and analysis can be further used to design and control
wearable robotic assistive devices to prevent slip-and-fall. [DOI: 10.1115/1.4043360]

1 Introduction

Foot slip is one of the major causes for human falls and injuries.
Slip-induced falls cause enormous economic and societal costs
[1]. The direct costs for nonfatal fall-related injuries among U.S.
elderly (�65 years) were $19 billion in the year 2000 [1] and
increased to over $31 billion in the year 2015 [2]. Among the
occupational population in the U.S., slips, trips, and falls repre-
sented 27% of all nonfatal occupational injuries in the year 2015
[3]. To develop effective fall prevention strategies and technolo-
gies, it is critical to understand human locomotion and balance
recovery under slip. Modeling of human walking locomotion with
slip is an effective approach to assist in the design and control of
new wearable assistive devices. Slip-and-fall has been extensively
studied in the past two decades, for example, Refs. [4,5] and refer-
ences therein. Most of these studies focus on human subjects and
clinical experiments and a few use human locomotion dynamics
to analyze the slipping mechanism. Simulation-based dynamic
models are used to study motion stability of slip and fall. In Ref.
[5], a seven-link, nine-degrees-of-freedom (DOF) walking model
in the sagittal plane with a 16-element foot model is used to simu-
late the human reaction control to a novel slip in gait. In Ref. [6],
a simulation model is optimized with human experiments. Using
this model, stability results are obtained and compared with the
dynamic balance analyses by a simple invented pendulum model.
The 2D musculoskeletal model in the sagittal plane is also dis-
cussed in Ref. [7] to determine the impact of the reduced required
coefficient of friction (RCOF) on gait kinematics. Kinematic and
muscle activity-based data-driven analysis (e.g., Lyapunov expo-
nents) is used to capture the walking stability [8].

Robotic bipedal models [9,10] were recently presented for
study of human walking gait [11,12], for design of prosthetic devi-
ces for lower-limbs [11] and control of robotic walkers. In Ref.
[13], a bipedal model is proposed to study human gaits with fixed
ankle joints. Both the single- and double-stance phases are
included in the model and a hybrid zero dynamic (HZD) control is
designed to track the human gait profile. Although the kinematic

variables such as hip; knee; and head, arms, and trunk (HAT) joint
angles match the human gaits, the predicted ground reaction
forces (GRFs) have large discrepancies with experiments. In Ref.
[12], only single-stance locomotion is considered in the model
without the HAT. The models in Refs. [12] and [13] use the circu-
lar curved foot-floor contact that was developed in Ref. [14].
However, all of the above-mentioned bipedal models are built on
the assumption that the foot-floor contact friction forces are large
enough to prevent the foot from slipping, and thus, cannot be
directly used to study slip-and-fall walking gaits. Bipedal walking
is commonly described by a hybrid dynamics framework with
continuous dynamics during the single- or double-stance periods
with discrete mappings to capture the foot contact impacts. Using
the HZD concept [15], a low-dimensional normal human walking
model is presented in Ref. [13] and a state feedback control is
designed to track the gait profile parameterized by the stance
phase variable, rather than time [9]. The repetitive human walking
gait is captured by the HZD when the gaits follow the desired
profiles.

The goal of this study is to develop an analytic bipedal model
and extend the HZD approach for human walking with slip. The
model extends the bipedal framework in Refs. [9,11], and [12] by
relaxing the foot no-slip assumption and using the circular rolling
feet to capture the foot rolling characteristics. The proposed
human walking model is built on a seven-link robotic bipedal
dynamics model with actuated ankle joints. The model includes
the dynamics of both the single- and double-stance motion. The
model explicitly considers the foot slipping displacement, and
therefore, can predict the human gait under slips. Moreover, we
explicitly calculate and present the HZD that consists of dynamics
of the gait progression variable and the slipping distance. The
inclusion of the latter parameter is new compared to the existing
HZD models. The HZD stability conditions and properties are
also discussed under a set of slip recovery gaits that are obtained
from human subject experiments. This paper extends the previous
conference publications [16,17] by providing additional details in
bipedal model derivation, model validation, and detailed HZD
analyses of slip recovery stability examples and experiments.

The main impact of this work lies in the development of bipedal
model and HZD slip analysis that provides an important insight
into slip balance recovery analysis. This analytic analysis enables
determination of the outcome of the balance recovery and distin-
guishing between successful versus unsuccessful slip balance
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recovery, based on a current state/posture and angular momentum
of the human model. The slip balance recovery analysis can be
used in controller design of wearable robotic assistive devices for
slip-and-fall prevention. Information of the required angular
momentum for successful slip recovery based on the current states
(i.e., joint angles, foot placement, and center of pressure (COP))
can be used to determine the required assistive torques provided
by the device or repositioning of the foot placement to prevent
falls.

The measurement of slipperiness and the devices to obtain the
shoe-floor friction are discussed in Ref. [18]. Force plate is the
most commonly used device to measure the GRF and used to cal-
culate the foot contact COP. However, force plates cannot be used
for monitoring daily activities outside the laboratory. In recent
years, wearable insole pressure measurement devices were devel-
oped to obtain the GRF (e.g., Refs. [19] and [20]). In this work,
we use an integrated sensor suite inside each shoe to measure the
3D GRF and torques. The details of these sensors are discussed in
Ref. [21]. Combining with the wearable motion sensors (e.g., Ref.
[22]), we obtain the limb poses and forces in indoor or outdoor
environments.

The results in this paper complement the existing literature on
human bipedal models and gait control. The main contributions of
this work are threefold. First, this work extends the robotic bipedal
models to study human walking under foot slip. The new model
not only predicts the human gait with slip but also helps to under-
stand the motion stability during slip. Second, besides relaxing the
assumption of nonslip foot-floor contact, the new model brings
innovative features and properties compared with the existing
bipedal models. For example, compared with the bipedal models
with a point, a flat or multicontact foot in Refs. [9] and [23–25],
the new model includes an experimentally validated foot-floor
contact circular shaped foot. Unlike the bipedal model in Ref.
[12] that only deals with a single-stance human locomotion, the
proposed model includes the human trunk (e.g., seven-link) and
also the double-stance phase, which is crucial for slips and fall
motion. Compared with the work in Refs. [11] and [13], the pro-
posed model includes the active ankle joints and also generates
the matched GRF with the experiments. Third, we present the new
HZD model and its application to human walking under foot slip.
The HZD can be used to analytically investigate the slip balance
stability and recovery strategies that are otherwise not possible
through clinical studies.

The rest of the paper is organized as follows. We first present
the bipedal dynamic model for normal walking gait without slip
in Sec. 2. In Sec. 3, we present the bipedal model for walking
with slips. Section 4 presents hybrid zero dynamics for no-slip
walking and slip gait. The experiments and results are presented
in Sec. 5. The discussion of the results is presented in Sec. 6. We
conclude the paper and discuss the future work in Sec. 7.

