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Abstract

We study a sequence of many-agent exit time stochastic control problems, parameterized by the number
of agents, with risk-sensitive cost structure. We identify a fully characterizing assumption, under which
each such control problem corresponds to a risk-neutral stochastic control problem with additive cost, and
sequentially to a risk-neutral stochastic control problem on the simplex that retains only the distribution of
states of agents, while discarding further specific information about the state of each agent. Under some
additional assumptions, we also prove that the sequence of value functions of these stochastic control
problems converges to the value function of a deterministic control problem, which can be used for the
design of nearly optimal controls for the original problem, when the number of agents is sufficiently large.

1 Introduction

1.1 Motivation and Background

In this paper, we study many-agent exit time stochastic control problems with risk-sensitive cost. Each
agent occupies a state that takes values in a finite set X , and by controlling the transition rates between
states for each agent, we try to keep the system away from a “ruin” set K, for as long as possible and with
the least cost. We prove, under suitable assumptions, that for every finite number n of agents the control
problem is equivalent to one with an additive cost structure. Moreover, when K ⊂ X n can be identified
with a subset of the simplex of probability measures P(X ), in the sense that for every permutation σ of
{1, 2, . . . , n} we have σK = K, then we can replace the original problem by one on Pn(X ) = P(X ) ∩ 1

nZ
d,

getting in this way a control problem whose state is the empirical measure on the states of the individual
agents. We also study the behavior as n→∞ of the sequence of suitable renormalized value functions, and
prove uniform convergence to the value function of a deterministic control problem.

We first describe the model without control, which we call the “base” or “nominal” model. Let X =
{e1, . . . , ed}, where ei is the ith unit vector in Rd. Let also γ = {γxy}(x,y)∈X×X denote the rates of an ergodic
Markov jump process on X . This process has the generator

Lγ [f ](x) =
∑
y∈X

γxy [f(y)− f(x)] , (1.1)
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for functions f : X 7→ R. For n ∈ N, consider n agents that move independently and stochastically, with each
taking values in X = {e1, . . . , ed}. Then the dynamics of these agents can be represented by a stochastic
process taking values in X n. Let xn = (xn1 , . . . , x

n
n) denote a generic element of X n. Also, for x, y ∈ X ,

i ∈ {1, . . . , n}, let vxy := y−x and let vni,xy = (0, . . . , 0,vxy, 0, . . . , 0) be a d×n matrix with all columns equal
to zero apart from the ith column, which is equal to the vector vxy. Also, let Z := {(x, y) ∈ X×X : γxy > 0},
and define Zx := {y ∈ X : (x, y) ∈ Z} to be the set of allowed transitions from x. Then the generator of the
state process of the base model takes the form

Lnγ [f ](xn) =
n∑
i=1

∑
y∈Zxn

i

γxni y

[
f(xn + vni,xni y)− f(xn)

]
, (1.2)

for f : X n 7→ R. Note that the span of Z is the hyperplane

H :=

 ∑
(x,y)∈Z

axyvxy : axy > 0, (x, y) ∈ Z

 , (1.3)

which, since γ is ergodic, coincides with the hyperplane through the origin that is parallel to P(X ). We claim
that the setH does not change if the axy are allowed to be arbitrary real numbers. To see why this is true, note
that by ergodicity, for any two states (x, y) ∈ Z there is a sequence of states x = x1, ..., xj = x that satisfies

y = x2 and the property that (xi, xi+1) ∈ Z for i = 1, . . . , j−1, and hence,
∑j−1

i=1 vxixi+1 = 0. Repeating this
for every possible (x, y) ∈ Z, there are strictly positive integers bxy such that

∑
(x,y)∈Z bxyvxy = 0, which

implies the claim.
Next we introduce the empirical measure process. This process is obtained by projecting from X n onto
Pn(X ) = P(X ) ∩ 1

nZ
d ⊂ P(X ), and has the generator

Mn
γ [f ](m) = n

∑
(x,y)∈Z

γxymx

[
f

(
m+

1

n
vxy

)
− f(m)

]
, (1.4)

for functions f : Pn(X ) 7→ R.
One can interpret the base model introduced above as a collection of independent agents with each

evolving according to the transition rate γ. This is the “preferred” or “nominal” dynamics, and is what
would occur if no “outside influence” or other form of control acts on the agents. If a controller should wish
to change this behavior, then it must pay a cost to do so. We would like to model the situation in which
limited information about the system state, and in particular information relating only to the empirical
measure of the states of all agents, is used to produce a desired behavior of the group of agents, which again
will be characterized in terms of their empirical measure.

To precisely formulate the control problem, we consider a continuous “reward” function R : P(X ) →
[0,∞), where we recall

P(X ) :=

{
m ∈ RX : mx ≥ 0 for all x ∈ X and

∑
x∈X

mx = 1

}
is the simplex of probability measures on X . We also have a cost function C = {Cxy : [0,∞)→ [0,∞]}(x,y)∈Z .
In the controlled setting, the jump rates of each agent can be perturbed from γ to u, and we let χn denote
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the corresponding controlled state occupied by the collection of agents. If the problem is of interest over the
interval [0, T ], where T can be a random variable, and the initial state is xn = {xni }i≤n ∈ X n, then there is
a collective risk-sensitive cost (paid by the coordinating controller) equal to

Exn

exp

∫ T

0

 n∑
i=1

∑
y∈Zχn

i
(t)

γχni (t)yCχni (t)y

(
uχni (t)y(t, i)

γχni (t)y

)
− nR(L(χn(t)))

 dt


 , (1.5)

where for any xn = {xni }i≤n ∈ X n, define

L(xn) :=
1

n

n∑
i=1

δxni . (1.6)

Here, the control process u takes values in a space that will be defined later, and for a collection of n|Z|
independent Poisson random measures (PRM) {N1

i,xy}1≤i≤n,(x,y)∈Z with intensity measure equal to Lebesgue
measure, the controlled dynamics are given by

χni (t) = xni +
∑

(x,y)∈Z

vxy

∫
(0,t]

∫
[0,∞)

1[0,1x(χni (s−))uxy(s,i)](r)N
1
i,xy(dsdr). (1.7)

Thus χni changes from state x to y with rate uxy. The formulation of the dynamics in terms of a stochastic
differential equation will be convenient in the analysis to follow.

