
LWE with Side Information:
Attacks and Concrete Security Estimation?

Dana Dachman-Soled1 and Léo Ducas2 and Huijing Gong1 and Mélissa Rossi3,4,5,6

1 University of Maryland, College Park, USA
danadach@ece.umd.edu

gong@cs.umd.edu
2 CWI, Amsterdam, The Netherlands

3 ANSSI, Paris, France
4 ENS Paris, CNRS, PSL University, Paris, France

5 Thales, Gennevilliers, France
6 INRIA, Paris, France
melissa.rossi@ens.fr

Abstract. We propose a framework for cryptanalysis of lattice-based schemes, when side information—
in the form of “hints”— about the secret and/or error is available. Our framework generalizes the
so-called primal lattice reduction attack, and allows the progressive integration of hints before
running a final lattice reduction step. Our techniques for integrating hints include sparsifying the
lattice, projecting onto and intersecting with hyperplanes, and/or altering the distribution of the
secret vector. Our main contribution is to propose a toolbox and a methodology to integrate such
hints into lattice reduction attacks and to predict the performance of those lattice attacks with side
information.

While initially designed for side-channel information, our framework can also be used in other cases:
exploiting decryption failures, or simply exploiting constraints imposed by certain schemes (LAC,
Round5, NTRU).

We implement a Sage 9.0 toolkit to actually mount such attacks with hints when computationally
feasible, and to predict their performances on larger instances. We provide several end-to-end ap-
plication examples, such as an improvement of a single trace attack on Frodo by Bos et al (SAC
2018). In particular, our work can estimates security loss even given very little side information,
leading to a smooth measurement/computation trade-off for side-channel attacks.

Keywords: LWE, NTRU, Lattice reduction, Cryptanalysis, Side-channels analysis, decryption fail-
ures.

1 Introduction

A large effort is currently underway to replace standardized public key cryptosystems, which
are quantum-insecure, with newly developed “post-quantum” cryptosystems, conjectured to be
secure against quantum attack. Lattice-based cryptography has been widely recognized as a
foremost candidate for practical, post-quantum security and accordingly, a large effort has been
made to develop and analyze lattice-based cryptosystems. The ongoing standardization process
and anticipated deployment of lattice-based cryptography raises an important question: How
resilient are lattices to side-channel attacks or other forms of side information? While there are
numerous works addressing this question for specific cryptosystems (See [2,22,23,40,39,11] for

? The research of L. Ducas and M. Rossi was supported by the European Union’s H2020 Programme under
PROMETHEUS project (grant 780701). The research of M. Rossi was also supported by ANRT under the
programs CIFRE N 2016/1583. It was also supported by the French Programme d’Investissement d’Avenir
under national project RISQ P14158. The research of D. Dachman-Soled and H. Gong was supported in part
by NSF grants #CNS-1933033, #CNS-1840893, #CNS-1453045 (CAREER), by a research partnership award
from Cisco and by financial assistance award 70NANB15H328 and 70NANB19H126 from the U.S. Department
of Commerce, National Institute of Standards and Technology.

LWE/BDD
Kannan−−−−−→ uSVPΛ′

Sec 3.4−−−−−−→ Lattice
reduction

Fig. 1. Primal attack without hints (prior art).

side channel attacks targeting lattice-based NIST candidates), these works use rather ad-hoc
methods to reconstruct the secret key, requiring new techniques and algorithms to be developed
for each setting. For example, the work of [11] uses brute-force methods for a portion of the
attack, while [9] exploits linear regression techniques. Moreover, ad-hoc methods do not allow
(1) to take advantage of decades worth of research and (2) optimization of standard lattice
attacks. Second, most of the side-channel attacks from prior work consider substantial amounts of
information leakage and show that it leads to feasible recovery of the entire key, whereas one may
be interested in more precise tradeoffs in terms of information leakage versus concrete security of
the scheme. The above motivates the focus of this work: Can one integrate side information into
a standard lattice attack, and if so, by how much does the information reduce the cost of this
attack? Given that side-channel resistance is the next step toward the technological readiness of
lattice-based cryptography, and that we expect numerous works in this growing area, we believe
that a general framework and a prediction software are in order.

Contributions. First, we propose a framework that generalizes the so-called primal lattice
reduction attack, and allows the progressive integration of “hints” (i.e. side information that
takes one of several forms) before running the final lattice reduction step. This contribution is
summarized in Figures 1 and 2 and developed in Section 3.

Second, we implement a Sage 9.0 toolkit to actually mount such attacks with hints when com-
putationally feasible, and to predict their performance on larger instances. Our predictions are
validated by extensive experiments. Our tool and these experiments are described in Section 5.
Our toolkit is open-source, available at: https://github.com/lducas/leaky-LWE-Estimator.

Third, we demonstrate the usefulness of our framework and tool via three example applica-
tions. Our main example (Section 6.1) revisits the side channel information obtained from the
first side-channel attack of [11] against Frodo. In that article, it was concluded that a divide-
and-conquer side-channel template attack would not lead to a meaningful attack using standard
combinatorial search for reconstruction of the secret. Our technique allows to integrate this side-
channel information into lattice attacks, and to predict the exact security drop. For example,
the CCS2 parameter set very conservatively aims for 128-bits of post-quantum security (or 448
“bikz” as defined in Section 3.4); but after the leakage of [11] we predict that its security drops
to 29 “bikz”, i.e. that it can be broken with BKZ-29, a computation that should be more than
feasible, but would require a dedicated re-implementation of our framework.

Interestingly, we note that our framework is not only useful in the side-channel scenario; we
are for example also able to model decryption failures as hints fitting our framework. This allows
us to reproduce some predictions from [17]. This is discussed in Section 6.2.

Perhaps more surprisingly, we also find a novel improvement to attack a few schemes (LAC [31],
Round5 [21], NTRU [43]) without any side-channel or oracle queries. Indeed, such schemes use
ternary distribution for secrets, with a prescribed numbers of 1 and −1: this hint fits our frame-
work, and lead to a (very) minor improvement, discussed in Section 6.3.

Lastly, our framework also encompasses and streamlines existing tweaks of the primal attack:
the choice of ignoring certain LWE equations to optimize the volume-dimension trade-off, as well
as the re-centering [37] and isotropization [25,14] accounting for potential a-priori distortions of
the secret. It also implicitly solves the question of the optimal choice of the coefficient for Kan-

2

https://github.com/lducas/leaky-LWE-Estimator

LWE/BDD
Sec 3.2−−−−−−→ DBDDΛ0,Σ0,µ0

Sec 4

yHint

DBDDΛ1,Σ1,µ1

...

Sec 4

yHint

DBDDΛh,Σh,µh
Sec 3.3−−−−−−→ uSVPΛ′

Sec 3.4−−−−−−→ Lattice
reduction

Fig. 2. The primal attack with hints (our work).

nan’s Embedding from the Bounded Distance Decoding problem (BDD) to the unique Shortest
Vector Problem (uSVP) [27] (See Remark 24).

As a side contribution, we also propose in Section 3.4 a refined method to estimate the
required blocksize to solve an LWE/BDD/uSVP instance. This refinement was motivated by
the inaccuracy of the standard method from the literature [3,4] in experimentally reachable
blocksizes, which was making the validation of our contribution difficult. While experimentally
much more accurate, this new methodology certainly deserves further scrutiny.

Technical overview. Our work is based on a generalization of the Bounded Distance Decod-
ing problem (BDD) to a Distorted version (DBDD), which allows to account for the potentially
non-spherical covariance of the secret vector to be found.

Each hint will affect the lattice itself, the mean and/or the covariance parameter of the
DBDD instance, making the problem easier (see Figure 2). At last, we make the distribution
spherical again by applying a well-chosen linear transformation, reverting to a spherical BDD
instance before running the attack. Thanks to the hints, this new instance will be easier than
the initial one. Let us assume that v, l, k and σ are parameters known by the attacker. Our
framework can handle four types of hints on the secret s or on the lattice Λ.

– Perfect hints: 〈s, v〉 = l intersect the lattice with an hyperplane.

– Modular hints : 〈s, v〉 = l mod k sparsify the lattice.

– Approximate hints : 〈s, v〉 = l + εσ decrease the covariance of the secret.

– Short vector hints : v ∈ Λ project orthogonally to v.

While the first three hints are clear wins for the performance of lattice attacks, the last one
is a trade-off between the dimension and the volume of the lattice. This last type of hint is
in fact meant to generalize the standard trick consisting of ‘ignoring’ certain LWE equations;
ignoring such an equation can be interpreted geometrically as such a projection orthogonally to
a so-called q-vector.

All the transformations of the lattice above can be computed in polynomial time. However,
computing with general distribution in large dimension is not possible; we restrict our study to
the case of Gaussian distributions of arbitrary covariance, for which such computations are also
poly-time.

Some of these transformations remain quite expensive, in particular because they involve
rational numbers with very large denominators, and it remains rather impractical to run them
on cryptographic-grade instances. Fortunately, up to a necessary hypothesis of primitivity of
the vector v (with respect to either Λ or its dual depending on the type of hint), we can also
predict the effect of each hint on the lattice parameters, and therefore run faster predictions of
the attack cost.

3

From Leaks to Hints. At first, it may not be so clear that the types of hints above are so
useful in realistic applications, in particular since they need to be linear on the secret. Of course
our framework can handle rather trivial hints such as the perfect leak of a secret coefficient
si = l. Slightly less trivial is the case where the only the low-order bits leaks, a hint of the form
si = l mod 2.

We note that most of the computations done during an LWE decryption are linear: leaking
any intermediate register during a matrix vector product leads to a hint of the same form
(possibly modq). Similarly, the leak of a NTT coefficient of a secret in a Ring/Module variant
can also be viewed as such.

Admittedly, such ideal leaks of a full register are not the typical scenario and leaks are
typically not linear on the content of the register. However, such non-linearities can be handled
by approximate hints. For instance, let s0 be a secret coefficient (represented by a signed 16-bits
integer), whose a priori distribution is supported by {−5, . . . , 5}. Consider the case where we
learn the Hamming weight of s0, say H(s0) = 2. Then, we can narrow down the possibilities to
s0 ∈ {3, 5}. This leads to two hints:

– a modular hint: s0 = 1 mod 2,

– an approximate hint: s0 = 4 + ε1, where ε1 has variance 1.

While closer to a realistic scenario, the above example remains rather simplified. A detailed
example of how realistic leaks can be integrated as hint will be given in Section 6.1, based on
the leakage data from [11].

Acknowlegments.

The authors would like to thank Marco Martinoli and his co-authors [11] for sharing their
source code. We express our gratitude to Jan-Pieter D’anvers for sharing precious insights and
intuitions, guiding toward the proper formalization of decryption failures as approximate hints.
We also thank John Schanck for valuable references and discussions that lead to refinements of
the section on NTRU. We are also grateful to Martin Albrecht, Henri Gilbert, Ange Martinelli,
Thomas Prest and Thibauld Feneuil and to the anonymous CRYPTO’2020 reviewers for valuable
feedback on a preliminary version of this work.

2 Preliminaries

2.1 Linear Algebra

We use bold lower case letters to denote vectors, and bold upper case letters to denote matrices.
We use row notations for vectors, and start indexing from 0. Let Id denote the d-dimensional
identity matrix. Let 〈·, ·〉 denote the inner product of two vectors of the same size. Let us
introduce the row span of a matrix (denoted Span(·)) as the subspace generated by all R-linear
combinations of the rows of its input.

Definition 1 (Positive Semidefinite). A n×n symmetric real matrix M is positive semidef-
inite if scalar xMxT ≥ 0 for all x ∈ Rn; if so we write M ≥ 0. Given two n× n real matrix A
and B, we note A ≥ B if A−B is positive semidefinite.

Definition 2. A matrix M is a square root of Σ, denoted
√

Σ, if

MT ·M = Σ,

4

Our techniques involve keeping track of the covariance matrix Σ of the secret and error vec-
tors as hints are progressively integrated. The covariance matrix may become singular during
this process and will not have an inverse. Therefore, in the following we introduce some degener-
ate notions for the inverse and the determinant of a square matrix. Essentially, we restrict these
notions to the row span of their input. For X ∈ Rd×k (with any d, k ∈ N), we will denote ΠX the
orthogonal projection matrix onto Span(X). More formally, let Y be a maximal set of indepen-
dent row-vectors of X; the orthogonal projection matrix is given by ΠX = YT ·(Y ·YT)−1 ·Y. Its
complement (the projection orthogonally to Span(X)) is denoted Π⊥X := Id−ΠX. We naturally
extend the notation ΠF and Π⊥F to subspaces F ⊂ Rd. By definition, the projection matrices
satisfy Π2

F = ΠF , ΠT
F = ΠF and ΠF ·Π⊥F = Π⊥F ·ΠF = 0.

Definition 3 (Restricted inverse and determinant). Let Σ be a symmetric matrix. We
define a restricted inverse denoted Σ∼ as

Σ∼ := (Σ + Π⊥Σ)−1 −Π⊥Σ.

It satisfies Span(Σ∼) = Span(Σ) and Σ ·Σ∼ = ΠΣ.
We also denote rdet(Σ) as the restricted determinant defined as follows.

rdet(Σ) := det(Σ + Π⊥Σ).

The idea behind Definition 3 is to provide an (artificial) invertibility property to the input Σ

by adding the missing orthogonal part and to remove it afterwards. For example, if Σ =

[
A 0
0 0

]
where A is invertible,

Σ∼ =

([
A 0
0 0

]
+

[
0 0
0 1

])−1

−
[
0 0
0 1

]
=

[
A−1 0

0 0

]
and rdet Σ = det(A).