2 Bipedal Walking Model Without Slips

2.1 System Configuration. Figure 1(a) illustrates the setup
of the coordinates for bipedal modeling of human walking. The
human motion is considered only in the sagittal plane. The human
body is considered as a seven-link rigid body. The HAT is consid-
ered as one link that is connected to the left and the rightthigh.
The model has two active hip joints, two active knee joints, and
two active ankle joints. Similar to those in Ref. [12], we use rela-
tive angles qi, i ¼ 2;…; 7, to define the configuration of the sys-
tem and the absolute angle q1 denotes the leading stance leg
orientation with respect to the vertical position.

We define the joint angle vector qa ¼ ½q1 � � � q7�T. The foot-
floor contact is considered as a circular disk with radius R rolling
on the solid ground; see Fig. 1(b). To capture the slip motion of
the foot, we denote the position of the rotating center Or of the
foot as [xo yo]T and a slipping vector qs ¼ ½xs; ys�T
¼ ½xo þ Rð/� /0Þ; yo � R�T, where / is the absolute rolling

angle of the stance foot with respect to the vertical direction and
/0 is the initial value of /. _qs ¼ ½ _xo þ R _/; _yo�

T
is the slipping

velocity. When the stance foot is purely rolling on the ground,
_qs ¼ 0. We use qs and qa (i.e., foot rotating angle) to calculate the
stance foot-floor contact point C. To completely determine the
walking gait with slip, we define the generalized coordinate
qe ¼ ½qT

a qT
s �

T
.

A human walking cycle consists of a series of repeated sequen-
tial movements and events [9], namely a single-stance, a double-
stance, and the foot impact phases. During the single-stance
phase, the stance foot rolls on the ground, while the swing foot
moves in the air from positions behind to front of the stance foot.
Once the swing foot impacts on the ground (i.e., heel-touch), the
joint velocity suddenly changes and the joint configuration is rela-
beled due to the switching role of the stance and swing legs. The
double-stance phase refers to the stage when both legs roll on the
ground. Finally, the trailing stance foot leaves the ground (i.e.,
toe-off) and the pose returns to the single-stance phase. Hybrid
models shown in Fig. 2 are used to capture the above-mentioned
discrete-continuous dynamics.

2.2 Single- and Double-Stance Models and Gait Control-
ler. The nonslip single-stance dynamics are described as [9]

Rs : DsðqaÞ€qa þ Csðqa; _qaÞ _qa þ GsðqaÞ ¼ Bsu (1)

where DsðqaÞ; Csðqa; _qaÞ; GsðqaÞ, and Bs are the inertia, Coriolis,
gravity, and input mapping matrices, respectively. There are six
joint torque inputs u 2 R6 and the system is underactuated since
absolute joint angle q1 is not controlled by any joint torque.

Fig. 1 (a) Schematic of the seven-link human walking model
with curved foot contact and (b) schematic of the foot-contact
model

Fig. 2 Finite state diagram of human walking gait with slips
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Therefore, we have Bs ¼ ½0n�1 In�1�T, where 0n ¼ ½0 � � � 0�T 2
Rn is a zero column vector and In is an n-dimensional identity
matrix, where n represents a total number of joint angles (n¼ 7 in
this paper). A feedback linearization approach is adopted to con-
trol the joint angles qa to follow a desired trajectory that is speci-
fied by a progression variable h ¼ cqa, where c is a constant
progression vector. During the single-stance phase, h monotoni-
cally increases and the desired trajectory of actuated joint angles
is expressed by h. The feedback linearization controller enforces
the virtual constraint specified by

y ¼ hðqaÞ ¼ H0qa � hdðhÞ ¼ 0 (2)

where H0 is a constant matrix and hdðhÞ is the desired trajectories
of actuated joint angles described by the B�ezier polynomials [9].
If u is properly chosen by feedback linearization to drive
y ¼ _y ¼ 0, only the dynamics of h is left as the zero dynamics [9].

To calculate the GRF for single-stance walking, we consider
the dynamics of the individual link expressed as a function of joint
angles, angular velocities, and accelerations. We sum these contri-
butions to compute the instantaneous horizontal and vertical
accelerations of the center of mass using forward kinematics. The
external forces acting on the center of mass are the ground reac-
tion forces and the gravitational force. Using Newtonian mechan-
ics, it is straightforward to obtain the normal Fn and tangential
force Fx at foot/ground contact points. This force calculation
method is also generalized to the single-stance slip case discussed
in Sec. 3.2.

During the double-stance phase, both the leading and trailing
feet are in contact with the ground at contact points Cl and Ct,
respectively; see Fig. 1(a). We consider a general modeling
approach by defining slipping vectors glðqeÞ 2 R2 and gtðqeÞ 2
R2 of contact points Cl and Ct, respectively. Note that both glðqeÞ
and gtðqeÞ are determined as functions of qe. Because of the foot-
floor contact constraints, the equations of motion during the
double-stance are expressed as

Rd : DeðqeÞ€qe þ Ceðqe; _qeÞ _qe þ GeðqeÞ ¼ Beuþ ET
e Fe (3)

where DeðqeÞ; Ceðqe; _qeÞ; GeðqeÞ, and Be are the inertia, Coriolis,
gravity, and input mapping matrices, respectively. Matrix Ee ¼
½ð@gtðqeÞ=@qeÞ ð@glðqeÞ=@qeÞ�T 2 R4�9 describes the contact con-
straints and Fe ¼ ½Fxt Fnt Fxl Fnl�T is a vector of the collection of
the tangential and normal forces at Ct and Cl, respectively. With
nonslip conditions at Cl and Ct, we have four kinematic con-
straints Ee _qe ¼ 0 and the degrees-of-freedom given by Eq. (3) are
9� 4 ¼ 5.

Since there are six active joints and five degrees-of-freedom,
the bipedal system is overactuated. Using a similar derivation as
in Ref. [13], the constrained dynamics is reformulated as

Ddi€qdi þ Cdi _qdi þ Gdi ¼ Mdiu (4)

where subscript “di” denotes double-stance independent variable

dynamics and qdi ¼ ½q1 q2 q3 q5 q7�T and Mdi 2 R5�6 map the
six joint torques into the five-dimensional dynamics. To predict
double-stance human gaits by Eq. (4), a B�ezier polynomial is used

to parameterize the desired trajectory of qd
di [9]. The control input

u is designed such that €qdi ¼ D�1
di ðMdiu� Cdi _qdi � GdiÞ

¼ €qd
di � Kpðqdi � qd

diÞ � Kdð _qdi � _qd
diÞ, where Kp and Kd are con-

stant gain matrices. To solve u in the above equation, we need an
additional constraint because of the overactuation configuration.
In our implementation, we assume a simple linear constraint of

the joint torques qTu ¼ 0, and q 2 R6 is determined by the
single-stance joint torque profiles. This constraint is based on the
underlying physical principle assumption that humans minimize
the effort for walking. The linear constraint qTu¼ 0 is equivalent

to minimizing the effort uTðqqTÞu.
To calculate the ground reaction forces Fe, we take time deriva-

tive of the kinematic constraint Ee _qe ¼ 0. Stacking with the

dynamics in Eq. (3), we obtain (argument variables in the coeffi-
cient matrices are dropped for clarity)

De �ET
e

Ee 0

h i
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Dext

€qe

Fe

� �
¼ Be

0

� �
u� Ce

_Ee

� �
_qe �

Ge

0

� �
(5)

Since matrix Dext is full rank, both €qe and forces Fe are obtained
with the known u from the above controller design.

