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Abstract

For a digraph G and v ∈ V (G), let δ+(v) be the number of out-neighbors of v in G. The
Caccetta-Häggkvist conjecture states that for all k ≥ 1, if G is a digraph with n = |V (G)|
such that δ+(v) ≥ k for all v ∈ V (G), then G contains a directed cycle of length at most
dn/ke. In [2], Aharoni proposes a generalization of this conjecture, that a simple edge-colored
graph on n vertices with n color classes, each of size k, has a rainbow cycle of length at most
dn/ke. In this paper, we prove this conjecture if each color class has size Ω(k log k).



1 Introduction and preliminaries

A graph or digraph is simple if there are no loops or parallel edges. For a simple digraph G
and a vertex v ∈ V (G), let δ+(v) denote the number of out-neighbors of v in G. A famous
conjecture in graph theory is the following, due to Caccetta and Häggkvist [1]:

Conjecture 1.1 (Caccetta-Häggkvist) Suppose n, k are positive integers, and let G be a
simple digraph on n vertices with δ+(v) ≥ k for all v ∈ V (G); then G contains a directed
cycle of length at most dn/ke.

For a graph G and a function c : E(G) → {1, . . . , |V (G)|}, a rainbow cycle (with respect
to c) is a cycle C in G such that for all e, f ∈ E(C) with e 6= f , we have c(e) 6= c(f). We will
refer to c as a coloring of the edges of G.∗ We say that c has color classes of size at least k
for k ∈ N if |c−1(i)| ≥ k for all i ∈ {1, . . . , |V (G)|}.

In [2], Aharoni proposes a generalization of Conjecture 1.1:

Conjecture 1.2 ([2]) Let n, k be positive integers, and let G be a simple graph on n vertices.
Let c : E(G)→ {1, . . . , n} be a coloring of the edges of G with color classes of size at least k;
then G has a rainbow cycle of length at most dn/ke.

In a recent paper, Devos et al. [4] prove that Conjecture 1.2 is true for k = 2:

Theorem 1.3 ([4]) Let G be a simple graph on n vertices, and let c be a coloring of the
edges of G with color classes of size at least 2; then there exists a rainbow cycle of length at
most dn/2e.

We also make use of the following results due to Bollobás and Szemerédi [3] and Shen
[5], respectively. The first deals with the girth of a simple graph, while the second is an
approximate result for Conjecture 1.1. In this paper, log denotes the logarithm with base 2.

Theorem 1.4 ([3]) For all n ≥ 4 and k ≥ 2, if G is a simple graph on n vertices with n+k
edges, then G contains a cycle of length at most

2(n+ k)

3k
(log k + log log k + 4).

Theorem 1.5 ([5]) Let G be a simple digraph with δ+(v) ≥ k for all v ∈ V (G). Then G
contains a directed cycle of length at most dn/ke+ 73.

2 Main result

Our main result is the following:

Theorem 2.1 Let k > 1 be an integer, and let G be a graph. Let c be a coloring of the edges
of G with color classes of size at least 301k log k. Then G contains a rainbow cycle of length
at most dn/ke.

∗Note that c is not required to be a proper edge-coloring.
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Proof. We proceed by induction on the number of vertices. Let f(k) = 7k log k, and let G
be a graph on n vertices. Let c be a coloring of the edges of G with color classes of size at
least 43f(k). Suppose for a contradiction that there is no rainbow cycle of length at most
dn/ke. Note that G has at least 43f(k)n edges, and therefore, n > 43f(k).

For v ∈ V (G) and i ∈ {1, . . . , n}, we say that i is dominant at v if v is incident with
at least 7f(k) edges e such that c(e) = i. We call a vertex v ∈ V (G) color-dominating if
there exists i ∈ {1, . . . , n} such that i is dominant at v. We call a color i ∈ {1, . . . , n} vertex-
dominating if there exists a vertex v ∈ V (G) such that i is dominant at v. Let us say that
H ⊆ V (G) is nice if

• for every vertex-dominating color i ∈ {1, . . . , n}, there is a vertex v ∈ V (G) \H such
that i is dominant at v; and

• there are at most |H| colors i ∈ {1, . . . , n} such that i is not vertex-dominating and for
all e ∈ c−1(i), at least one end of e is in H.

