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Taking risks—an essential element of many human experiences 
and achievements—requires balancing uncertain positive 
and negative outcomes. For instance, exploration, innovation 

and entrepreneurship can yield great benefits, but are also prone 
to failure1. Conversely, excessive risk taking in markets can have 
enormous societal costs, such as the generation of speculative price 
bubbles2. Similarly, common behaviours such as smoking, drinking, 
sexual promiscuity or speeding are considered rewarding by many 
but might expose individuals and those around them to deleterious 
health, social and financial consequences. In 2010, the combined 
economic burden in the United States of these risky behaviours was 
estimated to be about US$593.3 billion (refs. 3–6). Although previous 
findings point to the partial heritability of risk tolerance and risky 
behaviours7 and neuroanatomical measures exhibit high heritabil-
ity8,9, little is known about the brain features involved in translating 
genetic dispositions into risky behavioural phenotypes8.

Recent research using structural brain-imaging data from small, 
non-representative samples (comprising up to a few hundred par-
ticipants) has identified several neuroanatomical associations with 
risk tolerance10–12. However, this literature is limited by low statistical 
power13,14, and the generalizability of their findings to other popula-
tions is questionable. Small sample sizes have also limited the ability to 
control systematically for many factors that could confound observed 
relations between brain features and risky behaviour, such as height15 
and genetic population structure16,17. Moreover, despite evidence that 
the effects of genetic factors are probably mediated by their influ-
ence on the brain and its development7,18, neuroscientific and genetic 
approaches to understanding the biology of risky behaviour have 
largely proceeded in isolation—perhaps due to the lack of large study 
samples that include both genetic and brain-imaging measures.

Here, we use data obtained in a prospective epidemiological study 
of roughly 500,000 individuals aged 40 to 69 years (the UK Biobank 
(UKB)19,20) to carry out a preregistered investigation (https://osf.io/
qkp4g/, see Supplementary Methods for deviations from the analy-
sis plan) of the relationship between individual differences in brain 
anatomy and the propensity to engage in risky behaviour across 
four domains (N = 12,675, for sample characteristics see Fig. 1 and 
Extended Data Fig. 1). We replicate our findings in an independent 
sample recruited from the same population (N = 13,004, for sample 
characteristics see Extended Data Fig. 2). Further, we isolate spe-
cific differences in brain anatomy that are linked to the genetic dis-
position for risky behaviour—quantified via polygenic risk scores 
(PRS) derived from a genome-wide association study (GWAS) in 
an independent sample (N = 297,025)—and investigate how these 
neuroanatomical endophenotypes mediate the influence of genetics 
on the behavioural phenotype.

Results
Grey-matter volume (GMV) associations with risky behav-
iour. Akin to a previous investigation7, we construct a measure 
of risky behaviour by extracting the first principal component 
from four self-reported measures of drinking, smoking, speeding 
on motorways and sexual promiscuity (N = 315,855, see Fig. 2a, 
Supplementary Methods and Supplementary Tables 1 and 2 for 
descriptive statistics). This measure of risky behaviour is geneti-
cally correlated with many other traits, including cannabis use 
(rg = 0.72, s.e. = 0.02), general risk tolerance (rg = 0.56, s.e. = 0.02), 
self-employment (rg = 0.52, s.e. = 0.30), suicide attempt (rg = 0.47, 
s.e. = 0.07), antisocial behaviour (rg = 0.45, s.e. = 0.14), extraversion 
(rg = 0.34, s.e. = 0.04) and age at first sexual experience (rg = −0.54, 
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s.e. = 0.02) (Supplementary Methods and Supplementary Table 3). 
Thus, our measure is partly rooted in genetic differences between 
people and relates to a broad range of relevant events and behaviours.

Our main analysis includes a sample of 12,675 European-ancestry 
participants from the UKB. We first regress our measure of risky 
behaviour on total (whole-brain) GMV while controlling for age, 
birth year, gender, handedness, height, total intracranial volume 
and the first 40 genetic principal components, which account 
for genetic population structure (Supplementary Methods). To 
exclude confounding effects of excessive alcohol consumption21, 
we excluded from the analysis all current or former heavy drinkers 
(Methods)22,23. We find an inverse association between total GMV 
and risky behaviour (standardized β = −0.122; 95% confidence 
interval (CI) −0.156, −0.087; t(12,561) = −6.92; P < 4.86 × 10−12, 
two-sided).

To identify specific brain regions related to risky behaviour, we 
perform a whole-brain voxel-based morphometry (VBM)24 analysis 
that regresses our measure of risky behaviour separately on GMV in 
each voxel across the brain, adjusting for the same control variables. 
We identify localized inverse associations between risky behaviour 
and GMV in distinct regions, only some of which were expected 
on the basis of previous small-scale studies (Fig. 2b, Extended Data 
Fig. 3 and Supplementary Table 4). In subcortical areas, we iden-
tify associations bilaterally in expected areas such as the amygdala 
and ventral striatum, as well as in less expected areas such as the 
posterior hippocampus, putamen, thalamus, hypothalamus and 
cerebellum. We also identify bilateral associations between risky 
behaviour and GMV in cortical regions that include the ventral 
medial prefrontal cortex (vmPFC), dorsolateral prefrontal cortex 
(dlPFC), ventro-anterior insula (aINS) and the precentral gyrus. In 
all of these regions, GMV is negatively associated with the propen-
sity to engage in risky behaviours. We find no positive associations 
between GMV and risky behaviour anywhere in the brain.

