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Abstract. We initiate the study of partial key exposure in Ring-LWE (RLWE)-based cryp-
tosystems. Specifically, we (1) Introduce the search and decision Leaky R-LWE assump-
tions (Leaky R-SLWE, Leaky R-DLWE), to formalize the hardness of search/decision
RLWE under leakage of some fraction of coordinates of the NTT transform of the RLWE
secret. (2) Present and implement an efficient key exposure attack that, given certain 1/4-
fraction of the coordinates of the NTT transform of the RLWE secret, along with samples
from the RLWE distribution, recovers the full RLWE secret for standard parameter set-
tings. (3) Present a search-to-decision reduction for Leaky R-LWE for certain types of key
exposure. (4) Propose applications to the security analysis of RLWE-based cryptosystems
under partial key exposure.
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1 Introduction

There has been a monumental effort in the cryptographic community to develop
“post-quantum” cryptosystems that remain secure even in the presence of a quan-
tum adversary. One of the foremost avenues for viable post-quantum public key
cryptography is to construct schemes from the Ring-Learning with Error (RLWE)
assumption—currently 3 out of 26 of the second round NIST submissions are
based on assumptions in the ring setting. RLWE is often preferred in practice
over standard LWE due to its algebraic structure, which allows for smaller pub-
lic keys and more efficient implementations. In the RLWE setting, we typically
consider rings of the form R, := Z4[z]/(z™ + 1), where n is a power of two
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research partnership award from Cisco and by financial assistance award 70NANB 15H328 from the
U.S. Department of Commerce, National Institute of Standards and Technology.
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and ¢ = 1 mod 2n. The (decisional) RLWE problem is then to distinguish
(a,b = a-s+e) € Ry x Ry from uniformly random pairs, where s € R,
is a random secret, a € IR, is uniformly random and the error term e € R has
small norm. A critical question is whether the additional algebraic structure of the
RLWE problem renders it less secure than the standard LWE problem. Interest-
ingly, to the best of our knowledge—for the rings used in practice and practical
parameter settings—the best attacks on RLWE are generic and can equally well be
applied to standard LWE [28]. In this work, we ask whether improved attacks on
RLWE are possible when partial information about the RLWE secret is exposed,
though the secret retains high entropy.

The NTT transform. One key method for speeding up computations in the
RLWE setting is usage of the NTT transform (similar to the discrete Fourier trans-
form (DFT), but over finite fields) to allow for faster polynomial multiplication
over the ring ;. Specifically, applying the NTT transform to two polynomi-
als p,p’ € Ry,—resulting in two n-dimensional vectors, p,p’ € Zq—2allows
for component-wise multiplication and addition, which is highly efficient. In this
work, we consider leakage of a fraction of NTT coordinates of the RLWE secret.
Since the RLWE secret will typically be stored in NTT form (to facilitate fast com-
putation), [4,7] leakage of coordinates of the NTT transform is a natural model for
partial key exposure attacks.

This work. The goal of this work is to initiate a study of partial key exposure in
RLWE based cryptosystems and explore both positive and negative results in this
setting. Specifically, we (1) define search and decision versions of Leaky RLWE
assumptions, where the structured leakage occurs on the coordinates of the NTT
transform of the RLWE secret; (2) present partial key exposure attacks on RLWE,
given 1 /4-fraction of structured leakage on the secret key; (3) present a search to
decision reduction for the Leaky RLWE assumptions; and (4) propose applications
of the decision version of the assumption to practical RLWE-based cryptosystems.

1.1 Leaky RLWE Assumptions—Search and Decision Versions

We next briefly introduce the search and decision versions of the Leaky RLWE
assumptions. For p € R, = Z4[z]/(z™ + 1), we denote p := NTT(p) :=
(p(w"),p(w?),...,p(w?™ 1)), where w is a primitive 2n-th root of unity modulo
q, and is guaranteed to exist by choice of prime ¢, s.t. ¢ = 1 mod 2n. Note that
p is indexed by the set Z3, .

The search version of the RLWE problem with leakage, denoted Leaky R-
SLWE, is parametrized by (n' € {1,2,4,8,...n},S C Z3 ). The goal is to
recover the RLWE secret s = NTT~!(8), given samples from the distribution
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D3 at.n.s Which outputs (ﬁ, a-5+€,(5],—0 mod2n’ |vaes) , where a, s, and e are
as in the standard RLWE assumption (see Appendix A.2 and [26] for the precise
definition).

The decision version of the RLWE problem with leakage, denoted Leaky R-
DLWE is parametrized by (n’ € {1,2,4,8,...n},S§ C Zj5 ). The goal is to

A o s s L .
distinguish the distributions Dreal,n', s and Dsimyn,, s» Where Dmalyn“ s is as above

s A s S~ S S =
and D5, ./ s outputs <a, U, [5i]; =0 mod 2n/ \Vaes)’ where @; = a;-5;+€; fori = a
mod 2n’, & € S and 1; is chosen uniformly at random from Zg4, otherwise. Note

that only the coordinates of © corresponding to unleaked positions are required to
be indistinguishable from random.

When S = {a} consists of a single element, we sometimes abuse notation
and write the Leaky-RLWE parameters as (n’, a). Leaky-RLWE with parameters
(n’,8) where S = {ay, an,...,a:}, is equivalent to Leaky-RLWE with param-
eters (n/,S’), where S’ = a;' - S (multiply every element of S by a;'). It is
also not hard to see that leaky search and decision are equally hard when secret
s is uniform random from R, versus drawn from the error distribution (the same
reduction for standard RLWE works in our case).

