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Abstract

This article extends the notion of a Frobenius power of an ideal in prime characteristic to
allow arbitrary nonnegative real exponents. These generalized Frobenius powers are closely
related to test ideals in prime characteristic, and multiplier ideals over fields of characteristic
zero. For instance, like these well-known families of ideals, Frobenius powers also give rise
to jumping exponents that we call critical Frobenius exponents. In fact, the Frobenius powers
of a principal ideal coincide with its test ideals, but Frobenius powers appear to be a more
refined measure of singularities than test ideals in general. Herein, we develop the theory
of Frobenius powers in regular domains, and apply it to study singularities, especially those
of generic hypersurfaces. These applications illustrate one way in which multiplier ideals
behave more like Frobenius powers than like test ideals.

1 Introduction

This article concerns the singularities of algebraic varieties, especially the relationship
between the singularities of hypersurfaces and those of more general varieties. Though our
main interest is in the prime characteristic setting, we are motivated by the following well-
known result from birational algebraic geometry over the complex numbers: Let a be an
ideal of a polynomial ring over C. If f € a is a general C-linear combination of some fixed
generators of a, then

J(fH =T @)

for each parameter ¢ in the open unit interval [17, Proposition 9.2.28]. This equality of
multiplier ideals immediately implies that the log canonical threshold of such an f € a
equals the minimum of 1 and the log canonical threshold Ict(a) of a.

An important special case is when a is the term ideal of f. In this case, the condition that
f is general can be expressed concretely: it suffices to take f nondegenerate with respect to
the Newton polyhedron of a [16, Corollary 13]. Consequently, the multiplier ideals and log
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canonical threshold of a general polynomial can be computed combinatorially from its term
ideal [15].

At present, it is understood that there is an intimate relationship between birational alge-
braic geometry over fields of characteristic zero and the study of singularities in prime
characteristic from the point of view of the Frobenius endomorphism. Therefore, it is natural
to ask whether those results relating the singularities of a generic element f € a to those
of a extend to the positive characteristic setting, after replacing multiplier ideals and the log
canonical threshold with their analogs, namely test ideals and the F-pure threshold. Unfor-
tunately, several obstructions are encountered, even when f is a polynomial over F, and a is
its term ideal. For example, in this case the test ideals 7 (a") are monomial ideals, and depend
only on the Newton polyhedron of a and the parameter ¢, but not on the characteristic [9,
Theorem 6.10]. In contrast, the test ideals 7 (f*) need not be monomial and typically depend
on the characteristic, often in mysterious ways. Thus, it is not surprising that counterexamples
to prime characteristic versions of the above statements abound.

Example Let k be a field, consider the monomial ideal
a=(x?,y%) Cklx, yl,

and let f be an arbitrary k*-linear combination of the generators x2 and y>.

When k = C, the log canonical threshold of a equals 5/6. Furthermore, in this case, each
choice of f is nondegenerate with respect to its Newton polyhedron, and so the log canonical
threshold of f always equals that of a. In fact, a stronger relation holds: The multiplier ideals
of a and of every such f agree at all parameters in the unit interval [16, Example 9].

However, when k = ?p, the F-pure threshold of a also equals 5/6, while the F-pure
threshold of every f € a is strictly less than 5/6 whenever p = 5 mod 6 (see [20, Exam-
ple 4.3] or [11, Example 3.8]). In particular, for such primes, there exist parameters # in the
unit interval at which the test ideal of a differs from that of each f.

Bearing this in mind, we are interested in the following question:

Question 1 In prime characteristic, how are the Frobenius singularities of an ideal related
to those of a generic element of the ideal? For example, to what extent is a given Frobenius
invariant (especially the test ideals, F-pure threshold, and other F-jumping exponents) of a
polynomial determined by an intrinsic, but possibly different, Frobenius invariant of its term
ideal?

With this motivation, in this article we develop a new theory of Frobenius singularities of
pairs in prime characteristic that we call (generalized) Frobenius powers. This construction
assigns to anideal a of an F-finite regular domain R of characteristic p > 0, and anonnegative
real number 7, an ideal al’l of R called the tth Frobenius power of a. This theory is only
interesting when a is nonzero and proper; we impose this assumption for the remainder of
the introduction.

As the nomenclature and notation suggests, our Frobenius powers coincide with the stan-
dard Frobenius powers and the Frobenius roots of [3] when the parameter ¢ is an integral
power of p. Indeed, our Frobenius powers are defined in terms of those standard operations,
mimicking the construction of test ideals in [3]. Not surprisingly, the resulting theory bears
many formal similarities to those of test ideals and of multiplier ideals. For example, as in
these other theories, the ideals al'l vary discretely with . We call the parameters at which al’]
“jumps” the critical (Frobenius) exponents of a. The smallest such parameter is called the
least critical exponent of a, and is denoted Ice(a). The least critical exponent is an analog of
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the F'-pure threshold, and as such, may be regarded as a prime characteristic analog of the
log canonical threshold.

The Frobenius powers al’l are contained in the test ideals 7(a’); equality holds if a is
principal, but otherwise they may differ drastically. For example, as noted above, the test
ideals of a monomial ideal are combinatorial in nature, do not depend on the characteristic,
and do not distinguish a monomial ideal from its integral closure (in fact, this last property
holds for all ideals [3, Lemma 2.27]). In contrast, the Frobenius powers of a monomial ideal
turn out to depend strongly on the characteristic and, as recorded in Example 3.25, can differ
from those of its integral closure. This suggests that the Frobenius powers may often be more
refined measures of singularities than test ideals.

Though Frobenius powers and test ideals can differ, one unifying observation is that the
generalized Frobenius powers of an arbitrary ideal behave in many interesting ways like the
test ideals of a principal ideal. In fact, it is exactly this heuristic principle (which we call the
principal principle) that allows us to address certain instances of our motivating Question 1.

Our main results are largely of two flavors: in some, we work in a fixed ambient ring,
and in others, we consider Frobenius powers from the point of view of reduction to prime
characteristic (that is, we let the characteristic tend to infinity). We summarize some of these
results below.

Theorem A (¢f. Theorem 5.3, and Corollaries 5.5 and 5.7) If a is an ideal of an F-finite
domain R, and f is a very general linear combination of generators for a, then the test
ideals T(f"), which agree with the Frobenius powers { f )1, are determined by the Frobenius
powers il for every parameter t in the unit interval. In particular, the F-pure threshold of
f equals the least critical exponent of a.

At the level of F-pure thresholds, we also obtain a related result in which the “very
general” condition is weakened, though at the expense of restricting to the local case.

Theorem B (c¢f. Theorem 5.14 and Corollary 5.15) Let a be an ideal of a polynomial ring
overk = F,, vanishing at a point P. Fixing generators a = (g1, ..., gm), we may regard a
given k-linear combination of these generators as a point in k™. Under this identification,
the set of all such generic elements of a whose F-pure threshold at P agrees with the least
critical exponent of a at P is a nonempty open set of k™.

The foregoing results show that the least critical exponent of an ideal can always be
realized as the F-pure threshold of a principal ideal. Consequently, properties enjoyed by
F-pure thresholds of principal ideals, but that may fail for arbitrary ideals, are inherited
by least critical exponents. For example, although every rational number in the open unit
interval is the F-pure threshold of some ideal, all least critical exponents avoid the same
“forbidden intervals” that F-pure thresholds of principal ideals avoid (see Corollary 5.9, and
the discussion preceding it, for more details).

Some of the most compelling results in the analogy between test ideals and multiplier
ideals persist when test ideals are replaced with Frobenius powers. For example, in the sense
that the multiplier ideal is a “universal test ideal,” it is also a “universal Frobenius power.”
Likewise, the relationship between the least critical exponent and the log canonical threshold
has strong similarities to the relationship that the F-pure threshold has with the latter.

Theorem C (cf. Proposition 4.3, and Theorems 6.4 and 6.3) Let a be an ideal of the localization
of a polynomial ring over Q at a point, and let a,, denote its reduction modulo a prime p. If
t is a parameter in the open unit interval, then

ag] =(a,) = J(@),
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Sfor all p > 0. Moreover, Ice(a)) < fpt(a,) < lct(a), and if Ict(a) < 1, then

lim Ice(a,) = lim fpt(a,) = Ict(a).
p—>00 p—>00

Some questions

The results described herein inspire several natural questions. For instance, in Theorem C, we
saw that the Frobenius powers, the test ideals, and the reductions of multiplier ideals coincide
at each parameter in the open unit interval, at least when p is large enough. Motivated by
this, and by a well-known question on the relationship between test and multiplier ideals, we
ask the following.

Question 2 What is the significance of the discrepancy between the Frobenius power ag]
and the test ideal r(a;), when they happen to differ in low characteristic? Furthermore, do
there exist infinitely many p such that

[t] N t
a, =1t(a,) =T (@)
for all parameters ¢ in the open unit interval?

Our next question is motivated by Theorem B, which tells us that the local F'-pure threshold
of a sufficiently general polynomial at a point coincides with the least critical exponent of its
term ideal at that point. Furthermore, the proof is constructive, giving an explicit description
of what it means to be “sufficiently general.”

Question 3 Is it possible to relate the sufficiently general condition in Theorem B to other
common notions of generality (e.g., Newton nondegeneracy)?

As noted throughout this introduction, the problem of understanding the Frobenius powers
of monomial ideals is closely related to the problem of understanding the test ideals of
polynomials. Thus, we ask the following question.

Question 4 Given a monomial ideal a over a field of characteristic zero, can one explicitly
describe the Frobenius powers of its reductions modulo p >> 0? For instance, do they vary
uniformly with the class of p modulo some fixed integer? Do their critical exponents satisfy
the uniformity conditions described in [20, Problems 3.7, 3.8, and 3.10]?

In the article [13], the authors determine the Frobenius powers of diagonal monomial
ideals, and of powers of the homogeneous maximal ideal, and give an affirmative answer to
all parts of Question 4 in each case. Furthermore, the authors expect to address Question 4
in general, in an upcoming paper.

