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Abstract. Recently, several works have studied a leakage model that
assumes leakage of some fraction of the NTT coordinates of the secret
key in RLWE cryptosystems (or equivalently, intentionally sampling se-
crets with some fraction of NTT coordinates set to 0) [21,9]. This can
be viewed as a partial key exposure problem, since for efficiency pur-
poses, secret keys in RLWE cryptosystems are typically stored in their
NTT representation. We extend this study by analyzing the security of
the NewHope key exchange scheme under partial key exposure of 1/8-
fraction of the NTT coordinates of the parties’ secrets. We adopt the
formalism of the decision Leaky-RLWE (Leaky-DRLWE) assumption in-
troduced in [21], which posits that given leakage on a sufficiently small
fraction of NTT coordinates of the secret, the remaining coordinates of
the output remain indistinguishable from uniform. We note that the as-
sumption of [21] is strictly weaker than the corresponding assumption
of [9], which requires that the entire output remain indistinguishable
from uniform. We show that, assuming that Leaky-DRLWE is hard for
1/8-fraction of leakage, the shared key v (which is then hashed using
a random oracle) is computationally indistinguishable from a random
variable with average min-entropy 237, conditioned on the transcript
and leakage, whereas without leakage the min-entropy is 256. Note that
2 · 1738 number of bits of information are leaked in this leakage model,
and so the fact that any entropy remains in the shared 256-bit key is
non-trivial.

1 Introduction

The cryptographic community is currently developing “post-quantum” cryp-
tosystems — cryptosystems believed to remain secure even in the presence of a
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quantum adversary — to replace known quantum-insecure cryptosystems based
on the factoring and discrete log assumptions. One of the foremost avenues
for efficient, post-quantum public key cryptography is the construction of cryp-
tosystems from the Ring-LWE (RLWE) assumption. RLWE is often preferred
in practice over standard LWE due to its algebraic structure, which allows for
smaller public keys and more efficient implementations. In the RLWE setting,
we typically consider rings of the form Rq := Zq[x]/(xn + 1), where n is a power
of two and q ≡ 1 mod 2n. The (decisional) RLWE problem is then to distin-
guish (a, b = a · s + e) ∈ Rq × Rq from uniformly random pairs, where s ∈ Rq
is a random secret, the a ∈ Rq is uniformly random and the error term e ∈ R
has small norm. A critical question is whether the additional algebraic structure
of the RLWE problem renders it less secure than the standard LWE problem.
Interestingly, to the best of our knowledge—for the rings used in practice and
for practical parameter settings—the best attacks on RLWE are generic and
can equally well be applied to standard LWE [45]. However, the situation with
respect to robustness under leakage is quite different. While LWE is known to
retain its security under leakage, as long as the secret has sufficiently high min-
entropy conditioned on the leakage [32], the same is not always true for RLWE,
as shown in several recent works [21,9]. In this work, we explore leakage models
under which RLWE-based cryptosystems can be proven secure.

The NTT transform. A key technique for fast computation in the RLWE setting
is usage of the NTT transform (similar to the Discrete Fourier Transform (DFT),
but over finite fields) to allow for faster polynomial multiplication over the ring
Rq. Specifically, applying the NTT transform to two polynomials p,p′ ∈ Rq—
resulting in two n-dimensional vectors, p̂, p̂′ ∈ Znq—allows for component-wise
multiplication and addition, which is highly efficient . Typically, the RLWE
secret will then be stored in NTT form, and so leakage of coordinates of the
NTT transform is a natural way to model partial key exposure attacks.

NewHope key exchange protocol. Our results focus on analysis of the NewHope
key exchange protocol of [4] in the presence of partial key exposure. Briefly,
NewHope key exchange is a post-quantum key exchange protocol that has been
considered as a good candidate for practical implementation, due to its computa-
tional efficiency and low communication. Specifically, Google has experimented
with large-scale implementation of NewHope in their Chrome browser [14] to
determine the feasibility of switching over to post-quantum key exchange in the
near-term.

This work. The goal of this work is to further the study of partial key exposure in
RLWE based cryptosystems, initiated in [21] and [9]. Specifically, we adopt the
notion of the decisional versions of Leaky RLWE assumptions introduced in [21],
where the structured leakage occurs on the coordinates of the NTT transform
of the LWE secret (and/or error) and analyze the security of the NewHope key
exchange protocol under the decision version of the assumption.
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1.1 Leaky RLWE Assumptions–Search and Decision Versions

We next briefly introduce the search and decision versions of the Leaky RLWE
assumptions.

For p ∈ Rq := Zq/(xn + 1) we denote p̂ := NTT(p) :=
(p(ω1),p(ω3), . . . ,p(ω2n−1)), where ω is a primitive 2n-th root of unity modulo
q, and is guaranteed to exist by choice of prime q, s.t. q ≡ 1 mod 2n. Note that
p̂ is indexed by the set Z∗2n.

The search version of the Ring-LWE problem with leakage, denoted SRLWE,
is parameterized by (n′ ∈ {1, 2, 4, 8, . . . n},S ⊆ Z∗2n′). The goal is to recover
the RLWE secret s = NTT−1(ŝ), given samples from the distribution Dreal,n′,S

which outputs
(
â, â · ŝ+ ê, [ŝi]i≡αmod 2n′ |∀α∈S

)
, where a, s, and e are as in the

standard RLWE assumption.
The decision version of the Ring-LWE problem with leakage, denoted DRLWE

is parameterized by (n′ ∈ {1, 2, 4, 8, . . . n},S ⊆ Z∗2n′). The goal is to distin-
guish the distributions Dreal,n′,S and Dsim,n′,S , where Dreal,n′,S is as above and

Dsim,n′,S outputs
(
â, û, [ŝi]i≡αmod 2n′ |∀α∈S

)
, where ûi = âi · ŝi + êi for i ≡ α

mod 2n′, α ∈ S and ûi is chosen uniformly at random from Zq, otherwise.
When S = {α} consists of a single element, we abuse notation and write

the Leaky-RLWE parameters as (n′, α). Due to automorphisms on the NTT
transform, Leaky-RLWE with parameters (n′,S) where S = {α1, α2, . . . , αt},
is equivalent to Leaky-RLWE with parameters (n′,S ′), where S ′ = α−11 · S
(multiply every element of S by α−11 ).

1.2 Our Results

We show the following:

Theorem 1.1 (Informal). Assuming that Leaky-DRLWE with leakage param-
eters (8, α = 1) and RLWE parameters n = 1024, q = 12289 and error distribu-
tion χ3 is hard, the shared key v (which is then hashed using a random oracle)
of the NewHope key exchange protocol is computationally indistinguishable from
a random variable with average min-entropy 237, conditioned on the transcript
and leakage of [ŝ, ê, ŝ′, ê′, ê′′]i≡α mod 16.

Moreover, using known relationships between average min-entropy and min-
entropy, we have that with all but 2−80 probability, the shared key v is indistin-
guishable from a random variable that has min-entropy 157, conditioned on the
transcript and leakage. Note that without leakage, the min-entropy is only 256.
This means that the number of leaked bits is far larger than the min-entropy, so
the fact that any entropy remains is non-trivial. Indeed, bounding the remain-
ing entropy will require precise analysis of the “key reconciliation” step of the
NewHope algorithm.

As mentioned above, due to automorphisms on the NTT transform [38],
setting α = 1 is WLOG, and α can be any value in Z∗16. While the above may

3 χ is a rounded Gaussian with standard deviation
√

8, as in the NewHopew.



4 Dachman-Soled et al.

seem straightforward, given that we are already assuming hardness of Leaky-
DRLWE, the challenge comes not in the computational part of the analysis
(which indeed essentially substitutes instances of Leaky-DRLWE for instances
of DRLWE), but in the information-theoretic part of the analysis. Specifically,
we must show that given the adversary’s additional knowledge about v, as well
as the transcript, which includes the reconciliation information (corresponding
to the output of a randomized function of v), the input v to the random oracle
still has sufficiently high min-entropy. For a discussion of our proof techniques,
see Section 1.3.

The above theorem could be made more general, and stated in asymptotic
form for broader settings of leakage parameters (n′,S). However, there is one
step in the proof that is not fully generic (although we believe it should hold for
wide ranges of parameters) and so for simplicity we choose to state the theorem
in terms of the concrete parameters above. Very informally, for the proof to go
through, we need to argue existence of a vector of a certain form, where existence
depends on the parameter settings of n, q, n′ and S. For this step of the proof we
can apply a heuristic argument and we confirm existence experimentally for the
concrete parameter settings. We discuss the details of the heuristic argument in
Section 4.4.

Choice of n′ = 8 in Theorem 1.1. Experimental results from prior work indicated
that the search version of Leaky RLWE is easy for parameters (n′, α = 1), where
n′ = 4 (recall that setting α = 1 is WLOG), and seems hard for parameters
(n′, α = 1), where n′ = 8 and α ∈ Z∗16. This, combined with their search-to-
decision reduction, support the conjecture that the decision version of Leaky
RLWE holds (i.e. Dreal,8,1 ≈ Dsim,8,1), for the NewHope parameter settings of
n = 1024, q = 12289, and χ = Ψ16, where Ψ16 is centered binomial distribution
with parameter 16. 4

1.3 Technical Overview

Overview of NewHope Algorithm. We start with an overview of the
NewHope key-exchange protocol of [3] and then provide the necessary details
relevant to this work. The protocol starts by server P1 choosing a uniform ran-
dom polynomial from ring Rq as public key a (note that the elements of Rq are
polynomials) and sharing it with client P2. Both P1 and P2 sample the RLWE
secrets (resp. errors) s and s′ locally. The parties then exchange the RLWE
samples b,u.