2.3 Impacting Model. The impact dynamics are obtained by
integrating the double stance dynamics equation (3) over the
instantaneous impact time with certain neglections [9]

Deðq�e Þ _qþe � Deðq�e Þ _q�e ¼ ET
elðq�e ÞdFel þM

where superscripts “þ” and “–” indicate the instants just after and
before the impact event, respectively. The impulse due to the
impact on the leading foot is dFel ¼

Ð 0þ

0� FelðtÞdt, where Fel con-
tains both the normal and tangential ground reaction forces. The
GRF applied on the trailing foot Fet is not an impact force. The
integration of Coriolis term Ce and the gravitational term Ge are
relatively small and therefore neglected. The integration of input
torque M ¼

Ð 0þ

0� BeuðtÞdt is a constant determined from the experi-
mental data. After the impact, the swing leg sticks on the ground
and thus

Eel _qþe ¼ 0

where EelðqeÞ ¼ ð@ _gl=@ _qeÞðqeÞ is the Jacobian matrix of impact-
ing foot contact point velocity _gl with respect to _qe.

We clearly express the impact mapping Hd
s as the pre-impact

joint velocity _q�e of the single-stance phase to the postimpact joint
velocity _qþe of the double-stance phase as

Hd
s :

Deðq�e Þ �ET
el

Eel 0

" #
_qþe

dFel

" #
¼

Deðq�e Þ _q�e
0

" #
þ

M

02

" #
(6)

For periodic walking gait, M can be neglected due to the insignifi-
cant input torque u applied during the impact time. However, for
slip recovery process, M cannot be neglected for the intentional
effort to keep balance.

The matrix on the left-hand side of Eq. (6) is invertible, and
after considering the relabeling of stance foot, we have

_qþa ¼ Dnðq�e Þ _q�e þ bn (7)

where Dn is the impact mapping calculated from Eq. (6) and bn is
a constant vector that is related to M. Because the new stance foot

sticks to the ground, _qþe ¼ ½ð _qþa Þ
T

02�T, and if the previous step is

also nonslip, _q�e ¼ ½ð _q�a Þ
T

02�T. More detailed discussion can be
found in Refs. [9] and [12].

Same as Refs. [9,13], a relabeling process is applied to the joint
angles and their velocities after the impact. For the transition from
the double-stance to single-stance phases, the transition is
obtained as

Hs
d : qþe ¼ q�e ; _qþe ¼ _q�e (8)

2.4 Model Optimization for Human Walking Gait. To
apply the bipedal model to human gait, we need to tune the model
parameters to fit the human walking data. During the human walk-
ing experiments, all joint angles and the GRF information are col-
lected and obtained [21,22].

For single-stance dynamics (1), we need to identify and match
the virtual constraint hðqaÞ in (2) from the collected joint angles.
We use H0 ¼ ½0 I6�, to choose the active joints [9]. The desired
trajectory hd is parameterized by the B�ezier polynomial. To fit the

Journal of Computational and Nonlinear Dynamics OCTOBER 2019, Vol. 14 / 101002-3

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/com

putationalnonlinear/article-pdf/14/10/101002/5429329/cnd_014_10_101002.pdf by R
utgers U

niversity user on 17 Septem
ber 2019



double-stance model (3), we choose to optimize the B�ezier spline
parameters ad such that the desired trajectory qd

di ¼ qd
diðad; tÞ

approximates human walking and also avoids unrealistic high
joint-angular acceleration. We take the joint angular acceleration
into the optimization process because the GRF matching is one of
the targets besides the joint angles matched. Therefore, we mini-
mize the following objective function:

JdðadÞ ¼
ðtf

t0

kqd
diðad; tÞ � qe

dik
2 þ ck€qd

diðad; tÞk2dt (9)

where c> 0 is a weighting factor and [t0, tf] is the time interval, and
qe

di is the measured joint angle profiles. By the property of the B�ezier
polynomials, we analytically express both qd

di and €qd
di as functions of

ad, and therefore, the optimal ad is obtained using a scaled conjugate
gradient method. We will demonstrate the results in Sec. 5.

While in general it is possible to use arbitrary function to para-
metrize the joint angle trajectories, we specifically chose to use
the B�ezier polynomials, due to their wide use in modeling smooth
curves that requires only few parameters particularly for biped
walking model [9]. We particularly chose the fifth-order B�ezier
polynomials that are determined by six points. Two of these are
determined as the starting and end points of the joint angle trajec-
tory that are determined from the experiments. This simplifies the
parameter estimation process. The remaining parameters are tuned
based on minimizing the objective function JdðadÞ.

3 Bipedal Walking Model With Foot-Floor Contact

Slip

In this section, we extend the bipedal model from Sec. 2 to con-
sider the foot-floor contact slip. We first present an overview of the
extended hybrid model and the detailed dynamics are then discussed.

3.1 Hybrid Model for Walking With Slip. Figure 2 shows
the finite state diagram of the hybrid bipedal model for human
walking with foot-floor contact slip. For the normal walking gait,
the hybrid dynamics contain two states: nonslip single-stance and
double-stance phases shown as S1 and S2, respectively. The heel-
touch and toe-off events trigger the switching between S1 and S2

with the impact mappingsHd
s and Hs

d , respectively.
The foot slip can happen during the single- and double-stance

phases. Therefore, two new states are introduced for the gaits with
slip: single-stance slip phase S3 and double-stance slip phase S4.
State S4 includes the cases when slip happens on the stance leg
only, the swing leg only, or both legs simultaneously. The transi-
tions among S1; i ¼ 1; 2; 3; 4, shown in Fig. 2 represent the human
slip recovery strategies. For example, as we will show in the case
study in Sec. 5, one slip recovery strategy can be represented in
the sequence of S1 ! S4 ! S3 ! S1. The details of each transi-
tion in the finite state diagram are parts of the required human slip
recovery strategies. These slip recovery strategies are out of the
scope of this paper and we omit the discussion here.

3.2 Single-Stance Slip Model and Gait Controller. Due to
foot slip, we use the extended configuration coordinate qe ¼
½qT

a qT
s �

T ¼ ½qT
a xs ys�T to describe the motion. The dynamic

model is obtained as

(10)

where Des 2 R9�9; Ces 2 R9�9; Ges 2 R9, and Bes 2 R7�6 are
the inertia, Coriolis, gravity, and input mapping matrices, respec-
tively. We define matrices Dij

es; Cij
es, and Gij

es, where indexes i¼ 1,
2, and 3 represent, respectively, the first seven, the eighth, and the
ninth row and indexes j¼ 1 and 2 represent, respectively, the first
eighth and the ninth column of the matrices Des; Ces, and Ges.
External force Fes ¼ ½Fx Fn�T is the frictional (tangential) and
normal forces at the stance foot.