In prime characteristic, it is not hard to show that the test ideal of a polynomial at a
parameter ¢ is a monomial ideal if and only if it agrees with the Frobenius power of its term
ideal at ¢. This motivates the following question.

Question 5 When is the test ideal of a polynomial a monomial ideal? For instance, do there
exist conditions on a monomial ideal a over a field of characteristic zero guaranteeing that
for any sufficiently general polynomial f € a, the test ideals 7 ( f,’,) are also monomial for
all ¢ in the open unit interval?
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Outline

In Sect. 2, we review our notation, and basics on multinomial coefficients in prime char-
acteristic. Section 3 is dedicated to constructing, and establishing the basic properties of,
generalized Frobenius powers. In Sect. 4, we define and study critical Frobenius exponents,
and compare them to F-jumping exponents. In Sect. 5, we relate Frobenius powers of arbi-
trary ideals to test ideals of principal ideals, and derive many of the results mentioned above.
In addition, we also establish the discreteness and rationality of critical exponents in this
section. We investigate Frobenius powers as the characteristic tends to infinity in Sect. 6,
and present an algorithm for computing Frobenius powers of ideals in a polynomial ring in
Sect. 7.

2 Preliminaries
2.1 Notations and conventions

Throughout the paper, p denotes a positive prime integer, and ¢ is shorthand for a number
of the form p¢ for some nonnegative integer e. All rings considered are commutative. If a is
an ideal in a ring of characteristic p, then

a[‘”=(fq:f€a)

is the gth Frobenius power of a.

Vectors are denoted by boldface lower case letters, and their components by the same letter
in regular font; e.g., v = (vq, ..., v,). In line with this, 0 = (0,...,0)and 1 = (1, ..., 1).
The taxicab norm ||v|| of a vector v is the sum of the absolute values of its components. Given
vectors u and v of the same dimension, u < v denotes componentwise inequality, sou < v
if and only if u#; < v; for each i. The non-strict inequality u < v is defined analogously.

We adopt standard monomial notation: if x1, . .., x,, are elements of a ring, and u € N,
then

u

u
= xtxpm

m

A rational number that can be written in the form k/p", for some k € Z and n € N, is
called p-rational. The sets consisting of all nonnegative and all positive p-rational numbers
are denoted by (Qx0) po and (Q-) p, respectively. The fractional part of a real number ¢
is denoted by {t}; thatis, {t} =1 — [t].

2.2 Multinomial coefficients

The multinomial coefficient associated to a vector u € N is

lally flull !
u ULy ..., Un url - uy!

If k is an integer with k # ||u]|, then we set (ﬁ) =0.

Theorem 2.1 [7] Consider a vector u € N, and write the terminating base p expansions of
lla|| and u as follows:

lull = ko +kip +kap*+---+kp" and w=ug+pu+p’uw+---+p'u,,
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where each k; is an integer between 0 and p — 1, inclusive, and each w; is a vector in N™
less than p - 1. (Note that it is possible that k, = 0 oru, = 0.) Then

() ) e

In particular, ( u ) # 0 mod p if and only if ||u;|| = k; for each i, which is to say that the
components of u sum to ||u|| without carrying (base p). ]

Corollary 2.2 Letk,l € N, withk < p, andu,v € N", withu < p - 1. Then

(i) = W) mer

3 Frobenius powers
3.1 Integral powers

Throughout this section, a is an ideal of a ring R of prime characteristic p.

Notation Given k € N and ¢, a power of p, aklal denotes the ideal (ak )[q] or, equivalently,
(a[q])k )
Definition 3.1 (Integral Frobenius power) Let k € N, and write the base p expansion of k as
follows: k = ko + k1 p + - - - + k- p". Then the kth Frobenius power of a is the ideal

alkl . gkoghilpl . kelp'].

If k is a power of p, this agrees with the standard definition of Frobenius power.

Example3.2 Since p* —1=(p—1D+(p—Dp+---+(p—Dp° !, we have

alP’ =1 — qp=14(=DIpl .. a(p—l)[p“"]_

Remark 3.3 The function k > al¥1 is the unique function J from N to the set of ideals of R
satisfying the following properties:

L. 3(0) = (1);
2. 3k 4 pl) = a* - J(OP), for each k, I € N with k < p.

Proposition 3.4 (Basic properties of integral Frobenius powers) Let a and b be ideals of R,
and k,l € N. Then the following properties hold.

(1) a%l € o, and equality holds if a is principal.

() (ab)i*l = altlpl*],

(3) Ifa C b, thena®l b[k];consequently, a6 € (a+6)% and (anb)K! € alKINpIk],

@) a% 1 < oWql1 and equality holds if k and I add without carrying (base p).

(5) Ifk > 1, then a C al/l.

(6) alkl c (a[k])[l] = (am)[k], and the containment becomes an equality if one of the
numbers k and 1 is a power of p.

(7) alkll c (a[k])l _ (al)[k].
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Proof

(1)—(3) follow directly from the definition of Frobenius powers.
(4) That equality holds if & and / add without carrying (base p) is immediate from the
definition of Frobenius powers. In general, write k = k| + pk, and [ = [} + pla,
where 0 < k1,11 < p.If k1 + 11 < p, then Remark 3.3 shows that

alk+

alki+hi+plo+i)] _ Gkt (a[kzﬂz])lPJ.

Induction on the sum k + / allows us to assume that alk2t2] c glk2lgl2] and the
desired containment follows easily. If k1 + /1 > p, then

alk+l — glka+h—ptploth+D)] _ ak1+l|—p(a[k2+lz+l])[l7].

Again, we may assume that alk2H2+11 c glklglialy so that

(alk2+lz+1J)[P] C alPkal glpha] 4Pl C alpkzlalplzJaP’

and the desired containment follows.

(5) is a consequence of (4): if k > [, then alkl € glk=lglll c gl

(6) The facts that (a[k])[” = (a[l])w, and that this equals al*] when one of k and [ is a
power of p, follow immediately from the definition of Frobenius powers. If [ < p,
repeated applications of (4) gives us alk!l c (alkl)! = (a[k])[l]. IfI > p, write
I =1 + pl, with 0 < I < p. Then alkl] = qlkli+pkial < gkl (gIk21)P) by (4.
The case already proven shows that alkhl (a“‘])[ll], and induction on [ allows us
to assume that alk2! (a“‘J)UZ]; the desired containment follows.

(7) The containment al¥l (a[“)l follows from (6) and (1), or repeated applications
of (4); the identity (1)’ = (a/)™ follows from (2). o

Proposition 3.5 (Frobenius powers in terms of generators) Let a be an ideal of R, and let
A C a be a set of generators for a. Then the Frobenius power aX! is generated by all

products % := 1'“ oo fum, wherem > 1, f; € A anda € N is such that ||u| = k and

(ﬁ) = 0 mod p.

Proof For each k, let J(k) be the ideal generated by the products f", as in the statement. We
shall verify that J satisfies properties (1) and (2) of Remark 3.3, and the result will follow.
Property (1) is trivial, so we focus on (2). Let k, ! € N, with k < p. The ideal J(k + pl) is
generated by products %, where ||w| = k+ pl and (kfvpl) # 0 mod p. Writingw = u+ pv,
where 0 < u < p -1, we have

K\ (1 k l
()G = (i) %o mar
u/\v u-+ pv
where the first congruence comes from Corollary 2.2. The generators f% = fUYTPY of
J(k 4 pl) are, therefore, products of elements in the following sets:
S = {fu “fieees fmeAueN" |ul =k, (ﬁ) ¢0m0dp};
T={(f":fi,.... fn € AveN" vl =1 () #0mod p}.

Because k < p, (lkl) # 0 mod p for all u € N for which ||u|| = k; thus, S is simply a set of

generators for ak. Since T is a set of generators for J(/ )P we conclude that J(k + pl) =
ak - Jotet, o
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Example 3.6 1If 0 < k < p and ¢ is a power of p, then if i + j = kg — 1, we always have
that (k?;l) # 0 mod p. Thus, the previous proposition shows that if a is generated by two
elements, then a®9—11 = gka—1,

Example 3.7 Let f € k[x1, ..., x,], where k is a field of characteristic p. The support of f,
denoted by supp( f), is the collection of monomials that appearin f with anonzero coefficient.
Then (supp(£¥)) € (supp(f))¥, though this containment is typically strict. However, in view
of Proposition 3.5, we have (supp(fk)) = (supp(f))[k]. This fact is one of our motivations
for extending the notion of Frobenius powers.

3.2 p-rational powers

Henceforth we shall assume that R is an F-finite regular domain of prime characteristic p.
This will allow us to use the theory of [1/g]th powers from [3]. If a is an ideal of R and g a
power of p, the ideal al!/4! is the smallest ideal ¢ such that a C ¢l4]. The following lemma
gathers the basic facts about such powers, for the reader’s convenience.

Lemma 3.8 [3, Lemma 2.4] Let a and b be ideals of R. Let q and q' be powers of p, and
k € N. Then the following statements hold.

(1) Ifa C b, then all/al C pll/a],

(2) (ab)ll/al ¢ qll/4lpll/al,

(3) (a[q’])n/qJ — al'/a) ¢ (au/q])[q/]'
4) all/aa] — (a[]/q])[l/q’].

(5) (a[k])[l/q] c (a[‘/‘l])”‘],

Proof We prove (5) and the containment “2” in (4); proofs of the other properties can
be found in [3, Lemma 2.4]. Property (5) follows from the definition of all and repeated
applications of (2) and (3). As for the reverse containment in (4), note that by (3) we have

all/al — gla'/@a) < (an/(qq’)])[q’{ thus (u[l/qJ)U/q’l C al1/@d" by the minimality of

(all/aylt/a] o

Definition 3.9 (p-rational Frobenius powers) Let a be an ideal of R. For each k/q €
(Qx0) poe, we define

alk/al .— (a[k])[l/tl]_

Note that this definition is independent of the representation of k/¢, since

(a[pk])[l/(pq)] — ((a[k])[p])[l/(pq)] _

(a[k])[l/q]

where the first equality follows from Proposition 3.4(6), and the second from Lemma 3.8(3).
In particular, if k/q is an integer, this coincides with the earlier definition.