1.2 Our Results

Partial key exposure attacks. We present attacks on Leaky R-SLWE and test
them on various practical parameter settings, such as the NewHope [7] parameter
settings as well as the RLWE challenges of Crockett and Peikert [12]. Our attacks
demonstrate that Leaky R-SLWE is easy for leakage parameters (n' = 4,a = 1),
(n' =8,8 ={1,7}) and (n' = 8,8 = {1,15}), under (1) NewHope parameter
settings of n = 1024, ¢ = 12289, and x = Wi (centered binomial distribution
of parameter 16); (2) The same parameters above, but with x = D s (discrete
Gaussian with standard deviation of v/8, which has the same standard deviation
as Wig), since this is the recommended setting in the case where the adversary
gets to see many RLWE samples [3]; (3) For parameters of several of the Crockett
and Peikert challenges, including those classified as “very hard.” In all the above
cases, we fully recover the RLWE secret with high probability, given the corre-
sponding 1/4-fraction of the positions in the NTT transform of the RLWE secret.
See Section 3.2 for details on the experimental results.

A search-to-decision reduction. Define T,,/(n) to be the time required to solve
Leaky R-SLWE for dimension 7, given positions [3;];=q mod 2r/- Assuming search
R-LWE without leakage is subexponentially 22("*)-hard for some constant e < 1
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and polynomial modulus ¢, then T},(n) € 2%(") ! je. there is a constant ¢ such

that, for sufficiently large n, T},(n) > 2°0*°). Also, Ti(n) € poly(n), since the

entire s is leaked. So there is some constant ¢’ such that, for sufficiently large n,

there exists n* = n*(n) € {2,4,8,16,...,n} such that T,,~(n) > 2¢) and
Ty (n) 2

>
T pp(m) =

Theorem 1.1 (Informal). Assume n* := n*(n) > 4, s < R, then:

DS

sim,n* {a}

(1) D3 OR

real,n*,{a}

2) D ~ DS, OR

real n* {a,(n*—1)-a} = “simn* {a,(n*—1)-a}

(3) Dreal n* {a,2n*—1)a} ~ D:im,n*,{a,(Zn*fl)a}’

While at first glance it may seem that the conclusions (1), (2), (3) are redundant,
in fact they are incomparable; Indeed, conclusion (1) does not imply (2) (resp. (3)),
since the adversary in (2) (resp. (3)) is given additional leakage. Conversely, con-
clusion (2) (resp. (3)) does not imply (1), since the set of NTT coordinates that are
indistinguishable from random is smaller in (2).

Note that our experimental results show that for our chosen parameter set-
tings D24 1y # Dszm4{l}’ real8 {17y % Diimg 17y a4 DFoyyg 1115y %
Ds. 81,15 (since we in fact fully recover the secret in all these cases) This in-
dicates that n* # 4 and, if n* = 8 for our chosen parameter settings (as supported

by our experiments), then it must be the case that D* ~ D*

real,8,{1} = “sim;8,{1}"

Applications. The Leaky R-DLWE assumption is a useful tool for analyzing the
security of RLWE-based cryptosystems subject to partial key exposure, and guar-
anteeing a graceful degradation in security. In particular, the Leaky R-DLWE as-
sumption was used to analyze the NewHope protocol of [7] in the ePrint version
of this paper [14]. The assumption is applicable to schemes in which the RLWE
assumption is used to guarantee that a certain outcome is high-entropy (as opposed
to uniform random), such as NewHope without reconciliation [6].

Practicality of our attack. We note that an attack on Leaky R-SLWE yields an
attack on standard search R-LWE by guessing each possible leakage outcome, run-
ning the Leaky R-SLWE attack and checking correctness of the recovered secret.
Therefore, we believe this line of research is interesting beyond the context of

! Search R-LWE can be solved given a subroutine that solves Leaky R-SLWE by first guessing
the leakage on s, then running the Leaky R-SLWE attack. Thus, by guessing the value of the
single leaked position we obtain a T}, (n) - ¢-time attack on search R-LWE without leakage.

2 Otherwise for every n; € N, there exists an n, > n; such that T, (n,) < 2¢'(n3) nlzog "<
p¢elng).
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leakage resilience, since if the attack can be made to work successfully for suffi-
ciently low leakage rate (far lower than the 1/4-leakage rate of our attacks), then
one could potentially obtain an improved attack on standard search R-LWE.

We chose to consider partial exposure of the NTT transform of the R-LWE se-
cret, since in practical schemes the secret key is often stored in the NTT domain
and certain types of side-channel attacks allow recovering large portions of the
secret key stored in memory. E.g., in their analysis of “cold boot attacks” on NTT
cryptosystems, Albrecht et al. [4] considered bit-flip rates as low as 0.2%. How-
ever, the highly structured leakage required for our attack is unlikely to occur in a
practical leakage setting such as a “cold boot attack,” where one expects to recover
the values of random locations in memory. We leave open the question of reducing
the structure of the leakage in our attack. Specifically, as a starting point it will be
interesting to see if our attack can extend to leakage patterns of n’ = 16, |S| = 4
orn’ = 32, |S| = 8, etc. While the leakage rate remains the same (1/4) in each
case, these patterns capture leakage that is less and less structured, since at the
extreme, one can view leakage of a random 1/4-fraction of the NTT coordinates
as an instance of Leaky R-SLWE with parameters n’ = n and |S| = n /4.3

1.3 Comparison with Concurrent Work of Bolboceanu et al. [9]

One of the settings considered by [9] is sampling the RLWE secret from an ideal
I C ¢R. It is straightforward to see that sampling the RLWE secret uniformly at
random from R, and then leaking the NTT coordinates 7 such that i = o mod 2n’
is equivalent to sampling the RLWE secret from the ideal [ that contains those
elements whose NTT transform is O in positions ¢ such that i = o mod 2n/.

Nevertheless, our decisional assumption is weaker than the assumption of [9],
since [9] require that the entire vector u be indistinguishable from uniform ran-
dom, whereas we only require that the NTT transform of u is indistinguishable
from uniform random at the positions ¢ that are not leaked. Our assumption
lends itself to a search-to-decision reduction while the assumption of [9] does not.
While [9] do provide a direct security reduction for their decisional assumption,
the required standard deviation of the error (in polynomial basis, tweaked and
scaled by ¢) is w(g"/™ - n3/?), which would be far higher than the noise consid-
ered in the NewHope and RLWE Challenges settings. In contrast, our assumption
can be applied in practical parameter regimes and is sufficient to argue the security
of several practical cryptosystems under partial key exposure.