To quantify effect sizes of the associations between risky behav-
iour and GMV in anatomically defined brain structures and to 
investigate the convergence of our findings across MRI processing 

pipelines25, we conduct a follow-up analysis at the region of interest 
(ROI) level. This analysis primarily relies on the imaging-derived 
phenotypes (IDPs) provided by the UKB brain-imaging processing 
pipeline8,26,27, which used parcellations from the Harvard–Oxford 
cortical and subcortical atlases and the Diedrichsen cerebel-
lar atlas. We derived additional IDPs using unbiased masks on 
the basis of the results of the voxel-level analysis (Supplementary 
Methods). This analysis identifies negative associations between 
risky behaviour and GMV in 23 anatomical structures, with stan-
dardized βs between −0.079 and −0.036 (Fig. 2c, Extended Data 
Fig. 4 and Supplementary Table 5; for the associations between the 
IDPs and the individual measures that construct our phenotype of 
risky behaviour, see Supplementary Table 6), the largest of which 
is in the right ventro-aINS (β = −0.079; 95% CI −0.103, −0.055; 
t(12,562) = −6.43; Puncorr = 1.34 × 10−10, two-sided).

We carry out several additional analyses to assess the differen-
tial contributions of various factors to the associations we observe. 
First, we re-estimate the ROI-level regressions with additional con-
trols for various socioeconomic and cognitive outcomes that may be 
linked to both brain anatomy and risky behaviour, either as anteced-
ents or downstream consequences. These controls include partici-
pants’ years of education and fluid intelligence (13-item measure)17, 
a zip-code level measure of the Townsend social deprivation index28, 
household income and size, and birth location binned into 100 geo-
graphical clusters (Supplementary Methods and Fig. 1). The direc-
tion and magnitude of all ROI effects are comparable to the main 
analysis (range of standardized β between −0.079 and −0.035), with 
the largest effect again located in the right ventro-aINS (β = −0.079; 
95% CI −0.104, −0.055; t(11,647) = −6.29; Puncorr = 3.3 × 10−10, 
two-sided). Furthermore, 19 of the 23 ROI (all except the left cuneal 
cortex, left Crus I of the cerebellum, left planum polare and the brain 
stem) are statistically significant after correction for multiple com-
parisons in this analysis (Extended Data Fig. 5 and Supplementary 
Table 5).

Second, we re-estimate our ROI-level regressions with additional 
controls for current levels of drinking (binned into ten deciles) and 
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Fig. 1 | Main sample characteristics (N = 12,675). a, Geographical birth location clusters of the study’s participants. Each star represents the birthplace of 
a participant (non-jittered). Colours denote 100 geographical clusters, calculated using a k-means clustering algorithm with k = 100 and 10,000 iterations 
after random seeding. b, Empirical distributions of variables in the main study sample.
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smoking (binned into three categories). Although introducing these 
controls into the model regresses out variance of interest from the 
main outcome measure, which probably attenuates the effects, this 
analysis allows us to test whether any of the identified associations 
can reliably be attributed to risky behaviour that is not limited to the 
substance-use domain. In this analysis, we find that all of the effects 
originally identified remain negative in sign, yet are smaller in mag-
nitude (range of standardized β values between −0.041 and −0.011; 
Supplementary Table 7). Nonetheless, the effects in nine subcortical 
ROI (including the amygdala, putamen, ventral striatum and cer-
ebellum) remain statistically significant after correction for multiple 
comparisons (Extended Data Fig. 6), with the strongest associa-
tion identified in the left amygdala (β = −0.041; 95% CI −0.059, 
−0.023; t(12,551) = −4.4; Puncorr = 1.1 × 10−5, two-sided). Thus, these 
subcortical IDPs are reliably associated with risky behaviour in 
non-substance-use domains.

Replication in an independent sample. Several months after the 
completion of our original analyses (in February 2020, https://bio-
bank.ndph.ox.ac.uk/showcase/exinfo.cgi?src=timelines), the UKB 
released brain images of 20,316 additional participants—providing 
us with an opportunity to replicate our findings in an independent 
dataset that contains the same variables, and participants recruited 
in the same way from the same population29. After applying the same 
exclusion criteria as in our original analysis, our replication sample 
consists of 13,004 participants, roughly the same size as our original  

sample (see Methods for details and Extended Fig. 1 for sample 
characteristics). We repeat both the voxel-level and ROI-level anal-
yses in this dataset. In the voxel-level analysis, we apply a signifi-
cance threshold that corresponds to a family-wise-error (FWE) rate 
of 5% in all voxels that showed significance in the original analy-
sis (Puncorr = 2.956 × 10−04, with tuncorr(12,892) = 3.62, two-sided). We 
find that 92.6% of the original voxels (located in 20 of the 21 clus-
ters originally identified, with the exception of a cluster in cerebel-
lar lobules I–IV) successfully replicate (Fig. 3). Furthermore, the 
un-thresholded t-map25 of the original dataset strongly correlates 
with the un-thresholded t-map of the replication dataset (r = 0.767; 
95% CI 0.766, 0.768; P < 10−10, two-sided). Likewise, our ROI-level 
analysis successfully replicates 21 of the original 23 ROI-level find-
ings (Puncorr = 3.35 × 10−03, with tuncorr(12,892) = 2.93, two-sided; 
Supplementary Table 8). The two ROI that do not replicate are the 
cuneal cortex (left) and the cerebellar lobule II (left).

