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Genetic underpinnings of risky behaviour relate to
altered neuroanatomy
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Previous research points to the heritability of risk-taking behaviour. However, evidence on how genetic dispositions are trans-
lated into risky behaviour is scarce. Here, we report a genetically informed neuroimaging study of real-world risky behaviour
across the domains of drinking, smoking, driving and sexual behaviour in a European sample from the UK Biobank (N =12,675).
We find negative associations between risky behaviour and grey-matter volume in distinct brain regions, including amygdala,
ventral striatum, hypothalamus and dorsolateral prefrontal cortex (dIPFC). These effects are replicated in an independent sam-
ple recruited from the same population (N=13,004). Polygenic risk scores for risky behaviour, derived from a genome-wide
association study in an independent sample (N =297,025), are inversely associated with grey-matter volume in dIPFC, puta-
men and hypothalamus. This relation mediates roughly 2.2% of the association between genes and behaviour. Our results

highlight distinct heritable neuroanatomical features as manifestations of the genetic propensity for risk taking.

and achievements—requires balancing uncertain positive

and negative outcomes. For instance, exploration, innovation
and entrepreneurship can yield great benefits, but are also prone
to failure’. Conversely, excessive risk taking in markets can have
enormous societal costs, such as the generation of speculative price
bubbles”. Similarly, common behaviours such as smoking, drinking,
sexual promiscuity or speeding are considered rewarding by many
but might expose individuals and those around them to deleterious
health, social and financial consequences. In 2010, the combined
economic burden in the United States of these risky behaviours was
estimated to be about US$593.3 billion (refs. *°). Although previous
findings point to the partial heritability of risk tolerance and risky
behaviours” and neuroanatomical measures exhibit high heritabil-
ity*”, little is known about the brain features involved in translating
genetic dispositions into risky behavioural phenotypes®.

Recent research using structural brain-imaging data from small,
non-representative samples (comprising up to a few hundred par-
ticipants) has identified several neuroanatomical associations with
risk tolerance'*"'”. However, this literature is limited by low statistical
power'>", and the generalizability of their findings to other popula-
tions is questionable. Small sample sizes have also limited the ability to
control systematically for many factors that could confound observed
relations between brain features and risky behaviour, such as height'
and genetic population structure'®”. Moreover, despite evidence that
the effects of genetic factors are probably mediated by their influ-
ence on the brain and its development”'¥, neuroscientific and genetic
approaches to understanding the biology of risky behaviour have
largely proceeded in isolation—perhaps due to the lack of large study
samples that include both genetic and brain-imaging measures.

| aking risks—an essential element of many human experiences

Here, we use data obtained in a prospective epidemiological study
of roughly 500,000 individuals aged 40 to 69 years (the UK Biobank
(UKB)'"*) to carry out a preregistered investigation (https://osf.io/
gkp4g/, see Supplementary Methods for deviations from the analy-
sis plan) of the relationship between individual differences in brain
anatomy and the propensity to engage in risky behaviour across
four domains (N=12,675, for sample characteristics see Fig. 1 and
Extended Data Fig. 1). We replicate our findings in an independent
sample recruited from the same population (N=13,004, for sample
characteristics see Extended Data Fig. 2). Further, we isolate spe-
cific differences in brain anatomy that are linked to the genetic dis-
position for risky behaviour—quantified via polygenic risk scores
(PRS) derived from a genome-wide association study (GWAS) in
an independent sample (N=297,025)—and investigate how these
neuroanatomical endophenotypes mediate the influence of genetics
on the behavioural phenotype.

Results

Grey-matter volume (GMYV) associations with risky behav-
iour. Akin to a previous investigation’, we construct a measure
of risky behaviour by extracting the first principal component
from four self-reported measures of drinking, smoking, speeding
on motorways and sexual promiscuity (N=315,855, see Fig. 2a,
Supplementary Methods and Supplementary Tables 1 and 2 for
descriptive statistics). This measure of risky behaviour is geneti-
cally correlated with many other traits, including cannabis use
(r,=0.72, s.e.=0.02), general risk tolerance (r,=0.56, s.e.=0.02),
self-employment (r,=0.52, s.e.=0.30), suicide attempt (r,=0.47,
s.e.=0.07), antisocial behaviour (r,=0.45, s.e.=0.14), extraversion
(r,=0.34, s.e.=0.04) and age at first sexual experience (r,=—0.54,
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Fig. 1| Main sample characteristics (N=12,675). a, Geographical birth location clusters of the study’s participants. Each star represents the birthplace of
a participant (non-jittered). Colours denote 100 geographical clusters, calculated using a k-means clustering algorithm with k=100 and 10,000 iterations
after random seeding. b, Empirical distributions of variables in the main study sample.

s.e.=0.02) (Supplementary Methods and Supplementary Table 3).
Thus, our measure is partly rooted in genetic differences between
people and relates to a broad range of relevant events and behaviours.