In this paper we present two results. The first is that, under additional assumptions on the cost C, for
each n, the risk-sensitive control problem is equivalent to an ordinary control problem with the cost function
F = {Fxy}(x,y)∈Z , where Fxy is defined by

Fxy(q) := sup
u∈(0,∞)

Gxy(u, q) and Gxy(u, q) :=

[
u`
( q
u

)
− γxyCxy

(
u

γxy

)]
, (1.8)

with
`(q) := q log q − q + 1, for q ≥ 0. (1.9)

Under the additional conditions we do not end up with a stochastic game, as is typically the case for
risk-sensitive control problems, but rather a control problem with additive cost. Control problems are
often substantially simpler than games, and in particular are often more tractable from a computational
perspective. The second contribution, again under additional assumptions on C, is that the sequence of value
functions, suitably renormalized, converges to the value function (4.3) of a deterministic control problem.
This convergence result is also helpful in the construction of near-optimal controls for a large n-agent system.

Example 1.1 As an example consider the issue of modeling the users of a resource such as energy. Here
the agents would be households or similar entities. The state of an agent indicates their use of the common
resource, and this usage evolves in a Markovian fashion. In exchange for a cost paid by the central controller
to the individual agents, the agents agree to modify their behavior based on the current loading of the system.
Thus an energy consumer would agree to give up control on if or when certain activities requiring energy
consumption take place thus altering the evolution of his own state, but will be compensated for doing so
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by the central controller. The goal of the central controller, and the motivation for paying this cost, is to
manage the group behavior so as to keep the system, as characterized by the empirical measure, in a desired
operating region for as long as possible and with minimal cost. In this context, the use of risk sensitive cost
is motivated in part by the resulting properties of robustness with respect to model error.

Remark 1.1 If one wishes, it is possible to work with sequences Cn, Rn of cost and reward functions, as
long as some type of convergence is assumed for when n goes to infinity. The reader that is interested in such
a generalization can look at a previous version of our paper in http: // www. wias-berlin. de/ preprint/

2407/ wias_ preprints_ 2407_ 20180212. pdf

1.2 Related literature and remarks

For ordinary discrete-time and continuous-time stochastic control problems (also referred to as Markov
decision processes) [1, 17, 24, 27, 14], one controls a random process to optimize an expected cost. The
most common objective function that is optimized for continuous-time escape (or ruin) stochastic control
problems are of the form

JT (x0, π) = Ex0,π
[∫ T

0
C(Xt, ut)dt+ P (XT )

]
, (1.10)

where C is some cost function that depends on the state x ∈ X and the control/action u ∈ U, and π is a
policy or strategy that influences the dynamics {Xt, t ≥ 0}, and P is a terminal cost that depends on the
final state of the system. For risk-sensitive stochastic control problems one deals with optimality criteria of
the form

JT (x0, π) = g−1

(
Ex0,π

[
g

(∫ T

0
C(Xt, ut)dt+ P (XT )

)])
, (1.11)

where g is a monotone convex/concave function, and C and P are as above. One motivation behind the use
of risk-sensitive cost structures is that, depending on the type of monotonicity, variation from the average is
more (risk-averting behavior) or less (risk-seeking behavior) penalized. One of the most studied cases is the
entropic risk measure corresponding to gθ(x) = eθx, θ ∈ R (see [2, 7, 8, 13, 16, 18, 20, 21] for discrete time
and [10, 11, 15] for continuous time). The function gθ(x) = eθx is special because it satisfies the property

1

θ
log (E [exp (θX)]) = X̃ +

1

θ
log
(
E
[
eθ(X−X̃)

])
,

where X is a random variable and X̃ its expectation. This property implies that the weight that is given to
deviations from the expectation depends only on the difference from the expectation and not the expectation
itself. It can be proved that the exponential is the only function that satisfies such a property (see [26]).
Furthermore, exponential integrals have a variational characterization involving entropy, which turns out to
be convenient from the mathematical point of view, and also allows for an explicit analysis of the robust
and model insensitivity properties of the resulting controls [9, 23]. In our problem θ is integrated into the
choice of cost C.

1.3 Notation

We now introduce some common notation that will be used throughout the article. For a locally compact
Polish space S, the space of positive Borel measures on S is denoted by M(S). We use Mf (S) and Mc(S)
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to denote the subspaces of M(S) consisting, respectively, of finite measures, and of measures that are finite
on every compact subset. Letting Cc(S) denote the space of continuous functions with compact support, we
equipMc(S) with the weakest topology such that for every f ∈ Cc(S), the function ν →

∫
S fdν, ν ∈Mc(S),

is continuous. Let B(S) be the Borel σ-algebra on S and P(S) the set of probability measures on (S,B(S)).
Finally, for a second Polish space S ′, we let

F(S;S ′) = {f : S → S ′ : f measurable} (1.12)

denote the space of measurable functions from S to S ′. For the finite set X and a > 0, let

P∗(X )= {m ∈ P(X ) : mx > 0 for all x ∈ X} and Pa(X )= {m ∈ P(X ) : mx ≥ a for all x ∈ X} . (1.13)

For a set K ⊂ P(X ), the closure K̄, the complement Kc and the interior K◦, will be considered with
respect to the restriction of the Euclidean topology on the set P(X ). Let D([0,∞);S) denote the space of
càdlàg functions on S, equipped with the Skorohod topology (see [4, Section 16]), i.e., the Skorohod space.
This space is separable and complete [4, Theorem 16.3], and a set is relatively compact in D([0,∞);S), if
and only if for every M <∞, its natural projection on D([0,M ];S), is relatively compact [4, Theorem 16.4].