Overlap between GMV differences and functional MRI (fMRI) 
meta-analysis. To investigate whether the neuroanatomical asso-
ciations of real-world risky behaviour correspond spatially with the 
localized activation patterns commonly identified in fMRI stud-
ies of risky decision-making, we conduct a conjunction analysis to 
compare our VBM results with data obtained from a publicly avail-
able meta-analysis of fMRI studies of risky behaviour30 (N = 4,717 
participants, K = 101 individual studies; Supplementary Table 
9). The analysis reveals several brain regions whose anatomical  
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associations with risky behaviour converge with functional engage-
ment, including the thalamus, amygdala, vmPFC and dlPFC (Fig. 4 
and Extended Data Fig. 7).

Association of PRS for risky behaviour with GMV. Finally, we 
explore whether participants’ genetic disposition for risky behaviour, 
proxied via their PRS, are associated with the neuroanatomical cor-
relates of the trait and test whether these neuroanatomical correlates 
mediate the relationship between genetic predisposition and behav-
iour. To this end, we first conducted a GWAS in an independent 
sample of UKB participants of European ancestry (N = 297,025), 
exclusive of 18,796 genotyped individuals with usable MRI images 
(main sample) and their relatives. From the GWAS, we constructed 
a PRS that aggregated the effects of 1,176,729 single-nucleotide 
polymorphisms (SNPs) on risky behaviour for all of the participants 
with MRI data in our independent target sample (Supplementary 
Methods). The PRS predict roughly 3% of the variance in risky 
behaviour in our target sample. Although we find no statistically 
significant evidence to suggest that the PRS are associated with 
whole-brain GMV (standardized β = −0.015; 95% CI −0.05 0.02; 
t(12,561) = −0.82; P > 0.41, two-sided), they are inversely associated 
with GMV in distinct regions, specifically the right dlPFC, right 
putamen and hypothalamus (Fig. 5a, regressions include all stan-
dard control variables, including total intracranial volume). Thus, 
GMV in these specific brain areas is negatively associated with the 
genetic disposition for risky behaviour.

On the basis of these results, we use the previously extracted 
GMV of these three ROI to examine whether it mediates the 
observed gene-behaviour associations. A structural equation model 
(SEM) including all standard controls reveals that roughly 2.2% of 

the association between the PRS and risky behaviour is mediated 
through individual differences in GMV in the three regions (indi-
rect path c’ standardized β = 0.004, 95%; CI 0.002, 0.005; z = 4.83; 
P = 1.4 × 10−06, two-sided) (Fig. 5b and Extended Data Fig. 8).

Discussion
We investigate, in a genetically informed neuroimaging study, (1) 
the association between GMV and real-world risky behaviour in 
a large population sample of European ancestry (main sample of 
12,675 individuals and replication sample of 13,004 individuals), 
and (2) how the genetic disposition for risky behaviour is linked to 
GMV differences in a network of distinct brain areas. Several of the 
areas whose GMVs are linked to risky behaviour in this study have 
also often been functionally engaged during risky decision-making 
in small-scale fMRI studies that used stylized tasks. For instance, 
such correlations have been observed in the aINS, thalamus, dlPFC, 
vmPFC and ventral striatum31,32. These findings have led to propos-
als that upward and downward risks are encoded by distinct circuits, 
with upward risk mainly represented by areas encoding rewards 
(ventral striatum and vmPFC) and downward risk encoded by areas 
related to avoidance and negative arousal (aINS). Here, we substan-
tiate previous functional studies with large-scale evidence that the 
structural properties of the same areas relate to risky behaviour in 
an ecologically valid setting33 when long-term health consequences 
are at stake.