At this point both the parties share an approximate of shared secret a · s · s′.
P2 then generates some additional information r using P1’s RLWE instance b,
and shares it with P1. Both the parties then apply a reconciliation function Rec
on their approximate inputs locally. The protocol ensures that after running Rec,
the parties agree on the exact same value v.

Finally, the parties apply hash function on v (as instantiation of random
oracle) to agree on the key. Thus, the security proof can now rely on the unpre-

4 The centered binomial distribution is defined in Section 4.1.
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dictability of random oracle on input v, rather than arguing that v is indistin-
guishable from a uniform random value.

Resilience of NewHope to Partial Key Exposure. Recall that P2 gener-
ates additional information r for P1, which is generated by applying a function
HelpRec locally on input v derived using P1’s RLWE instance b and P2’s secret
s′. The ring element v ∈ Znq that is input to the HelpRec function in the NewHope
protocol is split into vectors xi ∈ Z4

q, i ∈ {0, . . . , n/4− 1} and then the HelpRec
function is run individually on each xi. It is not hard to show that, under the
Leaky-DRLWE assumption, the distribution over the xi (given the transcript
and the leakage), for i ∈ {n/8, . . . , n/4 − 1} is indistinguishable from uniform
random in Z4

q and for i ∈ {0, . . . , n/8 − 1}, is indistinguishable from uniform
random, given a single linear constraint. Specifically, for i ∈ {0, . . . , n/8 − 1},
the xi is uniform random, conditioned on cω,α · xi = γi, for a known cω,α and
γi. The technically difficult part of the proof is showing that, with high prob-
ability over γi, the min-entropy of Rec(xi, ri) is close to 1, conditioned on both
the output of HelpRec(xi; b) = ri (for a bit b ∈ {0, 1}) and the linear constraint
cω,α · xi = γi. This indicates that the probability of guessing the corresponding
bit is close to 1/2, even with respect to an adversary who sees both the transcript
and the leakage.

We handle this by showing the existence of a bijective map: (xi, b
′)→ (x′i, b

′⊕
1) such that, HelpRec(xi, b) = HelpRec(x′i, b

′) (= r) with high probability 1 − p,
and it guarantees Rec(xi, r) = 1⊕Rec(x′i, r). Specifically, we set x′ = x+w as the
bijective relation. Unlike the original proof from NewHope protocol where wi =
(b− b′+ q)(1/2, 1/2, 1/2, 1/2), we need wi to be close to (q/2, q/2, q/2, q/2) and
also satisfy an additional linear constraint cω,α ·wi = 0 to ensure cω,α · x′i = γi,
which is the information that can be derived about xi for i ∈ {0, . . . , n/8 − 1}
from the leakage. In this setting, we can easily prove that if HelpRec(xi, b) =
(xi, b) (= r) then Rec(xi, r) = 1 ⊕ Rec(x′i, r) following similar argument as in
NewHope paper. Then it remains to show that HelpRec(xi, b) = HelpRec(x′i, b

′)

(= r) with high probability 1 − p. Since HelpRec(x; b) = CVPD̃4

(
2r

q (x + bg)
)

mod 2r as defined, it is equivalent to prove CVPD̃4
(z) = CVPD̃4

(z+β) with high
probability 1 − p, where z,β are variables that depend on x,w which are later
defined explicitly in Section 4.1. 5 We then analyze the case-by-case probability
that algorithm CVPD̃4

on input z and on input z + β disagree in the first three
steps and eventually bound the probability that CVPD̃4

(z) 6= CVPD̃4
(z + β).

1.4 Related Work

Partial key exposure. There is a large body of work on partial key exposure
attacks on RSA, beginning with the seminal work of Boneh et al. [10]. Partial
key exposure attacks on RSA are based on a cryptanalytic method known as

5 Here, v′ = CVPL(v) denotes, the output of running Closest Vector Problem solver,
on input vector v, which returns vector v′ which is the closest lattice vector to v in
lattice L. The lattice D̃4, is defined in Section 4.1.
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Coppersmith’s method [19,18]. There has been a long sequence of improved
partial key exposure attacks on RSA, see for example [8,30,48,50].

Leakage-resilient cryptography. The study of provably secure, leakage-resilient
cryptography was introduced by the work of Dziembowski and Pietrzak in [29].
Pietrzak [46] also constructed a leakage-resilient stream-cipher. Brakerski et
al. [16] showed how to construct a schemes secure against an attacker who leaks
at each time period. There are other works as well considering continual leak-
age [26,36]. There are also work on leakage-resilient signature scheme [35,13,40].

Robustness of Lattice-based scheme. One of the first and important work is by
Goldwasser et al. [33] which shows that LWE is secure even in the cases where se-
cret key is taken from an arbitrary distribution with sufficient entropy and even
in the presence of hard-to-invert auxiliary inputs. Additionally they constructed
a symmetric-key encryption scheme based on standard LWE assumption, that is
robust to secret key leakage. Authors of [1] showed that the public-key scheme of
[47] is robust against an attacker which can measure large fraction of secret key
without increasing the size of secret key. Dodis et al. [27] presented construction
in the case where the leakage is a one way function of the secret (exponentially
hard to invert). Their construction are related to LWE assumptions. Dodis et
al. [25] presented a construction of public-key cryptosystems based on LWE in
the case where the adversary is given any computationally uninvertible function
of the secret key. Albrecht et al. [2] consider the ring-LWE and investigate cold
boot attacks on schemes based on these problem. They specifically looked into
two representation of secret key, namely, polynomial coefficients and encoding
of the secret key using a number theoretic transform (NTT). Dachman-Soled et
al. [20] considered the leakage resilience of a RLWE-based public key encryp-
tion scheme for specific leakage profiles. Stange [49] ishowed that given multiple
samples of RLWE instances such that the public key for every instance lies in
some specific subring, one can reduce the original RLWE problem to multiple
independent RLWE problems over the subring.

Recently, Bolboceanu et al. [9] considered the setting of “Order LWE,” where
the LWE secret is sampled from an order. One example of this considered by [9]
is sampling the RLWE secret from an ideal I ⊆ qR. It is straightforward to see
that sampling the RLWE secret uniformly at random from Rq and then leaking
the NTT coordinates i such that i = α mod 2n′ is equivalent to sampling the
RLWE secret from the ideal I that containsgit those elements whose NTT trans-
form is 0 in positions i such that i = α mod 2n′. Bolboceanu et al. [9] present
both positive results (cases in which a security reduction can still be proved) and
a negative result (cases in which the LWE assumption can be broken). However,
when fixes the leakage rate to 1/8, neither of these results covers practical pa-
rameter ranges of dimension, modulus and noise rate. As mentioned previously,
their decisional assumption is strictly stronger than the assumption adopted in
this work. In recent work of Brakerski and Döttling [15] it was shown that the
distributions with sufficiently high noise lossiness will lead to hard instances of
entropic LWE, which are special kind of LWE samples where the distrubtion of
the secret can be from a family of distributions.
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Lattice-based key exchange. An important research direction is the design of
practical, lattice-based key exchange protocols, which are post-quantum secure.
Some of the most influential proposed key exchange protocols include those
introduced by Ding [24], Peikert [43], and the NewHope protocol of Alkim et
al. [4]. We also mention the Frodo protocol of Bos et al. [11], the Kyber protocol
of Bos et al [12], the NTRU protocol of Chen at al. [17], the Round5 protocol
of Garcia-Morchon et al. [31], the SABER protocol of D’Anvers et al. [23], the
Threebears protocols of Hamburg [34], the NTRU Prime protocol of Bernstein et
al. [7], and the LAC protocol of Lu et al. [37], which are the other lattice-based
KEMs that were selected as candidates for Round 2 of the NIST Post-Quantum
Cryptography standardization effort.

2 Preliminaries

For a positive integer n, we denote by [n] the set {0, . . . , n−1}. We denote vectors
in boldface x and matrices using capital letters A. For vector x over Rn or Cn,

define the `2 norm as ‖x‖2 = (
∑
i |xi|

2
)
1/2

. We write as ‖x‖ for simplicity. We
use the notation ≈t(n),p(n) to indicate that adversaries running in time t(n) can
distinguish two distributions with probability at most p(n).

2.1 Lattices and background

Let T = R/Z denote the cycle, i.e. the additive group of reals modulo 1. We
also denote by Tq its cyclic subgroup of order q, i.e., the subgroup given by
{0, 1/q, . . . , (q − 1)/q}.

Let H be a subspace, defined as H ⊆ CZ∗m , (for some integer m ≥ 2),

H = {x ∈ CZ∗m : xi = xm−i, ∀i ∈ Z∗m}.

A lattice is a discrete additive subgroup of H. We exclusively consider the
full-rank lattices, which are generated as the set of all linear integer combinations
of some set of n linearly independent basis vectors B = {bj} ⊂ H:

Λ = L(B) =

∑
j

zjbj : zj ∈ Z

 .