Our main analysis includes a sample of 12,675 European-ancestry
participants from the UKB. We first regress our measure of risky
behaviour on total (whole-brain) GMV while controlling for age,
birth year, gender, handedness, height, total intracranial volume
and the first 40 genetic principal components, which account
for genetic population structure (Supplementary Methods). To
exclude confounding effects of excessive alcohol consumption?,
we excluded from the analysis all current or former heavy drinkers
(Methods)*>**. We find an inverse association between total GMV
and risky behaviour (standardized f=-0.122; 95% confidence
interval (CI) —0.156, —0.087; #(12,561)=—6.92; P<4.86Xx107"%,
two-sided).

To identify specific brain regions related to risky behaviour, we
perform a whole-brain voxel-based morphometry (VBM)** analysis
that regresses our measure of risky behaviour separately on GMV in
each voxel across the brain, adjusting for the same control variables.
We identify localized inverse associations between risky behaviour
and GMV in distinct regions, only some of which were expected
on the basis of previous small-scale studies (Fig. 2b, Extended Data
Fig. 3 and Supplementary Table 4). In subcortical areas, we iden-
tify associations bilaterally in expected areas such as the amygdala
and ventral striatum, as well as in less expected areas such as the
posterior hippocampus, putamen, thalamus, hypothalamus and
cerebellum. We also identify bilateral associations between risky
behaviour and GMV in cortical regions that include the ventral
medial prefrontal cortex (vmPFC), dorsolateral prefrontal cortex
(dIPFC), ventro-anterior insula (aINS) and the precentral gyrus. In
all of these regions, GMYV is negatively associated with the propen-
sity to engage in risky behaviours. We find no positive associations
between GMV and risky behaviour anywhere in the brain.

To quantify effect sizes of the associations between risky behav-
iour and GMV in anatomically defined brain structures and to
investigate the convergence of our findings across MRI processing

pipelines”, we conduct a follow-up analysis at the region of interest
(ROI) level. This analysis primarily relies on the imaging-derived
phenotypes (IDPs) provided by the UKB brain-imaging processing
pipeline®**>?, which used parcellations from the Harvard-Oxford
cortical and subcortical atlases and the Diedrichsen cerebel-
lar atlas. We derived additional IDPs using unbiased masks on
the basis of the results of the voxel-level analysis (Supplementary
Methods). This analysis identifies negative associations between
risky behaviour and GMV in 23 anatomical structures, with stan-
dardized fs between —0.079 and —0.036 (Fig. 2c, Extended Data
Fig. 4 and Supplementary Table 5; for the associations between the
IDPs and the individual measures that construct our phenotype of
risky behaviour, see Supplementary Table 6), the largest of which
is in the right ventro-aINS (f=-0.079; 95% CI —0.103, —0.055;
£(12,562) =—6.43; P,,...=1.34x 107, two-sided).

We carry out several additional analyses to assess the differen-
tial contributions of various factors to the associations we observe.
First, we re-estimate the ROI-level regressions with additional con-
trols for various socioeconomic and cognitive outcomes that may be
linked to both brain anatomy and risky behaviour, either as anteced-
ents or downstream consequences. These controls include partici-
pants’ years of education and fluid intelligence (13-item measure)’,
azip-code level measure of the Townsend social deprivation index*,
household income and size, and birth location binned into 100 geo-
graphical clusters (Supplementary Methods and Fig. 1). The direc-
tion and magnitude of all ROI effects are comparable to the main
analysis (range of standardized f between —0.079 and —0.035), with
the largest effect again located in the right ventro-aINS (f=—0.079;
95% CI —0.104, —0.055; #(11,647)=-6.29; P, ..=3.3x10"",
two-sided). Furthermore, 19 of the 23 ROI (all except the left cuneal
cortex, left CrusI of the cerebellum, left planum polare and the brain
stem) are statistically significant after correction for multiple com-
parisons in this analysis (Extended Data Fig. 5 and Supplementary
Table 5).

Second, we re-estimate our ROI-level regressions with additional
controls for current levels of drinking (binned into ten deciles) and
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Fig. 2 | Association between risky behaviour and IDPs of GMV. a, Loadings for the first principal component are extracted from four self-reported
measures of risky behaviour in the drinking, smoking, driving and sexual domains (N=2315,855) (see Fig. 1 for descriptive statistics). We use this

first principal component as a measure of risky behaviour. b, Voxel-level GMV negatively associated with risky behaviour (N=12,675). We observe
associations in subcortical areas, including thalamus, posterior hippocampus, amygdala, putamen, ventral striatum and cerebellum. Associations with
cortical areas include posterior middle temporal gyrus, precentral gyrus, dIPFC, anterior insula and vmPFC. ¢, Associations between risky behaviour and
GMV in 148 ROI (N=12,675). The grey dotted line shows the FWE-corrected threshold of P=0.01 (see Methods for details).

smoking (binned into three categories). Although introducing these
controls into the model regresses out variance of interest from the
main outcome measure, which probably attenuates the effects, this
analysis allows us to test whether any of the identified associations
can reliably be attributed to risky behaviour that is not limited to the
substance-use domain. In this analysis, we find that all of the effects
originally identified remain negative in sign, yet are smaller in mag-
nitude (range of standardized f values between —0.041 and —0.011;
Supplementary Table 7). Nonetheless, the effects in nine subcortical
ROI (including the amygdala, putamen, ventral striatum and cer-
ebellum) remain statistically significant after correction for multiple
comparisons (Extended Data Fig. 6), with the strongest associa-
tion identified in the left amygdala (f=-0.041; 95% CI —0.059,
—0.023; #(12,551) =—4.4; P, ..,= 1.1 X 107, two-sided). Thus, these
subcortical IDPs are reliably associated with risky behaviour in
non-substance-use domains.