Our results extend previous findings by showing that the neu-
ral foundation of risky behaviour is complex. Our analyses iden-
tify additional negative associations between risky behaviour and 
GMV in several areas, including the cerebellum, posterior hippo-
campus, hypothalamus and putamen. While it is not yet clear how 
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Fig. 3 | Voxel-level GMV associated with risky behaviour in the replication sample (N = 13,004). Here, 92.6% of the voxels identified in our original 
analysis (located in 20 of 21 original clusters identified, marked in purple) successfully replicate (corrected for multiple testing at the 5% level using a 
permutation test). Non-replicated voxels are located in the cerebellar lobules I–IV (marked in blue).
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Fig. 4 | Conjunction between the GMV differences associated with risky behaviour identified in the current study and the results of a meta-analysis of 
101 fMRI studies, on the basis of the keyword ‘risky’. This analysis identifies overlapping voxels in the thalamus, amygdala, vmPFC and dlPFC (Methods).
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structural differences are manifested in properties of brain func-
tion34, our results suggest that risk taking draws on manifold neu-
ral processes, not just the representation and integration of upward 
and downward risks in the brain. Specifically, considering previous 
meta-analyses, the areas identified in this study are involved broadly 
in memory (posterior hippocampus), emotion processing (amyg-
dala, ventro-aINS)35, neuroendocrine processes (hypothalamus)36,37, 
reward processing (vmPFC, ventral striatum and putamen)38 and 
executive functions (dlPFC)39. Thus, it appears that risky behav-
iour taps into multiple elements of human cognition, ranging from 
inhibitory control40 to emotion regulation41 and the integration of 
outcomes and risks42. This mirrors previous findings showing that 
risky behaviour is also a genetically complex trait7.

Additionally, our results underscore the long-suspected role of 
the hypothalamic–pituitary–adrenal axis in regulating risk-related 
behaviours, in line with hormonal studies that link risky behaviour 
and sensation seeking to stress responsivity36,37,43–45. Furthermore, 
our finding that risky behaviour is linked to the structure of sev-
eral cerebellar areas confirms the under-appreciated importance 
of the cerebellum for human cognition and decision-making, and 
highlights the need for further research on the specific behavioural 
contributions of this brain area46.

Of note, it remains an open question the extent to which the 
differences in GMV that we identify can be ascribed to specific 
heritable micro-anatomical traits, such as neuronal size, dendritic 
or axonal arborization, or relative count of different cell types47. 
Moreover, it is not yet clear how these individual differences, in 
turn, influence behaviour. Nonetheless, our results provide evidence 
that neuroanatomical structure constitutes the micro-foundation 
for neuro-computational mechanisms underlying individual differ-
ences in risky behaviours34.

Several of the observed neuroanatomical correlates of risky 
behaviour are also associated with the genetic disposition for the 
phenotype. Specifically, we find that GMV in the hypothalamus, the 
putamen and the dlPFC share variance with both risky behaviour 
and its PRS. This finding extends previous studies showing correla-
tional36,42,43 and causal evidence37,48 of the involvement of these areas 
in risky behaviour by indicating that a genetic component partly 
underlies the associations. Although our analyses cannot iden-
tify the direction of the causal relationships (see Supplementary 
Discussion for an additional discussion of limitations), they show 
that risky behaviour and its genetic associations share variance with 
distinct GMV features and provide an overarching framework for 
how the genetic dispositions for risky behaviour may be expressed 
in the corresponding behavioural phenotype.

Our results are also in line with the bioinformatic annotation of 
the largest GWAS on risk tolerance until now, conducted in over 
1 million individuals7, which implicated specific areas in the pre-
frontal cortex (BA9, BA24), striatum, cerebellum and the amyg-
dala. However, bioinformatics tools used for GWAS annotation 
cannot be considered conclusive, as they rely on gene expression 
patterns in relatively small samples of (post mortem) human brains 
or non-human samples49. Moreover, they cannot speak to whether 
changes in a particular tissue or cell type have negative or positive 
effects on the phenotype or how strong the effects are. Here, we 
show an alternative approach to annotating GWAS findings using 
a different type of data (large-scale population samples that include 
in vivo brain scans and genetic data), relying on different assump-
tions from those used by bioinformatics tools. Our results add new 
insight by showing that lower GMV in specific brain areas is related 
to more risky behaviour and by implicating brain regions (that is, 
putamen, hypothalamus and dlPFC) in addition to those previously 
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annotated. The effect sizes we observe here (standardized β < 0.08) 
are an order of magnitude larger than those found in GWAS on 
risky behaviour, but they nonetheless require very large samples for 
detection.

Finally, while many features of the brain are heritable, the envi-
ronment indisputably plays an important role in brain development. 
We therefore see our results not as independent from, or of greater 
importance than, the effects of environmental and developmental 
factors. Rather, our study constitutes one step towards understand-
ing how the complex development of human risky behaviour may 
be constrained by genetic factors.

Methods
Sample characteristics and selection criteria. Main sample. We use publicly 
available data from the UKB, which recruited 502,617 people aged 40 to 69 years 
from the general population across the United Kingdom19,20. All UKB participants 
provided written informed consent and the study was granted ethical approval 
by the North West Multi-Centre Ethics committee. Our initial sample consists 
of 18,796 individuals with brain scans and genotype data, all of the imaged UKB 
participants as of October 2018. We excluded participants with putative sex 
chromosome aneuploidy (N = 6) or a mismatch between genetic and reported sex 
(N = 10), participants of non-European ancestry (N = 893) and participants who 
did not pass the UKB quality-control thresholds (N = 14), described in Bycroft 
et al.27. To minimize the potential influence of neurotoxic effects due to excessive 
alcohol intake21,22, we also excluded current heavy drinkers (531 females consuming 
more than 18 drinks per week and 793 males consuming more than 24 drinks per 
week)22,23. To exclude potential former drinkers, we also removed 426 participants 
who indicated that they did not drink alcohol.