The determinant of a lattice L(B) is defined as |det(B)|, which is independent
of the choice of basis B. The minimum distance λ1(Λ) of a lattice Λ (in the
Euclidean norm) is the length of a shortest nonzero lattice vector.

The dual lattice of Λ ⊂ H is defined as following, where 〈·, ·〉 denotes the
inner product.

Λ∨ = {y ∈ H : ∀x ∈ Λ, 〈x,y〉 =
∑
i

xiyi ∈ Z}.

Note that, (Λ∨)
∨

= Λ, and det(Λ∨) = 1/det(Λ).
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Theorem 2.1. Let L ⊆ Rn be a full dimensional lattice, and let B denote a
basis of L. Let K ⊆ Rn be a convex body. Let ε > 0 denote a scaling such that
P(B) ∪ −P(B) ⊆ εK. For all r > ε, we have that

(r − ε)nVoln(K)

det(L)
≤ |rK ∩ L| ≤ (r + ε)n

Voln(K)

det(L)
.

Proof. Details can be found in [22].

2.2 Volume of Hypercube Clipped by One Hyperplane

In this subsection, we consider a unit hypercube and a half hyperspace over n-
dimension and want to know volume of their intersection, which can be handled
by the following theorem.

Let [n] be an ordered set {0, 1, . . . , n − 1}. Let | · | denote the cardinality of
a set. For v = (v0, v1, . . . , vn−1) ∈ Rn, we define v0 as v0 := {i ∈ [n] | vi = 0}.
Let F 0 be a set of all vertices that each coordinate is either 0 or 1, written as
F 0 = {(v0, v1, . . . , vn−1) | vi = 0 or 1 for all i.}.

Theorem 2.2. ([6], revisited by [41, Theorem 1])

vol([0, 1]n ∩H+) =
∑

v∈F 0∩H+

(−1)|v0|g(v)n

n!
∏n
t=1 at

,

where the half space H+
1 is defined by

{t | g(t) := a · t + r1 = a0x0 + a1x1 + · · ·+ an−1xn−1 + r1 ≥ 0}

with
∏n
t=1 at 6= 0.

We now present some background on Algebraic Number Theory.

2.3 Algebraic Number Theory

For a positive integer m, the mth cyclotomic number field is a field extension
K = Q(ζm) obtained by adjoining an element ζm of order m (i.e. a primitive
mth root of unity) to the rationals. The minimal polynomial of ζm is the mth

cyclotomic polynomial

Φm(X) =
∏
i∈Z∗m

(X − ωim) ∈ Z[X],

where ωm ∈ C is any primitive mth root of unity in C.
For every i ∈ Z∗m, there is an embedding σi : K → C, defined as σi(ζm) = ωim.

Let n = ϕ(m), the totient of m. The trace Tr : K → Q and norm N : K → Q
can be defined as the sum and product, respectively, of the embeddings:

Tr(x) =
∑
i∈[n]

σi(x) and N(x) =
∏
i∈[n]

σi(x).
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For any x ∈ K, the lp norm of x is defined as ‖x‖p = ‖σ(x)‖p =
(
∑
i∈[n] |σi(x)|p)1/p. We omit p when p = 2. Note that the appropriate notion of

norm ‖·‖ is used throughout this paper depending on whether the argument is
a vector over Cn, or whether the argument is an element from K; whenever the
context is clear.

2.4 Ring of Integers and Its Ideals

Let R ⊂ K denote the set of all algebraic integers in a number field K. This
set forms a ring (under the usual addition and multiplication operations in K),
called the ring of integers of K. Ring of integers in K is written as R = Z[ζm].

The (absolute) discriminant ∆K of K measures the geometric sparsity of its
ring of integers. The discriminant of the mth cyclotomic number field K is

∆K =

 m∏
prime p|m

p1/(p−1)


n

≤ nn,

in which the product in denominator runs over all the primes dividing m.
An (integral) ideal I ⊆ R is a non-trivial (i.e. I 6= ∅ and I 6= {0}) additive

subgroup that is closed under multiplication by R, i,e., r · a ∈ I for any r ∈ R
and a ∈ I. The norm of an ideal I ⊆ R is the number of cosets of I as an
addictive subgroup in R, defined as index of I, i.e., N(I) = |R/I|. Note that
N(IJ ) = N(I)N(J ).

A fractional ideal I in K is defined as a subset such that I ⊆ R is an integral
ideal for some nonzero d ∈ R. Its norm is defined as N(I) = N(dI)/N(d). An
ideal lattice is a lattice σ(I) embedded from a fractional ideal I by σ in H. The
determinant of an ideal lattice σ(I) is det(σ(I)) = N(I) ·

√
∆K . For simplicity,

however, most often when discussing about ideal lattice, we omit mention of σ
since no confusion is likely to arise.

Lemma 2.3 ([39]). For any fractional ideal I in a number field K of degree n,

√
n · N1/n(I) ≤ λ1(I) ≤

√
n · N1/n(I) ·

√
∆

1/n
K .

For any fractional ideal I in K, its dual ideal is defined as

I∨ = {a ∈ K : Tr(aI) ⊂ Z}.

Definition 2.4. For R = Z[ζm], define g =
∏
p(1− ζp) ∈ R, where p runs over

all odd primes dividing m. Also, define t = m̂
g ∈ R, where m̂ = m

2 if m is even,
otherwise m̂ = m.

The dual ideal R∨ of R is defined as R∨ = 〈t−1〉, satisfying R ⊆ R∨ ⊆ m̂−1R.
For any fractional ideal I, its dual is I∨ = I−1 ·R∨. The quotient R∨q is defined
as R∨q = R∨/qR∨.

Fact 2.5 ([39]). Assume that q is a prime satisfying q = 1 mod m, so that
〈q〉 splits completely into n distinct ideals of norm q. The prime ideal factors of
〈q〉 are qi = 〈q〉 + 〈ζm − ωim〉, for i ∈ Z∗m. By Chinese Reminder Theorem, the
natural ring homomorphism R/〈q〉 →

∏
i∈Z∗m

(R/qi) ∼= (Znq ) is an isomorphism.
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2.5 Ring-LWE

We next present the formal definition of the ring-LWE problem as given in [39].

Definition 2.6 (Ring-LWE Distribution). For a “secret” s ∈ R∨q (or just
R∨) and a distribution χ over KR, a sample from the ring-LWE distribution As,χ
over Rq × (KR/qR

∨) is generated by choosing a ← Rq uniformly at random,
choosing e← χ, and outputting (a, b = a · s+ emod qR∨).

Definition 2.7 (Ring-LWE, Average-Case Decision). The average-case
decision version of the ring-LWE problem, denoted DRLWEq,χ, is to distinguish
with non-negligible advantage between independent samples from As,χ, where s←
χ is sampled from the error distribution, and the same number of uniformly
random and independent samples from Rq × (KR/qR

∨).

Theorem 2.8. [39, Theorem 2.22] Let K be the mth cyclotomic number field
having dimension n = ϕ(m) and R = OK be its ring of integers. Let α =
α(n) > 0, and q = q(n) ≥ 2, q = 1 modm be a poly(n)-bounded prime such
that αq ≥ ω(

√
log n). Then there is a polynomial-time quantum reduction from

Õ(
√
n/α)-approximate SIVP (or SVP) on ideal lattices in K to the problem of

solving DRLWEq,χ given only l samples, where χ is the Gaussian distribution

Dξ for ξ = α · q · (nl/log (nl))
1/4

.

2.6 Number Theoretic Transform (NTT)

Let Rq := Zq[x]/xn + 1 be the ring of polynomials, with n = 2d for any positive
integer d. Also, let m = 2n and q = 1 modm. For, ω a mth root of unity in Zq
the NTT of polynomial p =

∑n−1
i=0 pix

i ∈ Rq is define as,

p̂ = NTT(p) :=
n−1∑
i=0

p̂ix
i

where the NTT coefficients p̂i are defined as: p̂i =
∑n−1
j=0 pjω

j(2i+1).

The function NTT−1 is the inverse of function NTT, defined as

p = NTT−1(p̂) :=
n−1∑
i=0

pix
i

where the NTT inverse coefficients pi are defined as: pi = n−1
∑n−1
j=0 p̂jω

i(2j+1).

We next present the definitions of min-entropy and average min-entropy.

2.7 Min-Entropy and Average Min-Entropy

Definition 2.9 (Min-Entropy). A random variable X has min-entropy k, de-
noted H∞(X) = k, if

max
x

Pr[X = x] = 2−k.
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Definition 2.10 (Average Min-Entropy). Let (X,Z) be a pair of random vari-
ables. The average min entropy of X conditioned on Z is

H̃∞(X | Z)
def
= − logEz←Z max

x
Pr[X = x | Z = z].

Lemma 2.11 ([28]). For any δ > 0, H∞(X | Z = z) is at least H̃∞(X |
Z)− log(1/δ) with probability at least 1− δ over the choice of z.

3 Search and Decisional RLWE with Leakage

In this section we define the search and decisional ring-LWE problem with struc-
tured leakage on the secret key (i.e. partial key exposure). The definition is
similar to the definition 2.7.