Lemma 3.10 Let a be a nonzero ideal of R and ¢, ¢’ € (Qx0) pe<.
(1) (Monotonicity) If ¢’ > ¢, then al¢1 C alc].

(2) (Right constancy) al¢! = ale’l for each ¢’ > ¢ sufficiently close to c.
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Proof To prove (1), we may assume that ¢ and ¢’ have the same denominator ¢, and use
Proposition 3.4(5) and Lemma 3.8(1). As for (2), note that if alet1/al = gl for some ¢,
then al¢! = al¢1 for each ¢’ € (Qx0)p> with ¢ < ¢’ < ¢+ 1/g, by (1). Thus, it suffices to
prove the following claim:

alet/a) = ¢l for some g. 3.1

As g increases, the ideals al*!/4] form an ascending chain of ideals, which must eventually
stabilize at some ideal b. We shall prove that al°! = b. Fix g sufficiently large so that cqo € N

and al¢t1/90] = p_For each ¢ > 1 we have (alcqq‘”‘”)[l/(q%)] = alet1/(@90)] = p, g0

a - glegaol — gleago+1] - plagol

This shows that

ac (b[qqo] . a[cqqo]) _ (b[qO] . a[cqo])[‘il

for each ¢ > 1, where the equality is a consequence of the flatness of the Frobenius over R.
If ale0) ¢ pl4o), the intersection of all (bl9! : a[cq‘)])[q] would be the zero ideal by the Krull
Intersection Theorem, contradicting the assumption that a is nonzero. Hence aleaol  plaol,

and therefore al¢l = (a[“f“])[]/ ®1 < b The reverse containment follows from (1), and (3.1)
holds. O

We close this subsection with the following lemma, which will be useful in proving
properties of real Frobenius powers.

Lemma3.11 Let a and b be ideals of R. Then (a . b[q])[l/q] = qall/al . p,

Proof 1t suffices to show that if ¢ is an ideal of R, then ab!9] C ¢[4]if and only if all/al.p C ¢.
However, the containment abl¥] € ¢[9] holds if and only if

ac (c[q] . b[q]) =(c: b)[q],

which occurs if and only if all/al (¢ : b), as desired. O

3.3 Real powers

We now extend the Frobenius powers to arbitrary nonnegative real exponents by using p-
rational approximations from above. Throughout, given a sequence (aj) of real numbers,
we use the notation a; N\ a to mean that the sequence converges to the real number a
monotonically from above.

Lemma 3.12 Let a be anonzero ideal of R, t € R, and suppose () and (si) are sequences
of p-rational numbers such that ty \( t and sp \( t. Monotonicity ensures that the Frobe-
nius powers a1 and a8 form ascending chains of ideals, which must eventually stabilize.
Suppose a™) = b and o' = ¢, for all k > ko. Then b = .

Proof 1If neither sequence is eventually constant, choose k», k1 = kg so that fx, < sk, < tiys

then b = al! € a1 = ¢ € al2! = b, by Lemma 3.10(1). If (;) is eventually constant
(so t is p-rational), by Lemma 3.10(2) we can choose k > ko sufficiently large so that
alskl = al?l; then ¢ = al*! = al’l = p. o

Lemma 3.12 allows us to define al’! forevery t € R by taking p-rational approximations
of ¢t from above.
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Definition 3.13 (Real Frobenius powers) Let a be a nonzero ideal of R. If t € R and (#)
is a sequence of p-rational numbers such that #; N\ 7, we define

al o= | altl,

k>0
Thus, al'l = al%], for k > 0.

Note that the definition of al’l does not depend on the choice of the sequence (#;) by
Lemma 3.12. For the purpose of computations of the ideals al’l, we often use the sequence
([ p*¢] /p*).1f t is p-rational, then by taking the constant sequence we see that this definition
agrees with our earlier one.

Definition 3.13 extends to the zero ideal, provided r > 0. Thus, (01 = (0) for r > 0,
while (0)[0 = (0)0 = R, as previously defined.

If a is a principal ideal, then integral Frobenius powers of a are just regular powers;
consequently, the real Frobenius power alfl coincides with the test ideal 7 (a’) of [3], except
in the case that t = 0 and a is the zero ideal.

The following proposition generalizes Lemma 3.10, and will be used repeatedly through-
out the paper without further reference.

Proposition 3.14 Let a be a nonzero ideal of R, and s, t € Rx.

(1) (Monotonicity) If s > t, then als1 C al'l,
(2) (Right constancy) a1 = al'l, for each s > t sufficiently close to t.

Proof First, note that (2) follows from (1): by definition, all = alel for some p-rational
¢ > t, and (1) implies that al/l = a1 for each s between 7 and c.

Suppose s > ¢, and let (f;) and (sx) be sequences of p-rational numbers such that #; \( ¢
and sp \ 5. Fork > Owehave s > s > > ¢, al¥l = al%] and ol = al%!, 5o that
Lemma 3.10(1) yields (1). ]

Remark 3.15 Right constancy fails at = 0 for the zero ideal, since (0)01 = (0)0 = R, while

(0)11 = (0) for each ¢ > 0.
Additional properties of Frobenius powers are listed in the next proposition.

Proposition 3.16 (Basic properties of real Frobenius powers) Let a and b be ideals of R, and
t,s € Rx. Then the following properties hold.

(1) Ift > 0 or a is nonzero, then a"l C t(a'), and equality holds if a is principal.
() (ab)[’] C alTpl],

(3) Ifa C b, then al'l C bl

@) 'l c allals)) and equality holds ift < 1 and s € N.

(5) alsl (a[’])[s], and equality holds ift = p® ors = p~¢, for some e € N.

Proof These properties follow from the properties of integral Frobenius powers and of [1/¢]th
powers (see Proposition 3.4 and Lemma 3.8). To illustrate the methods, we verify (4) and
(5) for a nonzero ideal a. For each k /g and [ /g in (Q30) po, Proposition 3.4(4) and parts (1)
and (2) of Lemma 3.8 give us

al&+D/q1 — (a[k+1])[1/q] c (a[k]a[l])[l/lﬂ c (a[k])[l/q](a[l])[l/q] — qlk/algli/al

Letting k /g \( t and [ /g “\( s we obtain the containment in (4). If s € Nand ¢ < 1, we may
assume in this argument that [ = sq and k/g < 1. Since k < ¢, k and [ = sq add without
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carrying (base p), and the first containment in the displayed equation becomes an equality, by
Proposition 3.4(4). Furthermore, Lemma 3.11 shows that the second containment becomes
an equality as well, since al’l is a [¢]th power. So the additional assertion in (4) follows.

To verify (5), we again start with k/g and [ /g in (Q>0) p, and observe that

alkl/a?) (a[kz])ll/qz] c <(a[k])[l])[1/‘12] c (a[k/q])[l/‘I]7

where the first containment follows from Proposition 3.4(6) and Lemma 3.8(1), and the
second follows from parts (1), (4), and (5) of Lemma 3.8. Letting k/q \(t and [/q \ s we
obtain the containment in (5).

If + = pe, then for each //q we have (alP"))
tion 3.4(6). Letting [ /g N\ s we see that (a[’])m
If s = 1/p®, then we have al’l € (a[’ /p P])[p el, by the containment already proven. This is
equivalent to (a[’])[l/pe] C alt/P1 or (am)m C alts], m]

el _ (a[”e”)[]/q] = alP*!/4], by Proposi-

— a[ts]'

The following corollary is a rephrasing of the second assertion in Proposition 3.16(4)—
the analog of Skoda’s Theorem [3, Proposition 2.25] in our setting. This result illustrates
one way in which real Frobenius powers behave like test ideals of principal ideals, since
Skoda requires that a can be generated by at most m elements in order to conclude that
(@ k) = gkl (@1 fork > 0.

Corollary 3.17 al'l = o1 ol for each t € R, where {t} denotes the fractional part

oft, i.e, {t} =1t — |t]. ]

Remark 3.18 We choose to work in an integral domain for simplicity, and because our main
applications will be in the setting of polynomial rings over F-finite fields. However, the
notions and results introduced in this paper extend to arbitrary F-finite regular rings of
positive characteristic, provided one exerts care when dealing with Oth powers. For when R
is not a domain, right constancy at ¢ = 0 not only fails for the zero ideal, but also for certain
nonzero ideals. For instance, if R = § x §, where S is a regular F-finite domain of positive
characteristic, and a = (0) x S, then alfl = 9 = R, while a¥! = q, for each s > 0. The
analogous issue is avoided in [3] by virtue of their definition of t(aO); see [3, Remark 2.10].

Remark 3.19 The real Frobenius powers commute with localization and completion; i.e., the
following hold for each t € R>¢:

1. If Sisa multlphcatlve system in R, then (S— a)[’J =S 1(am)
2. If R is local and R is its completion, then (@R = al1R.

These both follow from the fact that localization and completion commute with standard
Frobenius and [1/¢]th powers of ideals (the last statement can be found in [3, Lemma 2.7]).

We note that there exists an algorithm for computing al’l when ¢ is a nonnegative rational
number and a is an ideal of a polynomial ring over a finite field. See Sect. 7 for details.

‘We conclude this section with a comparison of Frobenius powers and test ideals. We begin
with Lemma 3.20 below, which is well known to experts (see, e.g., [6, Lemma 3.2]).

Lemma 3.20 If a can be generated by m elements, then
alm+hg — m=1)q ,(k+Dlgl

for every integer k > —1.
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Proof We induce on k, with the base case k = —1 being obvious, and the induction step
following from the identity

amd = a(m—l)qalql’

which itself is a direct consequence of the pigeonhole principle. O

Lemma 3.21 If a can be generated by m elements, then

(m=Dg=1 D=1
a ¢! a=a r1! a

k]

for every q a power of p, and every integer k with 0 < k < q.