All structural T1 MRI images used in the study underwent automated quality 
control by the UKB brain-imaging processing pipeline26. We performed two 
additional quality checks using the Computational Anatomy Toolbox (CAT, 
www.neuro.uni-jena.de/cat/) for SPM 12 (www.fil.ion.ucl.ac.uk/spm/software/
spm12/). First, we relied on the CAT12 automated image and preprocessing quality 
assessment, which included quality parameters for resolution, noise and bias of 
images, 57 of which were automatically excluded and not preprocessed due to low 
image quality. Second, after preprocessing, we used an automated quality check of 
sample homogeneity to identify outliers that exhibited substantially different GMV 
patterns from the rest of the sample (see the CAT12 manual for details at http://
www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf, p. 17ff). In total, we excluded 
690 individuals with scans of high image inhomogeneity (two standard deviations 
below the mean). Finally, we excluded 2,701 participants with incomplete 
behavioural data of interest or control variables. Our final dataset consists of 
N = 12,675 individuals.

Replication sample. The initial replication sample consisted of 20,316 individuals 
with usable brain scans and genotype data, all of the imaged UKB participants as of 
February 2020 who were not included in our main sample. Following the original 
analysis, we excluded participants with putative sex chromosome aneuploidy 
(N = 7), a mismatch between genetic and reported sex (N = 11), non-European 
ancestry (N = 1,143), heavy drinking or abstinence from alcohol (N = 1,376) and 
those that did not pass the UKB quality-control thresholds (N = 31)27. All T1 MRI 
images used in the study underwent the same quality-control procedure as in our 
original sample, resulting in the removal of additional 391 individuals. Finally, 
we excluded participants with incomplete data (N = 4,353). Our final replication 
sample consists of N = 13,004. The empirical distributions of the variables 
characterizing our replication analysis are depicted in Extended Data Fig. 2.

Measures. Risky behaviour. We closely follow Karlsson Linnér et al.7 to derive a 
measure of risky behaviour across domains on the basis of participants’ self-reports 
of: (1) number of alcoholic drinks per week, (2) ever having smoked, (3) number 
of sexual partners and (4) frequency of driving faster than the motorway speed 
limit (Supplementary Methods). We perform principal component analysis on 
N = 315,855 UKB participants and extract the first principal component of the 
four measures as the main outcome of interest (referred to as ‘risky behaviour’). 
The first principal component explains roughly 37% of the variance in the four 
measures, and it is the only principal component that loads positively on all of 
them. Summary statistics and factor loadings of the principal component analysis 
are available in Supplementary Tables 1 and 2. The code for generating the variable 
of ‘risky behaviour’ is accessible at https://osf.io/qkp4g/.

Control variables. The full list of control variables and the methods used to generate 
them are available in Supplementary Methods.

T1 MRI image processing. We use T1-weighted structural brain MRI images in 
NIFTI format provided by the UKB. Images were acquired using 3-T Siemens 
Skyra scanners, with a 32-channel head coil (Siemens), with the following scanning 

parameters: repetition time, 2,000 ms; echo time, 2.1 ms; flip angle, 8°; matrix 
size, 256 × 256 mm2; voxel size, 1 × 1 × 1 mm3 and number of slices, 208. A detailed 
description of the methods used to preprocess the images and derive voxel-level 
and ROI-level IDPs is available in Supplementary Methods.

PRS for risky behaviour. To construct PRS, we first re-estimated the GWAS of our 
main measure described in ref. 7 after excluding 18,796 genotyped individuals 
with usable T1 MRI images and their relatives up to the third degree (final GWAS 
sample, N = 297,025 individuals of European ancestry). The GWAS was performed 
using linear mixed models, implemented via BOLT-LMM v.2.3.2 (ref. 50). Next, we 
performed quality control of the GWAS results using a standardized quality control 
protocol, described in detail in ref. 7. This protocol removes rare and low-quality 
SNPs on the basis of a minor allele frequency (MAF) of <0.001, imputation quality 
(INFO) of <0.7 and SNPs that could not be aligned with the Haplotype Reference 
Consortium reference panel, among other filters. After quality control, a total 
of 11,514,220 SNPs remained in the GWAS summary statistics. Thereafter, we 
calculated PRS for each participant by weighting their genotype across SNPs by the 
corresponding regression coefficients estimated in the GWAS (see Supplementary 
Methods for further information).

Analysis. VBM. We identify associations between risky behaviour and localized 
GMV across the brain using whole-brain VBM, a method that normalizes 
the anatomical brain images of all participants in one stereotactic space24. We 
regress risky behaviour separately on each voxel of the smoothed GMV images 
(Supplementary Methods) and the control variables. We correct for multiple 
comparisons by adjusting the FWE rate to α = 0.01 using permutation tests 
(Puncorr = 1.248 × 10−06, with |tuncorr| = 4.85, two-sided). See Extended Data Fig. 3 
and Supplementary Table 4 for the summary statistics of each cluster and the 
coordinates of the peak voxel within that cluster.