For M̄ = Mc([0,∞)2), let P be the probability measure on (M̄,B(M̄)), under which the canonical
map N(ω) = ω is a Poisson measure with intensity measure equal to Lebesgue measure on [0,∞)2. Let
Gt = σ{N((0, s]× A) : 0 ≤ s ≤ t, A ∈ B([0,∞))}, and let Ft be the completion of Gt under P. Let P be the
corresponding predictable σ-field in [0,∞)×M̄. For natural numbers k, k′, we similarly define a measure Pk,k′

on (M̄k′ ,B(M̄k′)) under which the maps Nk
i (ω) = ωi, 1 ≤ i ≤ k′, are independent Poisson measures with

intensity measure equal to k times the Lebesgue measure on [0,∞)2. {Gk,k
′

t }, {Fk,k
′

t }, and Pk,k′ are defined
analogously. Let A be the class of P\B([0,∞)) measurable maps φ : [0,∞)×M̄ → [0,∞), and Ab the subset
of these maps that are uniformly bounded from below away from zero and above by a positive constant.
Similarly we define Ak,k′ to be the set of Pk,k′ \ B([0,∞)k

′
) measurable maps φ : [0,∞)× M̄k′ → [0,∞)k

′
,

and Ak,k
′

b the subset of these maps for which each component is uniformly bounded from below and above
by strictly positive constants.

2 Model Description

Throughout this section, fix n ∈ N, and let C and R be, respectively, the cost and reward functions introduced
in Section 1.1.

2.1 The many-agent control problem

For a subset K of X n, we define a risk-sensitive cost InK : X n × A1,n|Z|
b → [0,∞] that corresponds to the

cost/reward up to the first time of hitting K as follows:

InK(xn,u) := Exn

exp

∫ TK

0

 n∑
i=1

∑
y∈Zχn

i
(t)

γχni (t)yCχni (t)y

(
uχni (t)y(t, i)

γχni (t)y

)
− nR(L(χn(t)))

 dt


 , (2.1)
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where Exn denotes the expected value given χn(0) = xn, {χn(t), t ≥ 0} follows the dynamics given in (1.7),
and TK is the hitting time

TK := inf {t ∈ [0,∞] : χn(t) ∈ K} . (2.2)

We define the value function Wn
K : X n → [0,∞] by

Wn
K(xn) := inf

u∈A1,n|Z|
b

InK(xn,u). (2.3)

Similarly, for a set K ⊂ X n we define the ordinary cost J nK : X n × A1,n|Z|
b → [0,∞] and corresponding

value function VnK : X n → [0,∞] by

J nK(xn, q) := Exn

∫ TK

0

 1

n

n∑
i=1

∑
y∈Zχn

i
(t)

Fχni (t)y(qχni (t)y(t, i)) +R(L(χn(t)))

 dt

 , (2.4)

where F = {Fxy}(x,y)∈Z} is defined in (1.8), and

VnK(xn) := inf
q∈A1,n|Z|

b

J nK(xn, q), (2.5)

where the dynamics of {χn(t), t ≥ 0} are now given by (1.7) with u replaced by q, and the stopping time
TK is, as earlier, given by (2.2). We remark that the reason for two different notations for controls is to
aid the reader, by associating one with the risk sensitive problem and one with the regular control problem.
Moreover, there are occasions that both variables appear at the same time, as in the definition of F or that
of the Hamiltonian. Specific conditions on the cost functions will be given in Section 3.1, and properties of
F will be proved in Lemma 3.7. Note that for the many agent systems there are n|Z| PRMs, each with unit
intensity.

2.2 The mean-field control problems

Suppose that we have some exchangeability in the sense that for every permutation σ of {1, 2, . . . , n},
σK = K. Then K can be identified with the subset

K := {L(xn) : xn ∈ K},

of the simplex of probability measures P(X ). Here, L is as defined in (1.6). Then we can replace a control
problem on X n by one on P(X ). In this caseWn

K and VnK can be considered as functions on Pn(X ), in the sense
that we can find Wn

K , V
n
K : Pn(X ) → [0,∞], such that Wn

K(xn) = Wn
K(L(xn)) and VnK(xn) = V n

K(L(xn)),
where L is as defined in (1.6). To see this, pick a starting point xn ∈ X n and some permutation σ. Then for
any admissible control u, the total cost generated starting at xn is the same as that generated when starting
from xnσ and picking uσ as the control. Therefore, for every xn ∈ X n, σ ∈ Sn, we have VK(xn) = VK(xnσ).

Define hn : D([0,∞);Pn(X ))×An,|Z|b × Pn(X )× M̄n,|Z| → D([0,∞);Rd) by

hn
(
µ,u,m,

1

n
Nn

)
(t) := m+

∑
(x,y)∈Z

vxy

∫
(0,t]

∫
[0,∞)

1[0,µx(−s)uxy(s)](r)
1

n
Nn
xy(dsdr).
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Since u ∈ An,|Z|b implies the rates uxy(s) are uniformly bounded, one can explicitly construct a unique
D([0,∞);Pn(X ))-valued process that satisfies

µ = hn
(
µ,u,m,

1

n
Nn

)
. (2.6)

[12]. Here µ is the controlled process, u is the control, m is an initial condition, and Nn/n is scaled noise.