2.2 Statistics

Random variables, i.e. variables whose values depend on outcomes of a random phenomenon,
are denoted in lowercase calligraphic letters e.g. a, b, e. Random vectors are denoted in uppercase
calligraphic letters e.g. C ,X ,Z.

Before hints are integrated, we will assume that the secret and error vectors follow a multi-
dimensional normal (Gaussian) distribution. Hints will typically correspond to learning a (noisy,
modular or perfect) linear equation on the secret. We must then consider the altered distribution
on the secret, conditioned on this information. Fortunately, this will also be a multidimensional
normal distribution with an altered covariance and mean. In the following, we present the precise
formulae for the covariance and mean of these conditional distributions.

Definition 4 (Multidimensional normal distribution). Let d ∈ Z, for µ ∈ Zd and Σ
being a symmetric matrix of dimension d× d, we denote by Dd

Σ,µ the multidimensional normal
distribution supported by µ+ Span(Σ) by the following

x 7→ 1√
(2π)rank(Σ) · rdet(Σ)

exp

(
−1

2
(x− µ) ·Σ∼ · (x− µ)T

)
.

The following states how a normal distribution is altered under linear transformation.

Lemma 5. Suppose X has a Dd
Σ,µ distribution. Let A be a n × d matrix. Then X AT has a

Dn
AΣAT ,µAT distribution.

5

Lemma 6 shows the altered distribution of a normal random variable conditioned on its noisy
linear transformation value, following from [30, Equations (6) and (7)].

Lemma 6 (Conditional distribution X |X AT + b from [30]). Suppose that X ∈ Zd has a
Dd

Σ,µ distribution, and b ∈ Zn has a Dn
Σb ,0

distribution. Let us fix A as a n × d matrix and

z ∈ Zn. The conditional distribution of X
∣∣∣ (X AT + b = z

)
is Dd

Σ′,µ′, where

µ′ = µ+ (z− µAT)(AΣAT + Σb)−1AΣ

Σ′ = Σ−ΣAT (AΣAT + Σb)−1AΣ.

Corollary 7 (Conditional distribution X |〈X ,v〉 + e). Suppose that X ∈ Zd has a Dd
Σ,µ

distribution and e has a D1
σ2

e ,0
distribution. Let us fix v ∈ Rd as a nonzero vector and z ∈ Z. We

define the following scalars:

y = 〈X ,v〉+ e, µ2 = 〈v,µ〉 and σ2 = vΣvT + σ2
e

If σ2 6= 0, the conditional distribution of X
∣∣∣ (y = z

)
is Dd

Σ′,µ′, where

µ′ = µ+
(z − µ2)

σ2
vΣ, Σ′ = Σ− ΣvTvΣ

σ2
. (1)

If σ2 = 0, the conditional distribution of X
∣∣∣ (y = z

)
is Dd

Σ,µ.

Remark 8. We note that Corollary 7 is also useful to describe for X |〈X ,v〉 by letting σe = 0.

2.3 Lattices

A lattice, denoted as Λ, is a discrete additive subgroup of Rm, which is generated as the set of
all linear integer combinations of n (m ≥ n) linearly independent basis vectors {bj} ⊂ Rm,
namely,

Λ :=
{∑

j
zjbj : zj ∈ Z

}
,

We say that m is the dimension of Λ and n is its rank. A lattice is full rank if n = m. A matrix
B having the basis vectors as rows is called a basis. The volume of a lattice Λ is defined as

Vol(Λ) :=
√

det(BBT). The dual lattice of Λ in Rn is defined as follows.

Λ∗ := {y ∈ Span(B) | ∀x ∈ Λ, 〈x,y〉 ∈ Z}.

Note that, (Λ∗)∗ = Λ, and Vol(Λ∗) = 1/Vol(Λ).

Lemma 9 ([32, Proposition 1.3.4]). Let Λ be a lattice and let F be a subspace of Rn. If
Λ ∩ F is a lattice, then the dual of Λ ∩ F is the orthogonal projection onto F of the dual of Λ.
In other words, each element of Λ∗ is multiplied by the projection matrix ΠF :

(Λ ∩ F)∗ = Λ∗ ·ΠF .

Lemma 10 ([32, Proposition 1.2.9]). Let Λ be a lattice in Rn, let F be a subspace of Rn
such that Λ ∩ F is a lattice and let Π⊥F be the orthogonal projection onto F⊥. Then

Vol(Λ ·Π⊥F) = Vol(Λ)(Vol(Λ ∩ F)−1).

6

Definition 11 (Primitive vectors). A set of vector y1, . . . ,yk ∈ Λ is said primitive with
respect to Λ if Λ ∩ Span(y1, . . . ,yk) is equal to the lattice generated by y1, . . . ,yk. Equivalently,
it is primitive if it can be extended to a basis of Λ. If k = 1, y1, this is equivalent to y1/i 6∈ Λ
for any integer i ≥ 2.

To predict the hardness of the lattice reduction on altered instances, we must compute the
volume of the final transformed lattice. We devise a highly efficient way to do this, by observing
that each time a hint is integrated, we can update the volume of the transformed lattice, given
only the volume of the previous lattice and information about the current hint (under mild
restrictions on the form of the hint).

Lemma 12 (Volume of a lattice slice). Given a lattice Λ with volume Vol(Λ), and a primitive
vector v with respect to Λ∗. Let v⊥ denote subspace orthogonal to v. Then Λ ∩ v⊥ is a lattice
with volume Vol(Λ ∩ v⊥) = ‖v‖ ·Vol(Λ).

Proof. Let us denote Λ′ = (Λ ∩ v⊥) = {x ∈ Λ | 〈x,v〉 = 0}. We now compute Vol(Λ′) as follows

Vol(Λ′) =
1

Vol(Λ′∗)
=

1

Vol(Λ∗ ·Π⊥v)
(2)

=
Vol (Λ∗ ∩ Span(v))

Vol(Λ∗)
(3)

= Vol (Λ∗ ∩ Span(v)) Vol(Λ),

where Equation (2) follows from Lemma 9, and Equation (3) follows from Lemma 10. By Defi-
nition 11, v generates the one-dimensional lattice Λ∗ ∩ Span(v), and Vol(Λ∗ ∩ Span(v)) = ‖v‖.
Therefore we have Vol(Λ′) = ‖v‖ ·Vol(Λ).

Lemma 13 (Volume of a sparsified lattice). Let Λ be a lattice, v ∈ Λ∗ be a primitive vector
of Λ∗, and k > 0 be an integer. Let Λ′ = {x ∈ Λ | 〈x,v〉 = 0 mod k} be a sublattice of Λ. Then
Vol(Λ′) = k ·Vol(Λ).

Proof. Because v̄ is a dual vector of Λ, we have 〈v̄, Λ〉 ⊂ Z. Let ` be such that, 〈v̄, Λ〉 = `Z.
Note that v̄/` ∈ Λ∗, therefore, by primitivity of v̄, we have ` = 1. In particular, the group
morphism φ : x ∈ Λ 7→ 〈x, v̄〉 mod k is surjective. Note that Λ′ = kerφ, therefore we have
|Λ/Λ′| = |Zk| = k. We conclude.

Fact 14 (Volume of a projected lattice) Let Λ be a lattice, v ∈ Λ be a primitive vector of
Λ. Let Λ′ = Λ ·Π⊥v be a sublattice of Λ. Then Vol(Λ′) = Vol(Λ)/‖v‖. More generally, if V is a
primitive set of vectors of Λ, then Λ′ = Λ ·Π⊥V has volume Vol(Λ′) = Vol(Λ)/

√
det(VVT).

Fact 15 (Lattice volume under linear transformations) Let Λ be a lattice in Rn, and
M ∈ Rn×n a matrix such that ker M = Span(Λ)⊥. Then we have Vol(Λ ·M) = rdet(M) Vol(Λ).

3 Distorted Bounded Distance Decoding

3.1 Definition

We first recall the definition of the (search) LWE problem, in its short-secret variant which is
the most relevant to practical LWE-based encryption.

Definition 16 (Search LWE problem with short secrets.). Let n,m and q be positive
integers, and let χ be a distribution over Z. The search LWE problem (with short secrets) for
parameters (n,m, q, χ) is:

7

Given the pair
(
A ∈ Zm×nq ,b = zAT + e ∈ Zmq

)
where:

1. A ∈ Zm×nq is sampled uniformly at random,

2. z← χn, and e← χm are sampled with independent and identically distributed coefficients
following the distribution χ.

Find z.

The primal attack (See for example [3]) against (search)-LWE proceeds by viewing the LWE
instance as an instance of a Bounded Distance Decoding (BDD) problem, converting it to a
uSVP instance (via Kannan’s embedding [27]), and finally applying a lattice reduction algorithm
to solve the uSVP instance. The central tool of our framework is a generalization of BDD that
accounts for potential distortion in the distribution of the secret noise vector that is to be
recovered.

Remark 17 (Adaptation to the dual attack). In principle, our techniques could be adapted to the
dual attack as well. We focus on only one for conciseness, and the primal attack appears more
pertinent and more convenient. Indeed, the dual attack is very rarely better than the primal
one [1], and this despite making more simplifications in favor of the attacker. Furthermore,
the dual attack has not been the object of experimental verification studies, unlike the primal
one. Finally, the cost of the dual attack is not necessarily independent of the underlying SVP-
algorithm: Some analyses, for example, exploit the fact that the Sieving algorithm outputs many
short vectors rather than one.

Definition 18 (Distorted Bounded Distance Decoding problem). Let Λ ⊂ Rd be a lat-
tice, Σ ∈ Rd×d be a symmetric matrix and µ ∈ Span(Λ) ⊂ Rd such that

Span(Σ) (Span(Σ + µT · µ) = Span(Λ). (4)

The Distorted Bounded Distance Decoding problem DBDDΛ,µ,Σ is the following problem:

Given µ,Σ and a basis of Λ.

Find the unique vector x ∈ Λ ∩ E(µ,Σ)

where E(µ,Σ) denotes the ellipsoid

E(µ,Σ) := {x ∈ µ+ Span(Σ)|(x− µ) ·Σ∼ · (x− µ)T ≤ rank(Σ)}.

We will refer to the triple I = (Λ,µ,Σ) as the instance of the DBDDΛ,µ,Σ problem.

Intuitively, Definition 18 corresponds to knowing that the secret vector x to be recovered
follows a distribution of variance Σ and average µ. The quantity (x − µ) · Σ∼ · (x − µ)T can
be interpreted as a non-canonical Euclidean squared distance ‖x−µ‖2Σ, and the expected value
of such a distance for a Gaussian x of variance Σ and average µ is rank(Σ). One can argue
that, for such a Gaussian, there is a constant probability that ‖x−µ‖2Σ is slightly greater than
rank(Σ). Since we are interested in the average behavior of our attack, we ignore this benign
technical detail. In fact, we will typically interpret DBDD as the promise that the secret follows
a Gaussian distribution of center µ and covariance Σ.

The ellipsoid can be seen as an affine transformation (that we call “distortion”) of the
centered hyperball of radius rank(Σ). Let us introduce a notation for the hyperball; for any
d ∈ N

Bd := {x ∈ Rd | ‖x‖2 ≤ d}. (5)

8

DBDD BDD uSVP

Fig. 3. Graphical intuition of DBDD, BDD and uSVP in dimension two: the problem consists in finding a nonzero
element of Λ in the colored zone. The identity hyperball is larger for uSVP to represent the fact that, during the
reduction, the uSVP lattice has one dimension more than for BDD.

One can thus write using Definition 2:

E(µ,Σ) = Brank(Σ) ·
√

Σ + µ. (6)

From the Span inclusion in Equation (4), one can deduce that the condition is equivalent to
requiring µ /∈ Span(Σ) and rank(Σ +µT ·µ) = rank(Σ) + 1 = rank(Λ). This technical detail is
necessary for embedding it properly into a uSVP instance (See later in Section 3.3).

Particular cases of Definition 18. Let us temporarily ignore the condition in Equation (4)
to study some particular cases. As shown in Figure 3, when Σ = Id, DBDDΛ,µ,Id is BDD in-
stance. Indeed, the ellipsoid becomes a shifted hyperball E(µ, Id) = {x ∈ µ+Rd×d | ‖x−µ‖2 ≤
d} = Bd + µ. If in addition µ = 0, DBDDΛ,0,Id becomes a uSVP instance on Λ.

3.2 Embedding LWE into DBDD

In the typical primal attack framework (Figure 1), one directly views LWE as a BDD instance of
the same dimension. For our purposes, however, it will be useful to apply Kannan’s Embedding
at this stage and therefore increase the dimension of the lattice by 1. While it could be delayed
to the last stage of our attack, this extra fixed coefficient 1 will be particularly convenient when
we integrate hints (see Remark 24 in Section 4). It should be noted that no information is lost
through this transformation, since the parameters µ and Σ allow us to encode the knowledge
that the solution we are looking for has its last coefficient set to 1 and nothing else. In more
details, the solution s := (e, z) of an LWE instance is extended to

s̄ := (e, z, 1) (7)

which is a short vector in the lattice Λ =
{

(x,y, w) |x + yAT − bw = 0 mod q
}

. A basis of this
lattice is given by the row vectors of qIm 0 0

AT −In 0
b 0 1

 .
Denoting µχ and σ2

χ the average and variance of the LWE distribution χ (See Definition 16),
we can convert this LWE instance to a DBDDΛ,µ,Σ instance with µ = [µχ · · ·µχ 1] and Σ =[
σ2
χIm+n 0

0 0

]
. The lattice Λ is of full rank in Rd where d := m+n+ 1, and its volume is qm. Note

that the rank of Σ is only d − 1: the ellipsoid has one less dimension than the lattice. It then
validates the requirement of Equation (4).