Finally, we compare our attack to that of [9]. For fixed n, g, our attack works for
noise regimes that are not covered by the attack of [9]. For example, for NewHope

3 We thank an anonymous reviewer for bringing this research direction to our attention.
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settings of n = 1024, ¢ = 12289, the attack of [9] has success rate at most
1/1000 when the standard deviation of noise distribution is less than 0.00562. 4
In contrast, our attack works (with success ranging from 82/200 to 2/1000) when
the standard deviation of the noise is v/8 ~ 2.83.> Our attack applies only for
certain leakage patterns corresponding to certain ideals 7, whereas the attack of
[9] works for any ideal. The techniques of the two attacks are entirely different.
[9] obtain a “good” basis for the ideal via non-uniform advice, perform a change of
basis and then use Babai’s roundoff algorithm to solve the resulting BDD instance.
We use the algebraic structure of the problem to convert RLWE instances over high
dimension into CVP instances over constant dimension n’. We then exactly solve
the CVP instances over constant dimension and determine the “high confidence”
solutions that are likely to be the correct values of the RLWE error. Assuming
all high confidence solutions are correct, we obtain a noiseless system of linear
equations w.r.t. the RLWE secret, allowing efficient recovery of the secret.

1.4 Related Work

Leakage-resilient cryptography. The study of provably secure, leakage-resilient
cryptography was introduced by the work of Dziembowski and Pietrzak in [19].
Pietrzak [29] also constructed a leakage-resilient stream-cipher. Brakerski et
al. [11] showed how to construct a scheme secure against an attacker who leaks
at each time period. There are other works as well considering continual leak-
age [17,22]. There are also work on leakage-resilient signature scheme [10,21,27].
Leakage-resilience and Lattice-based Cryptography. Goldwasser et al. [20],
and subsequently [2, 16, 18] studied the leakage resilience of standard LWE based
cryptosystems in the symmetric and public key settings.

Leakage Resilience of Ring-LWE. Dachman-Soled et al. [13] considered the
leakage resilience of a RLWE-based public key encryption scheme for specific
leakage profiles. This was followed by Albrecht et al. [4], they investigated cold
boot attacks and compared the number of operations for implementing the attack
when the secret key is stored as polynomial coefficients versus when encoding of
the secret key using a number theoretic transform (NTT) is stored in memory. Re-
cently, [30] showed that given multiple samples of RLWE instances such that the

* Note that [9] provides an upper bound of norm of error with respect to canonical basis for its
attack to succeed. Using a variant of Chernoff’s bound, we derive an upper bound of standard
deviation of error for success rate at most 1/1000. To make the bound comparable to NewHope
setting, we further convert to tweaked polynomial representation and to RLWE instance in the
form of (as + e) instead of (as/q + e).

> /8 is the more conservative setting in the original NewHope specification [7]. The NIST
submission uses lower standard deviation of 2, which is still not covered by the attack of [9].
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public key for every instance lies in some specific subring, one can reduce the orig-
inal RLWE problem to multiple independent RLWE problems over the subring. In
this work we do not place any such restriction on the RLWE samples required to
mount partial key exposure attack.

2 Preliminaries

For a positive integer n, we denote by [n] the set {0, ..., n—1}. We denote vectors
in boldface x and matrices using capital letters A. For vector x over R" or C",

define the ¢, norm as [|x||, = (>, |xi\2)1/2. We write as ||x|| for simplicity. We
use the notation =% ,) () to indicate that adversaries running in time #(n) can
distinguish two distributions with probability at most p(n).

We present the background and standard definitions related to lattices, algebraic
number theory, RLWE, and NTT transform in Appendix A.

3 Partial Key Exposure Attack on Ring-LWE

3.1 Reconstructing the secret given (&« mod 8) leakage.

Recall that for p € Z4[x]/(z™ + 1), the NTT transform, p, is obtained by evaluat-
ing p(z) mod ¢ at the powers w’ for i € Z3,, where w is a 2n-th primitive root in
Zq. Forn' € {1,2,4,8,...,n},letu = n/n'. For a € Z3 ,, consider p{}(x) be
the degree u — 1 polynomial that is obtained by taking p(z) modulo (z* — (w®)").
We may assume WLOG that o = 1. We abbreviate notation and write p,,, instead
of pl.

We consider attacks in which the adversary learns all coordinates i of S such
that = 1 mod 2n’ where n’ € {1,2,4,8,...,n}, and aims to recover the RLWE
secret s. First, we note that in NTT transform notation the equationa-S+e€ = u
holds component-wise. Therefore, given leakage on certain coordinates of S, we
can solve for the corresponding coordinates of €. We also get to see multiple
RLWE samples (which we write in matrix notation—where the A7 matrices are the
circulant matrices corresponding to the ring element a’’s) as (A!, Als +e! =
ul),..., (A% Afs + e’ = uf). Thus, for the j-th RLWE sample we learn all
the coordinates 8{ ,fori =1 mod 2n/. Note that the leaked coordinates are the
evaluation of the polynomial e, () at the w' for i = 1 mod 2n’. We can then
reconstruct the polynomial e, (x) using Lagrange Interpolation.

Fori € {0,...,u — 1}, the (i + 1)-st coefficient of e, (), i.e. e, ; is equal to

(n'=1)u

u 2-u
€+ W iy T W €2y T W “Cit(n/—1)-u
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The coefficients of e can be partitioned into u groups of size n’, forming inde-
pendent linear systems, each with n’ variables and one equation. Given only the
leakage, the set of feasible secret keys is a cartesian product S; X - - - X S, where
for i € [u], the set S; is the set of vectors €; := {e;, €iru; €it2us - - s Cit(/—1)u}
that satisfy the ¢-th linear system:

/

T
[1 w¥ w2~u e w(n *])'U:| . |:ei €ituy €it2u - ei+(n’—l)~u:| = |:6u,ii|

Since each coordinate of e is drawn independently from x and since each linear
system above has small dimension n’/, we can use a brute-force-search to find the
most likely solution and calculate its probability.