(Claim 1)
If there is a nice set H ⊆ V (G) with 6f(k) ≤ |H| < n, then there is a nice set
H ′ ⊆ V (G) with |H ′| = d6f(k)e.

We remove vertices from H one-by-one such that the remaining set is nice. Suppose that
we have removed j ≥ 0 vertices from H, leaving a nice set Hj with |Hj | > d6f(k)e. Let Cj

be the set of colors i ∈ {1, . . . , n} which are not vertex-dominating and also do not have an
edge e with c(e) = i such that both ends of e are in V (G) \ Hj . From the definition of a
nice set, we know |Cj | ≤ |Hj |. If |Cj | < |Hj |, then removing any vertex from Hj gives a
smaller nice set. So, we may assume that |Cj | = |Hj |. If there is a color i in Cj and an edge
e = uv ∈ c−1(i) with v ∈ Hj and u ∈ G \Hj , then Hj \ {v} is nice. If there is no such i ∈ Cj ,
then for every color i ∈ Cj , all edges in c−1(i) have both their ends in Hj . Now applying
induction to the subgraph of G with vertex set Hj and edge set c−1(Cj) gives a rainbow cycle
of length at most dn/ke in G, a contradiction. This proves Claim 1.

(Claim 2) There is a nice set H ′ ⊆ V (G) with |H ′| = d6f(k)e.

For each vertex-dominating color i, we pick a vertex vi such that i is dominant at vi, and
let S be the set of these vertices vi. Let H = V (G) \ S. Note that H is nice; thus by Claim
1, we may assume that either |H| < 6f(k) or |H| = n.

We first consider the case when |H| = n. Since 43f(k) ≥ 2, Theorem 1.3 guarantees the
existence of a rainbow cycle K of length at most n/2 + 1 in G. Let H ′ = V (G)\V (K). Then
H ′ is nice, and n > |H ′| ≥ n/2 − 1 ≥ 6f(k); so by Claim 1, G contains a nice set of size
d6f(k)e.

Now we may assume that |H| < 6f(k). We construct a digraph G′ with V (G′) = S, and
for all i, j with vi, vj ∈ S, there is an arc vi → vj if vivj ∈ E(G) and c(vivj) = i. Every vertex
vi is incident with at least 7f(k) edges e with c(e) = i, and since |H| < 6f(k), there are at
least f(k) edges e = viu with c(e) = i and u ∈ S. Therefore, δ+(G′) ≥ f(k).

Now, we claim n/f(k) + 74 ≤ n/k, which is equivalent to 74kf(k) ≤ n(f(k) − k). Since
k ≥ 2, we have log(k) ≥ 117/301, and thus 74kf(k) ≤ 43f(k)(f(k) − k) ≤ n(f(k) − k), as
claimed.

Then, by applying Theorem 1.5 to G′ we obtain a directed cycle K of length at most
dn/f(k)e + 73 ≤ dn/ke in G′. The edges of G that correspond to arcs of K form a rainbow
cycle of length at most dn/ke in G, a contradiction. This proves Claim 2.
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(Claim 3)
Let H ⊆ V (G) be a nice set with |H| = d6f(k)e. Then there exists H ′ ⊆ H
such that |H ′| ≥ d2f(k)e and such that for at least n − df(k)e + 1 colors i, at
least one edge e ∈ c−1(i) has both ends in V (G) \H ′.

Let C be the set of colors i which are not vertex-dominating and for which no edge of
c−1(i) has both ends in V (G) \ H. Since H is nice, it follows that |C| ≤ |H| = d6f(k)e.
Let D ⊆ C be the set of colors i ∈ C such that there is a vertex v ∈ H which is incident
with all edges in c−1(i) that have one end in H and the other in V (G) \H. We claim that
|D| ≤ df(k)e−1. Indeed, for each color i ∈ D, there are at least d36f(k)e edges in c−1(i) with
both ends in H since i is not vertex-dominating. If |D| > df(k)e − 1, then we obtain more
than (f(k)−1)(36f(k)) edges with both ends in H. Now, since k ≥ 2, we have f(k) ≥ 72/23,
and it follows that:

(f(k)− 1)(36f(k)) ≥ 49f(k)2

2
≥ (6f(k) + 1)2

2
≥ |H|

2

2

which gives a contradiction. Thus, |D| ≤ df(k)e − 1.
Next, we claim there exists H ′ ⊆ H such that |H ′| = d2f(k)e and such that for all

i ∈ {1, . . . , n} \D, there is an edge e ∈ c−1(i) with both ends in V (G) \H ′. To see this, we
construct a graph J with vertex set H and the following set of edges. For each i ∈ C \ D,
we choose two vertices vi1, v

i
2 ∈ H, each incident with an edge in c−1(i) whose other end is

in V (G) \H; we know from the definition of D that this is possible. Now, the graph J has
|H| vertices and at most |H| edges, and so J has a stable set H ′ ⊆ V (J) of size at least
|V (J)|/3 ≥ 2f(k); and so |H ′| ≥ d2f(k)e.

Now, for every color i ∈ C \D, V (G) \H ′ contains at least one of vi1, v
i
2, and therefore,

there is an edge in c−1(i) with both ends in V (G)\H ′. Moreover, for every i ∈ {1, . . . , n}\C,
either i dominates a vertex v in V (G) \H ⊆ V (G) \H ′ (and so, since |H ′| < 7f(k), there is
an edge in c−1(i) incident with v whose other end is not in H ′); or there is an edge in c−1(i)
with both ends in V (G) \H ⊆ V (G) \H ′. Thus, for at least n− |D| ≥ n− df(k)e+ 1 colors
i, at least one edge in c−1(i) has both ends in V (G) \H ′. This proves Claim 3.

By combining Claim 2 and Claim 3, we conclude that there exists H ′ ⊆ V (G) with
|H ′| ≥ d2f(k)e, and such that for at least n− df(k)e+ 1 colors i, at least one edge in c−1(i)
has both ends in V (G) \H ′. Let H ′′ be a subgraph of G with vertex set V (G) \H ′, obtained
by taking exactly one edge in c−1(i) with both ends in V (G) \H ′ for all i ∈ {1, . . . , n} which
have such an edge. It follows that |E(H ′′)| ≥ |V (H ′′)|+ df(k)e.

Now, we claim that 2(n+f(k))
3(f(k)) (log log(f(k)) + log(f(k)) + 4) ≤ n

k . Using f(k) < n/43, it
suffices to show:

88(log log(f(k)) + log(f(k)) + 4)

129
≤ 7 log(k)

Let g(k) = 7 log(k) − 88
129(log log(f(k)) + log(f(k)) + 4). We have that g(2) > 0, and for

k ≥ 2 we have:

f(k)g′(k) ln(2) = 49 log(k)− 88

129
f ′(k)

(
1

log(f(k)) ln(2)
+ 1

)
> 0
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since for k ≥ 2 we have:

f ′(k)

(
1

log(f(k)) ln(2)
+ 1

)
< (7 + 7 log(k))(3) ≤ 49 log(k)

So g′(k) > 0 for k ≥ 2, and it follows that g(k) ≥ 0 for k ≥ 2, as desired.

Then, Theorem 1.4 gives a rainbow cycle of length at most 2(n+f(k))
3(f(k)) (log log(f(k)) +

log(f(k)) + 4) ≤ dnk e, a contradiction. This proves Theorem 2.1.

We have an immediate corollary which gives us a result for the case of Ω(n log n) color
classes each of size k:

Corollary 2.2 Let k be a positive integer and let G be a simple graph on n vertices. Let
c : E(G) → {1, . . . , t} with t ≥ 303n log n, and with |c−1(i)| ≥ k for all i ∈ {1, . . . , t}. Then
G contains a rainbow cycle in G of length at most dn/ke.

Proof. Note that t ≥ 303n log n ≥ 303n log k. Since 303n log k ≥ nd301 log ke, we can
partition {1, . . . , t} into n parts, each of size at least d301 log ke; that is, there is a function
f : {1, . . . , t} → {1, . . . , n} such that |f−1(i)| ≥ d301 log ke for all i ∈ {1, . . . , n}. By Theorem
2.1, applied to G and f ◦ c, we obtain a rainbow cycle of length at most dn/ke in G with
respect to f ◦ c, which is also rainbow with respect to c. This proves Corollary 2.2.
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