9

Remark 19. Typically, Kannan’s embedding from BDD to uSVP leaves the bottom right matrix
coefficient as a free parameter, say c, to be chosen optimally. The optimal value is the one
maximizing

‖(z; c)‖
det(Λ)1/d

=
(m+ n)σχ + c

(c · qm)1/d
,

namely, c = σχ according to the arithmetic-geometric mean inequality. Some prior works [3,5]
instead chose c = 1. While this is benign since σχ is typically not too far from 1, it remains
a sub-optimal choice. Looking ahead, in our DBDD framework, this choice becomes irrelevant
thanks to the isotropization step introduced in the next section; we can therefore choose c = 1
without worwsening the attack.

3.3 Converting DBDD to uSVP

In this Section, we explain how a DBDD instance (Λ,µ,Σ) is converted into a uSVP one. Two
modifications are necessary. First, we need to homogeneize the problem. Let us show that the
ellipsoid in Definition 18 is contained in a larger centered ellipsoid (with one more dimension)
as follows:

E(µ,Σ) ⊂ E(0,Σ + µT · µ). (8)

Using Equation (6), one can write

E(µ,Σ) = Brank(Σ) ·
√

Σ + µ ⊂ Brank(Σ) ·
√

Σ± µ,

where Brank(Σ) is defined in Equation (5). And, with Equation (4), one can deduce rank(Σ +

µT · µ) = rank(Σ) + 1, then:

Brank(Σ) ·
√

Σ± µ ⊂ Brank(Σ)+1 ·
[√

Σ
µ

]
.

We apply Definition 2 which confirms the inclusion of Equation (8):

E(µ,Σ) ⊂ Brank(Σ)+1 ·
[√

Σ
µ

]
= E(0,Σ + µT · µ).

Thus, we can homogenize and transform the instance into a centered one with Σ′ := Σ+µT ·µ.

Secondly, to get an isotropic distribution (i.e. with all its eigenvalues being 1), one can just
multiply every element of the lattice with the pseudoinverse of

√
Σ′. We get a new covariance

matrix Σ′′ =
√

Σ′
∼ · Σ′ ·

√
Σ′
∼T

= ΠΣ′ ·ΠΣ′
T . And since ΠΣ′ = ΠT

Σ′ and Π2
Σ′ = ΠΣ′ (see

Section 2.1), Σ′′ = ΠΣ′ = ΠΛ, the last equality coming from Equation (4).

In summary, one must make by the two following changes:

homogenize: (Λ,µ,Σ) 7→ (Λ,0,Σ′ := Σ + µT · µ)

isotropize: (Λ,0,Σ′) 7→ (Λ ·M,0,ΠΛ)

where M := (
√

Σ′)∼. From the solution x to the uSVPΛ·M problem, one can derive x′ = xM∼

the solution to the DBDDΛ,µ,Σ problem.

Remark 20. One may note that we could solve a DBDD instance without isotropization simply by
including the ellipsoid in a larger ball, and directly apply lattice reduction before the second step.
This leads, however, to less efficient attacks. One may also note that the first homogenization
step “forgets” some information about the secret’s distribution. This, however, is inherent to
the conversion to a unique-SVP problem which is geometrically homogeneous, and is already
present in the original primal attack.

10

3.4 Security estimates of uSVP: bikz versus bits

The attack on a uSVP instance consists of applying BKZ-β on the uSVP lattice Λ for an appro-
priate block size parameter β. The cost of the attack grows with β, however, modeling this cost
precisely is at the moment rather delicate, as the state of the art seems to still be in motion. Nu-
merous NIST candidates choose to underestimate this cost, keeping a margin to accommodate
future improvements, and there seems to be no clear consensus on which model to use (see [1]
for a summary of existing cost models).

While this problem is orthogonal to our work, we still wish to be able to formulate quantita-
tive security losses. We therefore express all concrete security estimates using the blocksize β as
our measure of the level of security, and treat the latter as a measurement of the security level in
a unit called the bikz. We thereby leave the question of the exact bikz-to-bit conversion estimate
outside the scope of this paper, and recall that those conversion formulae are not necessarily
linear, and may have small dependency in other parameters. For the sake of concreteness, we
note that certain choose, for example, to claim 128 bits of security for 380 bikz, and in this
range, most models suggest a security increase of one bit every 2 to 4 bikz.

Remark 21. We also clarify that the estimates given in this paper only concern the pure lattice
attack via the uSVP embedding discussed above. In particular, we note that some NIST candi-
dates with ternary secrets [31] also consider the hybrid attack of [26], which we ignore in this
work. We nevertheless think that the compatibility with our framework is plausible, with some
effort.

Predicting β from a uSVP instance The state-of-the-art predictions for solving uSVP
instances using BKZ were given in [4,3]. Namely, for Λ a lattice of dimension dim(Λ), it is
predicted that BKZ-β can solve a uSVPΛ instance with secret s when√

β/ dim(Λ) · ‖s‖ ≤ δ2β−dim(Λ)−1
β ·Vol(Λ)1/ dim(Λ) (9)

where δβ is the so called root-Hermite-Factor of BKZ-β. For β ≥ 50, the Root-Hermite-Factor
is predictable using the Gaussian Heuristic [13]:

δβ =

(
(πβ)

1
β · β

2πe

)1/(2β−2)

. (10)

Note that the uSVP instances we generate are isotropic and centered so that the secret has
covariance Σ = I (or Σ = ΠΛ if Λ is not of full rank) and µ = 0. Thus, on average, we have
‖s‖2 = rank(Σ) = dim(Λ). Therefore, β can be estimated as the minimum integer that satisfies√

β ≤ δ2β−dim(Λ)−1
β ·Vol(Λ)1/ dim(Λ). (11)

While β must be an integer as a BKZ parameter, we nevertheless provide a continuous value,
for a finer comparison of the difficulty of an instance. Below, we will call this method the ”GSA-
Intersect” method.

Remark 22. To predict security, one does not need the basis of Λ, but only its dimension and
its volume. Similarly, it is not necessary to explicitly compute the isotropization matrix M of
Section 3.3, thanks to Fact 15: Vol(Λ ·M) = rdet(M) Vol(Λ) = rdet(Σ′)−1/2 Vol(Λ). These two
shortcuts will allow us to efficiently make predictions for cryptographically large instances, in
our lightweight implementation of Section 5.

11

Refined prediction for small blocksizes The work of [3] warns about a regime where those
predictions are not accurate, due to a so-called second-intersection between the predicted lengths
of the Gram-Schmidt vectors and the successive projections of the secret. This phenomenon
only appears for small blocksizes β, which is not relevant for cryptographically hard instances.
However, we would still like to be able to make reliable predictions for small blocksizes as well,
so as to test the validity of our predictions with and without hints.

Other sources of inaccuracy of this model are the so-called head and tails phenomenon [42,6],
as well as the fact that one can be lucky: the projected length of the secret can vary, making it
plausible that the secret will be found with a slightly smaller blocksize. For example, in [3] more
than 50% of the attacks were already successful by running BKZ with blocksize βpred − 5.

Furthermore, the predictions of [3] work under the assumption that as soon as the projected
secret vector has been detected at position d − β, it will be “pulled-back” to the front by the
run of LLL that is typically executed between BKZ tours. For large block-sizes β this event
is indeed very likely as argued and experimentally verified in [3], but may not occur in small
or intermediate dimension. In fact, the issue of double-intersection is precisely related to this
assumption.

For experimental validation purposes of our work, we prefer to have accurate prediction even
for small blocksizes. We therefore devise a refined strategy. First, we resort to the so called BKZ-
simulator [13] to predict more accurately the length `i of the Gram-Schmidt vectors. Secondly, we
do not assume that the projected secret πi(s) (projected orthogonally to the i−1 first vectors of
the reduced basis, as in [3]) has exactly length

√
n− i, but simply treat it as a spherical Gaussian.

We can therefore compute the probability that it is detected at position i by considering the
CDF of χ2

n−i, the chi-square distribution with n− i degrees of freedom.
At last, we do not only account for the detectability of the secret vector at position i = n−β,

but also check whether it is likely that the vector will be pulled to the front (not by the interleaved
LLL, by BKZ itself, which is more powerful). That is, we consider the probability that:

Ei : ‖πi(s)‖ ≤ `i simultaneously for all i ∈ {d− β, d− 2β + 1, d− 3β + 2, . . . }.

Those events are not perfectly independent, which makes computing the probability of the
conjunction of those more painful.7 For simplicity, we only account for dependence between
consecutive events Ei and Ei+1 and therefore avoid having to resort to numerical computation
of nested integrals. We iteratively compute the success probability for each tour of BKZ-β for
increasing β, and from there deduce the average successful β.

As depicted in Figure 4, this methodology (coined Probabilistic-simulation) leads to much
more satisfactory estimates compared to the model from the literature [3,4]. In particular, for
low blocksize the literature widely underestimates the required blocksize, which is due to only
considering detectability at position d − β. For large blocksize, it somewhat overestimates it,
which could be attributed to the fact that it does not account for luck. On the contrary, our
new methodology seems quite precise in all regimes, making errors of at most 1 bikz. This new
methodology certainly deserves further study and refinement, which we leave to future work.

4 Hints and their integration

In this Section, we define several categories of hints—perfect hints, modular hints, approxi-
mate hints (conditioning and a posteriori), and short vector hints—and show that these
types of hints can be integrated into a DBDD instance. Hints belonging to these categories typ-
ically have the form of a linear equation in s (and possibly additional variables). As emphasized

7 The expert reader may note that, for s uniformly distributed over a sphere, such conjunction correspond to a
cylinder intersection, as used for pruning in enumeration [20].

12

0 5 10 15 20 25 30 35 40 45 50 55 60 65

−12

−10

−8

−6

−4

−2

0

2

4

experimental average β

∆
β

GSA-Intersect method [4,3]
Probabilistic-simulation method

Fig. 4. The difference ∆β = real−predicted, as a function of the average experimental beta β. The experiment con-
sists in running a single tour of BKZ-β for β = 2, 3, 4, . . . until the secret short vector is found. This was averaged
over 256 many LWE instances per data-point, for parameters q = 3301, σ = 20 and n = m ∈ {30, 32, 34, . . . , 88}.

in Section 1, these hints have lattice-friendly forms and their usefulness in realistic applications
may not be obvious. We refer to Section 6 for detailed applications of these hints.

The technical challenge, therefore, is to characterize the effect of such hints on the DBDD
instance—i.e. determine the resulting (Λ′,µ′,Σ′) of the new DBDD instance, after the hint is
incorporated.

Henceforth, let I = DBDDΛ,µ,Σ be a fixed instance constructed from an LWE instance with
secret s = (z, e). Each hint will introduce new constraints on s and will ultimately decrease the
security level.

Non-Commutativity It should be noted that many types of hints commute: Integrating
them in any order will lead to the same DBDD instance. Potential exceptions are non-smooth
modular hints (See later in Section 4.2) and aposteriori approximate hints (See later in
Section 4.4): they do not always commute with the other types of hints, and do not always
commute between themselves, unless the vectors v’s of those hints are all orthogonal to each
other. The reason is: in these cases, the distribution in the direction of v is redefined which
erases the prior information.

4.1 Perfect Hints

Definition 23 (Perfect hint). A perfect hint on the secret s is the knowledge of v ∈ Zd−1 and
l ∈ Z, such that

〈s, v〉 = l.

A perfect hint is quite strong in terms of additional knowledge. It allows decreasing the
dimension of the lattice by one and increases its volume. One could expect such hints to arise
from the following scenarios:

– The full leak without noise of an original coefficient, or even an unreduced intermediate
register since most of the computations are linear. For the second case, one may note that
optimized implementations of NTT typically attempt to delay the first reduction modulo q,

13

so leaking a register on one of the first few levels of the NTT would indeed lead to such a
hint.

– A noisy leakage of the same registers, but with still a rather high guessing confidence. In
that case it may be worth making the guess while decreasing the success probability of the
attack.8 This could happen in a cold-boot attack scenario. This is also the case in the single
trace attack on Frodo [11] that we will study as one of our examples in Section 6.1.

– More surprisingly, certain schemes, including some NIST candidates offer such a hint ‘by
design’. Indeed, LAC, Round5 and NTRU-HPS all choose ternary secret vectors with a
prescribed number of 1’s and −1’s, which directly induce one or two such perfect hints. This
will be detailed in Section 6.3.

Integrating a perfect hint into a DBDD instance Let v ∈ Zd−1 and l ∈ Z be such that
〈s,v〉 = l. Note that the hint can also be written as

〈s̄, v̄〉 = 0,

where s̄ is the extended LWE secret as defined in Equation (7) and v̄ := (v ; −l).

Remark 24. Here we understand the interest of using Kannan’s embedding before integrating
hints rather than after: it allows to also homogenize the hint, and therefore to make Λ′ a proper
lattice rather than a lattice coset (i.e. a shifted lattice).