Proof Lemma 3.20 implies that

— e 4 _ e e
a(m Dp akep — a(m Dp ake[p ]7

where k, is the coefficient of p¢ in the base p expansion of k. The bound 0 < k < ¢g implies
that k, = 0 whenever p¢ is at least ¢, and so our claim follows after recalling that the sum
of all p¢ less than q is Z—:i. |

Proposition 3.22 If a can be generated by m elements and 0 <t < 1, then
m—1
@ty call € 7 (@ah).

Proof Since r < 1, [tq] < ¢ for all ¢ > 0, and for such ¢,
ol ()] ¢ "5 ¢ girea

where the last containment follows from Lemma 3.21. Taking [1/g]th powers of this and

m=1
letting ¢ — oo then shows that 7(a’" 7=1) C al’l. o

3.4 Examples

As noted in Proposition 3.16(1), the Frobenius power { f)!"] agrees with the test ideal 7 (f*)
whenever ¢ > 0. In this subsection, we compare Frobenius powers and test ideals of certain
non-principal monomial ideals. In contrast with the principal setting, we will see that, even
in this simple case, Frobenius powers and test ideals can be quite different.

We begin by recalling the situation for test ideals of monomial ideals: If a is a monomial
idealink[x, ..., x,],then T (a’) is generated by all monomials x" such that u+1 is contained
in the interior of t N, where 1 = (1, ..., 1) € Z" and N is the Newton polyhedron of a in R"
(see [9, Theorem 6.10], and [15] for the analogous result for multiplier ideals). In particular,
7(a’) depends on N and ¢, but not on the ideal a, nor on the characteristic. As we see below,
this concrete description allows one to explicitly compute the test ideals of a monomial ideal
without too much effort.

Example3.23 Setm = (x, y) C k[x, y]. Ifa=m’ and r € [0, 1), then

klx,y] ift € [0, 3)
m ift €[3,32)
@) = mi ift e [%, %)
m ift € [3,3)
m*  ifre[3,9)
m’ iftr e [g 1)
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We stress that these formulas are valid in all characteristics.

In the article [13], the authors compute the critical exponents and Frobenius powers of
certain m-primary monomial ideals in a polynomial ring. We summarize our computations
in the context of Example 3.23 below.

Example 3.24 Adopt the notation of Example 3.23. As in that example,
@lo<r <1y = {]k[x, yl, m, m?, m3,m4,m5} )

However, the values of ¢ that correspond to each of these possibilities may depend on the
characteristic. For example, if p = 4 mod 7, then

kx,y] ifr e [0, % — %)

m ifr e [%—#,%)
ol — m? ifte[%,%—#)

m? ifr e [%—#,%)

m*  ifre[3,9)

m®  ifre[$1)

We note that there are similar formulas for every possible congruence class of p modulo 7.
For instance, if p = 1 mod 7, then al'l = 7 (a’) forevery ¢ € [0, 1). On the opposite extreme,
if p = 3 mod 7, then each of the intervals in [0, 1) that correspond to some fixed value of
al’l depends on the characteristic.

As mentioned above, the formulas for the test ideals of a monomial ideal depend only on
the parameter ¢ and the Newton polyhedron of the ideal. As it turns out, this is a particular
instance of a more general fact: the test ideals of an ideal are the same as those of its integral
closure [3, Lemma 2.27]. Given this, it is natural to ask whether the analogous property also
holds for Frobenius powers of ideals. However, as we see below, the Frobenius powers of an
ideal and its integral closure can differ, even in the monomial case.

Example 3.25 Setm = (x,y) C k[x, y]. If b = m® and ¢ = (x°, y°), then it is clear that
both these ideals determine the same Newton polyhedron in R?, and so their test ideals must
agree at all parameters. In fact,

klx, y] iftr e [0, %)

N e Jmo ifre[3d)
Hp) =) = m? ifre[2,2)
m3 ifte[%,l)

On the other hand, when p = 3 mod 5, we have computed that

5p
pltl — , ifr e [%_ﬁ’%_sjﬂ)
m 1fte[%—#,%—ﬁ)
m? 1fte[‘51—517,1)
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while
klx, y] ift e [0, z #)
n ifre[2-did- )
Il = I m? ifte[%—#,%—%)
(x3, xy, v lfte[%—%,%—séz)
m3 ifr e 2 51172,1)

Remark 3.26 The somewhat unexpected monomial ideal (x3, xy, y3) appearing in the for-
mula for ¢/l above is perhaps best realized as

(%, xy, 37) = (e, 37) N, ).
Comparing this with the primary decomposition
w’ = (0, y%) NG y) N y2),

the computation in Example 3.25 seems to suggest that the Frobenius powers of ¢ distinguish
between certain irreducible components of the Frobenius powers of its integral closure b. We
stress that, though this phenomenon is often reflected in our computations, the exact way in
which the Frobenius powers of an ideal and of its integral closure may differ remains quite
mysterious.

4 Critical Frobenius exponents

In this section, we define and investigate an analog of F-thresholds called critical Frobenius
exponents. Throughout this section, a and b are nonzero proper ideals of an F'-finite regular
domain R of characteristic p > 0, with a C Jb.

4.1 Definition and basic properties

For the reader’s convenience, we recall here the definition and a few basic properties of
F-thresholds. We refer the reader to [3,20] for a more detailed discussion. For each ¢, we
define vg (¢) = max{k € N : a ¢ bl91}. As ¢ varies over all powers of p, (vg (q)/q) forms
a non-decreasing bounded sequence. The F-threshold of a with respect to b is defined as

b b
c?(a) = lim Ya (@) = sup Ya (q).
g— g q q

The F-threshold c®(a) is always a positive real number, which can be alternatively charac-
terized as follows:
c®(@) =sup{r € Rsg: 7(a") £ b} =min{r € Rz : (a’) C b}.

Critical Frobenius exponents are defined similarly, but with regular powers replaced with
Frobenius powers.

Definition 4.1 For each ¢, we define ,ug(q) = max{k € N : gl¥] SZ blaly.
Because a C \/E, we know that a™ C b for some m. If a is generated by n elements, then

almngl c gmng C (am)[q] C bla! while gl Q bl4], 50 the maximum k in the above definition
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always exists. Because al*l ¢ bl91if and only if alP*! ¢ blP4!, we have 18 (pq) = p-18(q).
and thus, as g varies, (ug (q9)/ q) forms a non-decreasing sequence, bounded above by mn.

Definition 4.2 The critical Frobenius exponent of a with respect to b is

b b
crit’ (@) = lim a(9) = sup MG(Q)'
g— g q q

We shall often omit the word “Frobenius”, and refer to crit® (a) simply as the critical exponent
of a with respect to b. We adopt the convention that crit® (a) is zero.

Notation If a = (f), we denote cb(a) and crit® (a) by c"(f) and crit[’(f).

We gather in the next proposition some properties of critical Frobenius exponents, anal-
ogous to those of F'-thresholds.

Proposition 4.3 (Basic properties of critical Frobenius exponents)
(1) If f is a nonzero element of a, then
0 < c®(f) = crit? (f) < erit®(a) < c®(a) < oo.

(2) crit®(a) = sup{;; € (Qx0)p~ : alll ¢ 6191} = inf {;4 € (Qx0)p~ : alil  plal}.
(3) crit®(a) = sup {t eRxp:al ¢ b} =min{r e R>o:all Cb}.
@) ub(q) < qerit®(a) < nl(q) + 1, so that 1(q) = [qerit®(@)] — L.

Proof The discussion following Definition 4.1 implies that crit® (a) is finite. Next, observe
that since b is proper, () 4 pla! N 4 b9 = (0) by the Krull Intersection Theorem. Therefore,

f ¢ bla] for some ¢, and so u[}’c(q) > 1, which shows that crit®(f) is at least 1/q. The
remaining inequalities in (1) follow from the containments ( f)! = ()} C alfl C o/, which
hold for every i.

Next, consider the following sets:

A={ie@so)p:a o] A={reRrs0:d" col
B={ie@s0)~:al g o] B={reRs0:a" ¢}
Because al!l C bl9] is equivalent to al’/9! C b, we have A € A and B C B, hence inf A <

inf A and sup B < sup B. Since there are sequences (ug(q)/q) and ((Mg(q) + 1)/q) in B
and in A converging to crit® (a), we have

inf A <inf A < crit®(a) < sup B < sup B.

By monotonicity, every element of B is less than every element of A, so sup B < inf A,
and all quantities above are equal. Due to right constancy, inf A is actually a minimum. This
completes the proof of (2) and (3). The inequalities in (4) then follow from the fact that
13(q)/q € B, while (13(q) + 1)/q € A. o

Remark 4.4 Proposition 4.3(4) shows, in particular, that every term Mg (g) can be recovered

from crit®(a). Moreover, if ¢ = p¢, then Proposition 4.3(4) is equivalent to saying that
Mg (q)/q is the eth truncation of the unique nonterminating base p expansion of crit®(a).
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Remark 4.5 1f ais not a principal ideal, then only the first inequality in Proposition 4.3(4) need
be true if we replace crit® (a) and ,ug(q) with c® (a) and vg (g) (see [20, Proposition 1.7(5)]).
However, [6, Lemma 3.3] shows that if a can be generated by m elements, then

vg(aq) _ viq)+m
qq’ q

for each ¢ and ¢’. Fixing ¢ and letting ¢’ — oo, we see that

V@ o < @ Em

q

<) <

We conclude this subsection with the following results, which state that critical exponents
may be computed locally and show that critical exponents are invariant under split extensions.

Proposition 4.6 The critical exponent crit® (a) is the maximum value among all critbe (ap),
where p ranges over the prime ideals of R.

Proof If ). = crit® (a), then a*! C b, and since localization commutes with Frobenius powers,
aLM = (a[)‘]),J C byp. Therefore, crit®e (ap) < A for every p.

To show that there exists p for which crit®e (ap) = A, we follow the general argumentin [4,
Lemma 2.13]. Take an ascending sequence (f;) with limit A. By monotonicity, al*+11 gl
forevery k. Thus, the ideals (b : al*!) form an ascending chain, and all are proper by definition
of A. Fix a prime ideal p containing their stabilization. Since Frobenius powers and taking
colons both commute with localization, it follows that (b : al’]) p=(bp: ag"]) is a proper
ideal of Ry, for all k, which allows us to conclude that A = crit?r (ap). O

Proposition 4.7 If R C S is a split inclusion of F-finite regular domains, then crit®(a) =
crit®S (as).