Replication in an independent sample. Several months after the
completion of our original analyses (in February 2020, https://bio-
bank.ndph.ox.ac.uk/showcase/exinfo.cgi?src=timelines), the UKB
released brain images of 20,316 additional participants—providing
us with an opportunity to replicate our findings in an independent
dataset that contains the same variables, and participants recruited
in the same way from the same population®. After applying the same
exclusion criteria as in our original analysis, our replication sample
consists of 13,004 participants, roughly the same size as our original
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sample (see Methods for details and Extended Fig. 1 for sample
characteristics). We repeat both the voxel-level and ROI-level anal-
yses in this dataset. In the voxel-level analysis, we apply a signifi-
cance threshold that corresponds to a family-wise-error (FWE) rate
of 5% in all voxels that showed significance in the original analy-
sis (P,0n=2.956 X 10~ with t,,_,.(12,892) =3.62, two-sided). We
find that 92.6% of the original voxels (located in 20 of the 21 clus-
ters originally identified, with the exception of a cluster in cerebel-
lar lobules I-IV) successfully replicate (Fig. 3). Furthermore, the
un-thresholded t-map® of the original dataset strongly correlates
with the un-thresholded t-map of the replication dataset (r=0.767;
95% CI 0.766, 0.768; P< 1071, two-sided). Likewise, our ROI-level
analysis successfully replicates 21 of the original 23 ROI-level find-
ings (Pon=3.35X10"%, with t,.,.(12,892)=2.93, two-sided;
Supplementary Table 8). The two ROI that do not replicate are the
cuneal cortex (left) and the cerebellar lobule II (left).

Overlap between GMV differences and functional MRI (fMRI)
meta-analysis. To investigate whether the neuroanatomical asso-
ciations of real-world risky behaviour correspond spatially with the
localized activation patterns commonly identified in fMRI stud-
ies of risky decision-making, we conduct a conjunction analysis to
compare our VBM results with data obtained from a publicly avail-
able meta-analysis of fMRI studies of risky behaviour” (N=4,717
participants, K=101 individual studies; Supplementary Table
9). The analysis reveals several brain regions whose anatomical


https://biobank.ndph.ox.ac.uk/showcase/exinfo.cgi?src=timelines
https://biobank.ndph.ox.ac.uk/showcase/exinfo.cgi?src=timelines
http://www.nature.com/nathumbehav

ARTICLES NATURE HUMAN BEHAVIOUR

. Replicated associations

. Non-replicated associations

Fig. 3 | Voxel-level GMV associated with risky behaviour in the replication sample (N=13,004). Here, 92.6% of the voxels identified in our original
analysis (located in 20 of 21 original clusters identified, marked in purple) successfully replicate (corrected for multiple testing at the 5% level using a
permutation test). Non-replicated voxels are located in the cerebellar lobules -1V (marked in blue).

Fig. 4 | Conjunction between the GMYV differences associated with risky behaviour identified in the current study and the results of a meta-analysis of
101 fMRI studies, on the basis of the keyword ‘risky’. This analysis identifies overlapping voxels in the thalamus, amygdala, vmPFC and dIPFC (Methods).

associations with risky behaviour converge with functional engage-
ment, including the thalamus, amygdala, vmPFC and dIPFC (Fig. 4
and Extended Data Fig. 7).

Association of PRS for risky behaviour with GMV. Finally, we
explore whether participants’ genetic disposition for risky behaviour,
proxied via their PRS, are associated with the neuroanatomical cor-
relates of the trait and test whether these neuroanatomical correlates
mediate the relationship between genetic predisposition and behav-
iour. To this end, we first conducted a GWAS in an independent
sample of UKB participants of European ancestry (N=297,025),
exclusive of 18,796 genotyped individuals with usable MRI images
(main sample) and their relatives. From the GWAS, we constructed
a PRS that aggregated the effects of 1,176,729 single-nucleotide
polymorphisms (SNPs) on risky behaviour for all of the participants
with MRI data in our independent target sample (Supplementary
Methods). The PRS predict roughly 3% of the variance in risky
behaviour in our target sample. Although we find no statistically
significant evidence to suggest that the PRS are associated with
whole-brain GMV (standardized f=-0.015; 95% CI —0.05 0.02;
£(12,561) = —0.82; P> 0.41, two-sided), they are inversely associated
with GMV in distinct regions, specifically the right dIPFC, right
putamen and hypothalamus (Fig. 5a, regressions include all stan-
dard control variables, including total intracranial volume). Thus,
GMV in these specific brain areas is negatively associated with the
genetic disposition for risky behaviour.