Now with TK := inf {t ∈ [0,∞] : µ(t) ∈ K}, the functions InK , J
n
V : Pn(X )×An,|Z|b → [0,∞] and Wn

K , V
n
K :

Pn(X )→ [0,∞] are given by

Wn
K(m) := inf

u∈An,|Z|b

InK(m,u), (2.7)

where

InK(m,u) := Em
[
e
n
∫ TK
0

(∑
(x,y)∈Z µx(t)γxyCxy

(
uxy(t)

γxy

)
−R(µ(t))

)
dt

: µ = hn
(
µ,u,m,

1

n
Nn

)]
, (2.8)

and
V n
K(m) := inf

q∈An,|Z|b

JnK(m, q), (2.9)

where

JnK(m, q) := Em

∫ TK

0

 ∑
(x,y)∈Z

µx(t)Fxy(qxy(t)) +R(µ(t))

 dt : µ = hn
(
µ, q,m,

1

n
Nn

) . (2.10)

For these control problems, there are |Z| PRMs, each with intensity n. In contrast, recall from the discussion
prior to (1.7) that the n-agent system dynamics are driven by n|Z| PRMS, each with intensity 1.

3 Equivalence of the control problems

In this section we prove that, after a natural renormalization, the value function Wn
K defined in (2.3) is

linked to VnK defined in (2.5) which, as noted before, is the value function of an ordinary stochastic control
problem with a new cost function. Specifically, we show that − log(Wn

K)/n equals VnK , and that the many
agent and the mean field control problem are equivalent when the exchangeability condition holds:

− 1

n
log(Wn

K(L(xn))) = V n
K(L(xn)) = VnK(xn) = − 1

n
log(Wn

K(xn)). (3.1)

3.1 The cost function

One of the aims of this paper is to identify cost structures that make sense for the problem formulation and
for which the risk-sensitive problem is equivalent to a control problem (rather than a game). The only place
where restrictions are needed are in the cost C paid by the centralized controller to the agents for deviating
from the nominal rates γ. To see what conditions will be needed, we first discuss briefly the strategy to be
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used for the proof of (3.1). The proof will use a related Bellman equation. Let H : P(X ) × R|Z| → R be
given by

H(m, ξ) := inf
q∈[0,∞)|Z|

 ∑
(x,y)∈Z

mx (qxyξxy + Fxy(qxy))

 , (3.2)

where

Fxy(q) := sup
u∈(0,∞)

Gxy(u, q) and Gxy(u, q) :=

[
u`
( q
u

)
− γxyCxy

(
u

γxy

)]
. (3.3)

Consider the equation
H (m,∆nV (m)) +R(m) = 0 in Pn(X ) \K, (3.4)

where ∆nV (m) denotes the |Z|-dimensional vector n
(
V (m+

vxy
n )− V (m)

)
, and ∆n

xyV (m) is the compo-
nent n

(
V (m+

vxy
n )− V (m)

)
xy

, (x, y) ∈ Z. We will show that V n
K is the unique solution V to (3.4) that

satisfies the boundary condition V (m) = 0 for m ∈ K. We will also prove that Wn
K is the unique solution

to the equation

sup
u∈(0,∞)|Z|

 ∑
(x,y)∈Z

mx

(
uxy

(
W (m)−W

(
m+

vxy
n

)
W (m)

)
− γxyCxy

(
uxy
γxy

)) = −R(m) (3.5)

for m ∈ Pn(X ) \K with boundary condition W (m) = 1 for m ∈ K.
In the proof of the relation − 1

n log(Wn
K) = V n

K , we will use the following lemma, which holds under
suitable conditions on the cost functional specified in Assumption 3.2 below. The proof of the lemma is
given in Section 3.2 (right after Lemma 3.9).

Lemma 3.1 Suppose Assumption 3.2 below holds. Then, if Ṽ : Pn(X )→ [0,∞) is a solution to (3.4) and

Ṽ (m) = 0 for m ∈ K, then W̃ = e−nṼ : Pn(X )→ (0,∞) is a solution of (3.5) and W̃ (m) = 1 for m ∈ K.

We now provide an outline of the proof of Lemma 3.1 and also provide motivation for the form of our
main assumption, Assumption 3.2 below, on the cost function. First, note that by (3.2)-(3.3), we have

H(m, ξ) := inf
q∈[0,∞)|Z|

 ∑
(x,y)∈Z

mx (qxyξxy + Fxy(qxy))


= inf
q∈[0,∞)|Z|

sup
u∈(0,∞)|Z|

 ∑
(x,y)∈Z

mx (qxyξxy +Gxy(uxy, qxy))


= inf
q∈[0,∞)|Z|

sup
u∈(0,∞)|Z|

 ∑
(x,y)∈Z

mxLxy(uxy, qxy)

 ,

(3.6)

where, Lxy is defined, in terms of ξxy, γxy, Cxy, Lxy and the function ` defined in (1.9), as

Lxy(u, q) := qξxy + u`
( q
u

)
− γxyCxy

(
u

γxy

)
.
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The proof of Lemma 3.1 will proceed by first showing that Isaac’s condition holds, that is, that the supremum
and infimum in (3.6) can be exchanged:

inf
q∈[0,∞)|Z|

sup
u∈(0,∞)|Z|

 ∑
(x,y)∈Z

mxLxy(uxy, qxy)

 = sup
u∈(0,∞)|Z|

inf
q∈[0,∞)|Z|

 ∑
(x,y)∈Z

mxLxy(uxy, qxy)

 . (3.7)

Equation (3.7) is clearly equivalent to

inf
qxy∈[0,∞)

sup
uxy∈(0,∞)

Lxy(uxy, qxy) = sup
uxy∈(0,∞)

inf
qxy∈[0,∞)

Lxy(uxy, qxy), ∀(x, y) ∈ Z. (3.8)

We show in Lemma 3.4 below that (3.8) holds under the following main assumption on the cost function.

Assumption 3.2 R : P(X ) → [0,∞) is a continuous function. Moreover, for every (x, y) ∈ Z, Cxy :
[0,∞)→ [0,∞] is a convex function that satisfies the following:

1. uC ′xy (u)− u is increasing on the maximal open interval where Cxy is finite;

2. Cxy(1) = 0.

The following result, which is proved in Appendix A, shows that part 1 of Assumption 3.2 is close to
being necessary for (3.7) to hold.

Theorem 3.3 If (3.7) is satisfied and for each (x, y) ∈ Z, Cxy is twice differentiable on some non-empty
interval (u1,xy, u2,xy), then part 1 of Assumption 3.2 is satisfied on that interval.