Given this information, we will carefully choose the solutions ég (from all pos-
sible sets of solutions [ég ] jelo,iclu)) that have a high chance of being the cor-
rect values of the RLWE error. To obtain a full key recovery attack, we require
the following: (1) In total, we must guess at least « number of n’-dimensional

solutions, *g, from all the obtained solutions [€] J jeltl,ieq)> (2) With high prob-

ability all our guesses are correct. Observe that if our guess of some eg is

correct, we learn the following linear system of n’ equations and n variables
(A)% . s = w? — e), where A% is the submatrix of A7 consisting of the n’
rows 4,4 4+ u,i +2-u,...,i+ (n' — 1) -u, and u’’, e’ are vectors consisting of
the i,i +u,i+2-u,...,i+ (n' — 1) - u coordinates of u/ and e’. So assuming
(1) and (2) hold, we learn u noiseless systems of n’ linear equations, each with
n = u - n’ number of variables. We then construct a linear system of n variables
and n equations, which can be solved to obtain the candidate s.

In order to ensure that (2) holds, we only keep the guess for éj when we have
“high confidence” that it is the correct solution. The probablhty of a particular
solution & := (e},¢l, ..., ¢ - 1)u)- is the ratio of the probability of &/ be-
ing drawn from the error distribution (which is coordinate-wise independent) over
the sum of the probabilities of all solutions. For small dimension n’, this can be
computed via a brute-force method. In our case, we keep the highest probability
solution when it has probability at least, say 0.98. The probability that all guesses
are correct is therefore 0.98% = 0.98"/™',

Since computing the exact probability as above is computationally intensive,
we develop a heuristic that performs nearly as well and is much faster. Note that
finding the “most likely” solution is equivalent to solving a CVP problem over an
appropriate n’-dimensional lattice. We then calculate the probability of the solu-
tion under the discrete Gaussian and set some threshold . If the probability of the
solution is above the threshold we keep it, if not we discard it. Experimentally, we
show that by setting the threshold correctly, we can still achieve high confidence.
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See Figure 1 for the exact settings of the threshold for each setting of parame-
ters. Our experiments also show that (1) also holds given a reasonable number of
RLWE samples. See Section 3.2 for a presentation of our experimental results.
We describe our attack in cases where the leakage is on all coordinates ¢ such that
i =ca; mod 2n' ori = ay mod 2n’ in Appendix B.1.

Complexity of the attack. We provide the pseudocode for the attack in Ap-
pendix D, Figure 3. While our attack works well in practice, we do not pro-
vide a formal proof that our attack is polynomial time for a given setting of
parameters. Within the loop beginning on line 5, all the steps (or subroutines)
shown in Figure 3 can be computed in polynomial time. Note that even step 12
(CVP.closest_vector), which requires solving a CVP instance, can be com-
puted in polynomial time because for the leakage patterns we consider, the di-
mension of the CVP instance will always be either 4 or 8—a constant, indepen-
dent of n. However, our analysis does not bound the number of iterations of the
loop beginning on line 5. Specifically, we do not analyze how large the variable
RLWESamples must be set in order to guarantee that the attack is successful with
high probability. Bounding this variable corresponds to bounding the number of
RLWE samples needed in order to obtain a sufficient number of “high confidence”
solutions. In practice, the number of RLWE samples was always fewer than 200
for all parameter settings. In future work, we plan to compute the expected number
of RLWE samples needed to obtain a sufficient number of high confidence solu-
tions for a given parameter setting. Assuming this expected number of samples is
polynomial in n, we obtain an expected polynomial time attack.

3.2 Experimental Results

We first assess the performance of our attack on the RLWE challenges published
by Crockett and Peikert [12], with various parameters, ranging from “toy” to “very
hard” security levels. For each parameter setting, a cut-and-choose protocol was
used by [12] to prove correctness of the challenges: They committed to some num-
ber (e.g. N = 32) of independent RLWE instances, a random index ¢ was chosen,
and the secret key for all except the i-th instance was revealed. For each of the
31 opened challenges, we simulate the Leaky RLWE experiment and attempt to
recover the full secret s using our attack. We next measure the performance of
our attack on RLWE instances generated using the dimension, modulus and noise
distribution proposed in the original NewHope scheme [7]. These parameters are
more conservative than the ones chosen for the later submission to the NIST com-
petition [5]. When multiple RLWE samples are released, bounded error distribu-
tions are less secure [3]. We therefore tested our attack in the more difficult setting
of Gaussian error, in addition to the original binomial error distribution of [7].
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The experiments were run using server with AMD Opteron 6274 processor,
with a python script using all the cores with Sage version 8.1. We used fplll [15]
library for CVP solver and the source code of all the attacks are available online
at [1]. The results of our attacks are summarized in Figure 1. We report the total
number of instances we broke and the average number of RLWE samples needed
for those instances. To decide whether a solution is kept or discarded, its probabil-
ity mass under the error distribution Y is calculated and compared to the threshold.
The threshold for each parameter setting is set heuristically so that minimal weight
solutions passing the threshold are correct with high confidence (see Figure 1 for
the exact threshold settings). We tested leakage patterns of (n’ = 4,S = {1}),
(n' =8,8 ={1,7}) and (n’ = 8,S = {1, 15})-all corresponding to 1/4-fraction
leakage—for each parameter setting and were able to break multiple Leaky RLWE
instances for every parameter setting/leakage pattern shown in Figure 1. We also
report the maximum time it took to break a single instance for each parameter set-
ting in Figure 1. Overall, the maximum amount of time to break a single instance
was 6 hours for the hardest instance, i.e. Challenge ID 89. We attempted to launch
our attack given only 1/8-fraction of leakage (leakage pattern (n’ = 8, = 1)),
but were only successful for the easiest case, i.e. Challenge ID 1. For, e.g. Chal-
lenge ID 89, the attack failed since for 5000 number of linear systems, the max-
imum confidence of any solution was 0.28, meaning that we expect to recover
the secret key with probability at most 0.282048/8 ~ 2=470_which is well beyond
feasible.