The stance foot is always in contact with the ground during
slipping (i.e., ys¼ 0), and therefore, we have constraint
qs ¼ ½xs ys�T ¼ ½xs 0�T. Also, we have Fx ¼ �lFn, where l is the
friction coefficient between the shoe sole and the ground floor.
With these constraints, we further simplify Eq. (10) by defining
new coordinate qes ¼ ½qa xs�T 2 R8 and eliminating external
force Fn and finally obtain

Rs
s : Ds

es€qes þ Cs
es _qes þ Gs

es ¼ Bs
esu (11)

where

Ds
es ¼

D11
es

D21
es þ lD31

es

2
4

3
5; Cs

es ¼
C11

es

C21
es þ lC31

es

2
4

3
5 2 R8�8;

Gs
es ¼

G1
es

G2
es þ lG3

es

2
4

3
5 2 R8; Bs

es ¼
Bes

0

2
4

3
5 2 R8�6

The system given by Eq. (11) has eight state variables and six
joint torques as inputs, and therefore, it is underactuated. The
absolute joint angle q1 and the slipping distance xs are underactu-
ated variables. To use model (11) for human gait prediction,
we adopt a similar controller as for the nonslip case. A
six-dimensional holonomic virtual constraint y ¼ hðqaÞ ¼
H0qa � hdðhsÞ is used to design the control system, where hs ¼
csqa and cs is chosen to ensure ½HT

0 cT
s �

T
is full rank. Similar to

the nonslip case, letting g ¼ hðqaÞ, the control u is chosen to regu-
late g ¼ _g ¼ 0 and the zero dynamics are obtained. Specifically,
we define n ¼ ðD11

es Þ1 _qa, where ðD11
es Þ1 is the first seven elements

of the first row of matrix D11
es and it corresponds to the unactuated

variable q1. The dynamics of n and _xs are indeed the zero dynam-
ics of the system and will be presented in Sec. 4. Compared with
the nonslip single-stance case, the zero dynamics of the slip walk-
ing model contain one additional variable _xs.

3.3 Double-Stance Slip Model and Gait Controller. During
the double-stance slip gait, either (i) only one of two feet slips
while the other foot purely rolls on the ground, or (ii) both feet
slide on the ground. These two situations share the same equations
of motion given by Eq. (3) but with different governing con-
straints. For the first case, we always define the nonslipping leg as
the stance leg, and from the stance leg, we define the absolute
joint angle q1; see Fig. 1(a). For the second case, we take either
leg as the stance leg.

By such arrangements, for case (i), without loss of generality,
we assume that the trailing leg is nonslip and also the stance leg.
Therefore, we have kinematic constraints gtðqeÞ ¼ 0 and
ðglðqeÞÞy ¼ 0, where ðgiðqeÞÞj; i ¼ l; t; j ¼ x; y, represents the jth
coordinate of slipping vector giðqeÞ. Moreover, we have the
kinetic constraints Fxl ¼ �lFnl for slipping foot. Similarly, for
case (ii), we have the kinematic constraints ðgtðqeÞÞy ¼
ðglðqeÞÞy ¼ 0 and the kinetic constraints Fxt ¼ �lFnt and
Fxl ¼ �lFnl. In the following, we only present the dynamics for
case (i) and similar results can be obtained for case (ii).

Because of constraints gtðqeÞ ¼ 0 and ðglðqeÞÞy ¼ 0, we obtain
ð@gt=@qeÞ _qe ¼ 0 and ð@ðglðqeÞÞy=@qeÞ _qe ¼ 0. Using the defini-
tion of Ee in Eq. (3), these kinematic constraints are written into
compact form Ees _qe ¼ 0, where Ees :¼ ðEeÞ½1;2;4� 2 R3�9 is a
matrix formed by taking rows 1, 2, and 4 of Ee. Similarly, the
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kinetic constraint Fxl ¼ �lFnl is used to rewrite the external force
vector in Eq. (3) as

Fe ¼
1 0 0

0 1 0

0 0 �l

0 0 1

2
664

3
775

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Cf

Fxt

Fnt

Fnl

2
4

3
5

|fflffl{zfflffl}
Fe3

¼ Cf Fe3 (12)

Similar to the treatment to obtain Eq. (5), by taking derivative of
velocity constraint Ees _qe ¼ 0 and stacking with the simplified
Eqs. (3) and (12), we obtain

De �ET
e Cf

Ees 0

h i
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Ds
ext

€qe

Fe3

� �
¼ Be

0

h i
|ffl{zffl}

Bs
ext

u� Ce
_Ees

h i
_qe � Ge

0

h i
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cs
ext

Matrix Ds
ext is full rank, and therefore, €qe and Fe3 are uniquely

determined once the current state variables and joint torques u are
given. Since the three-dimensional constraints Ees _qe ¼ 0 are
enforced, the degrees-of-freedom of the system are 9� 3 ¼ 6.
Therefore, the system is fully actuated.

Letting qi ¼ ½q1 q2 q3 q4 q5 q7�T ¼ Sqe be the independent

variables, where S 2 R6�9 is a constant transformation matrix

from qe to qi, we express €qi ¼ SðDs
ext
�1Bs

extuþ Ds
ext
�1Cs

extÞ, where

SDs
ext
�1Bs

ext 2 R6�6 is a full rank matrix. To track a given trajec-

tory qd
i , the controlled joint torque is designed as u ¼ ðSDs

ext
�1

Bs
extÞ
�1ð€qd

i � Kpðqi � qd
i Þ � Kdð _qi � _qd

i Þ � SDs
ext
�1Cs

extÞ, where
Kp and Kd are constant gain matrices.

3.4 Impact Model for Walking Gait With Slip. The impact
model under slip is obtained from the extension of the nonslip
case in Sec. 2.3. The main difference is that the slip can happen
right after the impact, and therefore, the velocity of heel-touch
contact point Cl is possibly nonzero, unlike zero in nonslip case.
From the discussion in Sec. 3.3, we have the velocity constraint
Ee _qe ¼ vslip ¼ ½0 0 vslip 0�T, where vslip is the slipping velocity
of point Cl (along the x-axis direction) after the heel-touch impact.
Therefore, we obtain

Hs
n :

De q�eð Þ �ET
e

Ee 0

" #
_qþe

dFe

" #
¼

De q�eð Þ _q�e
vslip

" #
(13)

Compared with Eq. (6), one more unknown _xþs is introduced.
We here use the friction coefficient to relate impulses F2x ¼
�lF2y because of the friction model and the integration over
instantaneous impact time. Considering relabeling, we have

_qþe ¼
_qþa

_xþs

0

2
664

3
775 ¼ Ds q�eð Þ _q�e (14)

where Ds denotes the foot-slip impact mapping matrix.

4 Hybrid Zero Dynamics of Slip Recovery

In this section, we first present the HZD for bipedal walking
with foot slip. Then, we discuss a set of slip recovery phases that
are observed in the experiments. Finally, we introduce the stabil-
ity of slip recovery sequence. Since single-stance phase takes
main stance gait duration, and due to the complexity of the
double-stance dynamics, only single-stance dynamics are consid-
ered in the HZD analysis. This simplification helps highlight the
HZD of slip recovery process in later discussion, and also allows
us to consider only the continuous nonslip and slip dynamics, S1

and S3, and their respective impact mapping transitions. For

completeness, two additional return impact mappings are
required: Hn

n and Hs
s transitions back to the nonslip single-stance

phase (S1) and the slip single-stance (S3), respectively. These are
all defined in domain pHZD as shown in Fig. 2.