Including this hint is done by modifying the DBDDΛ,µ,Σ to DBDDΛ′,µ′,Σ′ , where:

Λ′ = Λ ∩
{

x ∈ Zd | 〈x, v̄〉 = 0
}

Σ′ = Σ− (v̄Σ)T v̄Σ

v̄Σv̄T
(12)

µ′ = µ− 〈v̄,µ〉
v̄Σv̄T

v̄Σ (13)

We now explain how to derive the new mean µ′ and the new covariance Σ′. Let y be the
random variable 〈s̄, v̄〉, where s̄ has mean µ and covariance Σ. Then µ′ is the mean of s̄ con-
ditioned on y = 0, and Σ′ is the covariance of s̄ conditioned on y = 0. Using Corollary 7, we
obtain the corresponding conditional mean and covariance.

We note that lattice Λ′ is an intersection of Λ and a hyperplane orthogonal to v̄. Given B
as basis of Λ, by Lemma 9 a basis of Λ′ can be computed as follows:

1. Let D be dual basis of B. Compute D⊥ := D ·Π⊥v̄ .
2. Apply the LLL algorithm on D⊥ to eliminate linear dependencies. Then delete the first row

of D⊥ (which is 0 because with the hyperplane intersection, the dimension of the lattice is
decremented).

3. Output the dual of the resulting matrix.

While polynomial time, the above computation is quite heavy, especially as there is no convenient
library offering a parallel version of LLL. Fortunately, for predicting attack costs, one only needs
the dimension of the lattice Λ and its volume. These can easily be computed assuming v̄ is
a primitive vector (see Definition 11) of the dual lattice: the dimension decreases by 1, and
the volume increases by a factor ||v̄||. This is stated and proved in Lemma 12. Intuitively, the
primitivity condition is needed since then one can scale the leak to 〈s, fv〉 = fl for any non-zero
factor f ∈ R and get an equivalent leak; however there is only one factor f that can ensure that
f v̄ ∈ Λ∗, and is primitive in it.

8 One may then re-amplify the success probability by retrying the attack making guesses at different locations.

14

Remark 25. Note that if v̄ is not in the span of Λ—as typically occurs if other non-orthogonal
perfect hints have already been integrated—Lemma 12 should be applied to the orthogonal
projection v̄′ = v̄ ·ΠΛ of v̄ onto Λ. Indeed, the perfect hint 〈s̄, v̄′〉 = 0 replacing v̄ by v̄′ is
equally valid.

4.2 Modular Hints

Definition 26 (Modular hint). A modular hint on the secret s is the knowledge of v ∈ Zd−1,
k ∈ Z and l ∈ Z, such that

〈s, v〉 = l mod k.

We can expect such hints to arise from several scenarios:

– obtaining the value of an intermediate register during LWE decryption would likely corre-
spond to giving such a modular equation modulo q. This is also the case if an NTT coefficient
leaks in a Ring-LWE scheme. It can also occur “by design” if the LWE secret is chosen so
that certain NTT coordinates are fixed to 0 modulo q, as is the case in some instances of
Order LWE [8].

– obtaining the absolute value a = |s| of a coefficient s implies s = a mod 2a, and such a hint
could be obtained by a timing attack on an unprotected implementation of a table-based
sampler, in the spirit of [22].

– obtaining the Hamming weight of the string b1b2 . . . b
′
1b
′
2 . . . used to sample a centered bino-

mial coefficient s =
∑
bi−

∑
b′i (as done in NewHope and Kyber [41,38]) reveals in particular

s mod 2. Indeed, the latter string (or at least some parts of it) is more likely to be leaked
than the Hamming weight of s.

Integrating a modular hint into a DBDD instance. Let v ∈ Zd−1; k ∈ Z and l ∈ Z be
such that 〈s,v〉 = l mod k. Note that the hint can also be written as

〈s̄, v̄〉 = 0 mod k (14)

where s̄ is the extended LWE secret as defined in Equation 7 and v̄ := (v ; −l). We refer to
Remark 24 for the legitimacy of such dimension increase.

Smooth case. Intuitively, such a hint should only sparsify the lattice, and leave the average
and the variance unchanged. This is not entirely true, this is only (approximately) true when the
variance is sufficiently large in the direction of v to ensure smoothness, i.e. when k2 � vΣvT ;
one can refer to [35, Lemma 3.3 and Lemma 4.2] for the quality of that approximation. In this
smooth case, we therefore have:

Λ′ = Λ ∩
{

x ∈ Zd | 〈x, v̄〉 = 0 mod k
}

(15)

µ′ = µ (16)

Σ′ = Σ (17)

On the other hand, if k2 � vΣvT , then the residual distribution will be highly concentrated on
a single value, and one should therefore instead use a perfect 〈s, v〉 = l + ik for some i.

15

General case. In the general case, one can resort to a numerical computation of the average
µc and the variance σ2

c of the one-dimensional centered discrete Gaussian of variance σ2 = vΣvT

over the coset l + kZ, and apply the corrections:

µ′ = µ+
µc − 〈v̄,µ〉

v̄Σv̄T
v̄Σ (18)

Σ′ = Σ +

(
σ2
c

(v̄Σv̄T)2
− 1

v̄Σv̄T

)
(v̄Σ)T (v̄Σ) (19)

Intuitively, these formulae completely erase prior information on 〈s, v̄〉, before it is replaced by
the new average and variance in the adequate direction. Both can be derived9 using Corollary
7.

As for perfect hints, the computation of Λ′ can be done by working on the dual lattice. More
specifically:

1. Let D be dual basis of B.

2. Redefine v̄← v̄ ·ΠΛ, noting that this does not affect the validity of the hint.

3. Append v̄/k to D and obtain D′

4. Apply the LLL algorithm on D′ to eliminate linear dependencies. Then delete the first row
of D′ (which is 0 since we introduced a linear dependency).

5. Output the dual of the resulting matrix.

Also, as for perfect hints the parameters of the new lattice Λ′ can be predicted: the dimension
is unchanged, and the volume increases by a factor k under a primitivity condition, which is
proved by Lemma 13.

4.3 Approximate Hints (conditioning)

Definition 27 (Approximate hint). An approximate hint on the secret s is the knowledge of
v ∈ Zd−1 and l ∈ Z, such that

〈s, v〉+ e = l,

where e models noise following a distribution N1(0, σ2
e), independent of s.

One can expect such hints from:

– any noisy side channel information about a secret coefficient. This is the case of our study
in Section 6.1.

– decryption failures. In Section 6.2, we show how this type of hint can represent the informa-
tion gained by a decryption failure.

To include this knowledge in the DBDD instance, we must combine this knowledge with the
prior knowledge on the solution s of the instance.

Integrating an approximate hint into a DBDD instance Let v ∈ Zd−1 and l ∈ Z be
such that 〈s,v〉 ≈ l. Note that the hint can also be written as

〈s̄, v̄〉+ e = 0 (20)

9 We are thankful to Thibauld Feneuil for pointing out an incorrect equation in a previous version of this paper.

16

where s̄ is the extended LWE secret as defined in Equation (7), v̄ := (v ; −l), and e has N1(0, σ2
e)

distribution. The unique shortest non-zero solution of DBDDΛ,µ,Σ, is also the unique solution of
the instance DBDDΛ′,µ′,Σ′ where

Λ′ = Λ (21)

Σ′ = Σ− (v̄Σ)T v̄Σ

v̄Σv̄T + σ2
e

(22)

µ′ = µ− 〈v̄,µ〉
v̄Σv̄T + σ2

e

v̄Σ (23)

We note that Equation (21) comes from

Λ′ := Λ ∩
{

x ∈ Zd | 〈x, v̄〉+ e = 0, for all possible e ∼ N1(0, σ2
e)
}

= Λ.

The new covariance and mean follow from Corollary 7.

Consistency with Perfect Hint Note that if σe = 0, we fall back to a perfect hint 〈s,v〉 = l.
The above computation of Σ′ (22) (resp. µ′ (23)) is indeed equivalent to Equation (12) (resp.
Equation (13)) from Section 4.1. Note however, in our implementation, that to avoid singularities,
we require the span of Span(Σ + µTµ) = Span(Λ) (See the requirement in Equation (4)): If
σe = 0, one must instead use a Perfect hint.

Multi-dimensional approximate hints The formulae of [30] are even more general, and
one could consider a multidimensional hint of the form sV + e = l, where V ∈ Rn×k and e a
gaussian noise of any covariance Σe. However, those general formulae require explicit matrix
inversion which becomes impractical in large dimension. We therefore only implemented full-
dimensional (k = n) hint integration in the super-lightweight version of our tool, which assumes
all covariance matrices to be diagonal. These will be used for hints obtained from decryption
failures in Section 6.2.

4.4 Approximate Hint (a posteriori)

In certain scenarios, one may more naturally obtain directly the a posteriori distribution of
〈s,v〉, rather than a hint 〈s,v〉 + e = l for some error e independent of s. Such a scenario is
typical in template attacks, as we exemplify via the single trace attack on Frodo from [11], which
we study in Section 6.1.

Given the a posteriori distribution of 〈s̄, v̄〉, one can derive its mean µap and variance σ2
ap

and apply the corrections to compute the new mean and covariance exactly as in Equations (18)
and (19).

Λ′ = Λ (24)

µ′ = µ+
µap − 〈v̄,µ〉

v̄Σv̄T
v̄Σ (25)

Σ′ = Σ +

(
σ2

ap

(v̄Σv̄T)2
− 1

v̄Σv̄T

)
(v̄Σ)T (v̄Σ) (26)

4.5 Short vector hints

Definition 28 (Short vector hint). A short vector hint on the lattice Λ is the knowledge of
a short vector v̄ such that

v̄ ∈ Λ.

17

Note that such hints are not related to the secret, and are not expected to be obtained by
side-channel information, but rather by the very design of the scheme. In particular, the lattice Λ
underlying LWE instance modulo q contains the so-called q-vectors, i.e. the vectors (q, 0, 0, . . . , 0)
and its permutations. These vectors are in fact implicitly exploited in the literature on the
cryptanalysis of LWE since at least [29]. Indeed, in some regimes, the best attacks are obtained
by ‘forgetting’ certain LWE equations, which can be geometrically interpreted as a projection
orthogonally to a q-vector. Note that, among all hints, the short vector hints should be the last
to be integrated. In our context, we need to generalize this idea beyond q-vector because the
q-vectors may simply disappear after the integration of a perfect or modular hint. For example,
after the integration of a perfect hint 〈s, (1, 1, . . . , 1)〉 = 0, all the q-vectors are no longer in the
lattice, but (q,−q, 0, . . . , 0) still is, and so are all its permutations.

Resolving the DBDD problem resulting from this projection will not directly lead to the
original secret, as projection is not injective. However, as long as we keep n+ 1 dimensions out
of the n+m+ 1 dimensions of the original LWE instance, we can still efficiently reconstruct the
full LWE secret by solving a linear system over the rationals.

Integrating a short vector hint into a DBDD instance It is the case when the secret
vector is short enough to be a solution after applying projection Π⊥v̄ on DBDDΛ,Σ,µ .

Λ′ = Λ ·Π⊥v̄ (27)

Σ′ = (Π⊥v̄)T ·Σ ·Π⊥v̄ (28)

µ′ = µ ·Π⊥v̄ (29)

To compute a basis of Λ′ one can simply apply the projection to all the vectors of its current
basis, and then eliminate linear dependencies in the resulting basis using LLL.

Remark 29. Once a short vector hint v̄ ∈ Λ has been integrated, Λ has been transformed into Λ′.
And, if one has to perform another short vector hint integration v̄1 ∈ Λ, v̄1 should be projected
onto Λ′ with v̄ · ΠΛ′ ∈ Λ′. In our implementation however, this has been taken into account
and one can simply apply the same transformation as above, replacing a single vector v̄ by a
matrix V.

The dimension of the lattice decreases by one (or by k, if one directly integrates a matrix
of k vectors) and the volume of the lattice also decreases according to Fact 14. One can also
predict the decrease of the determinant of Σ via the identity:

rdet(Σ′) = rdet(Σ) · ‖v̄‖
2

v̄Σv̄T
, or rdet(Σ′) = rdet(Σ) · det(VVT)

det(VΣVT)
. (30)

Worthiness and choice of short vector hints Integrating such a hint induces a trade-off
between the dimension and the volume, and therefore it is not always advantageous to integrate.

This raises the following potentially hard problem: given a set W of short vectors of Λ (viewed
as a matrix), which subset V ⊂ W of size k lead to the easiest DBDD instance? Because the
hardness of the new problem grows with

rdet(Σ′)

Vol(Λ′)2
=

rdet(Σ)

Vol(Λ)2
· det(VVT)2

det(VΣVT)
(31)

In the case of an un-hinted DBDD instance directly obtained from the LWE problem, for V
being the set of (primitive) q-vectors, the problem is easier: all subsets of size k lead to instances
with the same parameters.

18

But this is not true anymore as soon as Σ has been altered or if the set W is arbitrary. For
example, setting Σ = I, one simply wishes to minimize det(VVT); but for an arbitrary set W
the problem of finding the optimal subset V ⊂W is NP-hard [28], and remains NP-hard up to
exponential approximation factors.

A natural approach to try to get an approximate solution in polynomial time consists in
making sequential greedy choices. This involves computing |V|·|W|many matrix-vector products
over increasingly large rationals, and appeared painfully slow in practice for making prediction
on cryptographically large instances. Fortunately, in the typical cases where the vectors of W
are the q-vectors, this can be made somewhat practical (See Section 6.3 for example).