4 Search and Decisional Ring-LWE with Leakage

Definition 4.1 (Search RLWE (R-SLWE) with Leakage). The search version of
the R-LWE problem with leakage, denoted Leaky R-SLWE,, , ,, s, is parameter-
ized by (n' € {1,2,4,8,...n},S C Z5, ). The experiment chooses s < R,
uniformly at random, where s = NTT~!(8). The goal of the adversary is to re-

cover s, given independent samples from the distribution D?_; ., ¢, which outputs

(ﬁ,ﬁ 8+ €, [5i)i=0 mod 2n |Va€8) where a, e are obtained from Ag , as in stan-
dard RLWE (see Definition A.2).

Definition 4.2 (Decision RLWE (R-DLWE) with Leakage). The decision ver-
sion of the R-LWE problem with leakage, denoted Leaky R-DLWE, y . s, is
parameterized by (n' € {1,2,4,8,...n},S C Z3 ). The experiment chooses
s ¢ R, uniformly at random, where s = NTT~!(8). The goal of the adversary
is to distinguish between independent samples from the distributions D?

real,n’ S
and DS, s, where D7, o is the same as above, and D3, ., s outputs
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hall ID in-mz Avg. Brok Maxi
Cha n q X |n’|Pattern (S) e ve PO Threshold (.1x1mum
(hardness) RLWE # | RLWE #| Instances Time (s)
4] {1} 22 2 [3lof31] 7e5 224
1 128 | 769 | Doso 8| {1,15} 1-2 1.93 | 29 of 31 Te-6 218
(toy) 8| {1,7} 1-2 1.93 | 29 of 31 Te-6 1.23
8| {1} 1-1 1 40f31 | 1e8 13
5 4 {1} 2-3 2.38 | 310f31 Te-5 253
(toy) 128 | 3329 | Do.go| 8 | {1,15} 2-3 2.09 | 31o0f3l1 Te-6 1.99
o 8| {1,7} | 23 | 209 |31of31| 7e6 1.88
45 4 {1} 2-3 2.61 | 310f3l1 Te-5 8.83
(moderate) 256 | 7681 | Dogo| 8 | {1,15} 2-2 2 31 of 31 Te-8 8.78
m T
oderdte 8| (1,7} | 22 2 | 31031 7e8 6.97
g5 4 {1} 6-7 6.05 | 17 of 31 Te-5 1914
1024159393 | D359 | 8 | {1,15} | 39-60 | 51.88 | 26o0f31 Te-9 2000
(very hard)
8| {1,7} 39-59 | 50.76 | 17 of 31 Te-9 2682
%9 4 {1} 6-7 6.16 | 30 of 31 Te-5 5523
204886017 | D359 | 8 | {1,15} | 44-58 | 52.29 | 31of31 Te-9 11766
(very hard)
8| {1,7} 44-58 | 52.29 | 31of31 Te-9 20837
4 {1} 35-37 36 30f200 | 3e-4 745
D 8| {1,15} |147-220 | 180.85 |820f200| 7e-8 2226
NewHope | 102412289 8 {1,7} 189-204 | 196.5 |2 0f~1000 Te-8 1238
4 {1} 34-36 | 34.16 | 60f200 | 3e-4 796
Wis | 8| {1,15} |[149-217| 183.20 |94 0f200| 7e-8 2039
8| {1,7} |177-193| 184.8 |50f1000| 7e-8 975

Fi gure 1. Performance of attack against RLWE Challenges [12] and NewHope [7] parameter settings.
For each parameter setting, we report the following: min/max and average number of RLWE samples
required for successful break, total number of broken instances, and max run-time (in seconds) for suc-
cessful break. Threshold is set such that the minimal weight solutions to the linear systems given in
Section 3 have high confidence with sufficiently high probability.

~ o~

a, U, [51];= mod 20’ vae S), where a, e are obtained from Ag, as in standard
RLWE (see Definition A.2) and

~ ~

U =a;-85+¢ |i=amod2n'VaeS and U + Zg

chosen uniformly random, otherwise.

5 Search to Decision Reduction With Leakage

Let the RLWE secret be denoted by § and assume WLOG that there exists an
adversary that obtains leakage [8;];=1 mod 2 and distinguishes & = &-§ + & from
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@/, where @; = a; - 8; + &; fori =1 mod 2n’ and otherwise is uniform random®.
It is not hard to see, using techniques of [23-25], that this implies an attacker that
learns a single index j € Z3,, j = b mod 2n' of the RLWE secret, where b # 1
mod 2n’. We call this the Basic Attack. Due to limited space, we refer readers to

Appendix C for description of Basic Attack.

Theorem 5.1 (Existence of Basic Attack). If, for any (n',S C 7Z5,,) adversary A
running in time t := t(n) distinguishes D3t 5 from DS, 0 s with probability
p := p(n), then there is some index j such that j # o/ mod n for all &/ € S and
an attack Basic Attack with parameters (n', S, j, t, p), that learns NTT coordinate
8 with probability 1 — 1/poly(n) and takes time poly(n) -t - 1/p.

Our attack Attack 1 uses the Basic Attack to learn all the values
[3:)i=br mod 2 for v € [n’/2]. Let §' := 5. The main idea of Attack 1 is to
learn all [§%]Eb mod 2 1N the first round, then apply an automorphism to shift the
positions i = b*> mod n’ into the positions i = b mod 2n’, resulting in a per-
muted RLWE secret, denoted §2. Note that applying the automorphism causes the
positions 8} such that i = b mod n’ to shift into the positions i = 1 mod 2n'.
This means that we are now back where we started, and the reduction is now
able to provide the required leakage (on [§%]El mod 2n’) to the adversary and thus
can learn the values of [32];=p mod 20’ = [5}]i=52 mod n’ iD the second iteration,
[82)i=b mod 2n' = [8}]i=43 mod n’ in the third iteration, etc. We next formalize the
necessary properties of the automorphisms.

For i,j € Z3,, let ¢;_,; be the automorphism that maps ¥ to ¥’ such that
v(w’) = v/(w?). ¢;; induces a permutation on the elements of ¥, denoted p;_, ;.
Specifically, ¢;—,; (V) maps b, to b, () fori, j, £ € Z3,, where p;_,;(£) = i~lej.
Definition 5.2. A probability distribution ¢ : Z((y) — R is automorphically
closed in K if for all ¢, j € Z},,, ¢i—j(v) = 1.