On the basis of these results, we use the previously extracted
GMV of these three ROI to examine whether it mediates the
observed gene-behaviour associations. A structural equation model
(SEM) including all standard controls reveals that roughly 2.2% of

the association between the PRS and risky behaviour is mediated
through individual differences in GMV in the three regions (indi-
rect path ¢ standardized f=0.004, 95%; CI 0.002, 0.005; z=4.83;
P=1.4Xx10"", two-sided) (Fig. 5b and Extended Data Fig. 8).

Discussion

We investigate, in a genetically informed neuroimaging study, (1)
the association between GMV and real-world risky behaviour in
a large population sample of European ancestry (main sample of
12,675 individuals and replication sample of 13,004 individuals),
and (2) how the genetic disposition for risky behaviour is linked to
GMYV differences in a network of distinct brain areas. Several of the
areas whose GMV’s are linked to risky behaviour in this study have
also often been functionally engaged during risky decision-making
in small-scale fMRI studies that used stylized tasks. For instance,
such correlations have been observed in the aINS, thalamus, dIPFC,
vmPFC and ventral striatum®"*?. These findings have led to propos-
als that upward and downward risks are encoded by distinct circuits,
with upward risk mainly represented by areas encoding rewards
(ventral striatum and vimPFC) and downward risk encoded by areas
related to avoidance and negative arousal (aINS). Here, we substan-
tiate previous functional studies with large-scale evidence that the
structural properties of the same areas relate to risky behaviour in
an ecologically valid setting™ when long-term health consequences
are at stake.

Our results extend previous findings by showing that the neu-
ral foundation of risky behaviour is complex. Our analyses iden-
tify additional negative associations between risky behaviour and
GMV in several areas, including the cerebellum, posterior hippo-
campus, hypothalamus and putamen. While it is not yet clear how
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Fig. 5 | Association of PRS for risky behaviour and GMV. a, We constructed PRS of risky behaviour from a GWAS in an independent sample (N=297,025)
and investigated their associations with GMV in brain voxels that we identified as linked to risky behaviour. The PRS negatively correlate with GMV in the
right dIPFC, putamen and hypothalamus. b, GMV differences in hypothalamus (path 1, designated as a, and b,), right putamen (path 2, designated as a,
and b,) and right dIPFC (path 3, designated as a; and b,;) mediate roughly 2.2% of the association between the PRS and risky behaviour. Arrows depict the

direction of the SEM and do not indicate causality (N=12,675).

structural differences are manifested in properties of brain func-
tion™, our results suggest that risk taking draws on manifold neu-
ral processes, not just the representation and integration of upward
and downward risks in the brain. Specifically, considering previous
meta-analyses, the areas identified in this study are involved broadly
in memory (posterior hippocampus), emotion processing (amyg-
dala, ventro-aINS)*, neuroendocrine processes (hypothalamus)**,
reward processing (vimPFC, ventral striatum and putamen)® and
executive functions (dIPFC)*. Thus, it appears that risky behav-
iour taps into multiple elements of human cognition, ranging from
inhibitory control to emotion regulation* and the integration of
outcomes and risks*. This mirrors previous findings showing that
risky behaviour is also a genetically complex trait’.

Additionally, our results underscore the long-suspected role of
the hypothalamic-pituitary-adrenal axis in regulating risk-related
behaviours, in line with hormonal studies that link risky behaviour
and sensation seeking to stress responsivity’>*’**-**. Furthermore,
our finding that risky behaviour is linked to the structure of sev-
eral cerebellar areas confirms the under-appreciated importance
of the cerebellum for human cognition and decision-making, and
highlights the need for further research on the specific behavioural
contributions of this brain area*.

Of note, it remains an open question the extent to which the
differences in GMV that we identify can be ascribed to specific
heritable micro-anatomical traits, such as neuronal size, dendritic
or axonal arborization, or relative count of different cell types*.
Moreover, it is not yet clear how these individual differences, in
turn, influence behaviour. Nonetheless, our results provide evidence
that neuroanatomical structure constitutes the micro-foundation
for neuro-computational mechanisms underlying individual differ-
ences in risky behaviours™.
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Several of the observed neuroanatomical correlates of risky
behaviour are also associated with the genetic disposition for the
phenotype. Specifically, we find that GMV in the hypothalamus, the
putamen and the dIPFC share variance with both risky behaviour
and its PRS. This finding extends previous studies showing correla-
tional’**** and causal evidence’’** of the involvement of these areas
in risky behaviour by indicating that a genetic component partly
underlies the associations. Although our analyses cannot iden-
tify the direction of the causal relationships (see Supplementary
Discussion for an additional discussion of limitations), they show
that risky behaviour and its genetic associations share variance with
distinct GMV features and provide an overarching framework for
how the genetic dispositions for risky behaviour may be expressed
in the corresponding behavioural phenotype.