4.1 Zero Dynamics of Nonslip Single-Stance Phase. The
nonslip single-stance zero dynamics is obtained by enforcing the
states of Eq. (1) onto the virtual constraint (2). Following a similar
treatment in Ref. [12], we define xa ¼ qT

a _qT
a

� �T
and rewrite (1)

into a first-order form

_xa ¼ f xað Þ þ g xað Þu (15)

where f xað Þ ¼
_qa

�D�1
s Cs _qa þ Gsð Þ

� �
; g xað Þ ¼

07�6

D�1
s Bs

� �
. We

consider a coordinate transformation

g1 ¼ h qað Þ; g2 ¼ Lf h qað Þ; n1 ¼ h qað Þ; n2 ¼ Da qað Þ _qa

(16)

where Lf h qað Þ is the Lie derivative of h qað Þ along f, and Da qð Þ is
formed by the row of Ds qð Þ that corresponds to the unactuated
joint angle q1. Choosing u ¼ LgLf hð Þ�1ð�L2

f hþ vÞ and v to regu-
late g1 ¼ g2 ¼ 0 exponentially, the output dynamics become
_g1 ¼ g2; _g2 ¼ v. The zero dynamics is given as

Rn
ZD :

_n1 ¼
@h
@qa

_qa ¼: k1 n1ð Þn2;

_n2 ¼ _qT
a

@DT
a

@qa

_qa � Ca _qa � Ga ¼: k2 n1; n2ð Þ

8>>>><
>>>>:

(17)

The transformation of output g :¼ gT
1 gT

2

� �T
and internal states

n :¼ n1 n2½ �T to xa is obtained as

g1

n1

" #
¼

h qað Þ
h qað Þ

" #
¼: U qað Þ;

g2

n2

" #
¼

@h qað Þ
@qa

Da qað Þ

2
64

3
75 _qa (18)

and the inverse transformation is

qa ¼ U�1
g1

n1

" # !
; _qa ¼

@h qað Þ
@qa

Da qað Þ

2
64

3
75
�1

g2

n2

" #
(19)

When g ¼ 0; xa is a function of only n and the right-hand side of
Eq. (17) can be written as a function of n.

To maintain stable gaits, the pre-impact states should be
mapped to zero dynamics space under the impact mapping (7) [9],
that is

Dn S \ Zanð Þ � Zan
(20)

where S is the double-stance configuration space and Zan
is the

single-stance zero dynamics space under normal walking gait pro-
file an. Assuming the pre-impact zero dynamics state is n�, the
pre-impact full state is x�a by applying Eq. (19) with g ¼ 0. The
postimpact state is obtained xþa by Eq. (7). The hybrid invariant
set requires that the after-impact state is still on the zero dynamic
space, namely

g1 ¼ h qþa
� �

¼ 0; g2 ¼
@h

@qa

qþa
� �

_qþa ¼ 0

4.2 Zero Dynamics of Single-Stance Phase With Slip. The
slip single-stance phase dynamics (11) has 2 deg of underactuation,
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i.e., the absolute joint angle q1 and the slip distance xs. The six
dimension virtual constraint for slip single-stance phase is

y ¼ hs qað Þ ¼ 0 (21)

Similar to the nonslip case, defining xes ¼ qT
es _qT

es

� �T
, Eq. (11) is

written as

_xes ¼ f s xesð Þ þ gs xesð Þu (22)

where f s and gs are similar to those in Eq. (15) with corresponding
coefficient matrices from Rs in Eq. (11). Defining the state
transformation gs ¼ gT

1s gT
2s

� �T ¼ hs qað Þ Lf s
hs

� �T
, we use the

feedback linearization to obtain the output dynamics
_g1s ¼ g2s; _g2s ¼ w, where w is the new control input to drive gs to
zero exponentially. The zero dynamics states are defined as

n1s ¼ hs qað Þ; n2s ¼ Ds
esq _qes; x1s ¼ xs; x2s ¼ Ds

esx _qes (23)

where Ds
esq and Ds

esx are the rows in Ds
es that correspond to the

unactuated angle q1 and slip distance xs, respectively. Note that
Ds

es does not depend on xs.
Similar to Eq. (18), we obtain the transformation between the

new coordinates gs; ns, and xs ¼ x1s x2s½ �T with the original states
xes as

g1s

n1s

x1s

2
664

3
775 ¼ Us qað Þ

xs

" #
;

g2s

n2s

x2s

2
664

3
775 ¼

@hs

@qa

0

Ds
esq qað Þ

Ds
esx qað Þ

2
64

3
75

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
k qað Þ

_qes ¼ k qað Þ _qes

where Us qað Þ ¼ hs hs½ �T ¼ gT
1s n1s

� �T
and the inverse transforma-

tion is

qes ¼
qa

xs

� �
¼ U�1

s

x1s

� �
; _qes ¼ k�1 qað Þ

g2s

n2s

x2s

2
4

3
5 (24)

The zero dynamics is given as

_n1s ¼
@hs

@qa

_qa; _x1s ¼ _xs;

_n2s ¼ _qT
es

@ Ds
esq

� �T

@qes

_qes � Cs
esq _qs � Gs

esq ¼: k2s n1s; n2s; x2sð Þ;

_x2s ¼ _qT
es

@ Ds
esxð ÞT

@qs

_qs � Cs
esx _qs � Gs

esx (25)

From the property of robot motion (10) [26], we obtain

Cs
esx ¼ _qT

s

@ Ds
esxð ÞT

@qs

(26)

We simplify the zero dynamics by substituting Eq. (26) into Eq.
(25) with Eq. (24) and gs ¼ 0, and obtain

_n1s

_x1s

2
4

3
5 ¼

@hs

@qa

0

0T
N 1

2
664

3
775k�1 qað Þ

0N�1

n2s

x2s

2
6664

3
7775 ¼: k1s n1sð Þ

n2s

x2s

2
4

3
5;

_n2s ¼ k2s n1s; n2s; x2sð Þ; _x2s ¼ �Gs
esx ¼: k3s n1sð Þ

(27)

where k1s n1sð Þ and k3s n1sð Þ are defined as the coefficients in the
above equations.

4.3 Multistep Slip Recovery Process and Stability. A slip
recovery process can be considered a series of walking gaits. We
here use a recovery gait sequence as an example to illustrate the
principles and stability of the recovery process, and the results can
be extended to other gait sequences.

As shown in Fig. 2, considering pHZD, the normal walking
dynamics are described by nonslip continuous dynamics S1 and
transition through nonslip foot impact Hn

n. The normal gait profile
(virtual constraints) is denoted by an. When slip happens, phase
S1 with gait an transits through the slip impact Hs

n to slip single-
stance phase S3. In S3, human tries to touch down the swing foot
as soon as possible to find the new support and the gait is
described as as. Once the swing foot touches down, phase S3 tran-
sits back to phase S1 through impact Hn

s . A recovery gait profile
ar is adopted during this phase. Finally, the gait is successfully
recovered back to S1 with gait profile an. From the above descrip-
tion, the slip recovery process is summarized as

S1 anð Þ�!
Hs

n S3 asð Þ�!
Hs

n S1 arð Þ�!
Hs

n S1 anð Þ (28)

Note from Fig. 2 that a stable cyclic gait exists for single-stance
slip phase S3 with gait profile as and impact Hs

s. This gait does
not happen usually in human walking locomotion because it
requires skills to regulate highly dynamic motion under foot slip.
One example for such gaits is used in figure skating skills in
which both stepping and foot slipping co-exist for stable gaits. To
demonstrate the capabilities of the extended HZD, we present the
results of skating motion later in Sec. 5.