Ring elements (polynomials) p are stored as a vector of their co-
efficients (p0, . . . , pn−1). For p ∈ Rq we denote p̂ := NTT(p) :=
(p(ω1),p(ω3), . . . ,p(ω2n−1)), where ω is a 2n-th primitive root of unity in Zq
(which exists since q is prime and q ≡ 1 mod 2n), and p(ωi) for i ∈ Z∗2n denotes
evaluation of the polynomial p at ωi. Note that p̂ is indexed by the set Z∗2n.

Definition 3.1 (Ring-LWE, Search with Leakage). The search version of
the ring-LWE problem with leakage, denoted SRLWEq,ψ,n′,S , is parameterized by
(n′ ∈ {1, 2, 4, 8, . . . n},S ⊆ Z∗2n′). The experiment chooses s ← χ, where s =
NTT−1(ŝ). The goal of the adversary is to recover s, given independent samples

from the distribution Dreal,n′,S , which outputs
(
â, â · ŝ+ ê, [ŝi]i≡αmod 2n′ |∀α∈S

)
where a, e are obtained from As,ψ as described in definition 2.6.

Definition 3.2 (Ring-LWE, Decision with Leakage). The decision version
of the ring-LWE problem with leakage, denoted Leaky-DRLWEq,ψ,n′,S , is param-
eterized by (n′ ∈ {1, 2, 4, 8, . . . n},S ⊆ Z∗2n′). The experiment chooses s ← χ,
where s = NTT−1(ŝ). The goal of the adversary is to distinguish between inde-
pendent samples from the distributions Dreal,n′,S and Dsim,n′,S , where Dreal,n′,S

outputs
(
â, â · ŝ+ ê, [ŝi]i≡αmod 2n′ |∀α∈S

)
where a, e are obtained from As,ψ as

described in definition 2.6. And the Dsim,n′,S outputs
(
â, û, [ŝi]i≡αmod 2n′ |∀α∈S

)
where a, e are obtained from As,ψ as described in Definition 2.6,and

ûi = âi · ŝi + êi | i ≡ αmod 2n′ ∀α ∈ S

and

ûi ← Zq

chosen uniformly random, otherwise.

Note that in the above definitions, the adversary can receive the leak-
age [êi]i≡αmod 2n′ |∀α∈S for each error vector as well, since given â and

[ŝi]i≡αmod 2n′ |∀α∈S , the adversary can derive [êi]i≡αmod 2n′ |∀α∈S .
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Fact 3.3. If decisional RLWE with leakage parameterized by (n′,S) as above
is hard for uniformly distributed â, then it is also hard for â that is arbi-
trarily distributed in positions i such that i ≡ α mod 2n′, α ∈ S and uniformly
distributed elsewhere.

This is because given an RLWE instance with leakage(
â, û, [ŝi]i≡αmod 2n′ |∀α∈S

)
, for i ≡ α mod 2n′, α ∈ S one can change

the instance from âi to â′i by adding (â′i − âi) · ŝi from the i-th coordinate of û.

When S = {α} consists of a single element, we abuse notation and write the
Leaky-RLWE parameters as (n′, α).

4 Leakage Analysis of New Hope Key Exchange

4.1 New Hope Key Exchange scheme

It contains New Hope key exchange scheme and subroutines of HelpRec and Rec.
In this section we revise some important results and algorithms from [3].

Let D̃4 be a lattice as defined below:

D̃4 = Z4 ∪ g + Z4 where gt =

(
1

2
,

1

2
,

1

2
,

1

2

)
Let, B = (u0,u1,u2, g) be the basis of D̃4, where ui are the canonical basis
vectors of Z4. Note that u3 = B · (−1,−1,−1, 2)

t
. Also, let V be the Voronoi

cell of D̃4. 6

Note that, u0,u1,u2, and 2g are in Z4. Therefore, a vector in D̃4/Z4 can be
checked by simply checking the parity of its last coordinate when represented
with basis B. We can now use a simple encoding and decoding scheme to rep-
resent a bit. The encoding algorithm is as follows: Encode(k ∈ {0, 1}) = kg. For
decoding to D̃4/Z4, the correctness requires that the error vector e ∈ V . As
noted in [3], this is equivalent to checking if ‖e‖1 ≤ 1. We can now present the
decoding algorithm as follows in figure 4.1 :

Algorithm 4.1 (Algorithm 1). Decode (x ∈ R4/Z4)

Ensure:A bit k such that kg is a closest vector tox+Z4 : x−kg ∈ V +Z4

1 v = x− bxe
2 return 0 if ‖v‖1 ≤ 1 and 1 otherwise

Lemma 4.2. (Lemma C.1 [3]) For any k ∈ {0, 1} and any e ∈ R4 such that
‖e‖1 < 1, we have Decode(kg + e) = k.

6 For more details and background on reconciliation mechanism of NewHope, please
refer to [3] (section 5 and appendix C)
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Let us now present the algorithm CVP (Closest Vector Problem), which will
be used as subroutine in reconciliation algorithms, as follows:

Algorithm 4.3 (Algorithm 2). CVPD̃4
(x ∈ R4)

Ensure:An integer vector z such thatBz is a closest vector tox : x −
Bz ∈ V
1 v0 ← bxe
2 v1 ← bx− ge
3 if (‖x− v0‖ < 1) then k ← 0 else k ← 1
4 (v0, v1, v2, v3)

t ← vk
5 return (v0, v1, v2, k)

t
+ v3 · (−1,−1,−1, 2)

t

Next, we define the r-bit reconciliation as,

HelpRec(x; b) = CVPD̃4

(
2r

q
(x+ bg)

)
mod 2r,

where b ∈ {0, 1} is a uniformly chosen random bit.

Lemma 4.4. (Lemma C.2 [3]) Assume r ≥ 1 and q ≥ 9. For any x ∈ Z4
q, set

r := HelpRec(x) ∈ Z4
2r . Then, 1

qx −
1
2rBrmod 1 is close to a point of D̃4/Z4,

precisely, for α = 1
2r + 2

q : 1
qx−

1
2rBr ∈ αV +Z4 or 1

qx−
1
2rBr ∈ g+αV +Z4.

Additionally, for x uniformly chosen in Z4
q we have Decode

(
1
qx−

1
2rBr

)
is

uniform in {0, 1} and independent of r.

Let, Rec(x, r) = Decode
(

1
qx−

1
2rBr

)
.

We can now define the following reconciliation protocol:

Algorithm 4.5 (Protocol 1). Reconciliation protocol in qD̃4/qZ4

Alice Bob
x′ ∈ Z4

q x′ ≈ x x′ ∈ Z4
q

r←− r ← HelpRec(x) ∈ Z4
2r

k′ ← Rec(x′, r) k ← Rec(x, r)

Lemma 4.6. (Lemma C.3 [3]) If ‖x− x′‖1 <
(
1− 1

2r

)
·q−2, then by the above

protocol 4.5 k = k′. Additionally, if x is uniform, then k is uniform independently
of r.

We define centered binomial distribution Ψ16 as the subtraction of two bino-
mial distribution B(16, 0.5) and Ψn16 is n draw from that distribution.

We now present the complete NewHope key exchange protocol given in [3]
as protocol 4.7.
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Algorithm 4.7 (Protocol 2). Parameters: q = 12289, n = 1024 Error
Distribution: Ψ16

Alice (server) Bob (client)
Sample: a← Rq
s, e←− Ψn16 s′, e′, e′′ ←− Ψn16
ŝ := NTT(s), ê := NTT(e) ŝ′ := NTT(s′), ê′ := NTT(e′)

ê′′ := NTT(e′′)

b̂ := â · ŝ+ ê
â,b̂−−→

û := â · ŝ′ + ê′

v̂ := b̂ · ŝ′ + ê′′

v := NTT−1(v̂)
(û,r)←−−− r ← HelpRec(v)

w := NTT−1(û · ŝ) v ← Rec(v, r)
v ← Rec(w, r) µ← SHA3− 256(v)
µ← SHA3− 256(v)

4.2 Security with Auxiliary Inputs

In this section we consider a modification to Protocol 4.7 in which all binomial
random variables are instead drawn from discrete Gaussians with corresponding
standard deviation σ. Specifically, we assume that the coefficients of the secret
and error vectors are drawn from Dσ̃ (a discretized, Gaussian distribution with

probability mass function proportional to e−πx
2/(σ̃2)), where σ̃ =

√
2π · σ. 7

We prove in Corollary 4.15 that the distribution over v, given the transcript
of the modified protocol, is (with all but negligible probability) indistinguishable
from a distribution with high min-entropy. By the analysis of [3] leveraging Renyi
divergence and the random oracle model, this is sufficient to argue security in
the presence of leakage.

The proof of Corollary 4.15 has two components. In the first (computational
and information-theoretic) component (proof of Theorem 4.8), we analyze the
distribution of v, conditioned on the transcript that does not include the recon-
ciliation information r and show that it is close to another distribution over v′.
In the second (information-theoretic only) component (proof of Theorem 4.9),
we analyze the expected min-entropy of v ← Rec(v′, r), conditioned on the ad-
versary’s view which now additionally includes the reconciliation information
r ← HelpRec(v′, b). These are then combined to obtain Corollary 4.15.

The view of the adversary in the modified protocol consists of the tuple

ViewA := (â, b̂, û, [ŝi, êi, ŝ
′
i, ê
′
i, ê
′′
i ]i≡α mod 2n′).