Remark 30. When the basis of an LWE-lattice is given in its systematic form, the q-vectors
are already explicitly given to lattice reduction algorithms, and these algorithms will implicitly
make use of them when they are worthy, as if we had integrated them. The reason is that lattice
reduction algorithm naturally work with projected sublattices, and if a q-vector is shorter than
what the algorithm can produce, those q-vectors will remain untouched at the beginning of
the basis; the reduction algorithm will effectively work on the lattice projected orthogonally to
them. In other words, integrating q-vectors is important to understand and predict how lattice
reduction algorithm will work, but, in certain cases they may be automatically detected and
exploited by lattice reduction algorithms themselves.

5 Implementation

5.1 Our Sage implementation

We propose three implementations of our framework, all following the same python/sage 9.0
API.10 More specifically, the API and some common functions are defined in DBDD generic.sage,
as a class DBDD Generic. Three derived classes are then given:

1. The class DBDD (provided in DBDD.sage) is the full-fledged implementation: i.e. it fully main-
tains all information about a DBDD instance as one integrates hints: the lattice Λ, the
covariance matrix Σ and the average µ. While polynomial time, maintaining the lattice
information can be quite slow, especially since consecutive intersections with hyperplanes
can lead to manipulations on rationals with large denominators. It also allows to finalize
the attack, running the homogenization, isotropization and lattice reduction, based on the
fplll [18] library available through sage.
We note that if one were to repeatedly use perfect or modular hints, a lot of effort would be
spent on uselessly alternating between the primal and the dual lattice. Instead, we implement
a caching mechanism for the primal and dual basis, and only update them when necessary.

2. The class DBDD predict (provided in DBDD predict.sage) is the lightweight implementation:
it only fully maintains the covariance information, and the parameters of the lattice (di-
mension, volume). It must therefore work under assumptions about the primitivity of the
vector v; in particular, it cannot detect hints that are redundant. If one must resort to this
faster variant on large instances, it is advised to consider potential (even partial) redundancy
between the given hints, and to run a comparison with the previous on small instances with
similarly generated hints.

3. The class DBDD predict diag (provided in DBDD predict diag.sage) is the super-lightweight
implementation. It maintains the same information as the above, but requires the covariance
matrix to remain diagonal at all times. In particular, one can only integrate hints for which
the directional vector v is colinear with a canonical vector.

10 While we would have preferred a full python implementation, we are making a heavy use of linear algebra over
the rationals for which we could find no convenient python library.

19

5.2 Tests and validation

In Appendix A, we present a demonstration of our tool with some extracts of Sage 9.0 code. We
implement two tests to verify the correctness of our scripts, and more generally the validity of
our predictions.

Consistency checks. Our first test (check consistency.sage) simply verifies that all three
classes always agree perfectly. More specifically we run all three versions on a given instances,
integrating the same random hint in all of them, and compare their hardness prediction. We first
test using the full-fledged version that the primitivity condition does hold, and discard the hint
if not, as we know that predictions cannot be correct on such hints. This verification passes.

Prediction verifications. We now verify experimentally the prediction made by our tool
for various types of hints, by comparing those predictions to actual attack experiments (see
compare usvp models.sage for the prediction without hints and prediction verifications.sage for
the prediction with hints). This is done for a given set of LWE parameters, and increasing the
number of hints. The details of the experiments and the results are given in Figure 5.

While our predictions seem overall accurate, we still note a minor discrepancy of up to 2
or 3 bikz in the low blocksize regime. This exceeds the error made by prediction on the attack
without any hint, which was below 1 bikz, even in the same low blocksize regime. We suspected
that this discrepancy is due to residual q-vectors, or small combinations of them, that are hard
to predict for randomly generated hints, but would still benefit by lattice reduction. We tested
that hypothesis by running similar experiments, but leaving certain coordinates untouched by
hints, so to still explicitly know some q-vectors for short-vector hint integration, if they are
“worthy”. This didn’t to improve the accuracy of our prediction, which infirms our suspected
explanation. We are at the moment unable to explain this inacuracy. We nevertheless find our
predictions satisfactory, considering that even without hints, previous predictions [3] were much
less accurate (see Figure 4).

6 Applications examples

6.1 Hints from side channels

W. Bos et al. [11] study the feasibility of a single-trace power analysis of the Frodo Key En-
capsulation Mechanism (FrodoKEM) [36]. Specifically, in the first approach, they analyze the
possibility of a divide-and-conquer attack targeting a multiplication in the key generation. This
attack was claimed unsuccessful in [11] because the bruteforce phase after recovering a candidate
for the private key was too expensive. Along with this unsuccessful result, a successful powerful
extend-and-prune attack is provided in [11].

We emphasize that the purpose of this section is to exemplify our tool on a standard side-
channel attack, and this is why we choose the former unsuccessful divide-and-conquer attack
of [11]. The point of this section is to show that our framework can indeed lead to improvements
in the algorithmic phase of a side-channel attack, once the leak has been fixed.

FrodoKEM. FrodoKEM is based on small-secret-LWE; we outline here some details necessary
to understand the attack. Note that we use different letter notations from [36] for consistency.
For parameters n and q, the private key is (z ∈ Znq , e ∈ Znq) where the coefficients of z and e,
denoted zi and ei, can take several values in a small set that we denote L. The public key is

20

0 5 10 15 20 25 30 35
0

10

20

30

40

50

Perfect Hints

β
Prediction
Experiments

0 20 40 60 80 100 120
0

10

20

30

40

50

Modular Hints

β

Prediction
Experiments

0 50 100 150 200 250 300
0

10

20

30

40

50

Approximate Hints

β

Prediction
Experiments

LWE Parameters
n = m = 70, q = 3301, σ = 20
n = m = 80, q = 3301, σ = 20

Hint Type Parameter

Perfect hints –
Modular hints mod 11
Approximate hints σ2

ε = 3

The hint vectors v were chosen as
random ternary vectors of weight 5.

Fig. 5. Experimental verification of the security decay predictions for each type of hints. Each data point was
averaged over 256 samples.

(
A ∈ Zn×nq ,b = zA + e

)
. The goal of the attack is to recover z by making measurements during

the multiplication between z and A when computing b in the key generation. Note that there is
no multiplication involving e and thus it is not targeted in this attack. Six sets of parameters are
considered: CCS1, CCS2, CCS3 and CCS4 introduced in [10] and NIST1 and NIST2 introduced
in [36]. For example, with NIST1 parameters, n = 640, q = 215 and L = {−11, · · · , 11}.

n = 640, q = 215 and L = {−11, · · · , 11}.

Side-channel simulation. The divide-and-conquer attack provided by [11] simulates side-
channel information using ELMO, a power simulator for a Cortex M0 [34]. This tool out-
puts simulated power traces using an elaborate leakage model with Gaussian noise. Thus, it is
parametrized by the standard deviation of the side-channel noise. For proofs of concept, the au-
thors of [34] suggest to choose the standard deviation of the simulated noise as σSimNoise := 0.0045

21

for realistic leakage modeling. This standard deviation was also the one chosen in [11, Fig. 2b] and
W. Bos et al. implemented a Matlab script that calls ELMO to simulate the side-channel infor-
mation applied on Frodo. This precise side-channel simulator was provided to us by the authors
of [11] and we were able to re-generate all their data with Matlab, again using σSimNoise = 0.0045.

Template attack. The divide-and-conquer side-channel attack proposed by W. Bos et al. be-
longs in the template attack family. Template attacks were introduced in [12]. In a nutshell,
these attacks include a profiling phase and an online phase. Let us detail the template attack
for Frodo implemented in [11].

1. The profiling phase consists in using a copy of the device and recording a large number of
traces using many different known secret values. From these measures, the attacker can derive
the multidimensional distribution of several points of interest when the traces share the same
secret coefficient. More precisely, in the case of FrodoKEM, for a given index i ∈ [0, n − 1],
the points of interest will be the instants in the trace when zi is multiplied by the coefficients
of A(n interest points in total). Let us define

ci := (T [ti,0], . . . , T [ti,n−1]) c ∈ Rn, (32)

where T denotes the trace measurement and (ti,k) denotes the instants of the multiplication
of zi with the coefficients Ai,k for (i, k) ∈ [0, n − 1]. The random variable vector associated
to ci is denoted by Ci. For each i ∈ [0, n− 1] and x ∈ L, the goal of the profiling phase is to
learn the center of the probability distribution

Ai,x(c) := P [Ci = c | zi = x] .

By hypothesis, for template attacks (see [12, Section 2.1]), Ai,x is assumed to follow a mul-
tidimenstional normal distribution of standard deviation σSimNoise · In. Thus, the attacker
recovers the center of Ai,x for each i ∈ [0, n − 1] and x ∈ L by averaging all the measured
ci that validate zi = x. The center of Ai,x is denoted ti,x and we call it a template. W. Bos
et al. [11] actually assume that ti,x depends only on x and is independent from the index i.
Thus, ti,x = tx. Essentially, this common assumption implies that the index i ∈ [0, n− 1] of
the target coefficient does not influence the leakage. Consequently, the attacker only has to
derive t0,x, for example.

2. In a second step, the attacker knows the templates tx for all x ∈ L. She also knows the
points of interest ti,k as defined above in Equation 32. She will construct a candidate z̃ for
the secret z by recovering the coefficients one by one. For each unknown secret coefficient zi,
she takes the measurement ci as defined in Equation 32. Using this measurement, she can
derive an a posteriori probability distribution: With her fixed i ∈ [0, n − 1] and measured
ci ∈ R, she computes for all x ∈ L,

P [zi = x | Ci = ci] =
P [zi = x]

P [Ci = ci]
· P [Ci = ci | zi = x] (33)

∝ P [zi = x] · exp

(
−‖ci − tx‖22

2σ2
SimNoise

)
(34)

In [11], a score table, denoted (Si[x])x∈L is derived from the a posteriori distribution as
follows,

Si[x] := ln (P [zi = x | Ci = ci]) (35)

= ln (P [zi = x])− ‖ci − tx‖22
2σ2

SimNoise

. (36)

Finally, the output candidate for zi is z̃i := argmaxx∈L(Si[x]).

22

zi
S

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

0 -4098 -3918 -4344 -2580 -3212 -3108 -3758 -3155 -3583 -3498 -3900 -340
1 -3273 -3114 -3491 -1951 -2495 -2405 -2972 -2445 -2819 -2744 -3098 -365
−1 -341 -335 -352 -465 -358 -369 -329 -362 -331 -334 -328 -3712
−1 -306 -298 -319 -414 -314 -323 -290 -317 -291 -293 -291 -3608

. . . 1 2 3 4 5 6 7 8 9 10 11

0 . . . -380 -367 -452 -818 -975 -933 -1084 -368 -459 -453 -592
1 . . . -325 -328 -338 -546 -657 -627 -737 -333 -344 -342 -407
−1 . . . -3079 -3195 -2656 -1696 -1461 -1521 -1329 -3231 -2648 -2685 -2201
−1 . . . -2982 -3097 -2564 -1617 -1385 -1444 -1256 -3132 -2556 -2593 -2115

Table 1: Examples of scores associated to the secret values si ∈ {0,±1}, after the side-channel
analysis of [11] for NIST1 parameters. The best score in each score table is highlighted. This
best guess is correct for the first 3 score table, but incorrect for the last one.

One can use the presented attack as a “black-box” to generate the score tables using the
script from [11]. As an example, using the NIST1 parameters, we show several measured scores
(S[−11], · · · , S[11]) corresponding to several secret coefficients in Table 1. The first line corre-
sponds to a secret equal to 0, the second line to 1 and the third and fourth line to −1. The last
line is an example of failed guessing because we see that the outputted candidate is not −1. We
remark that the values having the opposite sign are assigned a very low score, we conjecture
that it is because the sign is filling the register and then the Hamming weight of the register
will be very far from the correct one.

With this template attack, one can recover z̃ ≈ z. However, W. Bos et al. [11] could not
conclude the attack with a key recovery even though much information leaked about the secret.
Frustratingly, a bruteforce phase to derive z from z̃ did not lead to any security threat as stated
in [11, Section 3]. They actually pointed out an interesting open question of whether “novel
lattice reduction algorithms [can] take into account side-channel information.” Our work solves
this open question by combining the knowledge obtained in the divide-and-conquer template
attack of [11] with our framework.

From scores to hints. We first instantiate a DBDD instance with a chosen set of parameters.
Then we assume that, for each secret coefficient zi, we are given the associated score table Si,
thanks to the template attack that has already been carried out. We go back to the a posteriori
distribution in Equation 34 by applying the exp() function and renormalizing the score table.
As an example, we show the probability distributions derived from Table 1, along with their
variances and centers, in Table 2.

Finally, we use our framework to introduce n a posteriori approximate hints to our DBDD
instance with the derived centers and variances for each score table. When the variance is exactly
0, we integrate perfect hints instead.

Results. One can reproduce this attack using the Sage 9.0 script
exploiting SCA from Bos et al.sage. The experimentally derived data containing the score ta-
bles is in the folder Scores tables SCA for which, as mentioned earlier, was generated with a
simulated noise variance of 0.0045. One can note that the obtained security fluctuates a bit from
instance to instance, as it depends on the strength of the hints, which themselves depend on the

23

zi
A posteriori distribution

−11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0.26 0 0.04 0.00 0.70 0
−1 0 0 0 0 0 0 0.56 0 0.21 0.03 0.21 0

. . . 1 2 3 4 5 6 7 8 9 10 11 center variance

0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
1 . . . 0.95 0.04 0 0 0 0 0 0.01 0 0 0 1.05 0.06
−1 . . . 0 0 0 0 0 0 0 0 0 0 0 -2.11 3.11
−1 . . . 0 0 0 0 0 0 0 0 0 0 0 -3.68 2.63

Table 2: Probability distributions derived from Table 1, along with variances and centers.

randomness of the scheme. In the first two lines of Table 3, we show the new security with the
inclusion of the approximate hints averaged on 50 tests per set of parameters.