We remark that RLWE error distribution y is automorphically closed [23].

We formally define Attack 1 in Figure 3. We next sketch how Attack 1
can be used to complete the proof. For dimenstion n and parameter n’ €
{1,2,4,8,...n}, let T,y :== T,/(n) be the (non-uniform) time to solve Leaky R-
SLWE for dimension n and parameters (n’,S = {a} = {1}), i.e. given positions
[81i=1 mod 2n’» With probability 1/2.

Assume subexponential 29(n°)_hardness of search RLWE without leakage for
some constant € < 1 and polynomial modulus q. Then we also have that

% Note that the problem is identical when the adversary obtains leakage [8i]i=a mod 2n/> fOr o €
Z5,, since, as we shall see next, an automorphism can be applied to shift all indices ¢ such that
i = a mod 2n’ to positions i = 1 mod 2n’.
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T, (n) € 22("), and as discussed in the intro, there must exist a constant ¢/ such
that for sufficiently large n, there exists n* = n*(n) € {2,4,8,16,...,n} such

that T),+(n) > 2¢(n) and % > n. The above implies that 7{,,+ /2) € o(T}+ ).

Now, if given [3}]i=1 mod 2n+ leakage, there exists a (t(n), p(n))-distinguishing
adversary (where t(n) = +/T,~/poly(n) and p(n) = 1/y/T,~), then we will
show that there is an adversary solving the R-SLWE w.h.p. given positions
[§Z]-]1;1 mod 2n* 10 time less than Ty«, leading to contradiction. We begin by run-
ning Attack 1, which takes time at most o(7},~) for our settings of ¢(n) and p(n).
If b € Z3,,. is such that for some r € [n*/2], 0" = n* + 1 mod 2n*, then we
can combine the reconstructed values of 3! from Attack 1 with our knowledge
of [8!]i=1 mod 2n+ to obtain all values [§!]i=1 mod n+. This means that we can
then run the search attack for 2/n*-fraction of leakage to recover all of § in time
Tin+/2) € o(Tn+). But then the entire attack for (1 mod 2n*)-leakage can be run
in time o(T5,+ ), contradicting the definition of 7},+.

For n* > 4, the only cases in which Attack 1 does not recover
[8i)i=n*+1 mod 2n*,1s When b € {n*—1,2n*—1}. For such b, we do not know how
to rule out the possibility that given [3;];=1 mod 2n+, the positions s = b mod 2n*
of @ do not look random. In this case, however, we argue that given leakage on
both [3;)i=1 mod n*» and [8;]i=p mod n*» all other positions are indistinguishable
from random, since otherwise a modified version of Attack 1 can be run. We next
state the formal theorem of this section.

Theorem 5.3. Assume n* :=n*(n) > 4, s < Ry, then:

Dieal,n*,{a} ~i(n),p(n) Dzim,n*,{a} OR
DS +_1yay OR

s ~
real,;n* {o,(n*—1)-a} ~tn).p(n) “simn* {a,(n

s ~ Ds
real,n* {o,(2n*—1)a} ~t(n).p(n) Hsimn* {a,2n*—1)a}’
where, t(n) = /T /poly(n), p(n) = 1/y/Ty=.

Proof. We  assume WLOG that « = 1 Assume

D3 eatns (1} ;ﬁ\/ﬂ/poly(n),l/m DS, g1y Then this means  there
must be an adversary A running in time +/7,+/poly(n), that distinguishes on
index j € Z5 , where j = b mod 2n’ with probability at least 1/+/T},~.

Case 1: bis such that b” = n* + 1 mod 2n* for some r € [n*/2]. In this case,
with appropriate setting of poly(n), we can use Attack 1 to recover the positions
i such that i = n* + 1 mod 2n* (w.h.p.) in time o(7,+). Now we can run the
attack that takes as input [3;];=1 mod n+ and recovers all of §. By assumption, this
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Attack 1:

Given access to D}, .1 s—q1y (i-e. RLWE samples with leakage [3:];=1 moa 2n/) and the distin-
guishing index j € sz where 7 =b mod 2n/, for the Basic Attack:

1: for all Leaky-RLWE samples do

2: Seta' :=a,a' := 1, [8) := 8ili=1 mod 20’

3: end for

4: forr € [1,2,...,n'/2] do > [85]i=1 mod 2n/ are now known.
5: for all j' such that 5 = j mod 2n’ do

6: Run the Basic Attack with parameters (n’, {1}, 7, ¢, p) on RLWE samples of the form

(A:=¢; (A7), 0= ¢j_,;(0")), leakage set [8; := sp ., ]l I mod 2n’ tO TECOVET 87/
> All these values of 8| | ;) are now known: If i = 1 mod 2n then p;/,;(i) =1 mod 2n/,
since j = j' mod 2n’.
7: end for > W.h.p. all 8, s.t. j' = b mod 2n' are now known.
8: Choose an £ € 73, such that £ = b* mod 2n'.
9: for all Leaky RLWE samples do

10: Seta™! 1= ¢ (") and 4" 1= oy ; (A7),

11: end for
> [877i=1 mod 2n’» are now known since 8, s.t. i’ = b mod 2n’ are now in position 87"
st.i=1 mod 2n'.

12: end for > All values s; such that i = b” mod 2n’ and r € [n’/2] are now known.

Figure 2. Description of Attack 1.

attack runs in time 7{,,« ;) € o(Ty,~). Thus, we can to recover the whole § (w.h.p.
greater than 1/2) in time o(7},+ ), which is a contradiction.

By properties of the group Z3, ., where n* is a power of two, for all b € Z3 . \
{1,n* —1,2n* — 1}, itis the case that " = n*+1 mod 2n* for some r € [n*/2].
Thus, Case 1 holds forall b € Z3 . \ {n* — 1,2n* — 1}.