Part 2 of Assumption 3.2 is not necessary, but it simplifies the analysis, and it is appropriate for the
situation being modeled to have zero cost when there is no change from the nominal rates. The proof
of Lemma 3.4, which relies on (a modification of) Sion’s theorem (Corollary 3.3 in [25]), is also deferred
to Appendix A. We proceed by providing a concrete example of a family of cost functions that satisfy
Assumption 3.2.

Example 3.1 The family of functions Cxy(u) = 1
pup + uq

q −
p+q
pq , where p ≥ 1 and q ≥ 1, satisfy Assumption

3.2. Clearly, Cxy(1) = 0. The derivative of Cxy is − 1
up+1 +uq−1, and so uC ′xy(u)−u = − 1

up +uq −u, which
is always finite. Taking the derivative again gives p

up+1 + quq−1 − 1, which is always bigger than zero, since
p

up+1 and quq−1 are everywhere positive and bigger than one on the intervals [0, 1] and [1,∞), respectively.

Lemma 3.4 Under Assumption 3.2, the relation (3.8) holds for each (x, y) ∈ Z, and hence, the Isaac’s
condition stated in (3.7), is satisfied.

As an immediate corollary of the lemma, we have the following result:

Corollary 3.5 Under Assumption 3.2, for each m ∈ P(X ) and ξ ∈ R|Z|,

H(m, ξ) =
∑

(x,y)∈Z

mxγxy(Cxy)
∗
(

1− e−ξxy
)
.

where (Cxy)
∗ : (−∞, 1)→ R is given by

(Cxy)
∗(z) := supu>0 [zu− Cxy(u)] . (3.9)

9
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Proof. First, note that for each (x, y) ∈ Z, using the fact that ∂qLxy(u, q) = ξxy + log(q/u), and
∂qqLxy(u, q) > 0 for q > 0, we see that

inf
qxy∈[0,∞)

Lxy(uxy, qxy) = uxy(1− e−ξxy)− γxyCxy
(
uxy
γxy

)
. (3.10)

Also note that, by the definition of (Cxy)
∗,

sup
uxy∈(0,∞)

[
uxy(1− e−ξxy)− γxyCxy

(
uxy
γxy

)]
= γxy(Cxy)

∗(1− e−ξxy). (3.11)

The corollary is then a simple consequence of the above two observations, (3.6) and Lemma 3.4.
We now summarize some other properties of the cost function that will be useful in the sequel.

Lemma 3.6 Under Assumption 3.2, the cost function Cxy satisfy the following on (0,∞):

1. for every (x, y) ∈ Z we have (Cxy)
′(u) ≥ 1− 1

u for u > 1, and therefore lim infu→∞(Cxy)
′(u) ≥ 1,

2. for every (x, y) ∈ Z and u ∈ (0,∞) we have Cxy(u) ≥ − log u+ u− 1.

Proof. It follows from the monotonicity that uC ′xy(u)− u ≥ −1 for u > 1, which gives the first statement.

The second follows by comparing Cxy(u) with
∫ u

1

[
1− 1

s

]
ds and using Cxy(1) = 0.

We conclude with a lemma that collects some properties of Fxy, and whose proof is provided in Appendix
B.

Lemma 3.7 For every (x, y) ∈ Z, let Fxy be as in (1.8), where {Cxy} satisfy Assumption 3.2. Then the
following properties hold:

1. Fxy(q) ≥ γxy`
(

q

γxy

)
≥ 0, 2. Fxy(γxy) = 0, 3. Fxy is convex on [0,∞).

3.2 Equivalence of the stochastic problems

Theorem 3.8 Let n ∈ N, K ⊂ X n, (resp. K ⊂ Pn(X )), and C, R be as in Assumption 3.2. Then

V n
K(m) = − 1

n
log(Wn

K(m)) (3.12)

and

VnK(xn) = − 1

n
log(Wn

K(xn)). (3.13)

If, in addition, K ⊂ X n is invariant under permutations, and therefore can be identified with a subset of
Pn(X ), then

− 1

n
log(Wn

K(L(xn))) = V n
K(L(xn)) = VnK(xn) = − 1

n
log(Wn

K(xn)). (3.14)

10
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The proof of this result appears later in this section. Also, we will only prove the first equality and note
that the third follows in a similar manner. We begin with some preparatory lemmas.

Lemma 3.9 Let n ∈ N, ∅ 6= K ⊂ Pn(X ), and C, R be as in Assumption 3.2. Then, the equation (3.4) has
at least one solution.

Proof. For the proof we use the equivalent discrete time stochastic control problem. We consider the
following set of controls

Aa(m) :=

q ∈ [0,∞)|Z| :
1

a
≥

∑
(x,y)∈Z

mxqxy(m) ≥ a

 and A+(m) := ∪a>0Aa(m). (3.15)

For such a control the probability of moving from state m to state m+ 1
nvx̃,ỹ will be given by

mx̃qx̃ỹ(m)∑
(x,y)∈Z mxqxy(m)

,

and the (conditional) expected cost till the time of transition is given by∑
(x,y)∈Z mxFxy(qxy(m)) +R(m)

n
∑

(x,y)∈Z mxqxy(m)
.