ROI-level analysis. We compute the associations between risky behaviour and 
139 IDPs of GMV extracted by the UKB brain-imaging processing pipeline26 
using parcellations from the Harvard–Oxford cortical and subcortical atlases and 
Diedrichsen cerebellar atlas, in addition to nine IDPs derived using unbiased masks 
on the basis of the results of our voxel-level analysis (Supplementary Methods). We 
regress risky behaviour separately on each IDP and the control variables and correct 
for multiple comparisons by adjusting the FWE rate of α = 0.01 using permutation 
tests (Puncorr = 9.37 × 10−05, with |tuncorr| = 3.91, two-sided).

Replication of the voxel-level and ROI-level analyses. We repeat the VBM analyses 
in the replication sample for all voxels that showed significance in the original 
sample, correcting for multiple comparisons by adjusting the FWE rate to α = 0.05 
(two-tailed) using permutation tests (Puncorr = 2.956 × 10−04, with tuncorr = 3.62). We 
also repeat the ROI-level analysis in all ROI that showed significance in the original 
sample, and correct for multiple comparisons by adjusting the FWE rate to α = 0.05 
(two-tailed) using permutation tests (Puncorr = 3.35 × 10−03, with tuncorr = 2.93). 
We define replication success as observing a statistically significant effect at the 
5% level (corrected for multiple hypothesis testing) in the same direction as the 
original finding51.

Comparison of VBM Results with a meta-analysis of fMRI studies. We compare our 
VBM results with a publicly available meta-analysis of fMRI studies provided by 
Neurosynth30, an online platform for large-scale, automated synthesis of fMRI data 
(https://neurosynth.org/). The meta-analysis was based on the keyword ‘risky’. It 
consisted of K = 101 individual studies with a total of N = 4,717 participants (see 
Supplementary Table 9 for details), and was conducted using a uniformity test 
(assuming that random activations are evenly distributed across all voxels). The 
meta-analytic statistical image was corrected for multiple comparisons by applying 
a false discovery rate of 0.01 (implemented by Neurosynth). The summary of 
studies included in the meta-analysis is available in Supplementary Table 9. The 
3D activation map that resulted from the meta-analysis is available at https://
neurosynth.org/analyses/terms/risky/. To compare our VBM results (that is, 
brain structure) with the meta-analysis of data on brain function, we perform a 
whole-brain voxel-level conjunction analysis of the two (Extended Data Fig. 7) that 
exhibits the spatial overlap of all voxels that are significant in both analyses (Fig. 
4). Thus, both the structure and function of the brain regions identified by this 
conjunction are significantly associated with risky behaviour.

VBM analysis of risky behaviour PRS. We repeat the VBM analysis in all voxels 
identified to be associated with risky behaviour, using the PRS as the dependent 
variable. This approach allows the identification of brain regions that were likely 
to mediate the effect of genetic disposition on risky behaviour. The PRS were 
constructed using GWAS results from an independent sample, to ensure that the 
effect size estimates in this analysis are not inflated due to overfitting. We account 
for multiple comparisons using a permutation test with an FWE rate of PFWE < 0.05. 
This part of the analysis was not preregistered.

Mediation analysis. We conduct mediation analyses (implemented in STATA 14) 
to test whether GMV differences in the brain regions whose GMVs are associated 
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with the PRS of risky behaviour (right dlPFC, right putamen and hypothalamus) 
mediate the association between the PRS and risky behaviour. We first extract 
GMV from these three ROI using the same unbiased masks as in the ROI-level 
analysis (Supplementary Methods). Then, we estimate a SEM to quantify the 
effect of the PRS on risky behaviour mediated via GMV differences in these ROI. 
All SEM equations include the aforementioned standard control variables (listed 
in Supplementary Methods). We carry out an additional robustness check by 
estimating an SEM that assumes one single path (that is, the sum of all ROI), which 
yields the same pattern of results (Extended Data Fig. 8).

FWE correction using permutation tests. To account for multiple hypothesis 
testing, we determine the appropriate FWE-corrected P value threshold with a 
permutation test procedure in each of our analyses52. To this end, we generated 
1,000 datasets with randomly permuted phenotypes (that is, breaking the link 
between the outcome and explanatory variables), estimated regression models for 
all IDPs per analysis and recorded the lowest P value of each run to generate an 
empirical distribution of the test statistic under the null hypothesis. To obtain the 
FWE rate of any given alpha, we use the nth = α × 1,000 lowest P value from the 
1,000 permutation runs as the FWE-corrected P value threshold.

Preregistration of analysis plan and unplanned deviations. We preregistered our 
analysis plan on the Open Science Framework (https://osf.io/qkp4g/, registered 
December 2018). Our preregistered plan specified the construction of the 
dependent variable, the control variables, the inclusion criteria and quality 
controls, the VBM analyses and the main ROI-level analyses. We summarize all 
deviations from the analysis plan in Supplementary Methods.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data and materials are available via UKB at http://www.ukbiobank.ac.uk/.