Case 2: b = n* — 1. In this case, with appropriate setting of poly(n), we
can use Attack 1 to recover the positions ¢ such that ¢ = n* — 1 mod 2n*

(wh.p.) in time o(Tye). Assume D7y e (1 ue—1)} /T poly(n), /T poly(n)

;m n {1, (n =1} then there must be some adversary A’ that distinguishes on in-
dex j' € ZZH, where j' =V € Z5,. \ {1,n* — 1}. We can combine this with the
previous attack as follows:

Case 2(a): b’ € Z3 .\ {1,n* —1,2n* — 1}. Due to essentially the same
argument as before, by appropriately setting poly(n), we can (w.h.p.)
learn all [3;];=(1/yr mod 20+ fOr 7 € [n*/2] in time o(7T},+) and then apply
the same argument as above.

Specifically, given the initial leakage

[ zl =1 mod 2n*, the attack
will first learn [8}]i=n* 1 mod 2n*, then learn |

Ji=1
31i=p' mod 2n+» then, for
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some (7,;') such that j = b mod 2n* and j/ = 1 mod 2n*, ap-
ply automorphism ¢,_, ;s to get §2, learn [§§]En*_l mod 2n*, then learn
[82)i=p mod 2n*» etc. thus ultimately learning [8ili=(v)r mod 2n+ Tor
r € [n*/2]. At this point, we will have [3;];=1 mod n+ and thus can
learn all of 8 in additional time T{,« /5y € o(T},+). Thus, in total the
attack takes time o(7T,+ ), leading to contradiction.

Case 2(b): ' = 2n* — 1. Due to essentially the same argument as
before, with appropriate setting of poly(n), we can (w.h.p.) recover
the positions ¢ such that ¢ = 2n* — 1 mod 2n* in time o(7},~). The
adversary now kKnows [$;]i=n*—1 mod n*- We can thus learn all of § in
additional time T« 2y € o(T}+). Thus, in total the attack takes time
o(T),~), leading to contradiction.

Case 3: b = 2n™ — 1. This essentially follows identically to Case 2.
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A Additional Preliminaries

A.1 Algebraic Number Theory

For a positive integer m, the m‘* cyclotomic number field is a field extension
K = Q((n) obtained by adjoining an element ¢, of order m (i.e. a primitive
mt" root of unity) to the rationals.

Ring of Integers R and Its Dual RV

Let R C K denote the set of all algebraic integers in number field K defined
above. This set forms a ring (under the usual addition and multiplication opera-
tions in K), called the ring of integers of K.

An (integral) ideal T C R is a non-trivial (i.e. Z # @ and Z # {0}) additive
subgroup that is closed under multiplication by R, i,e.,r-a € Z for any r € R and
acl.

Definition A.1. For R = Z[(y), define g = [[,(1 — ;) € R, where p runs over
all odd primes dividing m. Also, define ¢t = % € R, where 1h = 7 if m is even,
otherwise M = m.

The dual ideal RV of R is defined as R = (t~!), satisfying R C RV C m~'R.
The quotient R,/ is defined as R} = R /qR".

A.2 Ring-LWE

We next present the formal definition of the RLWE problem as given in [26].

Definition A.2 (RLWE Distribution). For a “secret”" s € Rg (or just RY) and
a distribution x over KR, a sample from the RLWE distribution A, , over R, x
(KRr/qR") is generated by choosing a < R, uniformly at random, choosing
e < X, and outputting (a,b = a- s+ emodgqR").

Definition A.3 (RLWE, Average-Case Decision). The average-case decision ver-
sion of the RLWE problem, denoted R-DLWE, ,, is to distinguish with non-
negligible advantage between independent samples from A, where s <« qu
is sampled uniformly at random, and the same number of uniformly random and
independent samples from R, x (Kr/qR").

Theorem A.4. [26, Theorem 2.22] Let K be the m™ cyclotomic number field hav-
ing dimension n = @(m) and R = Ok be its ring of integers. Let « = a(n) > 0,
and ¢ = q(n) > 2, ¢ = lmodm be a poly(n)-bounded prime such that
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aq > w(y/logn). Then there is a polynomial-time quantum reduction from
O(y/n/a)-approximate SIVP (or SVP) on ideal lattices in K to the problem of
solving R-DLWE, , given only | samples, where x is the Gaussian distribution D¢

foré =a-q-(nl/log (nl))1/4.

A Note on the Tweak. In [8], Alperin-Sheriff and Peikert show that an equiv-
alent “tweaked" form of the Ring-LWE problem can be used in cryptographic
applications without loss in security or efficiency. This is convenient since the
“tweaked" version does not involve RY. The “tweaked" ring-LWE problem can
be obtained by implicitly multiplying the noisy products b by the “tweak" factor ¢,
and, as it is explained in [8], ¢ - RV = R. This yields new values

V=tb=(t-s)-a+(t-e) =35 -a+emodgR,
where a,s’ =t - s € Ry, and the errors €’ = t - e come from the “tweaked" error

distribution ¢ - x.

A.3 Number Theoretic Transform (NTT)

Let R, := Zy[z]/2™ + 1 be the ring of polynomials, with n = 2¢ for any positive
integer d. Also, let m = 2n and ¢ = 1 mod m. For, w a m™ root of unity in Z, the
NTT of polynomial p = Z?:_ol piz’ € Ry is defined as,

n—1

p=NTT(p):= Y pia’
1=0

where the NTT coefficients p; are defined as: p; = Z?;ol pjwl D),
The function NTT ! is the inverse of function NTT, defined as

n—1
p=NTT'(®) = > piar'
=0

where the NTT inverse coefficients p; are defined as: p; = n~! Z;ZOI pjwiiHn),

B Attack Algorithm for Other Leakage Patterns

B.1 Reconstructing the secret given (a1, @2 mod n') leakage

Let € (x) be the degree u = n/n’ polynomial that is obtained by taking e(z)
modulo z* — (w®)". We consider two polynomials €' (z) and e$2(x). We may
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assume WLOG, o; = 1. We therefore set o := «. Fori € {0,...,u — 1}, the
(i 4 1)-st coefficient of e, (x) and e (z) are as follows, respectively

2. 1)
e+ W ey + W e A D €it(n/—1)u

. 2. (n'=1)-
e +w¥™eipy + W ey F o W (=D Cit(n'—1)u

Similar to the previous attack, we obtain the following constraints on the error,
given leakage on the secret key and an RLWE sample,

€;
€itu
1 Wt w2-u ... w(nlfl)'u . Cui
1 w®v po2u .. wa'(n/—l)'u ' +2u - e
. U,
b
| Cit(n/—1)u |

We solve a corresponding CVP instance to find the “most likely” solution, €;
for (i, €itu, €it2.us - - - Cit(n'—1)-u)> Since the “most likely” solution is the one
with smallest norm.