7 The proof of statistical closeness of binomial distribution Ψn
16, and discrete gaussian

distribution with σ =
√

8 can be found in Appendix B of the papers [3,4] which
introduced NewHope protocol.
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Moreover, note that v̂i = b̂i · ŝ′i + ê′′i , so [v̂i]i≡α mod 2n′ is deducible from the
view.

Let ηε(Λ) be the smoothing parameter of lattice Λ defined as follows:

Λ := {w | 〈(1, ωn/n
′
, ω2n/n′ , . . . , ω(n′−1)n/n′),w〉 = 0 mod q},

where ω is a 2n-th primitive root of unity modulo q.

Theorem 4.8. If the Ring-LWE decision problem with leakage is hard as de-
fined in Section 3 with parameters (n′ = 8, α ∈ Z∗2n′), and error distribution Dσ̃,
where σ̃ ≥ ηε(Λ), then

(1) The marginal distribution over [v̂i]i≡α mod 2n′ , is point-wise, multiplica-

tively (1 + ε)n/n
′
-close to uniform random over Zn/n

′

q , where we may set
ε = 1/166, when n′ = 8 for NewHope parameters.

(2) Given the adversary’s view, ViewA,

[v̂i]i6≡α mod 2n′

is computationally indistinguishable from uniform random over Zn−n/n
′

q .

Proof. We prove the above theorem by considering the adversary’s view in a
sequence of hybrid distributions.
Hybrid H0: This is the real world distribution

(â, b̂, û, [ŝi, êi, ŝ
′, ê′i, ê

′′
i ]i≡α mod 2n′ , v̂).

Hybrid H1: Here we replace b̃ by b̂
′
, where b̂

′
i = b̂i for i ≡ α mod 2n′ and b̂

′
i

is chosen uniformly at random from Zq for i 6≡ α mod 2n′.

(â, b̂
′
, û, [ŝi, êi, ŝ

′, ê′i, ê
′′
i ]i≡α mod 2n′ , v̂).

Claim 4.1. H0 ≈ H1

Claim 4.1 follows from the decision ring-LWE with leakage assumption Def-
inition 3.2 and Fact 3.3.

Hybrid H2: This is same as hybrid H1 except we replace û by û′ and v̂ by v̂′,
where û′i = ûi, v̂

′
i = v̂i, for i ≡ α mod 2n′ and û′i, v̂

′
i are chosen uniformly at

random from Zq for i 6≡ α mod 2n′.

(â, b̂
′
, û′, [ŝi, êi, ŝ

′, ê′i, ê
′′
i ]i≡α mod 2n′ , v̂

′).

Claim 4.2. H1 ≈ H2

Claim 4.2 follows from the decision ring-LWE with leakage assumption Def-
inition 3.2 and Fact 3.3.

We now analyze the distribution over [v̂′]i≡α mod 2n′ in HybridH2. First, note
that the distribution over [v̂′]i≡α mod 2n′ is unchanged in Hybrids H0, H1, H2.
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Further, we show that for every vector w ∈ Zn/n
′

q , Pr[[v̂′]i≡α mod 2n′ = w] ≤
(1+ε)n/n

′

qn/n′
(for ε as in the statement of Theorem 4.8). In fact, we will show that

the above holds for [ê′′]i≡α mod 2n′ and use the fact that for i ≡ α mod 2n′,

v̂′i = ê′′i + b̂′i · ŝ′i = ê′′i + b̂i · ŝ′i. This is sufficient to prove item (1) of Theorem 4.8.

We observe that there is a bijection between the vector [ê′′i ]i≡α mod 2n′ and

the polynomial f := e′′ mod (xn/n
′ − (ωα)n/n

′
), where ω is a 2n-th primi-

tive root of unity modulo q. We further assume WLOG that α = 1, as this
does not affect the computations, due to the ring automorphisms [38]. Now,
each of the coordinates of f is equal to fi := [1, ωn/n

′
, ω2n/n′ , . . . , ω(n′−1)n/n′ ] ·

[e′′i+j·n/n′ ]j∈{0,...,n′−1}, where each coordinate of e′′ is drawn independently

from Dσ̃ (a discretized, Gaussian distribution with probability mass function

proportional to e−πx
2/(σ̃2)). Since the n/n′ coordinates of f are independent,

it is sufficient to show that for each coordinate fi, and any value f̃i ∈ Zq,

Pr[fi = f̃i] ≤ 1+ε
q .

Towards this goal, consider the lattice Λ defined as follows:

Λ := {w | 〈(1, ωn/n
′
, ω2n/n′ , . . . , ω(n′−1)n/n′),w〉 = 0 mod q}.

We will show that σ̃ is larger than the smoothing parameter, ηε(Λ), of this lattice.
By definition, this implies that for each coordinate fi, and any value f̃i ∈ Zq,
Pr[fi = f̃i] ≤ 1+ε

q , which completes our argument.

We upperbound ηε(Λ), via the bound of [42, Lemma 3.3] on the smoothing
parameter of a lattice, observing that Λ has dimension n′:

ηε(Λ) ≤
√

ln(2n′(1 + 1/ε))

π
· λn′(Λ), (1)

where λn′(Λ) is the n′-th successive minimum of Λ.

Now, we consider applying the above to NewHope parameter settings with
n′ = 8 and ε = 1/166. Specifically, with standard deviation σ =

√
8 for error (as

in NewHope), the discrete Gaussian with the same standard deviation has pdf
proportional to

e−x
2/(2·σ2) = e−x

2/(2·
√
8
2
) = e−πx

2/(
√
16·π2

) = e−πx
2/(σ̃2),

where σ̃ = 4
√
π ≥ 7.0898154.

Plugging in our parameters in (1), we have that η1/166(Λ) ≤
√

ln(16·167)
π ·

λ8(Λ), where and λ8(Λ) is upperbounded by the maximum length over the vec-
tors in the reduced basis of Λ output by the BKZ algorithm. Since Λ is a dimen-
sion 8 lattice, we are able to efficiently compute λ8(Λ) ≤ 4.472136 using Sage’s
BKZ 2.0 implementation. Thus, we have that η1/166(Λ) ≤ 7.08753 ≤ σ̃.

We conclude as we have now shown that (1) and (2) of Theorem 4.8 hold in
Hybrid 2.
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Switching from NTT to polynomial representation. We showed that in Hybrid
H2, given fixed [v̂′i]i≡αmod 2n′ , the distribution over [v̂′i]i6≡αmod 2n′ is uniform ran-
dom. We now characterize the induced distribution of x := v′ (i.e. the polynomial
form), given [v̂′i]i≡αmod 2n′ . Henceforth, we assume for simplicity that n′ = 8.
Given [v̂′i]i≡αmod 16 an attacker can recover y(x) = v′(x) mod (xn/8− (ωα)n/8).
Thus the leaked information forms a linear equation as follow:

7∑
k=0

(ωα)
kn
8 v′kn

8 +i
= yi,

where i ∈ {0, . . . , n/8− 1}.
For i ∈ {0, . . . , n/8− 1}, fix v′kn

8 +i
, for k ∈ {1, 3, 5, 7} then we have

3∑
k=0

(ωα)
2kn
n′ v′2kn

n′ +i
= yi −

3∑
κ=0

(ωα)
(2k+1)n

8 v′(2k+1)n
8 +i

. (2)

Let γi be the right hand side of (2). Let cω,α = [1 (ωα)n/4 (ωα)n/2 (ωα)3n/4].
Thus the linear constraint corresponding to (2) can be written as fω,j(xi) :=
cω,α ·xi = γi, where xi ∈ Z4

q. Recall that due to automorphisms, we may assume
α = 1.

Distributions over polynomial representation. For every fixed set-
ting of [v̂′i]i≡αmod 2n′ , the distribution over [xi]i∈{n/8,...,n/4−1} =
[v′kn

8 +j
]j∈{0,...,n/8−1},k∈{1,3,5,7} is uniform random. This corresponds to

setting xi ← Z4
q uniformly at random, for i ∈ {n/8, . . . , n/4 − 1}.

Given [v̂′i]i≡αmod 2n′ and the fixed values of xi, the distribution over
[xi]i∈{0,...,n/8−1} = [v′kn

8 +j
]j∈{0,...,n/8−1},k∈{0,2,4,6}, which we denote by

Sγ = (Sγ0 , . . . ,Sγn/8−1
), corresponds to, for each i ∈ {0, . . . , n/8 − 1}, choosing

xi ∈ Z4
q uniformly at random, conditioned on cω,α · xi = γi. Let Ψ be the

distribution over γ.8 Since (once we fix [xi]i∈{n/8,...,n/4−1}) there is a bijection
between [v̂′i]i≡αmod 2n′ and the values of the constraints [γi]i∈{0,...,n/8−1}, so by

(1) of Theorem 4.8 we have that for every fixed γ̃, PrΨ [γ = γ̃] ≤ (1+1/166)128

qn/8
.

Analyzing the average min-entropy of v. To summarize the analysis above, condi-
tioned on the view of the adversary, for each i ∈ {n/8, . . . , n/4−1}, xi is sampled
uniformly and independently. Once these values are fixed, we can consider the
resulting distribution Ψ over γ = γ0, . . . , γn/8−1. For each i ∈ {0, . . . , n/8− 1},
xi is sampled independently from Sγi (defined in the preceding paragraph).