Code availability
The analysis code used in this study is publicly available at https://osf.io/qkp4g/.
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Extended Data Fig. 1 | Bivariate correlations between variables used in the main study sample (N = 12,675).
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Extended Data Fig. 2 | Empirical distributions of variables in the replication sample (N = 13,004).
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Extended Data Fig. 3 | Effect sizes (standardized betas) of associations between risky behaviour and grey matter volume (GMV) in voxel clusters 
showing significant associations at P < .01 (FWE-corrected) (N = 12,675). Coordinates of peak association for each cluster are reported in parentheses 
(in mm). Standard errors denote uncorrected 95% confidence intervals. See Extended Data Table 4 for further details.
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Extended Data Fig. 4 | Effect sizes (standardized betas) of association between risky behaviour and IDPs of grey matter volume (GMV) showing 
significant associations at P<0.01 level (FWE-corrected) (N = 12,675). Standard errors denote uncorrected 95% confidence intervals.
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Extended Data Fig. 5 | Associations (p-values) between risky behaviour and 148 ROI-level imaging-derived phenotypes (IDPs) of grey matter volume 
(GMV), controlling for cognitive and socioeconomic outcomes (N = 11,864). Control variables include education years, fluid IQ, zip-code level social 
deprivation, household income, number of household members, birth location, and all standard controls.
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Extended Data Fig. 6 | Associations (p-values) between risky behaviour and 148 ROI-level imaging-derived phenotypes (IDPs) of grey matter volume 
(GMV), controlling for current drinking levels (binned in deciles) and smoking levels (binned in 3 categories) in addition to all standard controls (N = 
12,675).
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Extended Data Fig. 7 | Meta-analysis of functional MRI studies of risky behaviours, provided by Neurosynth (N = 4,717 participants and K = 101 
studies). Conjunction with areas showing negative GMV association with risky behaviour (including thalamus, vmPFC, amygdala and dlPFC) is marked in 
magenta (see Supplementary Table 1). Additional meta-analytic functional activation areas are marked in red.
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Extended Data Fig. 8 | Mediation analysis of the association between PRS and risky behaviour with GMV in dlPFC, putamen and hypothalamus (N = 
12,675). The sum of all GMV differences in right dlPFC, putamen and hypothalamus (based on the activation masks from Fig 5A) mediated ~2.07% of the 
association between the PRS and risky behaviour. Arrows depict the direction of the structural equation modelling and do not imply causality.
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Our initial sample consisted of N = 18,796 individuals with brain scans and genotype data, all of the imaged UKB participants as of 18 Oct 
2018. Our final dataset (after exclusions) consisted of N = 12,675 individuals.

Data exclusions From the text (supplementary materials and methods/ Sample Characteristics and Selection Criteria): 
We excluded 923 subjects with problematic genotype data (N = 14), putative sex chromosome aneuploidy (N = 6), a mismatch between 
genetic and reported sex (N = 10) or non-European ancestry (N = 893). To minimize the potential influence of neurotoxic effects due to 
excessive alcohol intake (4), we excluded past or current heavy drinkers from the sample (531 female and 793 male participants), where 
heavy drinking was defined as consuming more than 24 drinks per week for males and more than 18 drinks per week for females (5). To 
exclude potential former drinkers, we also removed 426 participants who indicated that they don’t drink alcohol. 
All of the structural T1 MRI images used in the study underwent automated quality control by the UKB brain imaging processing pipeline (6). 
We ran additional quality checks on the images using the Computational Anatomy Toolbox (CAT; www.neuro.uni-jena.de/cat/) for SPM 
(www.fil.ion.ucl.ac.uk/spm/software/spm12/). This resulted in the removal of additional 747 individuals who exhibited substantial image 
inhomogeneity (overall volume correlation below two standard deviations from the mean). Finally, we removed all participants with 
incomplete behavioral data of interest or control variables (N = 2,701). Our final dataset consisted of N = 12,675 individuals.

Replication We replicate our findings in an independent sample recruited from the same population (N=13,004)

Randomization N/A (non-experimental study)

Blinding N/A (non-experimental study)

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants
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Methods
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MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics We used publicly available data from the UK Biobank (UKB), which recruited 502,617 people aged 40 to 69 years from the 
general population across the United Kingdom. 

Recruitment Recruitment was done by the UK Biobank

Ethics oversight All UKB participants provided written informed consent and the study was granted ethical approval by the North West Multi-
Centre Ethics committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Magnetic resonance imaging

Experimental design

Design type GMV and ROI analysis of T1-weighted structural brain MRI images

Design specifications N/A 

Behavioral performance measures Self-reports

Acquisition

Imaging type(s) T1-weighted structural brain MRI images in NIFTI format 

Field strength 3T

Sequence & imaging parameters The images were acquired using 3-T Siemens Skyra scanners, with a 32-channel head coil (Siemens, Erlangen, Germany), 
with the following scanning parameters: repetition time = 2000 ms; echo time = 2.1 ms; flip angle = 8°; matrix size = 256 
× 256 mm; voxel size = 1 × 1 × 1 mm; number of slices = 208.