NIST1 NIST2 CCS1 CCS2 CCS3 CCS4

Attack without hints (bikz) 487 708 239 448 492 584
Attack with hints (bikz) 330 423 128 123 219 230

Attack with hints & guesses (bikz) 292 298 70 29 124 129
Number of guesses g 100 250 200 300 250 250
Success probability 0.86 0.64 0.87 0.77 0.81 0.84

Table 3: Cost of the attacks without/with hints without/with guesses.

Guessing. To improve the attack further, one can note from Table 2 that certain key values
have a very high probability of being correct, and assuming each of these values are correct, one
can replace an approximate hint with a perfect one. For example, considering the second line of
Table 2, the secret has a probability of 0.95 to be 1 and thus guessing it trades a perfect hint for
a decrease of the success probability of the attack by 5%. This hybrid attack exploiting hints,
guesses and lattice reduction, works as follows. Let g be a parameter.

1. Include all the approximate and perfect hints given by the score tables,
2. Order the coefficients of the secret zi according to the maximum value of their a posteriori

distribution table,
3. Include perfect hints for the g first coefficients and then solve and check the solution.

Increasing the number of guesses g leads to a trade-off between the cost of the attack and its
success probability. We have chosen here a success probability larger than 0.6, while reducing
the attack cost by 38 to 145 bikz depending on the parameter set. Given that 1 bit of security
corresponds roughly to 3 or 4 bikz, this is undoubtedly advantageous.

Remark 31. The refinement presented above are very recent (lastly improved on June 2020).
We are grateful to the authors of [11] of for helping us to reconstruct the distributions from the
score table.

We remark that, with these results, the attacks with guesses on the parameters CCS1 and
CCS2 seem doable in practice while it was not the case with our original results. However,
some improvements of the implementation remain to be done in order to actually mount the
attack. The full-fledged implementation cannot handle in reasonable time the large matrices of

24

the original DBDD instance. We require another class of implementation which fully maintains
all information about the instance, like the DBDD class, and assumes that the covariance matrix
Σ is diagonal to simplify the computations, like the DBDD predict diag class. We hope to report
on such an implementation in a future update of this report.

Remark 32. It should be noted that, given a single trace, one cannot naively retry the attack to
boost its success probability. Indeed, the “second-best” guess may already have a much lower
success probability than the first. Setting up such an hybrid attack mixing lattice reduction
within our framework and key-ranking appears to be an interesting problem.

6.2 Hints from decryption failures

Another kind of hint our framework can model are hints provided by decryption failures. For a
single-bit LWE encryption scheme, a decryption failure occurs when the random short vector w
used during encryption is such that |〈s,w〉| ≥ t for some t, typically t = q/4.

In fact, we can even assume to know the “side” of the decryption failure, i.e. we can assume we
know that 〈s,w〉 ≥ t. Indeed, this can be guessed with probability 1/2 for the first failure, and it
can be deduced for subsequent failures using the fact that those sides are strongly correlated (see
Section 4.3 in [17] for example). For multi-bit encryption, using either ring-element or matrices
for secrets, similar techniques allow to “locate” the failure, and therefore obtain information of
this form.

We will here consider the case of the Chosen-Ciphertext-Attack (CCA) secure variant of
such schemes, typically obtained by variants of the Fujikasi-Okamoto transform. In this case,
the attacker does not control the short vector w, as it is generated following the randomness of
a hash function.

Following our framework, it would be tempting to simply construct the conditional distri-
bution of 〈s,w〉 given that |〈s,w〉| ≥ t, and integrate this as an a posteriori hint with v = w.
However, this modeling would actually lose a lot of information. Indeed, such hints are designed
in the case where one first chooses w independently of s, and then learns partial information
on 〈s,w〉. The setting here is quite different: one instead samples w following a prescribed dis-
tribution, until failure occurs. In other word, w is sampled on a prescribed distribution, and
conditioned on 〈s,w〉 ≥ t. In particular it is not sampled independently of the secret s, and it
carries information on s in all directions.

For the sake of simplicity, let us assume that the norm of s is exactly ` =
√
nσ; making

such a guess is rather inconsequential given how concentrated the norm of a high dimensional
Gaussian is. Let us assume that w also follows a Gaussian of covariance τ2I, before imposing
the condition. After conditioning, w decomposes as w = αs/` + w′, where w′ is a Gaussian of

covariance τ2Π⊥s , and α is independent of w′ and follows a distribution that we denote G
≥t/`
τ ,

the unidimensional Gaussian of variance τ2 conditioned on α ≥ t/`. One can check that the
E
X←G≥t/`τ

[(t/` −X)2] ≤ τ2 for any t/` ≥ 0. This means that we can write w = t/`2 · s + e for

some error e of (ill-centered) covariance Σe ≤ τI.

Rewriting the above equality, we finally obtain a full dimensional approximate hint of the
form

s =
`2

t
w + e′

with an error e′ = − `2

t e of (uncentered) covariance τ2`4/t2 · I.

25

20 21 22 23 24 25 26 27 28
0

0.2

0.4

0.6

0.8

1

failures

re
la

ti
v
e

va
ri

a
n

ce
[17]

Ours

20 21 22 23 24 25 26 27 28
120

130

140

150

160

170

180

190

failures

b
it

-s
ec

u
ri

ty
=

0
.2

6
5
·β

[17]

Ours

Fig. 6. Security decrease as a function of the number of failure in FRODOKEM-976.

We can now compare the results of our prediction to prior work that used several other
methodologies such as [17,24,19,16]. We choose to compare with [17] on FRODOKEM-976, for
which the data can be reproduced11, and for which w is indeed very close to Gaussian. We note
that both methods use different simplications or heuristics, nevertheless they produce essentially
similar predictions, as shown in Figure 6. The data using our framework has been acquired with
the script exploiting decryption failures.sage.

Furthermore, one could try to refine the estimate of the average and variance of e, which
can improve in direction of w. However, this would force us to deal with non-diagonal covari-
ance matrices, which generically significantly slows down our script, and would require further
optimizations to be doable in practice. The exploration of such improvements is left as future
work.

6.3 Structural hints from Design

LAC is a Ring-LWE round two candidate of the NIST post-quantum competition [31]. The
secrets are two polynomials s0, s1 (denoted s and e in the specifications) whose coefficients
follow a distribution ψn,h, the uniform distribution over ternary vectors {−1, 0, 1}n with exactly
h/2 ones and h/2 minus ones. Thus, two structural perfect hints can be derived:

n−1∑
i=0

s0[i] = 0 and

n−1∑
i=0

s1[i] = 0.

The same structure appears in the submissions Round5, and NTRU-HPS, but yields only one
perfect hint on half of the secret as they also require the number of −1 coefficients to be balanced
with the number of 1 coefficients of their ternary polynomial. In fact, exploiting this information
was already mentioned in the cryptanalysis of the original NTRU scheme [15]. While it is clear
that each such equation it decreases the dimension by 1, its effect on the volume of the lattice
seems not to have been analyzed so far; according to Lemma 12, the volume is increased by a
factor

√
n.

11 https://github.com/KULeuven-COSIC/PQCRYPTO-decryption-failures/

26

https://github.com/KULeuven-COSIC/PQCRYPTO-decryption-failures/

LAC-128 LAC-192 LAC-256

without hints 509.03 985.64 1104.83
with 2 hints 505.94 982.74 1101.61

R5ND {1}KEM 0d R5ND {3}KEM 0d R5ND {5}KEM 0d

without hints 494.39 658.67 877.71
with 1 hint 492.94 657.23 876.24

ntruhps2048509 ntruhps2048677 ntruhps4096821

without hint 372.58 515.36 617.71
with 1 hint 371.23 513.95 616.39
with hint + 6 guesses 365.79 508.47 611.00

Table 4: New security estimates in bikz (GSA-Intersect method)

ntruhps2048509 ntruhps2048677 ntruhps4096821

without hints 379.61 526.17 631.84
with 1 hint 378.22 524.74 630.49
with hint + 6 guesses 372.64 519.11 624.94
with hint + multi-target 367.58 512.68 618.24

Table 5: New security estimates in bikz (Probabilistic-Simulation method)

This new knowledge has been included in the security analysis and the results are stored
in Table 4. One can check the experiments by running the scripts exploiting design LAC.sage,
exploiting design round5.sage and exploiting design ntru.sage. For Round5, we arbitrarily chose
for our testing the parameter set R5ND {1, 3, 5}KEM 0d.

Remark 33. Note, however, that integrating such hints removes some q-vectors from the lattice.
For NTRU-HPS and Round5, there remain half of them, and this is sufficient to find the optimal
volume-dimension trade-off.12 For LAC, we note that while q-vectors are not in the lattice, a
difference of 2 such vectors is still in it, for example the short vector hint (q,−q, 0, 0, . . . , 0) ∈ Λ.
We iteratively integrate (q,−q, 0, 0, . . . , 0), (0, q,−q, 0, . . . , 0), (0, 0, q,−q, . . . , 0), . . . until such
hints are not worthy anymore, i.e. until such hints do not decrease the cost of the attack anymore.

The case of NTRU. A first remark is that the NTRU problem is somewhat different from
the BDD problem, in the sense that it is homogeneous already: there is no need to apply
Kannan’s embedding to make it into a short vector problem. This means, in particular, that the
dimension of the input lattice is 2n and not 2n+ 1. More specifically, the secret consists of two
ternary elements of the cyclic convolution ring f, g ∈ Z[X]/(Xn − 1) =: R, and the public key
h = f/g mod q. One can directly construct the lattice Λ =

{
(x, y) ∈ R2 | x− hy = 0 mod q

}
and search for (f, g) as a short vector in that lattice.

Secondly, the lattice enjoys a rotational symmetry of order n; in particular there is not only
a single short vector in that lattice, but n linearly independent such short vectors: (f, g), (X ·
f,X · g), (X2 · f,X2g), . . . (Xn−1 · f,Xn−1 · g).13

12 In a previous version of this paper, we treated NTRU-HPS and Round5 in the same way as LAC, and used
(q,−q)-vectors rather than q-vectors, which lead to a somewhat suboptimal attack.

13 We remark that such a symmetries can also appear in Cyclotomic Ring-LWE, but at the cost of increasing the
lattice dimension from 2n+ 1 to 3n.

27

A third remark is that, even without hints, and using the same GSA-intersect method, our
tool gives about 10 extra bikz of security to NTRU-HPS compared to the analysis given in the
standardization document [43]. The largest part of this difference can be accounted for by the
fact that [43] uses a lower-bound on the length of one half of the secret. Such a simplification
avoids the need for an isotropization step, which would complicate an ad-hoc script, but is fully
automatized by our tool.

One last remark is that while [43] performs a dimension-reduction, it is not equivalent to the
one discussed above. More specifically, they suggest to reduce the problem modulo Φn where
Φn = Xn−1 +Xn−2 + · · ·+X + 1 denotes the n-th cyclotomic polynomial for n a prime. Using
the coefficient embedding to define the geometry, this decreases dimension by 1, and leaves
the volume unchanged; however, such a reduction can significantly increase the length of the
secret vectors to be found, when the leading coefficient of the secret polynomial (i.e. the last
coefficient of the secret vector) is not 0. Fortunately, because of the rotational symmetries, there
should some short vectors whose lengths are not affected by this reduction.14 A posteriori, this
dimension reduction technique essentially boils down to making a guess fn = 0, knowing that
this guess is likely satisfied by one of the many short secrets; in our framework this is merely a
perfect hint, and we predict, as in [43] that it decreases dimension by one without affecting the
volume.

These remarks suggest several refinements. The first is that we can combine the integration
of the hint

∑
fi = 0 and of a guess fn = 0. In fact, we can follow the attack of May and

Silverman [33], and integrate several such guesses so as to fully exploit symmetries. Roughly,
given that the secrets are essentially uniform and ternary, one can hope that one of the n short
vectors will satisfy log3(n) ≈ 6 equations of the form fi = 0.

Yet, we can also wonder whether making such symmetry-breaking guesses is really advanta-
geous, as it could be that lattice reduction already internally benefits from the presence of many
short vectors. Under the GSA-intersect model, this does not seem to be the case, as this model
would predict that all the short vectors are detected at the same time. However, the refined
method of Section 3.4 can indeed the account for the accumulated probability over multiple
targeted short vectors.15

Our results are compiled in Table 4 and Table 5, and the conclusion is, according to the
probabilistic simulation method, that it is seems preferable to not make any guesses, and let
lattice reduction naturally exploit the presence of many short vectors. However, due to the other
approximations made in [43], our refined analysis does not invalidate the original security claims.
We nevertheless think that this revised analysis clarify the phenomena at play during lattice
attacks on NTRU.

Remark 34. A similar structure is present in the candidate NTRU-Prime in its streamlined and
LPR versions [7]. In the secret vector, the number of ±1’s is fixed to an integer w without
knowing the exact number of positive and negative ones. Thus, one can include a modular hint

n−1∑
i=0

s0[i] = w mod 2.