Proof Fix an R-linear map ¢ : S — R that restricts to the identity on R. Given a nonnegative
integer i and ¢ an integral power of p, it suffices to show that al’! is contained in bl9! if and
only if al'ls = (a$)l! is contained in bl4lS = (65)!9). However, if alllS C bl41S, then
alll = ¢ (alils) € ¢ (bl91S) = bl4!, while the reverse implication is obvious. u]

4.2 Comparison with F-thresholds

Here, we compare critical Frobenius exponents with F-thresholds, beginning with the terms
of the sequences whose limits define them.

Proposition 4.8 Ifa C b, then 115(p) = min{v?(p), p — 1}.

Proof As a C b, we have alPl C blP] 50 ug(p) <p-11If vg(p) > p — 1, then alp=1 =
ar~! ¢ blP], and consequently Mg(p) =p—11If vg(p) < p — 1, then //,g(p) = vg(p),
since alk! = a* whenever k < p. O

Proposition 4.9 Suppose that a C b. If,ug(q) #q — 1, then

(m—1(g -1

b b
na(q) = va(q) — P

whenever a can be generated by m elements.
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—Dg—1

Proof Set = 1(¢) andv = v8(g), and [ = %.Im £g—1,thenpu+1<qg—1,
and Lemma 3.21 implies that o/ T#F! = a/ql#+1 C pl9], which allows us to conclude that
v+l O

Corollary 4.10 Suppose a C b. If crit® (a) # 1, then
-1
critb(a) > cb(a) .
p—1

whenever a can be generated by m elements.

Proof Our hypothesis that crit®(a) # 1 implies that ,ug(q) # q — 1 forall ¢ > 0, and our
claim then follows from Proposition 4.9. O

Recall that an F-jumping exponent for a is a positive number A such that 7 (a*~€) # (a’),
for all 0 < € < X [3, Definition 2.17]. In [3, Corollary 2.30], it was shown that the F-
thresholds of a are precisely the F-jumping exponents of a. An analogous result holds in our
setting.

Definition 4.11 Crit(a) is the set consisting of all critical Frobenius exponents crit? (a), where
b ranges over all proper ideals of R with a C Vb.

Proposition 4.12 The set Crit(a) of critical Frobenius exponents of a consists precisely of the
Jjumping exponents for the Frobenius powers of a, that is, the positive real numbers A such
that a=€1 £ o forall 0 < € < A

Proof The characterization of critical exponents given in Proposition 4.3(3) shows that critical
exponents are jumping exponents. The same characterization gives us the reverse contain-

ment: if al* ¢! £ al*! forall 0 < € < A, then A = min{t € R>( : al’l C a*!} = crit®(a).
o

4.3 The least critical exponent

Recall that the F-pure threshold of a proper nonzero ideal a [22] is
fpt(a) = sup {t € Roo : (a’) = R} = min {r € Rog : 7(a") # R},

whichis well-defined since 7 (a”) = R, butt(a’) # Rfort > 0.We adopt the convention that
the F-pure threshold of the ideal @ = R is infinite. Inspired by this, and by the observation that
Frobenius powers satisfy the same properties that guaranteed that the above is well defined,
analogously, we define:

Definition 4.13 The least critical exponent of a proper nonzero ideal a is
Ice(a) = sup {t eRog:all = R} = min {t eR.g:all £ R} :

We adopt the convention that the least critical exponent of a = R is infinite.

Notation If a = (f), we denote fpt(a) and lce(a) simply by fpt(f) and lce(f).

The least critical exponent of a is, in fact, a critical exponent. Indeed, it follows from
the definition that lce(a) = crit®(a) for some proper ideal b of R if and only if b contains
allee(@]1which itself is proper by definition.
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Definition 4.14 If Ice(a) = critb(a), then we say that b realizes lce(a).

A priori (that is, without computing the largest proper Frobenius power of a), it is not at
all clear which ideals realize Ice(a). Below, we highlight two important cases in which such
a determination is possible.

If a is a homogeneous and proper ideal of a polynomial ring over an F-finite field, then
all Frobenius powers of a are also homogeneous (see, e.g., Proposition 7.1). Hence, in this
case the unique homogeneous maximal ideal realizes lce(a). Similarly, if R is local, then the
unique maximal ideal of R realizes Ice(a) for every nonzero proper ideal a.

Proposition 4.15 If a is a nonzero proper ideal of R, then Ice(a) < Ice(ay) for every prime
ideal p of R, with equality if and only if p contains the proper ideal al®*®],

Proof If A = Ice(a), then al’l = R for each t < A, and since localization commutes with
Frobenius powers, ag] = Ry, for all such ¢, which demonstrates that Ice(ap) > A. On the

other hand, if al* C p, then a%” is proper, which implies that lce(ap) = A. Otherwise,

agf‘] = Ry, and the right constancy of Frobenius powers then implies that Ice(ap) > A. O

Proposition 4.16 Suppose that a is a nonzero proper ideal of R.

(1) If f is a nonzero element of a, then
0 < fpt(f) =lce(f) < Ice(a) < min{l, fpt(a)}.

(2) Iflce(a) # 1 and a can be generated by m elements, then

m—1
Ice(a) > fpt(a) — ——.
p—1
Proof The first claim follows from the fact that (') = (f)1 € all € ¢(a’) for every
t > 0, and that al'l = q, which is assumed to be proper.

We pause to recall some basic properties of F-pure thresholds. First, Proposition 4.15
holds for F-pure thresholds, after replacing lce(a) with fpt(a), and allee(@] with ¢ (afPt(@),
Secondly, if (R, m) is local, then fpt(a) = c™(a).

We now address the second claim. If Ice(a) # 1, then there exists a prime ideal p of R for
which Ice(ay) = Ice(a) # 1, and so

m—1 m—1
Ice(a) = lce(ap) > fpt(ay) — > fpt(a) — ——,
p—1 p—1
where the first inequality follows from Corollary 4.10, taking b to be the maximal ideal of
Ry, and the second from the analog of Proposition 4.15 for F-pure thresholds. O

We conclude this subsection with some examples, contrasting the different behavior of
least critical exponents and F'-pure thresholds.

Example 4.17 The formulas discussed in Sect. 3.4 lead to the following well-known descrip-
tion: The F-pure threshold of a monomial ideal is the unique real number A such that
(1/A, ..., 1/2) lies in the boundary of its Newton polyhedron. In particular,

fpt ((xl, R xn)d) = E.
d
The general situation for the least critical exponent of a monomial ideal is, however, rather
complex. For instance, Example 3.25 tells us that if b = (x, y)>, then fpt(b) = 2/5, and

2 1
lCC(b) = g — 5
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whenever p = 3 mod 5. More generally, we have computed that

if p=5o0rp=+41mod5

—ﬁ if p=2mod 5
—# if p=3mod 5

Ice(b) =

W W Lo

We stress that this example illustrates that for an ideal a, it is possible, and perhaps even
common, to have Ice(a) < fpt(a) when fpt(a) < 1.

5 The principal principle

As noted in Proposition 3.16(1), the Frobenius powers and test ideals of a principal ideal in an
F-finite regular domain agree for all positive exponents. On the other hand, we also observed
in Corollary 3.17 and in the comments preceding it, a situation in which the Frobenius powers
of an arbitrary ideal behave like the test ideals of principal ideals.

In this section, we make explicit the connection between test ideals of hypersurfaces and
Frobenius powers of arbitrary ideals, and explore some consequences. The results derived
in this section suggest that the following heuristic principle can be used when dealing with
Frobenius powers:

The principal principle: Given a result for test ideals or F-thresholds or F'-pure thresholds
of principal ideals, there is an analogous result for Frobenius powers or critical exponents or
least critical exponents.

5.1 Principalization

Proposition 5.1 Fix an ideal a = (g1, ..., gm) of an F-finite regular domain R of charac-
teristic p > 0. Let z = z1, ..., 2m be variables over R, and consider the generic linear
combination G = 7181 + -+ + Zm&m € Rlz]. If b is an ideal of R and t is a positive real
number; then

adC b« ©(G") CbR[z].
Consequently, if a and b are nonzero proper ideals of R with a C Vb, then

crit® (a) = ¢PRE(G).

Proof We may assume thatt = k /g, with k a positive integer and g a power of p. With such a
choice of parameter, our claim then is equivalent to the assertion that al¥! C b!4! if and only if
Gk e (bR[z])'4) = bl9IR[z]. However, G* € bl4! R[] if and only if each of the coefficients
in the expression of G* as an R-linear combination of monomials in the variables z lies in
bl9], and Proposition 3.5 tells us that these coefficients are precisely the generators of al*l. o

Remark 5.2 Setting b = al’! in Proposition 5.1 implies that 7(G") is contained in all R[z]
for all + > 0. Though this containment may be proper (e.g., when ¢t = 1), we will see in
Theorem 5.3 that we obtain an equality whenever 0 < ¢t < 1.

In the proof of the following theorem, we refer to [3, Proposition 2.5]. This proposition,
which allows us to compute Frobenius roots of ideals in terms of their generators, is restated
in Sect. 7.
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Theorem 5.3 (Principalization) Suppose 0 < t < 1. If a € R and G € R[z] are as in
Proposition 5.1, then t(G') = aR[z] and a1 = 1 (G") N R.

Proof Note that the second statement follows from the first. Indeed, as R[z] is split over R,
we have that (bR[z]) N R = b for every ideal b of R.

We now turn our attention to the first statement. First, note that we may assume that
t = k/q, with 0 < k < g. Moreover, it suffices to establish that the R-modules al’) R[z] and
7(G") are equal after localizing at each prime ideal of R. However, if p is a prime ideal of
R, then under the identification (R[z])p = Rp[z], the localization of the expansion al1R[7]
at p satisfies

(a"IRIz1), = (o), Rplz] = ay ' Rpl2,

while the localization of T(G") at p is identified with the test ideal of G, regarded as an
element of Ry[z], with respect to the parameter ¢. In other words, we may assume that R is
local, and therefore free over its subring RY.