The nonslip or slip single-stance zero dynamics controllers only
drive the system states onto the zero dynamics space of certain
phase. To build a zero dynamics space covering the entire slip
recovery process, it is necessary to guarantee that the zero dynam-
ics space is invariant under slip (Hs

n) and recovery impacts (Hn
s ).

Similar to Eq. (20), the following conditions should be satisfied
for the recovery sequence in Eq. (28):

Ds S \ Zanð Þ � Zas
; Dn S \ Zasð Þ � Zar

; Dn S \ Zarð Þ � Zan

(29)

where Zas
and Zar

are the slipping and recover step zero dynamics
spaces, respectively.

Assuming pre-impact zero dynamics state under a normal walk-
ing gait an is given as n� 2 S \ Zan

, the pre-impact full state is
then xa n�ð Þ by applying Eq. (19) with g ¼ 0. After the slip impact
(14), the initial full state of slip swing phase is xes

þ n�ð Þ. Condi-

tion (29) requires that g1s xes
þð Þ ¼ has

qþes

� �
¼ 0 and

g2s xes
þð Þ ¼ @has

=@qa

� �
qþes

� �
_qþes ¼ 0. Meanwhile, in the HZD

space, after the impact, nþs xþs
� �T 2 Zas

is related to the pre-

impact state n� 2 S \ Zan
as

nþs

xþs

2
4

3
5 ¼

hs qþa
� �

Ds
esq qþa
� �

_qþes

xþs

Ds
esx qþa
� �

_qþes

2
666666664

3
777777775
¼

hs Tqa n�1ð Þð Þ

Ds
esq Tqa n�1ð Þð ÞDs _qa n�2ð Þ

0

Ds
esx Tqa n�1ð Þð ÞDs _qa n�2ð Þ

2
666666664

3
777777775

¼: ds
n n�ð Þ

(30)

where T is the relabel matrix and the above equation is obtained
by applying Eqs. (14), (19), and (23).

To compute the ending state in the slip single-stance phase, we
integrate Eq. (27) with respect to time, until either n1s ¼ nþ1s (start
of the step) or n1s ¼ n�1s (ending of the step), which implies,
respectively, either not being able to complete this step and return
to the initial configuration of this phase, or a complete step is
achieved. We denote the ending state as
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n�2s

x�s

" #
¼ Ws nþ; xþs ; ts

� �
(31)

where Ws n0; x0; tð Þ represents the solution (flow) of the zero
dynamics (27) from initial condition n0; x0ð Þ at t¼ 0 to n�s ;

s�
xð Þ at

t¼ ts. At the end of slip single-stance phase, the swing foot
impacts on the ground and the slipping foot lifts immediately. The
pre-impact zero dynamic state is n�s ; x�s½ �T 2 S \ Zas

. The full
state is xes n�s ; x�sð Þ according to Eq. (24) under condition gs ¼ 0.
After the stick impact, the initial state of recovery step is xþa from
Eq. (7). Condition (29) requires that g1 ¼ har

qþa
� �

¼ 0 and
g2 ¼ @har

=@qa

� �
qþa
� �

_qþa ¼ 0.3

The initial HZD state of the recovery step swing phase nþ 2
Zar

is related to the pre-impact state n�s ; x
�
s½ �T 2 S \ Zas

as

nþ ¼
h Tqa n�1s

� �� �
Da Tqa n�1s

� �� �
Dn _qa n�s ; x

�
s

� �
þ bn

� �
" #

¼: dn
s n�s ; x

�
sð Þ (32)

where Eqs. (7), (16), and (24) are used to obtain the above equa-
tion. The continuous recovery zero dynamics is described by Eq.
(17). We solve Eq. (17) with respect to time until either n1 ¼ nþ1
or n1 ¼ n�1 , which indicates either not being able to complete this
recovery step and returning to the initial configuration of this
phase, or a complete recovery step is achieved, respectively. We
denote the ending state as n�2 ¼ Uar

nþ
� �

.
At the end of recovery step, the HZD state is n� 2 S \ Zar

and
the full state is xa n�ð Þ. After the impact, the initial state is xþa
from Eq. (7). Condition (29) requires that g1 ¼ han

qþa
� �

¼ 0 and

g2 ¼ @han
=@qa

� �
qþa
� �

_qþa ¼ 0. Meanwhile, state nþ 2 Zan
is

related to pre-impact state n� 2 S \ Zar
as

nþ ¼
h Tqa n�1ð Þð Þ

Da Tqa n�1ð Þð Þ Dn _qa n�ð Þ þ bn

� �
" #

¼: dn
n n�ð Þ (33)

where Eqs. (7), (16), and (24) are used to obtain the above equa-
tion. Finally, we integrate Eq. (17), respectively, until either n1 ¼
nþ1 or n1 ¼ n�1 , which implies either not being able to complete a
step and returning to the initial configuration of this step, or a
complete step is achieved. We denote the final state as
n�2 ¼ Uan

nþ
� �

.
The entire slip recovery process is therefore represented by

state transiting in the HZD space. Starting from the moment right
before the slip impact, the initial zero dynamics state n� 2
S \ Zan

is mapped by ds
n, Ws; dn

s ; Uar
, dn

n, and Uan
successively.

The returned value of n2 after the slip recovery process is
expressed as the composition of these mappings, namely

n2 ¼ Uan
� dn

n �Uar
� dn

s �Ws � ds
n n�2ð Þ ¼: qs n�2ð Þ (34)

For stable periodic normal walking gait, choosing Poincar�e sec-
tion as n� 2 S \ Zan

, from Ref. [9], the Poincar�e first return map
has a stable fixed point n�2 , namely

n�2 ¼ Uan
� dn

n n�2ð Þ ¼ q n�2ð Þ (35)

and

@q
@n2

n�2ð Þ < 1 (36)

These properties guarantee the existence of an invariant region
R � S \ Zan

such that for a given n�2 2 R, any n2 2 R satisfies

jq n2ð Þ � n�2 j 	 jn2 � n�2 j (37)

In the HZD space, the successful slip recovery to the normal gait
is equivalent to n2 ¼ qs n�2ð Þ 2 R.

5 Experiments and Results

We conducted the indoor walking experiments on a wooden
platform. Figure 3 shows the experimental setup of this study. The
human subjects walked on the wooden platform in the laboratory.
The human subject was first asked to walk on the platform to
become familiar with the testing environment before the slip trial.
A portion of the platform was painted with a soap film to create
slip and recovery gaits when the subject stepped on the slippery
surface. The segment with the reduced coefficient of friction was
not noticeable to the subject such that the subject kept the normal
gait before slip started.