Also, with some abuse of notation, we define the set of feedback controls

Aa = {q ∈ [0,∞)|P
n(X )×Z| : q(m) ∈ Aa(m)) and A+ = ∪a>0Aa. (3.16)

Given controlled transition probabilities as above, let µ(i) be the corresponding controlled discrete time
process. We define the value function V̄ n

K(m) : P(Rd)→ [0,∞) by

V̄ n
K(m) := inf

q∈A+

Em

[
TK∑
i=1

∑
(x,y)∈Z µx(i)Fxy(qxy(µ(i))) +R(µ(i))

n
∑

(x,y)∈Z µx(i)qxy(µ(i))

]
, (3.17)

where Em denotes expected value given µ(0) = m and TK := inf{i ∈ N : µ(i) ∈ K}.
To see that V̄ n

K(m) is finite, we just have to use the original rates and note that the total cost is
proportional to the expected exit time, which is finite by classical results on Markov chains. Since Fxy, R ≥ 0,

and Fxy is convex with γxy`
(
·
γxy

)
as a lower bound (see Lemma 3.7), one can see that we can find a constant

a0 > 0 such that only controls in Aa0 (or any a < a0) should be considered. More specifically to see that
a term in the sum appearing on the RHS of (3.17) gets large when

∑
(x,y)∈Z µx(i)qxy(µ(i)) gets small we

bound the denominator by |Z| times the biggest term and the nominator by the same term and then we use
the fact that Fxy(0) ≥ γxy. For the other bound we use the superlinearity of Fxy. Now by [3, Proposition
1.1 in Chapter 3], we have that this value function satisfies

V̄ n
K(m) = inf

q∈Aa0 (m)


∑

(x,y)∈Z mxFxy(qxy) +R(m)

n
∑

(x,y)∈Z mxqxy
+

∑
(x̃,ỹ)∈Z

mx̃qx̃ỹ∑
(x,y)∈Z mxqxy

V̄ n
K

(
m+

1

n
vx̃ỹ

) .

11
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It then follows that V̄ n
K(m) satisfies the last display if and only if [with ∆n

xyV̄
n
K(m) := n

(
V̄ n
K(m+

vxy
n )− V̄ n

K(m)
)
]

inf
q∈Aa0 (m)

 ∑
(x,y)∈Z

mx

(
qxy∆

n
xyV̄

n
K(m) + Fxy(qxy)

)+R(m) = 0.

Since a0 can be chosen arbitrary small and the left side on the previous display is continuous with respect
to q, we get

inf
q∈[0,∞)|Z|

 ∑
(x,y)∈Z

mx

(
qxy∆

n
xyV̄

n
K(m) + Fxy(qxy)

)+R(m) = 0.

Then using the definition (3.2) this is the same as

Hn
(
m,∆nV̄ n

K(m)
)

+R(m) = 0,

and we also have the boundary condition V̄ n
K(m) = 0 for all m ∈ K.

Proof of Lemma 3.1. Let Ṽ be a solution to (3.4). We then have Hn(m,∆nṼ (m)) +R(m) = 0. Using
Corollary 3.5 and the definition (3.9) of C∗, this implies

sup
u∈(0,∞)|Z|

 ∑
(x,y)∈Z

mx

(
uxy

(
1− e−n(Ṽ (m+

vxy
n

)−Ṽ (m))
)
− γxyCxy

(
uxy
γxy

))+R(m) = 0.

By making the substitution W̃ = e−nṼ , we have

sup
u∈(0,∞)|Z|

 ∑
(x,y)∈Z

mx

(
uxy

(
1−

W̃ (m+
vxy
n )

W̃ (m)

)
− γxyCxy

(
uxy
γxy

))+R(m) = 0,

which is the same as (3.5).

Lemma 3.10 Let f : Pn(X )→ R, m ∈ Pn(X ), and q ∈ An,|Z|b be given, and let µ solve (2.6). Then

f(µ(t ∧ TK))− f(µ(t′ ∧ TK))−
∫ t∧TK

t′∧TK

∑
(x,y)∈Z

µx(s)qxy(s)∆
n
xyf(µ(s))ds,

is a martingale with respect to the filtration {Ft}.

This is a classical result, and the proof entails a suitable application of Ito’s formula (see [19, Chapter
2, Theorem 5.1] for more details).

Lemma 3.11 Let g : Pn(X )→ (0,∞), m ∈ Pn(X ), and u ∈ An,|Z|b be given, and let µ solve (2.6). Then

g(µ(t ∧ TK))

g(µ(t′ ∧ TK))
exp

−
∫ t∧TK

t′∧TK

∑
(x,y)∈Z

µx(s)uxy(s)
∆n
xyg(µ(s))

g(µ(s))
ds

 (3.18)

is a martingale with respect to the filtration Ft.

12
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Proof. The proof is a direct application of the corollary in [22, Page 66].

Lemma 3.12 Let m ∈ Pn(X ) and u ∈ An,|Z|b . There exists a constant c > 0, that depends only on the
bounds on u, the dimension d, the constant Rmax = max{R(m) : m ∈ Pn(X )}, and the number n of agents,
such that for every t ≥ t′ ≥ 0,

Em
[
e−nRmax(t∧TK−t′∧TK)

∣∣∣Ft′] ≥ c.
Furthermore it is true that

TK <∞ a.s., and Em
[
e−nRmax(TK−t′∧TK)

∣∣∣Ft′] ≥ c.
Proof. We claim there exists g such that for all s

∑
(x,y)∈Z

µx(s)uxy(s)
∆n
xyg(µ(s))

g(µ(s))
≥ nRmax. (3.19)

To show the existence of such a g we use the following procedure. Since the one agent process with generator
given in (1.1) is ergodic, we have that the process on X n, with generator given in (1.2), as well as the one
on Pn(X ), with generator given in (1.4), are also ergodic. We split Pn(X ) into sets {Ki}0≤i≤imax , where
K0 = K, and Ki+1 is generated inductively as the set of all points in Pn(X ) that do not belong to Ki

but such that the process with generator (1.4) can reach Ki in one jump. Since the original process has d

states, it is easy to see that imax ≤ dn. Since u ∈ An,|Z|b , there exist constants 0 < c1 ≤ c2 < ∞ such that
c1 ≤ uxy(t) ≤ c2 for all t ≥ 0 a.s. Let g be defined by

g(m)
.
=

(
nRmax + nd2c2 + c1

c1

)imax−i
, for m ∈ Ki.