The loss of security is however essentially negligible.

14 We are grateful to John Schanck for this clarification.
15 To apply the probabilistic-simulation for such large parameters, we only account for the probability of detecting

the vector at position d− β, so as to avoid numerical issues raised by the rest of this probability computation.
However, the probability to be lifted back to the front once detected at position d − β is very close to 1 for
such a large β, as already argued in [3].

28

References

1. M. R. Albrecht, B. R. Curtis, A. Deo, A. Davidson, R. Player, E. W. Postlethwaite, F. Virdia, and T. Wun-
derer. Estimate all the LWE, NTRU schemes! In International Conference on Security and Cryptography for
Networks, pages 351–367. Springer, 2018.

2. M. R. Albrecht, A. Deo, and K. G. Paterson. Cold boot attacks on ring and module LWE keys under the
NTT. In IACR TCHES, volume 2018, pages 173–213, Aug. 2018.

3. M. R. Albrecht, F. Göpfert, F. Virdia, and T. Wunderer. Revisiting the expected cost of solving uSVP
and applications to LWE. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 297–322. Springer, 2017.

4. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange—a new hope. In 25th
USENIX Security Symposium (USENIX Security 16), pages 327–343, 2016.

5. S. Bai, S. Miller, and W. Wen. A refined analysis of the cost for solving LWE via uSVP. Cryptology ePrint
Archive, Report 2019/502, 2019.

6. S. Bai, D. Stehlé, and W. Wen. Measuring, simulating and exploiting the head concavity phenomenon in
BKZ. In International Conference on the Theory and Application of Cryptology and Information Security,
pages 369–404. Springer, 2018.

7. D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal. PQC Round-2 candidate: NTRU
Prime. Technical report, NIST, 2019. https://csrc.nist.gov/projects/post-quantum-cryptography/

round-2-submissions.
8. M. Bolboceanu, Z. Brakerski, R. Perlman, and D. Sharma. Order-lwe and the hardness of ring-lwe with

entropic secrets. In S. D. Galbraith and S. Moriai, editors, Advances in Cryptology – ASIACRYPT 2019,
pages 91–120, 2019.

9. J. Bootle, C. Delaplace, T. Espitau, P.-A. Fouque, and M. Tibouchi. LWE without modular reduction and
improved side-channel attacks against BLISS. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 494–524. Springer, 2018.

10. J. W. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghunathan, and D. Stebila.
Frodo: Take off the ring! Practical, quantum-secure key exchange from LWE. pages 1006–1018, 2016.

11. J. W. Bos, S. Friedberger, M. Martinoli, E. Oswald, and M. Stam. Assessing the feasibility of single trace
power analysis of frodo. In SAC, 2018.

12. S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In Revised Papers from the 4th International
Workshop on Cryptographic Hardware and Embedded Systems, CHES ’02, page 13–28, Berlin, Heidelberg,
2002. Springer-Verlag.

13. Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In K. Kurosawa, editor, ASIACRYPT
2007, volume 4833, pages 1–20, Dec. 2011.

14. J. H. Cheon, D. Kim, J. Lee, and Y. Song. Lizard: Cut off the tail! A practical post-quantum public-key
encryption from LWE and LWR. In International Conference on Security and Cryptography for Networks,
pages 160–177. Springer, 2018.

15. D. Coppersmith and A. Shamir. Lattice attacks on ntru. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 52–61. Springer, 1997.

16. J.-P. D’Anvers, M. Rossi, and F. Virdia. (One) failure is not an option: Bootstrapping the search for failures
in lattice-based encryption schemes. Cryptology ePrint Archive, Report 2019/1399, 2019.

17. J.-P. D’Anvers, F. Vercauteren, and I. Verbauwhede. On the impact of decryption failures on the security of
LWE/LWR based schemes. IACR Cryptology ePrint Archive, 2018:1089, 2018.

18. T. F. development team. fplll, a lattice reduction library. Available at https://github.com/fplll/fplll,
2016.

19. J.-P. D’Anvers, Q. Guo, T. Johansson, A. Nilsson, F. Vercauteren, and I. Verbauwhede. Decryption fail-
ure attacks on IND-CCA secure lattice-based schemes. In IACR International Workshop on Public Key
Cryptography, pages 565–598. Springer, 2019.

20. N. Gama, P. Q. Nguyen, and O. Regev. Lattice enumeration using extreme pruning. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 257–278. Springer, 2010.

21. O. Garcia-Morchon, Z. Zhang, S. Bhattacharya, R. Rietman, L. Tolhuizen, J.-L. Torre-Arce, H. Baan, M.-J. O.
Saarinen, S. Fluhrer, T. Laarhoven, and R. Player. Round5. Technical report, NIST, 2019.

22. L. Groot Bruinderink, A. Hülsing, T. Lange, and Y. Yarom. Flush, gauss, and reload–a cache attack on the
bliss lattice-based signature scheme. In IACR TCHES, pages 323–345. Springer, 2016.

23. L. Groot Bruinderink and P. Pessl. Differential fault attacks on deterministic lattice signatures. In IACR
TCHES, volume 2018, pages 21–43, Aug. 2018.

24. Q. Guo, T. Johansson, and A. Nilsson. A generic attack on lattice-based schemes using decryption errors.
Cryptology ePrint Archive, Report 2019/043, 2019.

25. J. Hoffstein, N. Howgrave-Graham, J. Pipher, and W. Whyte. Practical lattice-based cryptography: NTRU-
Encrypt and NTRUSign. In The LLL Algorithm, pages 349–390. Springer, 2009.

29

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://github.com/fplll/fplll

26. N. Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In
A. Menezes, editor, CRYPTO 2007, volume 4622, pages 150–169, Aug. 2007.

27. R. Kannan. Minkowski’s convex body theorem and integer programming. In Mathematics of operations
research, volume 12, pages 415–440. INFORMS, 1987.

28. L. Khachiyan. On the complexity of approximating extremal determinants in matrices. volume 11, pages
138–153. Elsevier, 1995.

29. R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryption. In A. Kiayias, editor,
Topics in Cryptology – CT-RSA 2011, pages 319–339. Springer, 2011.

30. L.-P. Liu. Linear transformation of multivariate normal distribution: Marginal, joint and posterior, Accessed
on September 2019. http://www.cs.columbia.edu/~liulp/pdf/linear_normal_dist.pdf.

31. X. Lu, Y. Liu, D. Jia, H. Xue, J. He, Z. Zhang, Z. Liu, H. Yang, B. Li, and K. Wang. PQC Round-2 candi-
date: LAC. Technical report, NIST, 2019. https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions.

32. J. Martinet. Perfect lattices in Euclidean spaces, volume 327. Springer, 2013.
33. A. May and J. H. Silverman. Dimension reduction methods for convolution modular lattices. In International

Cryptography and Lattices Conference, pages 110–125. Springer, 2001.
34. D. McCann, E. Oswald, and C. Whitnall. Towards practical tools for side channel aware software engineering:

’grey box’ modelling for instruction leakages. In 26th USENIX Security Symposium (USENIX Security 17),
pages 199–216, Vancouver, BC, Aug. 2017. USENIX Association.

35. D. Micciancio and O. Regev. Worst-case to average-case reductions based on gaussian measures. volume 37,
pages 267–302. SIAM, 2007.

36. M. Naehrig, E. Alkim, J. Bos, L. Ducas, K. Easterbrook, B. LaMacchia, P. Longa, I. Mironov, V. Nikolaenko,
C. Peikert, A. Raghunathan, and D. Stebila. FrodoKEM. Technical report, National Institute of Stan-
dards and Technology, 2017. available at https://csrc.nist.gov/projects/post-quantum-cryptography/

round-1-submissions.
37. P. Nguyen. Giophanthus and *LWR-based submissions, 2019. Comment on the NIST PQC forum, https:

//groups.google.com/a/list.nist.gov/d/msg/pqc-forum/nZBIBvYmmUI/J0pug16CBgAJ.
38. T. Pöppelmann, E. Alkim, R. Avanzi, J. Bos, L. Ducas, A. de la Piedra, P. Schwabe, D. Stebila, M. R.

Albrecht, E. Orsini, V. Osheter, K. G. Paterson, G. Peer, and N. P. Smart. NewHope. Technical report,
NIST, 2019.

39. P. Ravi, M. P. Jhanwar, J. Howe, A. Chattopadhyay, and S. Bhasin. Side-channel assisted existential forgery
attack on Dilithium - A NIST PQC candidate. Cryptology ePrint Archive, Report 2018/821, 2018.

40. P. Ravi, M. P. Jhanwar, J. Howe, A. Chattopadhyay, and S. Bhasin. Exploiting determinism in lattice-based
signatures: Practical fault attacks on pqm4 implementations of nist candidates. Asia CCS ’19, page 427–440.
Association for Computing Machinery, 2019.

41. P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, G. Seiler,
and D. Stehlé. CRYSTALS-KYBER. Technical report, NIST, 2019.

42. Y. Yu and L. Ducas. Second order statistical behavior of LLL and BKZ. In International Conference on
Selected Areas in Cryptography, pages 3–22. Springer, 2017.

43. Z. Zhang, C. Chen, J. Hoffstein, W. Whyte, J. M. Schanck, A. Hulsing, J. Rijneveld, P. Schwabe, and
O. Danba. PQC Round-2 candidate: NTRU. Technical report, NIST, 2019. https://csrc.nist.gov/

projects/post-quantum-cryptography/round-2-submissions.

30

http://www.cs.columbia.edu/~liulp/pdf/linear_normal_dist.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/nZBIBvYmmUI/J0pug16CBgAJ
https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/nZBIBvYmmUI/J0pug16CBgAJ
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

A Demonstration of our tool

This Section is a demonstration of our tool. We will integrate many types of hints with several
versions of the implementation. The pedagogic purpose of this explanation makes the scenarios
very unrealistic in terms of side information leakages. For realistic uses, we refer to Section 6.

A.1 Demonstration of the full-fledged version

The full-fledged implementation is called when the class of the instance is DBDD. Let us create
a small LWE instance and estimate its security in bikz (see Section 3.4).

sage: load("../framework/instance_gen.sage")

....: n = 70

....: m = n

....: q = 3301

....: D_s = build_centered_binomial_law(40)

....: D_e = D_s

....: A, b, dbdd = initialize_from_LWE_instance(DBDD, n, q, m, D_e, D_s)

....: # In such parameter range, no need to integrate q-vectors

....: beta, delta = dbdd.estimate_attack()

Build DBDD from LWE

n= 70 m= 70 q=3301

Attack Estimation

dim=141 δ=1.012362 β=45.40

Our full-fledged implementation contains an attack procedure that runs BKZ with iterating
gradually the block size. It then compares the recovered secret with the actual one.

sage: t = cputime()

....: secret = dbdd.attack()

....: str(cputime(t)) + "CPU Seconds for the attack"

Running the Attack

Running BKZ-42 Success !

120.73061799999999 CPU Seconds for the attack

Here, the block size stopped at 42 while an average blocksize of 45.40 has been estimated.
Let us now create four vectors v for making perfect hints (See Section 4.1). To simulate side
information, we compute the hints with the function dbdd.leak(v) that returns l = 〈s, v〉.

sage: # Simulating perfect hints

....: v0 = vec([randint(0, 1) for i in range(m + n)])

....: v1 = vec([randint(0, 1) for i in range(m + n)])

....: v2 = vec([randint(0, 1) for i in range(m + n)])

....: v3 = vec([randint(0, 1) for i in range(m + n)])

....: # Computing l = <vi, s>

....: dbdd.leak(v0), dbdd.leak(v1), dbdd.leak(v2), dbdd.leak(v3)

31

(27, -62, -45, -47)

Let us now integrate the perfect hints into our instance.

sage: # Integrate perfect hints

....: _ = dbdd.integrate_perfect_hint(v0, 27)

....: _ = dbdd.integrate_perfect_hint(v1, -62)

....: _ = dbdd.integrate_perfect_hint(v2, -45)

....: _ = dbdd.integrate_perfect_hint(v3, -47)

integrate perfect hint u0 + u1 + u7 + u8 + u9 + ... = 27

Worthy hint ! dim=140, δ=1.01252643, β=41.93
integrate perfect hint u0 + u2 + u8 + u9 + u10 + ... = -62

Worthy hint ! dim=139, δ=1.01275412, β=38.42
integrate perfect hint u0 + u1 + u3 + u4 + u7 + ... = -45

Worthy hint ! dim=138, δ=1.01293851, β=34.78
integrate perfect hint u1 + u9 + u11 + u12 + u13 + ... = -47

Worthy hint ! dim=137, δ=1.01314954, β=30.91

The cost of the lattice attack has decreased by ≈ 14 bikz. Let us now create four vectors v
for making modular hints (See Section 4.2). To simulate side information, we compute the hint
with the function dbdd.leak(v) with different moduli. We then get l = 〈s, v〉 mod k.

sage: # Simulating modular hints

....: v0 = vec([randint(0, 1) for i in range(m + n)])

....: v1 = vec([randint(0, 1) for i in range(m + n)])

....: v2 = vec([randint(0, 1) for i in range(m + n)])

....: v3 = vec([randint(0, 1) for i in range(m + n)])

....: # Computing l = <vi, s> mod k

....: dbdd.leak(v0)%2, dbdd.leak(v1)%3, dbdd.leak(v2)%4, dbdd.leak(v3)%5

(1, 1, 2, 3)