Clearly, for i ∈ {n/8, . . . , n/4 − 1}, since xi ← Z4
q are sampled uniformly at

random and independently, we can use the same analysis as in [3] to prove that,
conditioned on the output of HelpRec, the output of Rec for i ∈ {n/8, . . . , n/4−1}
has (average) min-entropy exactly 1, conditioned on the leakage and transcript.

8 Not to be confused with Ψ16 which denotes a centered binomial distribution and was
used as an error distribution in Section 4.1.
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Thus, it remains to show that for i ∈ {0, . . . , n/8−1}, conditioned on the output
of HelpRec, the output of Rec has high average min-entropy.

For γi ∈ Zq, recall that Sγi is the set of xi ∈ Z4
q that satisfy cω,α · xi = γi.

Note that the sets Sγi , γi ∈ Zq form a partition of Z4
q. Let Rγi be the distribution

over outputs r of HelpRec(xi; b) when xi is chosen uniformly at random from Sγi
and b is chosen uniformly at random from {0, 1}.

For i ∈ {0, . . . , n/8 − 1}, the average min-entropy of the output of Rec,
conditioned on the output of HelpRec is equal to:

− log2

Eγ←Ψ,[ri∼Rγi ]i∈{0,...,n/8−1}

∏ max
β∈{0,1}

Pr
xi∼Sγi
b∼{0,1}

[Rec(xi, ri) = β | HelpRec(xi; b) = ri]


 .

We can rewrite the above expression as follows:

Eγ←Ψ,[ri∼Rγi ]i∈{0,...,n/8−1}

∏ max
β∈{0,1}

Pr
xi∼Sγi
b∼{0,1}

[Rec(xi, ri) = β | HelpRec(xi; b) = ri]


=
∑
γ

E[ri∼Rγi ]i∈{0,...,n/8−1}

∏ max
β∈{0,1}

Pr
xi∼Sγi
b∼{0,1}

[Rec(xi, ri) = β | HelpRec(xi; b) = ri]

 · Pr
Ψ

[γ]

≤
∑
γ

E[ri∼Rγi ]i∈{0,...,n/8−1}

∏ max
β∈{0,1}

Pr
xi∼Sγi
b∼{0,1}

[Rec(xi, ri) = β | HelpRec(xi; b) = ri]

 · (1 + 1/166)128

qn/8

= (1 + 1/166)128E
γ←Zn/8q ,[ri∼Rγi ]i∈{0,...,n/8−1}

∏ max
β∈{0,1}

Pr
xi∼Sγi
b∼{0,1}

[Rec(xi, ri) = β | HelpRec(xi; b) = ri]


= (1 + 1/166)128

∏
i

E
γi←Zn/8q ,[ri∼Rγi ]i∈{0,...,n/8−1}

 max
β∈{0,1}

Pr
xi∼Sγi
b∼{0,1}

[Rec(xi, ri) = β | HelpRec(xi; b) = r]

.
Thus, we can lower bound the average min-entropy of the output of Rec for

all blocks i ∈ {0, . . . , n/8 − 1} by analyzing the expectation for a single block

E
γi←Zn/8q ,[ri∼Rγi ]i∈{0,...,n/8−1}

[
maxβ∈{0,1} Prxi∼Sγi

b∼{0,1}
[Rec(xi, ri) = β | HelpRec(xi; b) = ri]

]
,

taking the negative log, multiplying by 128 (the number of blocks) and sub-
tracting log2(1 + 1/166)128 ≈ 1.1091.

Remark 4.2.1. In the following, we drop the subscript i from the variables
xi, ri, γi, since we focus on a single block at a time.
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Theorem 4.9. We have that:

Eγ←Zq,r∼Dγ

 max
β∈{0,1}

Pr
x∼Sγ
b∼{0,1}

[Rec(x, r) = β | HelpRec(x; b) = r]

 ≤ 1/2 + p/2,

where

p := 2− 2

(
q
2r − 2q1/4 − 1

q
2r

)4

+

(
1 + 1

2q1/4

1− 2r+1

q

)4

·
(

2r+10

3q3/4
− 23r+10

3q9/4
+

24r+10

q3

)
.

Proof. We prove the theorem by showing that for linear constraint cω,α, there
exists a bijective mapping ψcω,α(x) = x′, such that, with high probability at
least 1− p over uniform x, all the following conditions hold:

cω,α · x = cω,α · x′ (3)

(r =) HelpRec(x; b) = HelpRec(x′; b′), (4)

Rec(x, r) = 1⊕ Rec(x′, r), (5)

where b′ = b⊕ 1.
Now the above conditions imply that:

1

q
·
∑
(γ,r)

Pr
Rγ

[r] · Pr
x∼Sγ
b∼{0,1}

[HelpRec(x; b) 6= HelpRec(x′; b′) | HelpRec(x; b) = r] ≤ p.

(6)

Let pγ,r := Pr x∼Sγ
b∼{0,1}

[HelpRec(x; b) 6= HelpRec(x′; b′) | HelpRec(x; b) = r].

Note that maxβ∈{0,1} Pr x∼Sγ
b∼{0,1}

[Rec(x, r) = β | HelpRec(x; b) = r] ≤ 1/2+pγ,r/2.

This is sufficient to prove Theorem 4.9, since

Eγ←Zq,r∼Dγ [ max
β∈{0,1}

Pr
b∼{0,1},x∼Sγ

[Rec(x, r) = β | HelpRec(x; b) = r]]

≤ 1

q
·
∑
(γ,r)

Pr
Rγ

[r] · (1/2 + pγ,r/2)

= 1/2 +
1

q
·
∑
(γ,r)

Pr
Rγ

[r] · pγ,r/2

=
1

2
+

1

2q

∑
(γ,r)

Pr
Rγ

[r] · Pr
x∼Sγ
b∼{0,1}

[HelpRec(x; b) 6= HelpRec(x′; b′) | HelpRec(x; b) = r]

≤1/2 + p/2,

where the last inequality follows from (6).
We now turn to defining ψcω,α and proving that with probability at least

1− p over uniform x, (3), (4) and (5) hold.
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Defining ψcω,α so that (3) always holds. (3) holds if and only if there exists a
vector w ∈ Z4

q such that x′ = x+w, where w ∈ ker(cω,α), where ker is the set of
w′ such that cω,α ·w′ = 0. Let W to be a set of all vectors vt = (vt0, vt1, vt2, vt3)
where vti ∈ [ q2 ± q

1/4] ∩ Z. By conducting an exhausive search, we observe that
the intersection of set ker(cω,α) and set W is nonempty given parameter setting
of [3], namely fixing q = 12289, n = 1024, ω = 7, ker(fω,j) ∩W 6= ∅ for all
α ∈ Z∗16. 9 Define ψcω,α(x) := x + w, where w ∈ ker(cω,α) ∩W. Therefore, as
long as ker(cω,α)∩W is non-empty (which holds for typical parameter settings),
condition (3) holds with probability 1 over choice of x.

If (4) holds then (5) holds. We now show that if x is such that HelpRec(x; b) =
HelpRec(x + w; b′) then if HelpRec(x; b) = r, Rec(x, r) = 1⊕ Rec(x + w, r).

Lemma 4.10. Given HelpRec(x; b) = HelpRec(x + w; b′) = r, Rec(x, r) = 1 ⊕
Rec(x + w, r).

Proof. Recall that g = (1/2, 1/2, 1/2, 1/2)T . Proved by [5, Lemma C.2], we have

HelpRec(x; b) = HelpRec(x + qg) (= r)

Rec(x, r) = 1⊕ Rec(x + qg, r)

Additionally, since ‖w − qg‖1 ≤ 4q1/4 < (1 − 1/2r) · q − 2, by [5, Lemma C.3],
Rec(x + w, r) = Rec(x + qg, r), Thus we conclude Rec(x, r) = 1 ⊕ Rec(x +
w, r).

(4) holds with probability 1 − p over x. Hence, it remains to show that for all
w ∈ ker(cω,α) ∩W and fω,j(x) = γ, with high probability at least 1 − p over
choice of x← Z4

q, b← {0, 1}, HelpRec(x; b) = HelpRec(x + w; b′) holds.
Let δ = (δ0, δ1, δ2, δ3) be a vector such that x + w = x + qg + δ. Then

|δi| ≤ q1/4. Since g ∈ D̃4, we have HelpRec(x; b) = HelpRec(x + qg; b′) [3].
For simplicity, let z = 2r

q (x + qg + b′g) ∈ 2r

2qZ
4
2q, vector β = (β0, β1, β2, β3)

denote 2r

q δ. Recall that HelpRec(x; b) = CVPD̃4

(
2r

q (x + bg)
)

mod 2r. Thus,

the proposition (HelpRec(x + qg; b′) =)HelpRec(x; b) = HelpRec(x + w; b′) is
equivalent to CVPD̃4

(z) = CVPD̃4
(z+β), which remains to be proved valid with

probability at least 1− p.
For the following analysis, refer to Figure 4.3, which describes the CVPD̃4

algorithm. Let v0,v1, k be the values computed in steps 1, 2, 3 of CVPD̃4
(z)

algorithm, shown in Figure 4.3 and let v′0,v
′
1, k
′ be the values computed in step

1, 2, 3 of CVPD̃4
(z + β) algorithm.