Area of acquisition Whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software We preprocessed the data using the Computational Anatomy Toolbox (CAT; www.neuro.uni-jena.de/cat/) for SPM12 
(www.fil.ion.ucl.ac.uk/spm/software/spm12/). Image pre-processing used the default setting of CAT12 (accessible online at 
http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf). Images were corrected for bias-field inhomogeneities, segmented 
into gray matter, white matter, and cerebrospinal fluid (CSF), spatially normalized to the MNI space using linear and non-
linear transformations, and were modulated to preserve the total amount of signal in the original image during spatial 
normalization (the specific SPM-processing parameters can be found in the pre-registered document on OSF https://osf.io/
qkp4g/). We applied spatial smoothing with 8-mm Full-Width-at-Half-Maximum (FWHM) Gaussian kernel for the segmented, 
modulated images for grey matter volume (GMV). 

Normalization We spatially normalized images to MNI152 space using linear and non-linear transformations (see CAT12 image 
normalization at http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf)

Normalization template DARTEL and Geodesic Shooting templates in MNI space (CAT12 manual): "These 
templates were derived from 555 healthy control subjects of the IXI-database 
(http://www.brain-development.org) and are available in the MNI space for six different iteration 
steps of the DARTEL and Geodesic Shooting normalization."

Noise and artifact removal Denoising from the CAT12 manual: "We also use two noise reduction methods to make data processing, and the tissue 
segmentation in particular, more robust against noise. The first method is a spatial-adaptive Non-Local Means 
(SANLM) denoising filter and removes noise while maintaining edges (Manjón et al., 2010) and is 
implemented as pre-processing step. The second method is a classical Markov Random Field 
(MRF) approach, which includes spatial information from adjacent voxels in the segmentation 
estimation (Rajapakse et al., 1997) and is part of the AMAP segmentation. The strength of the 
filters is automatically determined by estimating the residual noise in the image or can be set 
manually."

Volume censoring Following standard VBM procedures (see SPM/CAT12 
http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf) we thresholded the average of all brain images at 250 GMV 
intensity units. The resulting image was binarized and applied as a pre-mask to all individual images before running analyses. 
Additionally, on an individual level, we excluded all voxels that exhibited a lower grey matter volume than .1 from the 
analyses (see standard parameters of SPM/CAT12 http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf).

Statistical modeling & inference

Model type and settings Linear Regression models at the voxel or ROI level.

Effect(s) tested N/A

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) Whole brain

Statistic type for inference
(See Eklund et al. 2016)

voxel level (or ROI level) permutation tests
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Correction FWE

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis


	Genetic underpinnings of risky behaviour relate to altered neuroanatomy

	Results

	Grey-matter volume (GMV) associations with risky behaviour. 
	Replication in an independent sample. 
	Overlap between GMV differences and functional MRI (fMRI) meta-analysis. 
	Association of PRS for risky behaviour with GMV. 

	Discussion

	Methods

	Sample characteristics and selection criteria
	Main sample
	Replication sample

	Measures
	Risky behaviour
	Control variables
	T1 MRI image processing
	PRS for risky behaviour

	Analysis
	VBM
	ROI-level analysis
	Replication of the voxel-level and ROI-level analyses
	Comparison of VBM Results with a meta-analysis of fMRI studies
	VBM analysis of risky behaviour PRS
	Mediation analysis
	FWE correction using permutation tests
	Preregistration of analysis plan and unplanned deviations

	Reporting Summary

	Acknowledgements

	Fig. 1 Main sample characteristics (N = 12,675).
	Fig. 2 Association between risky behaviour and IDPs of GMV.
	Fig. 3 Voxel-level GMV associated with risky behaviour in the replication sample (N = 13,004).
	Fig. 4 Conjunction between the GMV differences associated with risky behaviour identified in the current study and the results of a meta-analysis of 101 fMRI studies, on the basis of the keyword ‘risky’.
	Fig. 5 Association of PRS for risky behaviour and GMV.
	Extended Data Fig. 1 Bivariate correlations between variables used in the main study sample (N = 12,675).
	Extended Data Fig. 2 Empirical distributions of variables in the replication sample (N = 13,004).
	Extended Data Fig. 3 Effect sizes (standardized betas) of associations between risky behaviour and grey matter volume (GMV) in voxel clusters showing significant associations at P < .
	Extended Data Fig. 4 Effect sizes (standardized betas) of association between risky behaviour and IDPs of grey matter volume (GMV) showing significant associations at P<0.
	Extended Data Fig. 5 Associations (p-values) between risky behaviour and 148 ROI-level imaging-derived phenotypes (IDPs) of grey matter volume (GMV), controlling for cognitive and socioeconomic outcomes (N = 11,864).
	Extended Data Fig. 6 Associations (p-values) between risky behaviour and 148 ROI-level imaging-derived phenotypes (IDPs) of grey matter volume (GMV), controlling for current drinking levels (binned in deciles) and smoking levels (binned in 3 categories) i
	Extended Data Fig. 7 Meta-analysis of functional MRI studies of risky behaviours, provided by Neurosynth (N = 4,717 participants and K = 101 studies).
	Extended Data Fig. 8 Mediation analysis of the association between PRS and risky behaviour with GMV in dlPFC, putamen and hypothalamus (N = 12,675).