If B ={ey,...,e,}is abasis for R over RY, then B’ = {¢;z% : 1 <i <nandu < g1}
is a basis for R[z] over (R[z])4. Let # denote the collection of all vectors h € N such
that ||h|| = k and (ﬁ) # 0 mod p. By Proposition 3.5, al*! is generated by products g" =

g{” e gfl,,’”, where h € .. Writing each g" in terms of the basis B as

n
h q
gt =D e
i=1

where each ap ; € R, [3, Proposition 2.5] shows that alk/al i generated by
{ani :he 2,1 <i <n}. (5.1)

On the other hand, we have

k k
k _ h_h _ q . _h
¢t=2 <h>g d= 2 (h)"‘”e’Z '
hes# he#
1<i<n
Since each h € % has norm k < ¢, the above is an expression for G* on the basis B’, so
[3, Proposition 2.5] shows that (Gk)[l/q], which equals r(Gk/q) by [4, Lemma 2.1], is also
generated (in R[z]) by the set displayed in (5.1). O

Remark 5.4 Together with Corollary 3.17, Theorem 5.3 allows us to express any real Frobe-
nius power as the product of an integral Frobenius power and the test ideal of a principal
ideal with respect to a parameter in the open unit interval. This has an important computa-
tional consequence: Frobenius powers of arbitrary ideals can be explicitly determined using
algorithms for the computation of test ideals of principal ideals (we refer the reader to [12]
for such an algorithm). This approach is typically efficient for ideals generated by a small
number of elements. Nevertheless, we present an algorithm for the direct computation of
rational Frobenius powers in Sect. 7.

Corollary 5.5 If a = (g1, ..., &m) is a nonzero proper ideal of R and G € R[z] is as in
Proposition 5.1, then

Ice(a) = fpt(G).
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Proof Let) = fpt(G). Thent(G') = R[z] whenever0 < ¢ < A, and in view of Theorem 5.3,
all = R for all such ¢, showing that lce(a) > A. If A = 1, then it must be the case that
Ice(a) = 1 = fpt(G). If & < 1, then T(G*) # R[z], and a®! = 7(G*) N R # R, showing
that Ice(a) = A = fpt(G). ]

Remark 5.6 (An alternate form of principalization) Let ¢ € R and G € R[z] be as in
Proposition 5.1. Let k be an F-finite field contained in R, and consider A = R ®kk(z), which
we identify with the localization of R[z] = R ®x k[z] at the set of nonzero polynomials in
k[z].

A useful fact in this context is that (b A) N R[z] = bR[z], and hence that (bA)N R = b, for
every ideal b of R. Indeed, after fixing a monomial order on the variables z, one can show by
induction on the number of terms that every coefficient of every polynomial in (bA) N R[z]
must lie in b. This demonstrates that (bA) N R[z] € bR[z], while the reverse containment
holds trivially.

Now, let T(G') be the test ideal of G € R|[z], and t4(G") the test ideal of G, when
regarded as an element of the localization A. As test ideals commute with localization, we
have that T4 (G') = t(G")A, and combining this with the equality (G') = allR[z] from
Theorem 5.3 shows that 74 (G') = al’lA. Furthermore, intersecting the above with R shows
that

TA(GHNR = (@A) N R =d.

In summary, we have just seen that an analog of Theorem 5.3 holds for the generic linear
combination G, regarded as an element of A. This observation also leads to the following
analog of Corollary 5.5: If a is a nonzero proper ideal, then the least critical exponent of a
equals the F-pure threshold of G, regarded as an element of A.

We now record an immediate consequence of Remark 5.6.

Corollary 5.7 Fix an ideal a = (g1, ..., gm) < klx1,...,x,]1 = k[x], with k an F-finite
field of characteristic p > 0. Let 7 = z1, ..., Zm be variables over k[x], and consider the
generic linear combination

G=z181+ + zmgm € k(@[x].

If0 <t < 1, then T(G") = a1 - k(z)[x] and o) = ©(G") Nk[x]. In particular, if a is a
nonzero proper ideal, then

fpt(G) = Ice(a).
|

In the remainder of this subsection, we derive some straightforward consequences of the
preceding results. First, we point out that since the F-thresholds of the polynomial G in
Proposition 5.1 are rational and form a discrete set (see [4, Theorem 1.1]), the discreteness
and rationality of the critical exponents of a follows at once.

Corollary 5.8 Ifais a nonzero proper ideal of an F -finite regular domain, then the set Crit(a)
of critical exponents of a is discrete and contained in Q. O

Principalization also sheds light on the structure of least critical exponents, and highlights
an important way in which they must differ from F-thresholds for non-principal ideals.
Recall that although every rational number is the F-pure threshold of some ideal, there
are “forbidden” intervals in (0, 1) containing no F'-pure threshold of a principal ideal (see
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[4, Proposition 4.3] and the discussion that precedes it, and [10, Proposition 4.8]). Since
least critical exponents are F-pure thresholds of principal ideals, they must avoid the same
intervals.

Corollary 5.9 (Forbidden interval condition) The least critical exponent of any nonzero proper
k _k

ideal of an F-finite regular domain does not lie in any interval of the form (5, ﬁ)’ where
q is an integral power of p, and 0 < k < g — 1. O
Suppose that b realizes Ice(a), in the sense that Ice(a) = crit? (a). In view of the above
corollary, Proposition 4.3(4) can be strengthened in this situation to
b b 1
““7(‘11) <lce(a) < M@+ 1 (5.2)
q — q

This gives us the following characterization of ideals with least critical exponent equal to 1.

Corollary 5.10 If a is a nonzero proper ideal of an F-finite regular domain, and b is such
that lce(a) = crit® (a), then the following are equivalent:

(1) Ice(a) = 1.
2) MS(Q) =qg — lforallg.
(3) nl(q) = q — 1 for some q.

Proof Tf Ice(a) = 1, then Proposition 4.3(4) shows that Mg(q) =g —1forallgq.If pcg(q) =
q — 1 for some g, (5.2) shows that Ice(a) > 1, so Ice(a) = 1. O

Next, we turn our attention to the subadditivity property. In the context of F-thresholds,
subadditivity says that if a, b, 0 are nonzero proper ideals of an F-finite regular ring with
a,b € /0, then ¢®(a + b) < c®(a) + c®(b) [4, Lemma 3.3]. The proof of subadditivity
for F-thresholds is simple, and is based on the observation that if " and b” are contained
in 9l4! then so is (a + )" However, although it is not immediately clear that the same
observation holds after replacing regular powers with Frobenius powers, subadditivity holds
for critical exponents.

Corollary 5.11 If a, b, ® are nonzero proper ideals of an F-finite regular domain R with
a, b € V0, then crit® (a + b) < crit® (a) + crit® (b).

Proof Supposethata = (g1,..., gn)andb = (hy, ..., h,),andfix variablesz =z, ..., Zpn
and w = wi,...,w, over R. By Propositions 4.7 and 5.1, there exist G € R[z] and
H € R[w] satisfying the following conditions:

o crit®(a) = *FE(G) = PREVI(G),
o crit® (b) = PRIy = PRl2wl(H) and
e crit®(a+ b) = PREYI(G + H).

The claim then follows from subadditivity for F-thresholds in R[z, w]. O
5.2 Principalization in a polynomial ring

In this section, we specialize to the case of a polynomial ring over an F-finite field. In
this context, we prove a stronger version of the second claim in Proposition 5.1 for critical

exponents with respect to a monomial ideal. Our argument relies on the following well-known
result.
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Lemma 5.12 Fix positive integers n and d. Then the set consisting of all F -jumping exponents
of all ideals of k[x1, ..., x,] generated in degree at most d, where k ranges over all F-finite
fields of characteristic p, is discrete.

Proof According to [3, Proposition 3.8, Remark 3.9], the set in question is contained in a
union of sets of the form mN, where a, b are nonnegative integers bounded above by
constants that depend only on n, d, and p, but not on k. In particular, this set is contained in
a finite union of discrete sets. O

Setup 5.13 Let k be an F-finite field of characteristic p > 0. Let

81, ..., 8m €Kklx] =Kklx1, ..., x,]
be nonzero polynomials that generate a proper ideal a, and fix a proper monomial ideal b of
k[x] with a € v/b.
If L is an F-finite field containing k, and 0 is an ideal of k[x], then 0, is the extension of
0 to LL[x]. With this notation, Proposition 4.7 tells us that

crit? (a) = crit?r (aL).

Similarly, if V is a closed set of Ag, then Vq, is the base change of V to L, i.e., the subset of
Af" determined by the same equations that define V in Ay

Theorem 5.14 Under Setup 5.13, there exists a closed set V of Ay} with the following property:
Given an F-finite field L containing k, and an m-tuple y = (y1, ..., vm) € A[' for which
g =181+ -+ Ym&m is nonzero,

ch(g) = critb(a) — y ¢ VL.

Proof Let G = z1g1 + -+ + zmg&m € Kklx, z] and let B be the extension of b in k[x, z].
Furthermore, let A denote the common value A = ¢ (G) = crit®(a).

By Lemma 5.12, the set consisting of all the F-jumping exponents of all nonzero linear
combinations of g1, ..., g, with coefficients in any F-finite extension field of k is discrete.
Thus, there exists an interval of the form (A — €, A) disjoint from that set. Choose a p-rational
number i /¢ in that interval, so that G ¢ Bl4]. Write G’ in the form

G' =) Hu()x". (5.3)

with nonzero Hy € k[z]. Because G! ¢ Bl9] there is at least one monomial x" in (5.3) not
in bl9], Let X be the collection of all such u, set H = {Hy :u € X}, and let V be the closed
subset of Ay defined by H.