Let µ(·) be the process with control u. For 0 ≤ s ≤ t suppose that µ(s) ∈ Ki for some i ≥ 1. Then there
exists at least one (x̃, ỹ) ∈ Z such that µ(s) +

vx̃ỹ
n ∈ Ki−1. Therefore

∑
(x,y)∈Z

µx(s)uxy(s)
∆n
xyg(µ(s))

g(µ(s))
= µx̃(s)ux̃ỹ(s)

∆n
x̃ỹg(µ(s))

g(µ(s))
+ n

∑
(x,y)∈Z,(x,y)6=(x̃,ỹ)

g(µ(s) +
vxy
n )

g(µ(s))
µx(s)uxy(s)

− n
∑

(x,y)∈Z,(x,y)6=(x̃,ỹ)

g(µ(s))

g(µ(s))
µx(s)uxy(s) ≥ µx̃(s)ux̃ỹ(s)

∆n
x̃ỹg(µ(s))

g(µ(s))
− n

∑
(x,y)∈Z

µx(s)uxy(s)

≥ c1

(
nRmax + nd2c2 + c1

c1
− 1

)
− nc2d

2 ≥ nRmax,

where in the next to last inequality we used the fact that µx̃(s) ≥ 1
n (because otherwise there is no agent at

x̃ to move), and that ∆n
xyV (m) = n

(
V (m+

vxy
n )− V (m)

)
.

Using Lemma 3.11, we have

Em

 g(µ(t ∧ TK))

g(µ(t′ ∧ TK))
exp

−
∫ t∧TK

t′∧TK

∑
(x,y)∈Z

µx(s)uxy(s)
∆n
xyg(µ(s))

g(µ(s))
ds


∣∣∣∣∣Ft′

 = 1,

13
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from which we get

Em

exp

−
∫ t∧TK

t′∧TK

∑
(x,y)∈Z

µx(s)uxy(s)
∆n
xyg(µ(s))

g(µ(s))
ds


∣∣∣∣∣Ft′

 ≥ c .= minPn(X ) g

maxPn(X ) g
.

By applying equation (3.19)

Em
[
e−nRmax(t∧TK−t′∧TK)

∣∣∣Ft′] ≥ c.
Now choose now τ > 0 such that e−nRmaxτ ≤ c/2. We claim that(

TK ≤ t′ + τ
)
⇔
(
TK ∧ (t′ + 2τ)− t′ ∧ TK

)
≤ τ.

Indeed if t′ ≥ TK , then both parts are trivially true. Let assume that t′ ≤ TK , and TK ≤ t′ + τ. Then
TK ∧ (t′ + 2τ) = TK , and t′ ∧ TK = t′, and therefore (TK ∧ (t′ + 2τ)− t′ ∧ TK) = TK − t′ ≤ τ. If on the
other hand t′ ≤ TK and (TK ∧ (t′ + 2τ)− t′ ∧ TK) ≤ τ, we get (TK ∧ (t′ + 2τ)) ≤ τ + t′, which gives that
TK ≤ (t′ + 2τ), and therefore TK = (TK ∧ (t′ + 2τ)) ≤ t′ + τ . Using the claim just proved gives

Pm(TK ≤ t′ + τ |Ft′)=Pm(TK ∧ (t′ + 2τ)− t′ ∧ TK ≤ τ |Ft′)=Pm
(
e−nRmax(TK∧(t′+2τ)−t′∧TK)≥e−nRmaxτ |Ft′

)
.

Let E1
.
= {e−nRmax(TK∧(t′+2τ)−t′∧TK) ≥ e−nRmaxτ} and E2

.
= Ec1. Then since TK ∧ (t′ + 2τ)− t′ ∧ TK ≥ 0

Em
[
e−nRmax(TK∧(t′+2τ)−t′∧TK)

∣∣∣Ft′] = Em
[
1E1e

−nRnmax(TK∧(t′+2τ)−t′∧TK)
∣∣∣Ft′]

+ Em
[
1E2e

−nRnmax(TK∧(t′+2τ)−t′∧TK)
∣∣∣Ft′] ≤ Em

[
1E1

∣∣∣Ft′]+ e−Rmaxτ .

From this, the first part of the lemma and e−nRmaxτ ≤ c/2, we get

Pm
(
e−nRmax(TK∧(t′+2τ)−t′∧TK) ≥ e−nRnmaxτ |Ft′

)
≥ Em

[
e−nRmax(TK∧(t′+2τ)−t′∧TK)

∣∣∣Ft′]− e−nRmaxτ ≥ c

2
.

Now we have

Pm(TK =∞) = lim
k→∞

Pm(TK > kτ) = Pm (TK > 0) lim
k→∞

k∏
k′=0

(
1− Pm

(
TK ≤ (k′ + 1)τ |TK > k′τ

))
≤ lim

k→∞

(
1− c

2

)k
= 0,

where in the second inequality we iteratively used the formula for conditional probability. The remaining
inequality is just an application of the monotone convergence theorem.

Lemma 3.13 Given m ∈ Pn(X ), ε > 0 and u ∈ An,|Z|b with

Em
[
e
n
∫ TK
0

(∑
(x,y)∈Z µx(t)Cxy

(
uxy(t)

γxy

)
−R(µ(t))

)
dt
]
<∞,

there exists ũ ∈ An,|Z|b and τ <∞, such that∑
(x,y)∈Z

µ̃x(t)γxyCxy

(
ũxy(t)

γxy

)
−R(µ̃(t)) ≤ 0 for every t > τ, and InK(m, ũ) ≤ InK(m,u) + ε.

14
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Proof. Let such m ∈ Pn(X ), ε > 0, and u ∈ An,|Z|b be given, and let c > 0 from Lemma 3.12 be such that

Em
[
enRmax(TK−t′∧TK)

∣∣∣Ft′] ≥ c (3.20)

for t′ ∈ [0,∞). Since by Lemma 3.12 TK is finite a.s., we can find τ <∞ such that

Em
[
I{TK≥τ}e

n
∫ TK
0

(∑
(x,y)∈Z µx(t)γxyCxy

(
uxy(t)

γxy

)
−R(µ(t))

)
dt
]
≤ εc.