Our results are also in line with the bioinformatic annotation of
the largest GWAS on risk tolerance until now, conducted in over
1 million individuals’, which implicated specific areas in the pre-
frontal cortex (BA9, BA24), striatum, cerebellum and the amyg-
dala. However, bioinformatics tools used for GWAS annotation
cannot be considered conclusive, as they rely on gene expression
patterns in relatively small samples of (post mortem) human brains
or non-human samples®. Moreover, they cannot speak to whether
changes in a particular tissue or cell type have negative or positive
effects on the phenotype or how strong the effects are. Here, we
show an alternative approach to annotating GWAS findings using
a different type of data (large-scale population samples that include
in vivo brain scans and genetic data), relying on different assump-
tions from those used by bioinformatics tools. Our results add new
insight by showing that lower GMYV in specific brain areas is related
to more risky behaviour and by implicating brain regions (that is,
putamen, hypothalamus and dIPFC) in addition to those previously
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annotated. The effect sizes we observe here (standardized < 0.08)
are an order of magnitude larger than those found in GWAS on
risky behaviour, but they nonetheless require very large samples for
detection.

Finally, while many features of the brain are heritable, the envi-
ronment indisputably plays an important role in brain development.
We therefore see our results not as independent from, or of greater
importance than, the effects of environmental and developmental
factors. Rather, our study constitutes one step towards understand-
ing how the complex development of human risky behaviour may
be constrained by genetic factors.

Methods

Sample characteristics and selection criteria. Main sample. We use publicly
available data from the UKB, which recruited 502,617 people aged 40 to 69 years
from the general population across the United Kingdom'**. All UKB participants
provided written informed consent and the study was granted ethical approval

by the North West Multi-Centre Ethics committee. Our initial sample consists

of 18,796 individuals with brain scans and genotype data, all of the imaged UKB
participants as of October 2018. We excluded participants with putative sex
chromosome aneuploidy (N=6) or a mismatch between genetic and reported sex
(N=10), participants of non-European ancestry (N==893) and participants who
did not pass the UKB quality-control thresholds (N=14), described in Bycroft

et al.”. To minimize the potential influence of neurotoxic effects due to excessive
alcohol intake*"”?, we also excluded current heavy drinkers (531 females consuming
more than 18 drinks per week and 793 males consuming more than 24 drinks per
week)?”>. To exclude potential former drinkers, we also removed 426 participants
who indicated that they did not drink alcohol.

All structural T1 MRI images used in the study underwent automated quality
control by the UKB brain-imaging processing pipeline’*. We performed two
additional quality checks using the Computational Anatomy Toolbox (CAT,
www.neuro.uni-jena.de/cat/) for SPM 12 (www.fil.ion.ucl.ac.uk/spm/software/
spm12/). First, we relied on the CAT12 automated image and preprocessing quality
assessment, which included quality parameters for resolution, noise and bias of
images, 57 of which were automatically excluded and not preprocessed due to low
image quality. Second, after preprocessing, we used an automated quality check of
sample homogeneity to identify outliers that exhibited substantially different GMV
patterns from the rest of the sample (see the CAT12 manual for details at http://
www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf, p. 17ff). In total, we excluded
690 individuals with scans of high image inhomogeneity (two standard deviations
below the mean). Finally, we excluded 2,701 participants with incomplete
behavioural data of interest or control variables. Our final dataset consists of
N=12,675 individuals.

Replication sample. The initial replication sample consisted of 20,316 individuals
with usable brain scans and genotype data, all of the imaged UKB participants as of
February 2020 who were not included in our main sample. Following the original
analysis, we excluded participants with putative sex chromosome aneuploidy
(N=7), a mismatch between genetic and reported sex (N=11), non-European
ancestry (N=1,143), heavy drinking or abstinence from alcohol (N=1,376) and
those that did not pass the UKB quality-control thresholds (N=31)*". All T1 MRI
images used in the study underwent the same quality-control procedure as in our
original sample, resulting in the removal of additional 391 individuals. Finally,
we excluded participants with incomplete data (N=4,353). Our final replication
sample consists of N=13,004. The empirical distributions of the variables
characterizing our replication analysis are depicted in Extended Data Fig. 2.

Measures. Risky behaviour. We closely follow Karlsson Linnér et al.” to derive a
measure of risky behaviour across domains on the basis of participants’ self-reports
of: (1) number of alcoholic drinks per week, (2) ever having smoked, (3) number
of sexual partners and (4) frequency of driving faster than the motorway speed
limit (Supplementary Methods). We perform principal component analysis on
N=315,855 UKB participants and extract the first principal component of the
four measures as the main outcome of interest (referred to as ‘risky behaviour’).
The first principal component explains roughly 37% of the variance in the four
measures, and it is the only principal component that loads positively on all of
them. Summary statistics and factor loadings of the principal component analysis
are available in Supplementary Tables 1 and 2. The code for generating the variable
of ‘risky behaviour’ is accessible at https://osf.io/qkp4g/.