The human walking gait was captured by the optical motion
tracking system (8 Bonita cameras from Vicon Inc., Oxford Met-
rics, Oxford, UK) A small wireless inertial measurement unit
model slimAHRS from Motion Sense Inc., Hangzhou, China) was
also attached to each shoe to obtain the kinematic information of
the foot and potentially for slip detection. Two 6DOF force/torque
sensors (model SS-1 from INSENCO Co., Ltd, Hangzhou, China)
were located inside the shoe to measure the 3D GRF and torques
of the foot-floor contact; see Fig. 3. These 6DOF force sensors are
thin (around 12–17 mm in thickness) and the human kept normal
walking gait when wearing the shoes with embedded force sen-
sors. The force and torque measurements were transmitted
through wireless network to the host computer. The GRF sensors
and the motion capture system were synchronized for data collec-
tion. The details of discussion about the experimental setup are
reported in Ref. [21].

We first test and validate the foot rolling geometry using the
normal walking motion data. Figure 4(a) shows the foot COP tra-
jectory in the ankle frame. The data confirm the circular shape of
the rolling model with radius R¼ 0.22 m with its center located at
0:015; 0:096ð Þ m in the ankle frame. We use these estimated val-

ues in the bipedal model. Figure 4 shows the comparison results
of the seven joint angles by the model prediction and the experi-
ments of normal walking gait. We present these results over a nor-
malized stance S due to the symmetry between the left and right
legs. The stance is defined as the time duration from stance foot
heel-touch to toe-off. The human subject walks at a speed of
around 1.2 m/s and the double-stance consists of around 28% of
the entire gait cycle. As shown in Fig. 4, the model predictions
(solid lines) match the experiments (dash lines) closely for both
the single-stance and double-stance phases. Figure 5 further shows
the comparison results of the GRF (i.e., Fn and Fx) of the stance
leg. Unlike the diverge results in the literature (e.g., Ref. [13]), the
model prediction results follow the trend of the measurements
from the force sensors. The discontinuity of the predicted GRF

Fig. 3 The slip and fall experimental setup with various sensor
suites

3We here use the subscript to virtual constraint h to indicate the gait profile ar.
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takes place at the phase switching moments due to the calculation
errors of the joint angle accelerations from the single-stance and
the double-stance models.

We next demonstrate the model prediction results for slip
recovery gait experiment. Figure 6(a) shows a video snapshot of
the slip recovery gait. The human subject starts the normal gait
with a single-stance phase (i.e., S1 in Fig. 2) at t¼ 0 s. At
t¼ 0.32 s, the (left) swing leg touches down on the slippery floor
and then starts slipping. At this moment, the (right) foot is still in
touch with the floor without slip and the human gait lies in
double-stance slip phase (S4). Then at t¼ 0.61 s, the (right) swing
foot leaves the ground (toe-off) and the (left) stance foot still slips.
Therefore, the gait enters the single-stance slip phase (S3). The
subject quickly notices and reacts to the slip occurrence. At
t¼ 0.96 s, the (right) swing foot touches down, the (left) stance
foot leaves the ground and the gait becomes a recovered single-
stance phase without slipping (S1). Figures 6(b) and 6(c) show the
human skeleton poses measured by the motion capture system and
constructed by the model predicted joint angles, respectively.

Figure 7 shows the seven joint-angle comparison results of the
measurements by the motion capture system and the model pre-
dictions considering double-support stance phase. The results

clearly confirm that the model prediction follows the experiments
closely during the entire gait recovery process. Figure 7(h) shows
the slipping distance results and the model prediction follows the
profiles from the experiments. Figures 8(a) and 8(b) show the nor-
mal and tangential GRF for both feet. The GRF comparison shows
that except for the double-stance slip phase during t¼ 0.32–0.61 s,
the normal and tangential GRF predictions match the measure-
ments. During the double-stance slip period, the force prediction
are however not accurate. Possible improvement of these double-
stance force calculations could be achieved by increasing the
order of the B�ezier polynomials, adding additional term in the
objective function (9) to follow the COM acceleration with
respect to the gait ad (

__COM
__
adð Þ), or enhancing the GRF distribu-

tion between the legs by imposing additional force constraints.
Figure 8(c) shows the RCOF, computed as RCOF ¼ Ft=Fn, of the
stance-foot contact during the slip recovery process. Before slip
starts (at around 0.32 s), the values of RCOF lie in a range of
jRCOFj < 0:2, which is far less than the available foot-floor fric-
tion coefficient (measured close to 1 of the dry rubber-wood con-
tact [21]). At t¼ 0.32 s, the available COF is less than 0.05 due to
the soap film on the surface. As shown in Fig. 8(c), the RCOF is
nearly constant at around 0.05, which is lower than the available
COF. Therefore, slip starts immediately when the foot touches
down.

Next, we present a HZD prediction results for a multistep slip
recovery. Figure 9 demonstrates a complete transition starting
from normal walking stance (0–0.81 s), followed by a single-
stance slip phase (0.81–1.28 s) and then single-stance recovery
phase (1.28–2.40 s) and finally transitions back to a periodic nor-
mal walking gait. Figures 9(a)–9(g) show the joint angle compari-
son results of the model prediction and experiments, while
Fig. 9(h) shows the slipping distance comparison. Note that the
simulation results consider only a single-stance and impact map-
ping neglecting double-stance. The entire recovery follows the
process given in Eq. (28). The HZD model prediction results
match the experiments during the slip recovery and transition to
the periodic walking gait process. The slight difference in phase
timings of the HZD model prediction might be due to the inaccu-
rate parameters values used in the simulation comparing with the
experiments. The simulation of the single-stance recovery phase
predicts a shorter duration as compared to the experiments. We
suspect that in the experiment, the subject might apply a flat foot

Fig. 4 (a) Experimental data to calculate the foot-floor contact rolling geometry. The red stars indicate the COP trajectory in
the ankle frame and the blue curve is the fitting circular rolling shape. (b)–(h) Joint angle (q1–q7) comparison between the
model prediction and the experiments during normal gait over one stance. The solid lines represent the model predictions
and the dash lines show the experimental data.

Fig. 5 The GRF (Fn and Fx) of the stance leg during the walking
gait without slips
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and it can be viewed as a fully actuated inverted pendulum with
ankle torque control. This ankle torque control can reshape the
time constant of the used underactuated inverted pendulum model.
Our simulation does not consider this effect and instead adopts
circular shaped feet during the slip recovery process.

Figure 10 shows the phase portraits of the zero dynamics for
the recovery process. Figure 10(a) illustrates the 3D phase portrait
in the n1=n1s–n2=n2s–xs coordinates and Fig. 10(b) shows the
phase portrait in the n1–n2 plane. Comparing with the normal
walking gait, it is clear that the walking with foot slip generates
much richer zero dynamics characteristics. The slip recovery pro-
cess is on a high-dimensional manifold and consists of multiple

portions of the phase portraits in 3D space as shown in Fig. 10(a).
The HZD model predictions for the normal walking Sn (gait pro-
file an, i.e., solid blue curves) and foot-slip gait Ss (impact Hs

n and
gait profile as, i.e., solid red curve) match with the experiments,
that is, solid blue and empty red circular markers, respectively.
Moreover, as shown in Fig. 10(b), after the single-stance slip
phase Ss, the subject tried to recover from the slip by taking non-
slip impact (blue dash-dot line) and then slip-to-normal recovery
gait Sn arð Þ (black dot curve for model prediction and square dots
for experiments).