Now, fix an F-finite extension field L of k, and y = (y1,...,¥n) € A[' for which
g =y181+ -+ + Vmgm 1s nonzero. The identity (5.3) implies that

g = Z Hy(y)x" mod b][f]
ueX
in L[x]. Since b is monomial, this implies that g’ ¢ b]%fl Vif and onlyify ¢ V..
It remains to show that g/ ¢ b][f] if and only if cPL(g) = A. Towards this, first note
that if ¢! € b][f], then cPL(g) is at most i /g, and hence less than A. On the other hand, if
g ¢ b[ql, then cPL(g) > i/q. But cPL(g) cannot lie in the interval (A — €, A), by design,

so cPL(g) > 1 = crit®(a) = crit®L (ap). Proposition 4.3(1) then tells us that equality holds
throughout. O
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Note that the closed set V constructed in the proof of Theorem 5.14 is defined by a finite
collection of nonzero homogeneous polynomials. If k is an infinite field, the fact that these
polynomials are nonzero implies that V' C Al is proper, which gives us the following.

Corollary 5.15 Ifk is infinite, then under the assumptions of Theorem 5.14 we have crit® (a) =
max{c®(g) : g € a}. ]

Example 5.16 We examine the proof of Theorem 5.14 in the concrete case that the poly-
nomials gi, ..., g, are monomials, say g; = x" for every 1 < i < m. In this case,
G =z1x" + -+ - + zppx", and so

G = Z (l ety
h

by the multinomial theorem, where the sum is over all h € N with ||h|| = i and (}’l) #*
0 mod p. Therefore, for each fixed monomial x* appearing in the expression for G’ given
in (5.3), we have that

I\ n
Hu(x) =) <h>z :
where the sum ranges over all h € N satisfying the preceding two conditions, as well as
the additional condition
hjug +--- +hmum =u

Our choice of the monomial x" guarantees that there exists at least one h satisfying these
conditions, and in certain cases, there is only a single vector h that satisfies them. In such
cases, the polynomial Hy(z) is a monomial, and so the closed set that it defines in A%"p lies
in the union of the coordinate hyperplanes. In particular, the proof of Theorem 5.14 tells us
that

b (g) = critb(a)

whenever L is an F-finite field of characteristic p > 0 and g is any LL-linear combination

with nonzero coefficients of the monomials x"!, ..., x%.
This behavior occurs, for instance, when uy, ..., u,, are linearly independent (e.g., this
. d d Sy . .
occurs for the monomials x| ..., xp"). Considering the condition that ||h|| = i, we see

that this is also the case when these vectors are affinely independent (e.g., this occurs for a
distinct pair of monomials x"! and x"2).

Techniques similar to those used in the proof of Theorem 5.14 can be used to prove the
result below, which is not directly related to generalized Frobenius powers, nor to critical
exponents. Although this result, and its corollary—the constructibility of sets of polynomials
with a given F-pure threshold—and the arguments used toward them are known to specialists,
the authors are unaware of proofs of these statements in the literature, and thus choose to
present them in detail.

Proposition 5.17 Under Setup 5.13, the following hold.

(1) Given an F-finite field 1L containing k, let S(IL) denote the set of F-thresholds with
respect to by, of all nonzero L-linear combinations of g1, ..., gm. Then S = | J S(L) is
finite, where the union ranges over all L as above.

@ Springer



Frobenius powers 565

(2) For each ) € S, there exists a locally closed set Z* of Ayl with the following property:
Given an F-finite field 1. containing k, and an m-tuple y = (y1, ..., vm) € A for
which g = y181 + - -+ + Vim&m IS nonzero,

L(g) =1 = yeZ.

Proof LetG = 7181+ - -+ Zmgm,and let 2B be the extension of b in k[x, z]. The set S is finite

in view of Lemma 5.12, since given an F-finite extension field L of k, every element of S(LL)

does not exceed ¢® (G). Therefore, we can list the elements of Sas A < Ay < -+ < A,
Given 1 < j < r, fix a p-rational number i; /g in the interval (A;, Aj41). Since

ij/q <2 <cP(G),

we know that G/ ¢ Bl9]. This means that G'/, when thought of as a polynomial in x with
coefficients in k[z], has at least one supporting monomial not in bl4l. As in the proof of
Theorem 5.14, we gather the coefficients of all such monomials, and let VJ be the closed
set in A}’ defined by these coefficients. Moreover, set VO =@and V' = A}’ so that Vj is
defined foreach 0 < j < r.

Fix an F-finite extension field L. of k, and take y = (y1,...,¥m) € Aﬂ with ¢ =

Y181 + -+ - + Ym&n nonzero. As in the proof of Theorem 5.14,for 1 < j <r,y € Vﬂf if and

only if gl e b]gf’ ], and we claim that the latter condition is equivalent to the condition that
ch(g) < Aj, so that foreach 1 < j < r we have

yeVl « (g < (5.4)

Indeed, the condition that g'i e b][f] implies that c®“(g) < ij/q < *j+1, and since there
are no elements of S(IL) between A ; and A ;1 1, we conclude that chL (g) < Aj. On the other
hand, if g%/ ¢ bl"), then c®L(g) > i;/q > A;.

The equivalence (5.4) tells us that forevery 1 < j < r,

PL(g) =1x; <= " (g) <ijand " (g) > Aj_y
& y e Vﬂf and y ¢ Vﬂf_l.

Finally, note that (5.4) implies that the first and last conditions above are also equivalent for
j=1land j = r, and so we may set Zi = V/\VJ~I C AY. O

Corollary 5.18 below—an immediate consequence of Proposition 5.17—is concerned
with the local behavior of a polynomial at a point, which we assume to be the origin. Recall
that if a is an ideal in a polynomial ring contained in the homogeneous maximal ideal m,
then the F-pure threshold of a at the origin is simply c¢™ (a) = fpt(am).

In order to state the corollary, we fix the following notation: Given positive integers n and
d and a field k, let P(n, d, k) denote the set of polynomials over k of degree at most d in
n variables that vanish at the origin. We identify this set with A”", where m is the number
of nonconstant monomials of degree at most d in n variables, which gives meaning to the
notion of a locally closed subset of P(n, d, k). If k has prime characteristic and is F-finite,
let F(d, n, k) be the set of all F-pure thresholds at the origin of polynomials in P(n, d, k),
and let

Fn.d, p)=| Fn.d k),

where the union is taken over all F-finite fields k of characteristic p > 0.
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Corollary 5.18 The set ¥(n, d, p) is finite. Moreover, given ). € F(n, d, k), the set of poly-
nomials in P(n, d, k) whose F-pure threshold at the origin equals A is a locally closed set.
Furthermore, the defining equations of this set have coefficients in I, and may depend on
p, but not on the particular field k. O

Remark 5.19 (An analogy with the Bernstein—Sato polynomial) Corollary 5.18 is in direct
analogy with known results on the Bernstein—Sato polynomial: Given a field k of characteris-
tic zero, let B(n, d, k) be the set of all Bernstein—Sato polynomials of elements of P(n, d, k),
thenlet B(n, d) be the union of all B(n, d, k), over all fields k of characteristic zero. Lyubeznik
showed that B(n, d) is finite, and also asked whether the subset of P(n, d, k) corresponding
to some fixed polynomial in B(#n, d, k) is constructible [19]. Leykin gave a positive answer
to this question, and also showed that the defining equations of the constructible set have
coefficients in , and are independent of k [18, Theorem 3.5].

Remark 5.20 (On effective computability of strata) The proof of Proposition 5.17 is construc-
tive. In particular, if one could effectively compute the set S in its statement, then our proof
would lead to an explicit description of the sets Z*. This would be especially interesting in
the context of the above corollary, so that one may compare the resulting strata with those
computed by Leykin in the context of Bernstein—Sato polynomials.

5.3 Sets of least critical exponents

In this subsection, we are motivated by a result of Blickle, Mustatd, and Smith regarding sets
of F-pure thresholds of principal ideals. Throughout the subsection, we adopt the convention
that the critical exponent of the trivial ideal, with respect to any ideal b, is zero (consequently,
Ice({0)) = 0). We fix a prime p, a positive integer n, and adopt the following notation:

e L, is the set of all least critical exponents of proper ideals in regular F'-finite domains of
characteristic p and dimension at most n, and 7, is the subset of all F-pure thresholds
of proper principal ideals in such rings.

e L is the set of all critical exponents at the origin (that is, with respect to the homoge-
neous maximal ideal) of proper ideals in some polynomial ring in n variables over some
algebraically closed field of characteristic p, and let 7,7 denote the subset of F-pure
thresholds at the origin of proper principal ideals in these polynomial rings.

The aforementioned result establishes that 7,, = ’2'70, where the right-hand side denotes the
closure of 7,” [4, Theorem 1.2]. We prove the following analog for least critical exponents.

Theorem 5.21 £, = L?.
In order to prove Theorem 5.21, we need the following lemma.

Lemma 5.22 [f a and b are proper ideals of an F-finite regular local ring (R, m) and a +
ml = b + ml9l, then |lce(a) — lce(b)] < 1/4.

Proof The containment b € a + m!) and Lemma 5.11 show that
1
Iee(b) < lce (a + m[‘”) < lce(a) + Ice (m[‘”) =lce(a) + —.
q

Our claim follows from this, and the analogous statement when we reverse the roles of a and
b. O
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We are now ready to prove Theorem 5.21.

Proof of Theorem 5.21 Given a proper ideal a of a regular F-finite domain R of characteristic
p., any maximal ideal m containing al°®®] realizes Ice(a), by the comments preceding Def-
inition 4.14, and lce(a) = crit™(a) = crit™®m (aRy,) = crit™fm (aﬁm), by Proposition 4.6
and the fact that Frobenius powers commute with completion. Then by the Cohen Structure
Theorem, £, is the set of all least critical exponents of proper ideals in power series rings
k[x] = k[x1, ..., x,], where r < n, and k an F-finite field of characteristic p.

Fix one such ring k[[x]; let m be its maximal ideal, and a an arbitrary proper ideal. Given
f ek[x]and d € N, let f<4 denote the truncation of f up to degree d (which can be con-
sidered in k[x]). Fix generators fi, ..., f; of a, and define agy = ((fi)<a, .-, (fi)<a) S
k[x]. By the pigeonhole principle, a +ml4! = ac; +ml% ford > r(g — 1). Hence the limit
of the sequence (lce(agd)) is Ice(a) by Lemma 5.22.