Control variables. The full list of control variables and the methods used to generate
them are available in Supplementary Methods.

T1 MRI image processing. We use T1-weighted structural brain MRI images in
NIFTI format provided by the UKB. Images were acquired using 3-T Siemens
Skyra scanners, with a 32-channel head coil (Siemens), with the following scanning

parameters: repetition time, 2,000 ms; echo time, 2.1 ms; flip angle, 8% matrix
size, 256 X 256 mm?; voxel size, 1 X 1 X 1 mm?® and number of slices, 208. A detailed
description of the methods used to preprocess the images and derive voxel-level
and ROI-level IDPs is available in Supplementary Methods.

PRS for risky behaviour. To construct PRS, we first re-estimated the GWAS of our
main measure described in ref. 7 after excluding 18,796 genotyped individuals

with usable T1 MRI images and their relatives up to the third degree (final GWAS
sample, N=297,025 individuals of European ancestry). The GWAS was performed
using linear mixed models, implemented via BOLT-LMM v.2.3.2 (ref. *°). Next, we
performed quality control of the GWAS results using a standardized quality control
protocol, described in detail in ref. 7. This protocol removes rare and low-quality
SNPs on the basis of a minor allele frequency (MAF) of <0.001, imputation quality
(INFO) of <0.7 and SNPs that could not be aligned with the Haplotype Reference
Consortium reference panel, among other filters. After quality control, a total

of 11,514,220 SNPs remained in the GWAS summary statistics. Thereafter, we
calculated PRS for each participant by weighting their genotype across SNPs by the
corresponding regression coefficients estimated in the GWAS (see Supplementary
Methods for further information).

Analysis. VBM. We identify associations between risky behaviour and localized
GMYV across the brain using whole-brain VBM, a method that normalizes

the anatomical brain images of all participants in one stereotactic space*’. We
regress risky behaviour separately on each voxel of the smoothed GMV images
(Supplementary Methods) and the control variables. We correct for multiple
comparisons by adjusting the FWE rate to =0.01 using permutation tests
(Pncors = 1.248 X 107%, with |¢,,,..| =4.85, two-sided). See Extended Data Fig. 3
and Supplementary Table 4 for the summary statistics of each cluster and the
coordinates of the peak voxel within that cluster.

ROI-level analysis. We compute the associations between risky behaviour and

139 IDPs of GMV extracted by the UKB brain-imaging processing pipeline*

using parcellations from the Harvard-Oxford cortical and subcortical atlases and
Diedrichsen cerebellar atlas, in addition to nine IDPs derived using unbiased masks
on the basis of the results of our voxel-level analysis (Supplementary Methods). We
regress risky behaviour separately on each IDP and the control variables and correct
for multiple comparisons by adjusting the FWE rate of @=0.01 using permutation
tests (Pycor =9-37 X 107%, with |#,,c0r| =3.91, two-sided).

Replication of the voxel-level and ROI-level analyses. We repeat the VBM analyses

in the replication sample for all voxels that showed significance in the original
sample, correcting for multiple comparisons by adjusting the FWE rate to @=0.05
(two-tailed) using permutation tests (P, =2.956 X 10~", with t,, .., =3.62). We
also repeat the ROI-level analysis in all ROI that showed significance in the original
sample, and correct for multiple comparisons by adjusting the FWE rate to a=0.05
(two-tailed) using permutation tests (P, =3.35X 10, with ¢, ..., =2.93).

We define replication success as observing a statistically significant effect at the

5% level (corrected for multiple hypothesis testing) in the same direction as the
original finding™".

Comparison of VBM Results with a meta-analysis of fMRI studies. We compare our
VBM results with a publicly available meta-analysis of fMRI studies provided by
Neurosynth*, an online platform for large-scale, automated synthesis of fMRI data
(https://neurosynth.org/). The meta-analysis was based on the keyword ‘risky’. It
consisted of K=101 individual studies with a total of N=4,717 participants (see
Supplementary Table 9 for details), and was conducted using a uniformity test
(assuming that random activations are evenly distributed across all voxels). The
meta-analytic statistical image was corrected for multiple comparisons by applying
a false discovery rate of 0.01 (implemented by Neurosynth). The summary of
studies included in the meta-analysis is available in Supplementary Table 9. The
3D activation map that resulted from the meta-analysis is available at https://
neurosynth.org/analyses/terms/risky/. To compare our VBM results (that is,

brain structure) with the meta-analysis of data on brain function, we perform a
whole-brain voxel-level conjunction analysis of the two (Extended Data Fig. 7) that
exhibits the spatial overlap of all voxels that are significant in both analyses (Fig.
4). Thus, both the structure and function of the brain regions identified by this
conjunction are significantly associated with risky behaviour.

VBM analysis of risky behaviour PRS. We repeat the VBM analysis in all voxels
identified to be associated with risky behaviour, using the PRS as the dependent
variable. This approach allows the identification of brain regions that were likely
to mediate the effect of genetic disposition on risky behaviour. The PRS were
constructed using GWAS results from an independent sample, to ensure that the
effect size estimates in this analysis are not inflated due to overfitting. We account
for multiple comparisons using a permutation test with an FWE rate of Ppy; <0.05.
This part of the analysis was not preregistered.