In Fig. 10(b), we also mark each individual mapping
ds

n; Ws; dn
s , Uar

; dn
n, and Uan

, which together forms the composite

Fig. 6 A snapshot of the recovery human gait from slip. (a) Video snapshot. (b) Human 7-link skeleton from the optical motion
capture system. The empty-circle dots indicate the reflective optical marker locations. (c) Skeleton prediction by the bipedal
model. In (b) and (c), a red triangle is plotted to indicate the location where the left leg starts slipping. The right leg and trunk
are represented by a solid blue line and the left leg by a black dash line.

Fig. 7 ((a)–(g)) Joint angle (q1–q7) comparisons between the model prediction and the experiments during slip recovery gait.
The solid lines represent the model predictions and the dash lines show the experimental data. (h) Slipping distance xs of the
(left) stance leg during the slip recovery experiment.
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Fig. 8 Comparison results of the GRF and the RCOF during the slip recovery. (a) Normal GRF Fn, (b) tangential GRF Fx, and
(c) RCOF of the stance leg foot. In (a) and (b), the model prediction forces for the left and right legs are plotted as the blue solid
and red circle lines, respectively, and the experiments are plotted as the blue dotted and the red dash lines. In (c), the model
predicted and experimental RCOF in nonslip phase is plotted by the red empty circle and the dash lines, respectively, and
these in the slip phase by the blue solid and dash lines, respectively.

Fig. 9 ((a)–(g)) Joint angle (q1–q7) comparisons between the HZD model prediction and the experiments during the transition
from a normal walking to slip recovery and multistep transition to a periodic walking gait. (h) Slipping distance xs of the (left)
stance leg during the slip recovery experiment.

Fig. 10 (a) Three-dimensional phase portrait (n1/n1s2n2/n2s-xs) during the slip recovery process. (b) 2D phase portrait in the
n1/n1s2n2/n2s plane. In both plots, the empty circles and the empty squares are the experimental data during the phases Hs

n
andHr

s, respectively. The solid circles are experimental data during normal walking phase Sn with gait profile an.
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contracting return mapping qs in Eq. (34) from pre-impact state
n�2 to recovery state qs n�2ð Þ. These mappings clearly show the slip
recovery process and also the invariant region R defined by Eq.
(37). We further analyze the HZD for various motions and gaits
and show that the model can predict stable and unstable recovery.
Figure 11(a) shows a collection of the phase portraits of the nor-
mal walking gait, slip recovery gait, and skating gaits in the
n1s–n2s–xs space. The steady skating gait is generated by consider-
ing both slipping and walking gaits as the skilled human motor
locomotion. It is clear that the zero dynamics of the normal walk-
ing gait are located in the n1–n2 plane, while the skating gait is in
the 3D space with motion in the xs direction. The slip recovery
gait consists of a series of transient motion that deviates from and
then returns to the normal walking gaits. Figure 11(b) further
illustrates the slip recovery gaits in which both successful, stable
recovery (blue and black curves) and unsuccessful, unstable
recovery (dash and solid red curves) gaits are plotted. Both sets of
recovery gaits are obtained by enforcing the same virtual con-
straints. The only difference between these two trajectories is the
value of bn in Eq. (7) of the impact from slip gait to recover gait.
The difference of bn in Eq. (7) gives different initial n2 values for
the recovery gait, which indicates the falling angular moments.
Once the value of n2 passes through zero and becomes positive,
the progression variable n1¼ h is in a decreasing trend and this
implies that the gait cannot be completely recovered. Figure 6(c)
demonstrates the gait profiles for a successful slip recovery.

6 Discussion

One of the main goals of this study was the development of a
bipedal model for analytical analysis of slip balance recovery. We
recruited a single subject in our experiments and that is sufficient to
serve the validation of the model development. The bipedal model
and analysis can be applied to study walking and slip gait of any
subject for whom the kinematic data are known. The model param-
eters (i.e., link lengths and masses) and joint angle trajectories are
subject specific and need to be tuned for each individual. This paper
does not provide generalization of slip balance recovery strategies
across a wide population, since this would require analysis of multi-
subject slip balance recoveries and is out of the scope of this paper.

During normal walking, the deviation between model and
experimental results of the ankle angle (q6) trajectory (see
Fig. 4(g)) is primarily due to the approximation of using curved
feet compared to the realistic human feet that have multi-DOFs.
The circular feet can only roll on the ground and have a single
point contact that coincides with the COP location. This is differ-
ent compared to the human foot, which during single stance phase

lays flat while COP progresses forward. These differences reflect
also in the GRF profiles as shown in Fig. 5, where discrepancies
between the model and experimental results exist primarily during
double stance phase. At that instant, the toes of the swing (trail-
ing) foot push-off the ground and generate additional forces, while
the circular foot only rolls forward and does not have these capa-
bilities. These differences originate from the discrepancies
between the actual foot-floor rollover shape and circular foot
approximation during the end of the stance as shown in Fig. 4(a).
The differences between the model’s rigid circular foot and the
human’s flexible foot complicate exact matching of the ankle
angles during double stance slip phase. Slip occurrence during
that phase further complicates exact matching. The use of circular
foot was validated to be a reasonable approximation but however
it is impossible to guarantee exact matching of all the joint angles
throughout the whole stance, due to the reduced number of
degrees-of-freedom compared to the human anatomical foot. The
differences between foot orientation in the experiments and the
model’s circular foot in Fig. 6 are due to the reason that the mod-
el’s circular foot is rolling on the ground and has a point contact,
compared to the human foot that can lay flat on the ground while
changing location of a COP within the foot support.

The limitation of this work is that the model considers only sag-
ittal plane motion. While this captures the most important walking
and slip characteristic, the inclusion of motion and foot placement
in a lateral plane can further explain overall slip balance recovery
and provides a complete analysis of the human response during
slip perturbations.

7 Conclusions and Future Work

This paper presented a robotic bipedal dynamic model and the
extended HZD for human walking gait with foot slip. We relaxed
the nonslip assumption used in the existing bipedal robotic models
and explicitly modeled the foot slipping on the ground. A general
hybrid bipedal model and the gait controllers were developed for
human walking with foot slip. The presented HZD was an exten-
sion of the existing dynamics for normal walking locomotion. We
explicitly derived and presented the HZD for human walking with
foot slip that contains two additional zero dynamics states. It is
interesting to show that the HZD under foot slip presented rich
human motor skills, including the normal walking, slip recovery
gaits, and highly skilled skating motion. Stability condition for
slip recovery gait was discussed, and the HZD-based recovery
simulation and experiments were also successfully demonstrated.

We plan to extend the HZD model to further analyze the motion
stability and dependency on the model parameters and motion

Fig. 11 (a) Phase portraits of the normal walking gait, slip recovery gait, and skating gaits in 3D space and (b) phase portrait
of the successful and unsuccessful slip recovery gaits in the n1/n1s2n2/n2s plane
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variables. We are also working on how to design virtual gait con-
straints and slip recovery strategies that can lead to stable HZD
under foot slip. Integration of the modeling and analysis of the sta-
ble HZD and the gait control under foot slip with robotic assistive
devices is another future research direction.
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