Let us now integrate the modular hints into our instance. We assume smoothness. In other
words, the lattice is sparsified according to Equation (15) but the covariance matrix and average
remain the same.

sage: # Integrate modular hints

....: _ = dbdd.integrate_modular_hint(v0, 1, 2, True)

....: _ = dbdd.integrate_modular_hint(v1, 1, 3, True)

....: _ = dbdd.integrate_modular_hint(v2, 2, 4, True)

....: _ = dbdd.integrate_modular_hint(v3, 3, 5, True)

integrate modular hint (smooth) u2 + u3 + u4 + ... = 1 MOD 2

Worthy hint ! dim=137, δ=1.01318729, β=30.55
integrate modular hint (smooth) u0 + u2 + u10 + ... = 1 MOD 3

Worthy hint ! dim=137, δ=1.01319931, β=29.98
integrate modular hint (smooth) u0 + u4 + u9 + ... = 2 MOD 4

Worthy hint ! dim=137, δ=1.01327415, β=29.24
integrate modular hint (smooth) u2 + u3 + u6 + ... = 3 MOD 5

Worthy hint ! dim=137, δ=1.01331577, β=28.37

32

As modular hints contain less information than perfect ones, especially for low modulus, the
cost of the lattice attack decreased by only 3 bikz. Let us do the same for approximate hints
(See Sections 4.3 and 4.4). To simulate side information, we compute the hint with the function
dbdd.leak(v) and manually change the value to represent the measurement noise. We then get
l ≈ 〈s, v〉.

sage: # Simulating approximate hints

....: v0 = vec([randint(0, 1) for i in range(m + n)])

....: v1 = vec([randint(0, 1) for i in range(m + n)])

....: v2 = vec([randint(0, 1) for i in range(m + n)])

....: v3 = vec([randint(0, 1) for i in range(m + n)])

....: # Computing l = <vi, s> + noise

....: dbdd.leak(v0) + 2, dbdd.leak(v1) + 1, dbdd.leak(v2) - 1, dbdd.leak(v3)

(-19, -29, -16, 1)

Let us now integrate the approximate hints into our instance. We assume that we want to
condition the new information with the prior one (See Section 4.3) and not to erase the previous
distribution (See Section 4.4).

sage: # Integrate approximate hints

....: var = 10

....: _ = dbdd.integrate_approx_hint(v0, -19, var, aposteriori=False)

....: _ = dbdd.integrate_approx_hint(v1, -29, var, aposteriori=False)

....: _ = dbdd.integrate_approx_hint(v2, -16, var, aposteriori=False)

....: _ = dbdd.integrate_approx_hint(v3, 1, var, aposteriori=False)

integrate approx hint (conditioning)

u0 + u4 + u5 + u6 + u8 + ... = -19 + χ(σ²=10.000)
Worthy hint ! dim=137, δ=1.01322376, β=29.74

integrate approx hint (conditioning)

u0 + u5 + u6 + u7 + u8 + ... = -29 + χ(σ²=10.000)
Worthy hint ! dim=137, δ=1.01329667, β=28.56

integrate approx hint (conditioning)

u0 + u4 + u5 + u7 + u12 + ... = -16 + χ(σ²=10.000)
Worthy hint ! dim=137, δ=1.01337366, β=27.24

integrate approx hint (conditioning)

u1 + u2 + u3 + u4 + u5 + ... = 1 + χ(σ²=10.000)
Worthy hint ! dim=137, δ=1.01340026, β=25.77

Here, the cost of the lattice reduction attack has decreased by 3 bikz. While all the hints
have been integrated, we finally estimate the security and run the attack again.

sage: beta, delta = dbdd.estimate_attack()

....: t = cputime()

....: secret = dbdd.attack()

....: str(cputime(t)) + " CPU Seconds for the attack"

33

Attack Estimation

dim=137 δ=1.013400 β=25.77

Running the Attack

Running BKZ-27 Success !

47.93729300000001 CPU Seconds for the attack

This time, BKZ stopped at blocksize 27 while the estimation was ≈ 26 bikz.

Remark 35. Note that, for simplicity in this example, the q-vector are not integrated. The results
stay unchanged because in this range of parameters, they are always unworthy. However, for
larger parameter ranges, their integration can decrease the security and they should be integrated
for a finer security estimation. See the following as an example.

sage: load("../framework/instance_gen.sage")

....: n = 359

....: m = n

....: q = 709

....: D_s = {-1: 1/3, 0: 1/3, 1: 1/3}

....: D_e = D_s

....: A, b, dbdd = initialize_from_LWE_instance(DBDD, n, q, m, D_e, D_s)

....: beta, delta = dbdd.estimate_attack()

....: _ = dbdd.integrate_q_vectors(q, report_every=1)

Build DBDD from LWE

n=359 m=359 q=709

Attack Estimation

dim=719 δ=1.004899 β=294.86
Integrating q-vectors

integrate short vector hint Worthy hint ! dim=718, δ=1.00489900, β=294.83
integrate short vector hint Worthy hint ! dim=717, δ=1.00489942, β=294.80
integrate short vector hint Worthy hint ! dim=716, δ=1.00489981, β=294.77
integrate short vector hint Worthy hint ! dim=715, δ=1.00490020, β=294.74
[...]

A.2 Demonstration of the lightweight version

The lightweight implementation is called when the class of the DBDD instance is DBDD predict.
While the heavy basis of the lattice is not stored, only its volume and dimension are stored. Let
us create an LWE instance. Before estimating the cost of the lattice reduction attack in bikz,
one needs to integrate the q vectors (i.e. drop some LWE samples, see Section 4.5). Then, the
security is computed in bikz thanks to the volume and dimension of the lattice.

sage: load("../framework/instance_gen.sage")

....: n = 512

....: m = n

....: q = 2 ^ 15

....: D_e = {-2: 0.05, -1: 0.20, 0: 0.5, 1: 0.20, 2: 0.05}

34

....: D_s = D_e

....: A, b, dbdd = initialize_from_LWE_instance(DBDD_predict, n, q, m, D_e, D_s)

....: _ = dbdd.integrate_q_vectors(q, report_every=20)

....: beta, delta = dbdd.estimate_attack()

Build DBDD from LWE

n=512 m=512 q=32768

Integrating q-vectors

[...20] integrate short vector hint

Worthy hint ! dim=1024, δ=1.00518248, β=270.72

Attack Estimation

dim=1016 δ=1.005183 β=270.69

We now create a new LWE instance (necessary because the q vectors should always been
included at the end). And, we create 4 vectors and simulate side information. Here we only
integrate perfect hints.

sage: load("../framework/instance_gen.sage")

....: A, b, dbdd = initialize_from_LWE_instance(DBDD_predict, n, q, m, D_e, D_s)

....: # Simulating hints

....: v0 = vec([1 if i < m / 2 else 0 for i in range(m + n)])

....: v1 = vec([0 if i < m / 2 else 1 for i in range(m + n)])

....: v2 = vec([1 if i < m else 0 for i in range(m + n)])

....: v3 = vec([1 if i < m / 4 else 0 for i in range(m + n)])

....: # Computing l = <vi, s>

....: dbdd.leak(v0), dbdd.leak(v1), dbdd.leak(v2), dbdd.leak(v3)

Build DBDD from LWE

n=512 m=512 q=32768

(33, 9, 56, 12)

The hints must be now integrated and we assess the lattice reduction cost. As seen in Remark
33, due to the shape of our vectors v, new short vector hints must be integrated.

sage: # Integrate hints

....: _ = dbdd.integrate_perfect_hint(v0, 33)

....: _ = dbdd.integrate_perfect_hint(v1, 9)

....: _ = dbdd.integrate_perfect_hint(v2, 56)

....: _ = dbdd.integrate_perfect_hint(v3, 12)

....: M = q * identity_matrix(n + m)

....: V = vec(M[0] - M[1])

....: i = 0

....: while dbdd.integrate_short_vector_hint(V):

....: i += 1

....: V = vec(M[i] - M[i + 1])

....: beta, delta = dbdd.estimate_attack()

35

integrate perfect hint u0 + u1 + u2 + u3 + u4 + ... = 33

Worthy hint ! dim=1024, δ=1.00519338, β=269.83
integrate perfect hint u256 + u257 + u258 + u259 ... = 9

Worthy hint ! dim=1023, δ=1.00520492, β=268.91
integrate perfect hint u0 + u1 + u2 + u3 + u4 + ... = 56

Worthy hint ! dim=1022, δ=1.00521752, β=268.03
integrate perfect hint u0 + u1 + u2 + u3 + u4 + ... = 12

Worthy hint ! dim=1021, δ=1.00522793, β=267.19
integrate short vector hint 32768*c0 - 32768*c1 ∈ Λ

Not sure if in Λ, Unworthy hint, Rejected.

Attack Estimation

dim=1021 δ=1.005228 β=267.19

Here, with 4 perfect hints, the cost of the lattice reduction attack has decreased by ≈ 3 bikz.
The blocksize may be actually below 267.19 as there may be residual short vector hints.

A.3 Demonstration of the super lightweight version

The super lightweight implementation is called when the class of the instance is DBDD predict diag.
Here, we assume that the covariance matrix is always diagonal. Let us create an LWE instance.
We integrate the q vectors (i.e. drop some LWE samples, see Section 4.5) and compute the
security in bikz.

sage: load("../framework/instance_gen.sage")

....: n = 512

....: m = n

....: q = 2 ^ 15

....: D_e = {-2: 0.05, -1: 0.20, 0: 0.5, 1: 0.20, 2: 0.05}

....: D_s = D_e

....: A, b, dbdd = initialize_from_LWE_instance(DBDD_predict_diag, n, q, m, D_e, D_s)

....: _ = dbdd.integrate_q_vectors(q, report_every=20)

....: beta, delta = dbdd.estimate_attack()

Build DBDD from LWE

n=512 m=512 q=32768

Integrating q-vectors

[...20] integrate short vector hint

Worthy hint ! dim=1024, δ=1.00518248, β=270.72
Attack Estimation

dim=1016 δ=1.005183 β=270.69

We create 20 canonical (necessary to keep the covariance matrix diagonal) vectors for integrating
perfect hints.

sage: A, b, dbdd = initialize_from_LWE_instance(DBDD_predict_diag, n, q, m, D_e, D_s)

....: # Simulating hints

....: v = [[] for _ in range(20)]

....: for i in range(20):

....: v[i] = canonical_vec(m + n, i)

36

Build DBDD from LWE

n=512 m=512 q=32768

The perfect hints are integrated into a new instance and the security is estimated.

sage: # Integrate hints

....: for i in range(20):

....: _ = dbdd.integrate_perfect_hint(v[i], dbdd.leak(v[i]))

....: _ = dbdd.integrate_q_vectors(q, report_every=20)

....: beta, delta = dbdd.estimate_attack()

integrate perfect hint u0 = -2

Worthy hint ! dim=1024, δ=1.00519245, β=270.02
integrate perfect hint u1 = -1

Worthy hint ! dim=1023, δ=1.00520080, β=269.31
integrate perfect hint u2 = 1

Worthy hint ! dim=1022, δ=1.00520918, β=268.61
integrate perfect hint u3 = 0

Worthy hint ! dim=1021, δ=1.00521757, β=267.91
integrate perfect hint u4 = 1

Worthy hint ! dim=1020, δ=1.00522774, β=267.21
integrate perfect hint u5 = 1

Worthy hint ! dim=1019, δ=1.00523618, β=266.51
integrate perfect hint u6 = 0

Worthy hint ! dim=1018, δ=1.00524465, β=265.81
integrate perfect hint u7 = -2

Worthy hint ! dim=1017, δ=1.00525490, β=265.11
integrate perfect hint u8 = 0

Worthy hint ! dim=1016, δ=1.00526341, β=264.41
integrate perfect hint u9 = 0

Worthy hint ! dim=1015, δ=1.00527195, β=263.71
integrate perfect hint u10 = 2

Worthy hint ! dim=1014, δ=1.00528229, β=263.01
integrate perfect hint u11 = 0

Worthy hint ! dim=1013, δ=1.00529087, β=262.32
integrate perfect hint u12 = 0

Worthy hint ! dim=1012, δ=1.00529947, β=261.62
integrate perfect hint u13 = 2

Worthy hint ! dim=1011, δ=1.00530810, β=260.93
integrate perfect hint u14 = 0

Worthy hint ! dim=1010, δ=1.00531856, β=260.23
integrate perfect hint u15 = 2

Worthy hint ! dim=1009, δ=1.00532723, β=259.54
integrate perfect hint u16 = 1

Worthy hint ! dim=1008, δ=1.00533593, β=258.85
integrate perfect hint u17 = 0

Worthy hint ! dim=1007, δ=1.00534647, β=258.16
integrate perfect hint u18 = -1

Worthy hint ! dim=1006, δ=1.00535522, β=257.46

37

integrate perfect hint u19 = 1

Worthy hint ! dim=1005, δ=1.00536399, β=256.77
Integrating q-vectors

[...20] integrate short vector hint 32768*c1023 ∈ Λ
Worthy hint ! dim=1004, δ=1.00536426, β=256.76

[...20] integrate short vector hint 32768*c1003 ∈ Λ
Worthy hint ! dim=984, δ=1.00536755, β=256.54
Attack Estimation

dim=979 δ=1.005368 β=256.53

The integration of 20 perfect hints implies here a loss of ≈ 13 bikz.

38

	LWE with Side Information: Attacks and Concrete Security Estimation