Mediation analysis. We conduct mediation analyses (implemented in STATA 14)
to test whether GMYV differences in the brain regions whose GMVs are associated
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with the PRS of risky behaviour (right dIPFC, right putamen and hypothalamus)
mediate the association between the PRS and risky behaviour. We first extract
GMYV from these three ROI using the same unbiased masks as in the ROI-level
analysis (Supplementary Methods). Then, we estimate a SEM to quantify the

effect of the PRS on risky behaviour mediated via GMV differences in these ROL
All SEM equations include the aforementioned standard control variables (listed

in Supplementary Methods). We carry out an additional robustness check by
estimating an SEM that assumes one single path (that is, the sum of all ROI), which
yields the same pattern of results (Extended Data Fig. 8).

FWE correction using permutation tests. To account for multiple hypothesis
testing, we determine the appropriate FWE-corrected P value threshold with a
permutation test procedure in each of our analyses™. To this end, we generated
1,000 datasets with randomly permuted phenotypes (that is, breaking the link
between the outcome and explanatory variables), estimated regression models for
all IDPs per analysis and recorded the lowest P value of each run to generate an
empirical distribution of the test statistic under the null hypothesis. To obtain the
FWE rate of any given alpha, we use the nth =ax 1,000 lowest P value from the
1,000 permutation runs as the FWE-corrected P value threshold.

Preregistration of analysis plan and unplanned deviations. We preregistered our
analysis plan on the Open Science Framework (https://osf.io/qkp4g/, registered
December 2018). Our preregistered plan specified the construction of the
dependent variable, the control variables, the inclusion criteria and quality
controls, the VBM analyses and the main ROI-level analyses. We summarize all
deviations from the analysis plan in Supplementary Methods.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Data and materials are available via UKB at http://www.ukbiobank.ac.uk/.

Code availability
The analysis code used in this study is publicly available at https://osf.io/qkp4g/.
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Extended Data Fig. 1| Bivariate correlations between variables used in the main study sample (N =12,675).
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Extended Data Fig. 2 | Empirical distributions of variables in the replication sample (N =13,004).
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significant associations at P<0.01 level (FWE-corrected) (N = 12,675). Standard errors denote uncorrected 95% confidence intervals.
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Extended Data Fig. 5 | Associations (p-values) between risky behaviour and 148 ROI-level imaging-derived phenotypes (IDPs) of grey matter volume

(GMV), controlling for cognitive and socioeconomic outcomes (N = 11,864). Control variables include education years, fluid 1Q, zip-code level social
deprivation, household income, number of household members, birth location, and all standard controls.
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Extended Data Fig. 6 | Associations (p-values) between risky behaviour and 148 ROI-level imaging-derived phenotypes (IDPs) of grey matter volume

(GMV), controlling for current drinking levels (binned in deciles) and smoking levels (binned in 3 categories) in addition to all standard controls (N =
12,675).
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Extended Data Fig. 7 | Meta-analysis of functional MRI studies of risky behaviours, provided by Neurosynth (N = 4,717 participants and K =101
studies). Conjunction with areas showing negative GMV association with risky behaviour (including thalamus, vmPFC, amygdala and dIPFC) is marked in
magenta (see Supplementary Table 1). Additional meta-analytic functional activation areas are marked in red.
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Extended Data Fig. 8 | Mediation analysis of the association between PRS and risky behaviour with GMV in dIPFC, putamen and hypothalamus (N =
12,675). The sum of all GMV differences in right dIPFC, putamen and hypothalamus (based on the activation masks from Fig 5A) mediated ~2.07% of the
association between the PRS and risky behaviour. Arrows depict the direction of the structural equation modelling and do not imply causality.
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Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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El The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[X] A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

lXI A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

lXI For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX 00 0O 000 00 0]

|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  The data is publicly available to researchers upon application to the UK Biobank: https://www.ukbiobank.ac.uk/

Data analysis Analyses code is available on the project's page on OSF: https://osf.io/qkp4g/
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- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The data is publicly available to researchers upon application to the UK Biobank: https://www.ukbiobank.ac.uk/
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Our initial sample consisted of N = 18,796 individuals with brain scans and genotype data, all of the imaged UKB participants as of 18 Oct
2018. Our final dataset (after exclusions) consisted of N = 12,675 individuals.