Similar to our previous attack, our goal is to carefully choose the answers with
“high confidence” such that (1) In total, we must guess at least u number of /-
dimensional solutions, €/, from all the obtained solutions [€’] jellielu)> (2) With
high probability all our guesses are correct. We choose the candidate which has
probability of at least, say, 0.95 of being correct solution. The total probability of
success for this case is 0.95% = 0.95"/",

Our experiments in section 3.2 again show that we can obtain enough “high”
confidence solutions, without requiring too large a number of RLWE instances.

C Description of Basic Attack

In this section, we present the Basic Attack, following the description from [23—
25] and using the fact that NTT coefficients form a CRT representation. We first
recall definition of CRT representation in our setting of parameters.

Definition C.1 (CRT Representation). For p € R4, and w a m!" primitive root of
unity in Z;, CRT representation for p is defined as

CRT(I)) = (p(wj] )a s ap(wjn))a

for j; € Zy,.



Partial Key Exposure of Ring-LWE 21

It is easy to see that CRT(p) = (Po, - - - s Pn—1)-
We first introduce the following definition:

Definition C.2 (Hybrid Leaky RLWE Distribution). For j € Z5 =
{1,3,...,2n — 1}, a “secret” s € Ry, and a distribution X _over Ry, a sample

from the distribution D)), . s is generated by choosing (3, b) « Df eqi s s and

outputting (a,b +u), where u = (uy,us,...,uz—1) € Zy with u;, i € Z3,
defined as follows: u; is chosen uniformly at random from Z, if i # o/ mod 2n/
forall o’ € Sand: < 7, u; = 0 otherwise.

Define D3/, s DS 1.5 Additionally, notice that DF2 o =
DS s s- Thus if, for any (n, S C Z75,,) adversary A running in time ¢ := t(n)

dlstmgulshes D} s from DS, o with probability p := p(n), then there is
some index j € Z} such that j # o/ mod nforall@’ € Sanda distinguisher D;
that is able to d1st1ngulsh between the distribution Dﬂfal i, S and D3’
probability at least p/n.

We now show the distinguisher D; can be used to construct an algorithm that
finds the value of 3;. The idea of this algorithm is to try each of the possible
values 5, constructing the samples on inputs from D? so that the samples

.S with

real

real,n’,S>

are distributed according to Dreal WS if 5; is guessed correctly, and the samples

are distributed according to D’/ al.n,s Otherwise. Then using the distinguisher D;

poly(n/p) times for each of the q(— poly(n)) guesses for §;, we are able to find

the correct value of §; with probability 1 — 1/poly(n) in time ¢ - poly(n) - 1/p.
Next we present the samples constructlon algorlthm that takes a guess g €

Z4 and transform D3, , s to either Dr val, n, s or D3’ On each sample

real,n real,n’,S"

(a, b) < D7 i s it OUtputs a sample
(a',b') =@+ v,b+u+gv),
where u = (u1,u3,...,Up-1),Vv = (V1,03,...,Vm—1) € Zy are chosen as fol-

lows: wy, is uniform in Z; if k < j, k # o/ mod 2n/ for all &’ € S, and the rest
are 0; vy, is uniform in Z, if k = j, and the rest are 0. Note that b; can be written
as

b;- = &j§j + éj +u; +gv; = a;@j + éj +u; + (g — §j)1}j.

Observe that if g is the correct guess, then (¢ — 8;)v; = 0. The distribution of

(a’,b’) is identical to ngal i/ s- If g is a wrong guess, (g — s;) is non-zero. Since
qis prime, (g —3;)v; is uniform in Zg. Thus the distribution of (a’, b’) is identical
to D7

real,n’,S"
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D

Pseudocode of Attack from Section 3

AR A o ol

10:
11:
12:
13:
14:
15:

17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:

Partial Key Exposure Attack

Given leaked coordinates on NTT version of secret key S, public key a and a public value b, recover
all coordinates of s

1:

[@, B] = create_basis()

> create basis used in CVP solver and @ being [1, W wrY ,w("/*')'”]
: bTotal = [], aTotal = []
count = 0
u=mn/n
: forj € [1,2,... ,RLWESamples] do
A’ =create_a(a’) & Create circulant matrix corresponding to &’

e/ =b’—-a’-s§
> For all leaked coordinate of 8 we compute the corresponding coordinates of error &’
e = Lagrange polynomials(e’)
> Recover the coeffiecient of polynomial obtained by taking e(x) modulo (z* — (w®)*)
aMat = [1, bTemp = []
fori€[0,1,2,...,u—1]do

X = @.solve_right(e;) > Solving the system of equation explained in Section 3
Y =CVP.closest_vector(B, X)
&=X-Y

if Prob(&;) > Threshold then
aMat.append(./ij liitu,i+2 u,...,i4+ (0 —1) ][]
> Select the corresponding rows from a’ and save them
bTemp.append(bj[i,i FUu i +2 Ui+ (0= 1) u] — éi)
> Select the corresponding rows from b7, subtract &; from it to get noiseless system
count +=n’
end if
end for
aTotal.append (aMat)
bTotal.append (bTemp)
if count == n then
break
end if
end for
try:
sk = aTotal.solve_right(bTotal) > solve the noiseless system to recover key
except:
return error > couldn’t solve the system
return sk

Figure 3. Description of Partial Key Exposure Attack from Section 3

Received 2??.
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