If (x) = (x1,...,x7) and ag = ((fi)<a, --., (fi)<a) are ideals of k[x], we know that
Ice(agq) = crit™(agy) = crit® (ay), again because Frobenius powers commute with com-
pletion. Since the sequence whose limit defines crit ¥’ (a,) agrees with the sequence defining
the critical exponent with respect to (x) of the extension of a,; to the polynomial ring in
n variables over the algebraic closure of k, these critical exponents are equal. Hence we
conclude that £, € L2.

Since TTf = 7, [4, Theorem 1.2], and £; = 7,° by Corollary 5.15, we conclude that
Ly C L, =Tp =T, C Ly, so that equality holds throughout. u]

Remark 5.23 Note that the proof of Theorem 5.21 yields the stronger statement

6 Behaviorasp — oo

In this section, we view Frobenius powers and critical exponents from the point of view of
reduction to prime characteristic, with an eye towards establishing connections with certain
invariants from birational geometry. To simplify our discussion, we only consider the local
behavior of varieties in Aﬁé at a point, which we may assume to be the origin. Algebraically,
this means that we focus on nonzero ideals in the localization of Q[x] = Q[xy, ..., x,] at
m=(Xg,...,Xn).

Recall that the multiplier ideal of a € Q[x ]y, with respect to a nonnegative real parameter
t is the ideal in Q[x]y, given by

J@) ={h € Qx]m : div(r*h) > 1Z — K},

where 7 : X — Spec(Q[x]m) is a log resolution of a with relative canonical divisor K,
and a- Ox = Ox(—Z). We also recall that the log canonical threshold of a, denoted Ict(a),
is the supremum of all ¢ > 0 such that 7 (a’) is the unit ideal. We refer the reader to [2] for
the basics of multiplier ideals and log canonical thresholds.

Remark 6.1 (Reduction modulo a prime integer) Let b € Q[x]y, be an ideal generated by
a set 3 consisting of polynomials with integer coefficients. Given a prime p, the reduction
of b modulo p is the ideal b, generated by the image of B in F)[x]m,, where m), is the
homogeneous maximal ideal of IF,[x]. Note that, while the reductions b, may depend on the
choice of B, any two such choices will yield identical reductions once p > 0.
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Our interest in the multiplier ideals of an ideal a € Q[x],, stems from the fact that they
are “universal test ideals” of the reductions a,. Indeed, it was shown in [9,21] that if p > 0,
then T(a'p) is contained in 7 (a’) p forallz > 0. Furthermore, if t > 01is fixed, then the ideals
T(a’p) and 7 (a') , agree whenever p >> 0, with the precise bound on p depending on ¢.

We record an important corollary of this remarkable result below.

Remark 6.2 1f a C b are nonzero proper ideals in Q[x]y,, then
lim c[’f’(ap)
p—>00

exists, and equals min{t € R : J(a’) C b}. Indeed, if we denote this minimum by A, then
J(a*) C b, and we may choose an integer N, such that

T(a}) = J(a"), b,

for all p > N,, which shows that the terms of the sequence cbr(a p) are at most A whenever
p > 0. Next, fix 0 < ¢t < A, so that J(a') Q b, which we restate in terms of quotients as
(J(a") + b)/b # 0. It is well known (see, e.g., [14]) that the property of being nonzero is
preserved under reduction mod p >> 0, and so there exists an integer N, such that r(a;) =

J(a’)p g b, for all p > N,. In particular, cbr (ap) > tif p > N, which allows us to
conclude that

lim ¢ (a,) = 4,
p—>00
as desired. We also note the following special case of this result: If b is the maximal ideal of
Q[x]w, then fpt(a,) = cbl’(ap), and so

lim fpt(a,) = Ict(a).
p—>00

In the remainder of this section, we establish analogous results for Frobenius powers and
critical exponents.

Theorem 6.3 Suppose a is an ideal of Q[x1, ..., Xplm. If0 <t < 1, then
il = 1(al) =T,

for all p > 0, with the precise bound on p depending on t.

Proof Fix 0 < t < 1. Like test ideals and Frobenius powers, the multiplier ideals of a are
locally constant to the right, and so we may fix 0 < € < 1 with J(a’) = J(a’"¢). Having
fixed both ¢ and €, it follows that

t(a,) = J(@), = J@™), =@, ) 6.1)

for all p > 0. However, if a (and hence each a,) can be generated by m elements, then

’Z:ll < € for all p > 0, and so Proposition 3.22 tells us that

t+e [£] t
t(a,™) S a, S 1(ap)

for all p > 0. Finally, comparing this with (6.1) we see that any two ideals appearing in
either of these chains must agree. O
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Theorem 6.4 Consider nonzero proper ideals a C b in Q[xy, ..., x;]m, and set

A= lim ¢ (ay) =min{r e Rog: J(a') C b}.
pP—00

If A > 1, then critb!’(ap) = 1forall p > 0. Otherwise,

. . b
lim crit”?(a,) = A.
p—00

Proof Suppose that a (and hence all a,) can be generated by m elements. If A > 1, yet
crit®s (a p) # 1forinfinitely many p, then Corollary 4.10 implies that a subsequence of terms
crit®r (ap) converges to A, which is impossible, since the containment a C b implies that each
such term is at most 1. If A = 1, then Corollary 4.10 tells us that either crit®r (ap) =1, 0r
crit?s (a p) lies between two sequences that converge to A = 1, and so lim,_, crit?s (a p) =
1. Finally, if A < 1, then critbl’(ap) < cbﬁ(ap) < 1 for all p > 0, and we may once again
invoke Corollary 4.10 to see that lim,_, crit?» (ap) = A. ]

Remark 6.5 Theorem 6.4 implies that if a C b are nonzero proper ideals of Q[x ]y, then

lim critb"(ap) = min {1, lim CbP(ap)].
p—>00 p—>00

Alternatively, this also follows from Theorem 6.3, and an argument modeled on that given
in Remark 6.2. In any case, if b is the maximal ideal of Q[x]y, then Ice(a,) = crit®» (ap),
and so

lim Ice(a,) = min{l, Ict(a)}.
p—>00

The following is motivated by similar well-known questions surrounding the relationship
between test ideals and multiplier ideals.

Question 6.6 Given a nonzero ideal a in Q[x]y, with Ict(a) at most 1, do there exist infinitely
many primes p such that Ice(a,) = Ict(a)? More generally, does there exist an infinite set of

primes X for which ag] = J(a"), forall p € X and 7 in the open unit interval?

7 Computing Frobenius powers

In this section, we outline an algorithm that can be implemented to compute arbitrary rational
Frobenius powers of ideals in polynomial rings.

Before proceeding, we point out that it is possible to effectively compute [1 /¢ ]th powers in
apolynomial ring over a finite field. This has been implemented in the Macaulay? [8] package
Testldeals [1] (see also its companion article [5]), and relies on the following proposition,
which describes al!/4! in terms of the generators of a.

Proposition 7.1 [3, Proposition 2.5] Suppose R is free over R4, with basis {ey, .. ., e,}, and
leta = (f1,..., fs) beanideal of R. Write each f; as an R1-linear combination of the basis
{e1, ..., en} as follows:

n
fi = djjes,
=1
where a;j € R. Thenall/qj=(aij|1<i<s,1gjgn). O
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Let R be a polynomial ring over a finite field of characteristic p. Let a be an ideal in R,
and ¢ a nonnegative rational number. We now describe an algorithm for computing al’l.

e If 7 is of the form k/p® for some b € N, then
b
altl — (a[k])[l/P I
which can be computed using Proposition 7.1.

e Otherwise, t can be written in the form r = k/(pb (p¢ — 1)), for some ¢ > 0.
e Setu = k/(p° — 1), and note that, by Proposition 3.16(5),

alfl — (a[u])[l/p”]_

e Writek = (p¢ — 1)l 4+r,withO <r < p°—1,andsetv =r/(p—1),sothatu = [+,
and al! = al'la*! by Corollary 3.17.
e Foreache > 1, set

r r r 1 rple=De o pple=2e L4y 4]
Ue:;+ﬁ+"'+pec+p“: pec .
Note that v, \{ v, so that al?l = glvel for ¢ > 0. Tt remains to determine how large e
needs to be.
o Let

= min {e >1:alvl = a[”e“]} .

To compute y efficiently, note that the ideals al’] can be computed recursively. Indeed,
let n, denote the numerator of v, that is, n, = rp(e_l)c + rp(e_z)c +.--+r—+1.Then

a[ve+l] _ (a[ne+l])[1/p(€+l)('] (a[ne+rpec])[]/p(t’+l)(:]'

eC]

Since the supporting base p digits of 7, and rp®® are disjoint, alet77“1 = glrelqlrp
by Proposition 3.4(4), so

alven] = (qlrelglrp1)l/P 7]

_ ((a[m]a[rp“])[l/p“])“/"”] by Lemma 3.8(4)
_ ((a[ne](a[r])[p“])[l/P“])[l/ 7 by Proposition 3.4(6)
- (am (a[ne])[l/f’”])[]/pc] by Lemma 3.11
_ (a[r]a[vg]>“/”v]_

e The above recursion shows that al’el = al*u] forall e > pu, so alVl = alvel,
e In conclusion,

b
alfl = (a[l]a[vﬂ])[l/p ]_

Pseudocode for the above algorithm is provided below.
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Algorithm 1: Computing rational Frobenius powers

Input: a, an ideal in a polynomial ring over a finite field
t, a nonnegative rational number

Output: al’l

b
if t = k/p?, for some k, b € N then return (al%1)!!/7"]
Write t = m with b € Nand k, ¢ € N
Divide k by p¢ — 1: k = (p* — 1)l +r, where 0 < r < p© — 1
¢ < (a[r+|])[1/17”]

repeat
b<«c¢

¢ (a[r]b)[l/p"]
until ¢ C b

b
return (a[” b)“/p I
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