By definition of CVPD̃4
, it is clear to see that if none of the following three

conditions is satisfied, then CVPD̃4
(z) = CVPD̃4

(z + β) is granted.

(a) v′0 6= v0.
(b) v′1 6= v1

9 Note that this is the only part of the analysis that is not generic in terms of parameter
settings. For more discussion, See Section 4.4.
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(c) k′ 6= k

Before analyzing probability in each condition above, we first present the
following lemma, which will allow us to switch from analyzing the probabilities
over choice of (x, b) to analyzing probabilities over choice of z.

Lemma 4.11. Given g,x, z = 2r

q (x + qg + b′g) as defined above, for any set

D′ ⊆ 2r

2qZ
4
2q, the probability that x in set D = {x | 2r

q (x + qg + b′g) ∈ D′} over

choice of x← Z4
q and choice of b′ ← {0, 1} equals to the probability that z in set

D′ over choice of z← 2r

2qZ
4
2q, denoted by Probx,b′ [x ∈ D] = Probz[z ∈ D′].

Proof. We compute Probx,b′ [x ∈ D] given the condition b′ = 0 and the condition
b′ = 1. As b′ is equivalent to the “doubling” trick (See [44] for example), the
corresponding x + qg + b′g when b′ = 0 is distributed as odd numbers over Z4

2q,
written as 2Z4

2q +Z4
2q. When b′ = 1, x + qg + b′g is distributed as even numbers

over is over Z4
2q, written as 2Z4

2q. Thus we have

Probx,b′ [x ∈ D] =
1

2
Probx,0

[2r

q
(x + qg) ∈ D′

]
+

1

2
Probx,1

[2r

q
(x + qg + g) ∈ D′

]
(7)

=
1

2

∣∣∣ 2r2q (2Z4
2q + Z4

2q) ∩ D′
∣∣∣∣∣∣ 2r2q (2Z4

2q + Z4
2q)
∣∣∣ +

1

2

∣∣∣ 2r2q (2Z4
2q) ∩ D′

∣∣∣∣∣∣ 2r2q (2Z4
2q)
∣∣∣ (8)

=

∣∣∣( 2r

2q (2Z4
2q + Z4

2q) ∪ 2r

2q (2Z4
2q)
)
∩ D′

∣∣∣
2r

2q (Z4
2q)

(9)

=

∣∣∣ 2r2q (Z4
2q) ∩ D′

∣∣∣
2r

2q (Z4
2q)

= Probz[z ∈ D′] (10)

as desired.

We omit to mention distribution of b′ for simplicity.
We next analyze probability of the three conditions (a), (b), (c) in Lem-

mas 4.12, 4.13 and 4.14.

Lemma 4.12 (Bounding the probability of (a)). Given v0,v
′
0,v1,v

′
1, k, k

′, z,β
as defined above, probability that v′0 6= v0 (denoted by Probx[v′0 6= v0] ) is at

most 1−
( q

2r −2q
1/4−1
q
2r

)4
over choice of x← Z4

q.

Proof. Recall that |δi| ≤ q1/4. Then we have |βi| ≤ 2r

q3/4
. We assume that 2r

q3/4
≤

1/2, which would be the case for typical parameter settings (for example r =
2, q = 12289). When the event that v′0 6= v0 happens, it indicates existing an i
such that, bzie 6= bzi + βie. We start by computing the probability over choice
of x← Z4

q that given i, event bzie = bzi + βie occurs, denoted by Probx[bzie =
bzi + βie]. We divide the analysis into two cases.
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(1) Suppose that zi − bzie ≥ 0, then bzi − 2r

q3/4
e = bzie. In order to achieve

bzi + βie = bzie, we need bzi + 2r

q3/4
e = bzie. Without loss of generality, we

assume 0 ≤ zi < 1/2 mod 2r, where bzie = 0. Thus it can be easily verified
that if 0 ≤ zi < 1/2− 2r

q3/4
, we can ensure bzi + 2r

q3/4
e = 0.

(2) Suppose that zi − bzie < 0, then bzi + 2r

q3/4
e = bzie. Similarly, in order

to achieve bzi + βie = bzie, we need bzi − 2r

q3/4
e = bzie. Without loss of

generality, we assume −1/2 ≤ zi < 0 mod 2r, where bzie = 0. Thus it can
easily verified that if −1/2 + 2r

q3/4
≤ zi < 0, we can ensure bzi + 2r

q3/4
e = 0.

Combining both cases, by Lemma 4.11, we then derive that

Probx[bzie = bzi + βie] ≥

∣∣∣ [−1/2 + 2r

q3/4
, 1/2− 2r

q3/4

)
∩ 2r

2qZ2q

∣∣∣∣∣∣ [−1/2, 1/2) ∩ 2r

2qZ2q

∣∣∣ (11)

≥

∣∣∣ [ 2q2r (−1/2 + 2r

q3/4
), 2q2r (1/2− 2r

q3/4
)
)
∩ Z2q

∣∣∣∣∣ [− q
2r ,

q
2r

)
∩ Z2q

∣∣ (12)

=
2b q2r − 2q1/4c+ 1

2b q2r c+ 1
(13)

≥
q
2r − 2q1/4 − 1

q
2r

(14)

Since Probx[∃i, bzie 6= bzi + βie] = 1−Probx[bzie = bzi + βie, ∀i]. Therefore, we
have

Probx[v′0 6= v0] ≤ 1−

(
q
2r − 2q1/4 − 1

q
2r

)4

as desired.

Lemma 4.13 (Bounding the probability of (b)). Given v0,v
′
0,v1,v

′
1, k, k

′, z,β
as defined above, probability that v′1 6= v1 (denoted by Probx[v′1 6= v1]) is at

most 1−
( q

2r −2q
1/4−1
q
2r

)4
over choice of x← Z4

q.

The proof proceeds exactly the same as proof of Lemma 4.12 by substituting
z with z + g.

Lemma 4.14 (Bounding the probability of (c)). Given v0,v
′
0,v1,v

′
1, k, k

′, z,β
as defined above, probability that k′ 6= k (denoted by Probx[k′ 6= k]) is at most(

1+ 1

2q1/4

1− 2r+1

q

)4

·
(

2r+10

3q3/4
− 23r+10

3q9/4
+ 24r+10

q3

)
over choice of x← Z4

q.

Proof. We divide our proof into two cases: (1) Suppose k = 0 and k′ = 1, which
indicates ‖z− v0‖1 < 1 and ‖z + β − v′0‖1 ≥ 1 . We denote by Probx[k =
0, k′ = 1] probability that k = 0 and k′ = 1 over choice of x. (2) Suppose k = 1
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and k′ = 0, which indicates ‖z− v0‖1 ≥ 1 and ‖z + β − v′0‖1 < 1 . We denote
by Probx[k = 1, k′ = 0] probability that k = 1 and k′ = 0 over choice of x.

Without loss of generality, we assume that −1/2 ≤ zi < 1/2 mod 2r for
i = 0, 1, 2, 3. Then we have v0 = 0.

Case 1 : By Lemma 4.11, Probx[k = 0, k′ = 1] is equivalent to the probability
that z satisfies

|z0|+ |z1|+|z2|+ |z3| < 1, and

|z0 + β0|+ |z1 + β1|+ |z2 + β2|+ |z3 + β3| > 1,

over choice of z ← 2r

2qZ
4
2q ∩ [−1/2, 1/2)4 mod 2r. As |zi + βi| ≤ |zi| + |βi| by

Triangle Inequality, we can upper-bound Probx[k = 0, k′ = 1] by the probability
that z satisfies

|z0|+ |z1|+|z2|+ |z3| < 1, and

|z0|+ |z1|+ |z2|+ |z3|+ |β0|+ |β1|+ |β2|+ |β3| > 1,

over choice of z← 2r

2qZ
4
2q ∩ [−1/2, 1/2)4 mod 2r. Since |β0|+ |β1|+ |β2|+ |β3| ≤

4 · 2r

q3/4
, we can further upper-bound Probx[k = 0, k′ = 1] by the probability that

z satisfies

1− 4 · 2r

q3/4
< |z0|+ |z1|+ |z2|+ |z3| < 1,

over choice of z← 2r

2qZ
4
2q ∩ [−1/2, 1/2)4 mod 2r.

Let ∆ = 4 · 2r

q3/4
. We then can obtain the upperbound of Probx[k = 0, k′ = 1]

by computing the cardinality of set where each element is in 2r

2qZ
4
2q and satisfies

the following two conditions:

1−∆ < |z0|+ |z1|+ |z2|+ |z3| < 1 (15)

−1/2 ≤ zi < 1/2 , for i = 0, 1, 2, 3 (16)

divided by the cardinality of set where each element is in 2r

2qZ
4
2q and only satisfies

the equation (16).
Similarly for Case 2, by Lemma 4.11, Probx[k = 1, k′ = 0] is equivalent to

the probability that z satisfies

|z0|+ |z1|+|z2|+ |z3| ≥ 1, and

|z0 + β0|+ |z1 + β1|+ |z2 + β2|+ |z3 + β3| < 1,

over choice of z← 2r

2qZ
4
2q ∩ [−1/2, 1/2)4 mod 2r. Since |zi + βi| ≥ |zi| − |βi| and

|β0| + |β1| + |β2| + |β3| ≤ 4 · 2r

q3/4
, we can further upper -bounded Probx[k =

1, k′ = 0] by the probability that z satisfies
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1 ≤ |z0|+ |z1|+ |z2|+ |z3| < 1 + 4 · 2r

q3/4
,

over choice of z← 2r

q Z
4
q ∩ [−1/2, 1/2)4 mod 2r.