Data exclusions  From the text (supplementary materials and methods/ Sample Characteristics and Selection Criteria):
We excluded 923 subjects with problematic genotype data (N = 14), putative sex chromosome aneuploidy (N = 6), a mismatch between
genetic and reported sex (N = 10) or non-European ancestry (N = 893). To minimize the potential influence of neurotoxic effects due to
excessive alcohol intake (4), we excluded past or current heavy drinkers from the sample (531 female and 793 male participants), where
heavy drinking was defined as consuming more than 24 drinks per week for males and more than 18 drinks per week for females (5). To
exclude potential former drinkers, we also removed 426 participants who indicated that they don’t drink alcohol.
All of the structural T1 MRI images used in the study underwent automated quality control by the UKB brain imaging processing pipeline (6).
We ran additional quality checks on the images using the Computational Anatomy Toolbox (CAT; www.neuro.uni-jena.de/cat/) for SPM
(www fil.ion.ucl.ac.uk/spm/software/spm12/). This resulted in the removal of additional 747 individuals who exhibited substantial image
inhomogeneity (overall volume correlation below two standard deviations from the mean). Finally, we removed all participants with
incomplete behavioral data of interest or control variables (N = 2,701). Our final dataset consisted of N = 12,675 individuals.

Replication We replicate our findings in an independent sample recruited from the same population (N=13,004)
Randomization  N/A (non-experimental study)

Blinding N/A (non-experimental study)

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies IZI |:| ChiIP-seq
Eukaryotic cell lines IZI |:| Flow cytometry
Palaeontology and archaeology |:| IZI MRI-based neuroimaging

Animals and other organisms
Human research participants
Clinical data
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Human research participants

Policy information about studies involving human research participants

Population characteristics We used publicly available data from the UK Biobank (UKB), which recruited 502,617 people aged 40 to 69 years from the
general population across the United Kingdom.

Recruitment Recruitment was done by the UK Biobank

Ethics oversight All UKB participants provided written informed consent and the study was granted ethical approval by the North West Multi-
Centre Ethics committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Magnetic resonance imaging

Experimental design

Design type

Design specifications

GMV and ROI analysis of T1-weighted structural brain MRI images

N/A

Behavioral performance measures  Self-reports

Acquisition
Imaging type(s)
Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI [ ] Used

Preprocessing

Preprocessing software

Normalization

Normalization template

Noise and artifact removal

Volume censoring

T1-weighted structural brain MRI images in NIFTI format
3T

The images were acquired using 3-T Siemens Skyra scanners, with a 32-channel head coil (Siemens, Erlangen, Germany),
with the following scanning parameters: repetition time = 2000 ms; echo time = 2.1 ms; flip angle = 8°; matrix size = 256
x 256 mm; voxel size = 1 x 1 x 1 mm; number of slices = 208.

Whole brain

X] Not used

We preprocessed the data using the Computational Anatomy Toolbox (CAT; www.neuro.uni-jena.de/cat/) for SPM12
(www.fil.ion.ucl.ac.uk/spm/software/spm12/). Image pre-processing used the default setting of CAT12 (accessible online at
http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf). Images were corrected for bias-field inhomogeneities, segmented
into gray matter, white matter, and cerebrospinal fluid (CSF), spatially normalized to the MNI space using linear and non-
linear transformations, and were modulated to preserve the total amount of signal in the original image during spatial
normalization (the specific SPM-processing parameters can be found in the pre-registered document on OSF https://osf.io/
gkp4g/). We applied spatial smoothing with 8-mm Full-Width-at-Half-Maximum (FWHM) Gaussian kernel for the segmented,
modulated images for grey matter volume (GMV).

We spatially normalized images to MNI152 space using linear and non-linear transformations (see CAT12 image
normalization at http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf)

DARTEL and Geodesic Shooting templates in MNI space (CAT12 manual): "These

templates were derived from 555 healthy control subjects of the IXI-database
(http://www.brain-development.org) and are available in the MNI space for six different iteration
steps of the DARTEL and Geodesic Shooting normalization."

Denoising from the CAT12 manual: "We also use two noise reduction methods to make data processing, and the tissue
segmentation in particular, more robust against noise. The first method is a spatial-adaptive Non-Local Means
(SANLM) denoising filter and removes noise while maintaining edges (Manjon et al., 2010) and is

implemented as pre-processing step. The second method is a classical Markov Random Field

(MRF) approach, which includes spatial information from adjacent voxels in the segmentation

estimation (Rajapakse et al., 1997) and is part of the AMAP segmentation. The strength of the

filters is automatically determined by estimating the residual noise in the image or can be set

manually."

Following standard VBM procedures (see SPM/CAT12

http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf) we thresholded the average of all brain images at 250 GMV
intensity units. The resulting image was binarized and applied as a pre-mask to all individual images before running analyses.
Additionally, on an individual level, we excluded all voxels that exhibited a lower grey matter volume than .1 from the
analyses (see standard parameters of SPM/CAT12 http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf).

Statistical modeling & inference

Model type and settings

Effect(s) tested

Linear Regression models at the voxel or ROI level.

N/A

Specify type of analysis: [ | Whole brain [ | ROI-based Both

Anatomical location(s) Whole brain

Statistic type for inference
(See Eklund et al. 2016)

voxel level (or ROl level) permutation tests
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Correction FWE

Models & analysis

n/a | Involved in the study
IXI D Functional and/or effective connectivity

IXI D Graph analysis

IZ |:| Multivariate modeling or predictive analysis
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