We can then obtain the upperbound of Probx[k = 1, k′ = 0] by computing
the cardinality of set where each element is in 2r

2qZ
4
2q and satisfies the following

two conditions:

1 ≤ |z0|+ |z1|+ |z2|+ |z3| < 1 +∆ (17)

−1/2 ≤ zi < 1/2 , for i = 0, 1, 2, 3 (18)

by the cardinality of set that each element is in 2r

2qZ
4
2q and only satisfies the

Equation 18.
Thus, by combining both cases, we have Probx[k′ 6= k] = Probx[k = 0, k′ =

1] + Probx[k = 1, k′ = 0] upperbounded by the cardinality of set where each
element is in 2r

2qZ
4
2q and satisfies the following two conditions:

1−∆ < |z0|+ |z1|+ |z2|+ |z3| < 1 +∆ (19)

−1/2 ≤ zi < 1/2 , for i = 0, 1, 2, 3 (20)

by the cardinality of set where elements are in 2r

2qZ
4
2q and satisfies the the Equa-

tion 20.
Note that, disregarding the distribution of z, (20) defines a unit hypercube

[−1/2, 1/2)4 centered at origin and (19) defines a hyper-object clipped by two
hyperplanes in each octant. We denote by Volcube the hypercube volume. Let
Volclip be the hypervolume where each points satisfies both (19) and (20), which
is equivalent to say, Volclip is hypervolume of hypercube defined in (20) clipped
by two hyperplanes in each octant, as defined in (19).

If x is sampled from R4, it is easy to see that probability Probx[k′ 6= k] is
upperbounded by the ratio of Volclip to Volcube.

For the rest of the proof, we first compute the ratio of Volclip to Volcube and
then approximate the upperbound of Probx[k′ 6= k] by discretizing hypervolumes
into lattice points, as z is instead sampled from 2r

2qZ
4
2q, which is a lattice.

Towards computing the volumes, we need to amplify each dimension by 2
in (15) and (16) for adapting Theorem 2.2 where unit hypercube is defined as
[0, 1]n. Volclip and Volcube is ith octant. Let Voliclip denote Volclip in the ith

octant, and Volicube denote Volcube in ith octant. Thus, in the ith octant, we have

2− 2∆ < t0 + t1 + t2 + t3 < 2 + 2∆ (21)

0 ≤ ti < 1, for i = 0, 1, 2, 3, (22)

where ti = 2zi.
Define two hyperspace as follows:

H+
1 := {t | g1(t) := −t0 − t1 − t2 − t3 + 2(1−∆) ≥ 0}



Security of NewHope Under Partial Key Exposure 25

H+
2 := {t | g2(t) := −t0 − t1 − t2 − t3 + 2(1 +∆) ≥ 0}

Then it is easy to see that

Vol1clip ≤
Vol([0, 1]4 ∩H+

2 )−Vol([0, 1]4 ∩H+
1 )

24
.

where 24 in denominator is a scalar to neutralize amplification
By Theorem 2.2 and substituting ∆ with 4q1/4 · 2

r

q , we obtain

Vol1clip =
1

24
· 1

24

(
(2 + 2∆)4 − 4(1 + 2∆)4 + 6(2∆)4 − (2− 2∆)4 + 4(1− 2∆)4

)
=

1

24
· 1

24
(64∆− 128∆3 + 96∆4)

=
1

24

(
24r+10

q3
− 23r+10

3q9/4
+

2r+5

3q3/4

)
We claim that Vol1clip = Voliclip for i = 2, 3, ..., 16. It can be easily checked

by showing a bijective map fi : z ↔ z′ which maps elements from first octant
to the ith octant, such that if z satisfies the conditions (19) and (20), then z′

satisfies the conditions (19) and (20), and if z satisfies the condition (20) but
not satisfies (19), then z′ satisfies the condition (20) but not satisfies (19). One
trivial example of such map is to let z be the absolute value of z′.

Additionally, it is obvious to see that Volicube = 1/24, ∀i. Thus, we have

Volclip
Volcube

=
Vol1clip

Vol1cube
=

24r+10

q3
− 23r+10

3q9/4
+

2r+5

3q3/4
.

It remains to approximate
Vol1clip∩Lz

Vol1cube∩Lz
, where Lz = 2r

2qZ
4
2q.

Since both of the hypercube and the hyperclip in first octant are convex as
they are intersections of hyperspaces, by Theorem 2.1, we can derive that

Vol1clip ∩ Lz

Vol1cube ∩ Lz

≤
(1 + ε)4

Vol1clip
det(Lz)

(1− ε′)4 Vol1cube
det(Lz)

=

(
1 + ε

1− ε′

)4

·
Vol1clip

Vol1cube
,

where P(B)∪−P(B) ⊆ ε ·Vol1clip, P(B)∪−P(B) ⊆ ε′ ·Vol1cube and B is a basis
of Lz.

To get a small ε, we begin by carving a hypercube [ 14−
1
4∆,

1
4 + 1

4∆]4, which is

contained in Vol1clip. Let B = {( 2r

2q , 0, 0, 0), (0, 2
r

2q , 0, 0), (0, 0, 2
r

2q , 0), (0, 0, 0, 2
r

2q )}.
Then P(B) forms a hypercube with side length 2r

2q . Thus, by letting ε = 1
2q1/4

as
2r

2q ·2 ≤ ε ·
1
2∆, we can guarantee that P(B)∪−P(B) ⊆ ε ·Vol1clip. Similarly, since

Vol1cube is a hypercube, it is easy to see that by letting ε′ = 2r+1

q , P(B)∪−P(B) ⊆
ε′ ·Vol1cube.
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Combining the above, we obtain

Vol1clip ∩ Lz

Vol1cube ∩ Lz

≤

(
1 + 1

2q1/4

1− 2r+1

q

)4

·
(

24r+10

q3
− 23r+10

3q9/4
+

2r+5

3q3/4

)
,

as desired.

Combining Lemmas 4.12, 4.13 and 4.14, we conclude that, for all w ∈
ker(cω,α)∩W and fω,j(x) = γ, the probability that HelpRec(x) = HelpRec(x+w)
holds over choice of x ∈ Z4

q is at least

1−2

1−

(
q
2r − 2q1/4 − 1

q
2r

)4
−(1 + 1

2q1/4

1− 2r+1

q

)4

·
(

24r+10

q3
− 23r+10

3q9/4
+

2r+5

3q3/4

)
.

Using known relationships between average min-entropy and min-entropy, we
have that:

Corollary 4.15. With all but 2−k probability, the distribution over v, given
the transcript of the modified protocol as well as leakage 1 mod 16 positions
of ŝ, ŝ′, ê, ê′, ê′′, is indistinguishable from a distribution that has min-entropy
n/8 + n/8 · (− log2(1/2 + p))− k.

4.3 Instantiating the Parameters

We instantiate the parameters as chosen in NewHope protocol: q = 12289, n =
1024, ω = 7, r = 2, then we get

p := 2− 2

(
q
2r − 2q1/4 − 1

q
2r

)4

+

(
1 + 1

2q1/4

1− 2r+1

q

)4

·
(

24r+10

q3
− 23r+10

3q9/4
+

2r+5

3q3/4

)
(23)

≈ 0.10092952876519123 (24)

Therefore, under this concrete parameter setting, the distribution with leakage
and transcript as defined above is indistinguishable from a distribution that
has average min-entropy 128 + 128 · (− log2(1/2 + 0.10092952876519123/2)) −
1.10910222427 ≈ 237. Moreover, with all but 2−80 probability, the distribution
with leakage and transcript as defined above is indistinguishable from a distri-
bution that has min-entropy 157.

4.4 On the Non-Generic Part of the Analysis

Recall that in the analysis, we experimentally confirm that there exists a vector
w ∈ ker(cω,α) ∩W.

We can support this heuristically by noting that W has size (2q1/4)4 = 16q.
On the other hand, the probability that a random vector in Z4

q is in ker(cω,α) is



Security of NewHope Under Partial Key Exposure 27

1/q. So heuristically, we expect that 1/q-fraction (approx. 16) of the vectors in
W will also be in ker(cω,α).

A similar analysis can be done for other leakage patterns (n′,S). Recall that
our experimental attacks support the conclusion that Leaky-SRLWE is easy
when the fraction of structured leakage is at least 1/4. We may also consider

parameter settings (n′,S) such that |S| = 2 and |S|n′ = 1/8. In this case, instead
of a single linear constraint cω,α on a single xi, we have two linear constraints
on xi,xi+n/16. This means we will have a linear system of 8 variables and two

constraints, denoted by Mω,S . Thus, W will be equal to [ q2 ± q
1/4]8. So the size

of W will be (2q1/4)8 = 256q2 and the probability that a random vector in Z4
q is

in ker(Mω,S) is 1/q2. So heuristically, we expect that 1/q2-fraction (approx. 256)
of the vectors in W will also be in ker(Mω,S). Given this, the rest of the analysis
proceeds nearly identically.
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