Now set ũ(t) = u(t) for t ≤ τ, and ũ(t) = γ so that Cxy (ũxy(t)/γxy) = 0 for t ≥ τ . Let µ̃ and T̃K be
the corresponding controlled process and stopping time. Then the first claim of the lemma follows. The
remaining claim follows from the following display, where the first inequality uses again that Cxy (1) = 0,
the following equality uses that (ũ, µ̃, T̃K) had the same distribution as the original versions up till time τ ,
and the second inequality uses (3.20):

InK(m, ũ) = Em
[
e
n
∫ TK
0

(∑
(x,y)∈Z µ̃x(t)γxyCxy

(
ũxy(t)

γxy

)
−R(µ̃(t))

)
dt
]

≤ Em
[
I{TK≤τ}e

n
∫ TK
0

(∑
(x,y)∈Z µ̃x(t)γxyCxy

(
ũxy(t)

γxy

)
−R(µ̃(t))

)
dt
]

+ Em
[
I{TK≥τ}e

n
∫ TK∧τ
0

(∑
(x,y)∈Z µ̃x(t)γxyCxy

(
ũxy(t)

γxy

)
−R(µ̃(t))

)
dt
]

= Em
[
I{TK≤τ}e

n
∫ TK
0

(∑
(x,y)∈Z µx(t)γxyCxy

(
uxy(t)

γxy

)
−R(µ(t))

)
dt
]

+ Em

[
I{TK≥τ}e

n
∫ TK∧τ
0

(∑
(x,y)∈Z µx(t)γxyCxy

(
uxy(t)

γxy

)
−R(µ(t))

)
dt

×
Em

[
e
n
∫ TK
TK∧τ

(∑
(x,y)∈Z µx(t)γxyCxy

(
uxy(t)

γxy

)
−R(µ(t))

)
dt

∣∣∣∣∣Fτ
]

Em

[
e
n
∫ TK
TK∧τ

(∑
(x,y)∈Z µx(t)γxyCxy

(
uxy(t)

γxy

)
−R(µ(t))

)
dt

∣∣∣∣∣Fτ
]]

≤ Em
[
e
n
∫ TK
0

(∑
(x,y)∈Z µx(t)Cxy

(
uxy(t)

γxy

)
−R(µ(t))

)
dt
]

+
1

c
Em

[
I{TK≥τ}e

n
∫ TK
0

(∑
(x,y)∈Z µx(t)γxyCxy

(
uxy(t)

γxy

)
−R(µ(t))

)
dt

]
≤ InK(m,u) + ε.

Proof of Theorem 3.8. We are first going to prove that V n
K is the unique solution to (3.4). We will prove

that, by showing that if Ṽ is any solution to (3.4), then it has to coincide with V n
K . Let Ṽ be any solution

to (3.4), and let m ∈ P(X ). Let also q ∈ An,|Z|b be given and let µ solve (2.6). By Lemma 3.10,

Ṽ (µ(t ∧ TK))− Ṽ (m)−
∫ t∧TK

0

∑
(x,y)∈Z

µx(s)qxy(s)∆
nṼ (µ(s))ds
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is a martingale. Taking expectation gives

Em
[
Ṽ (µ(t ∧ TK))

]
− Em

∫ t∧TK

0

∑
(x,y)∈Z

µx(s)qxy(s)∆
nṼ (µ(s))ds

 = Ṽ (m),

and since Ṽ is a solution to (3.4) and by (3.2),

Em
[
Ṽ (µ(t ∧ TK))

]
+ Em

∫ t∧TK

0

 ∑
(x,y)∈Z

µx(s)Fxy(qxy(s)) +R(µ(s))

 ds

 ≥ Ṽ (m).

By Lemma 3.12, TK <∞ almost surely. Letting t→∞, Lemma 3.7 and the monotone convergence theorem
imply

JnK(m, q) = Em

∫ TK

0

∑
(x,y)∈Z

µx(t)Fxy(qxy(s)) +R(µ(s))ds

 ≥ Ṽ (m).

Since q ∈ An,|Z|b was arbitrary we get V n
K(m) ≥ Ṽ (m). We will now prove the opposite inequality. Let ε > 0.

For m ∈ Pn(X ), we can find q̄(m) that satisfies∑
(x,y)∈Z

(
q̄xy(m)n

(
Ṽ

(
m+

1

n
vxy

)
− Ṽ (m))

)
+mxFxy(q̄xy(m))

)
+R(m) ≤ ε

∑
(x,y)∈Z

mxFxy(q̄xy(m)). (3.21)

To see that such a q̄(m) exists and it is actually bounded away from zero, we take a minimizing se-

quence q̄n(m) in the definition of H
(
m,∆nṼ (m)

)
(see (3.2)). By using the continuity of the function∑

(x,y)∈Z

(̄
qxy(m)n

(
Ṽ
(
m+ 1

nvxy
)
− Ṽ (m))

)
+mxFxy(q̄xy(m))

)
with respect to q̄n(m), we can assume that

all qxy,n are strictly positive. Furthermore, with no loss of generality we can assume that the sequence is
converging. If all elements converge to the original rates, by recalling (3.4), we notice that we can just take
those and the inequality is satisfied trivially. If on the other hand it converges to different values the right
hand will be always bounded away from zero while the left hand will converge to zero by (3.4), therefore for
sufficiently large value of n, we will recover the desired control. We can construct a solution to (2.6) with u

replaced by the feedback control q̄(µ), and then obtain q̂ ∈ A|Z|b by setting q̂(t) = q̄(µ(t)). Then

Em
[
Ṽ (µ(t ∧ TK))

]
− Em

∫ t∧TK

0

∑
(x,y)∈Z

µx(s)q̄xy(µ(s))∆nṼ (µ(s))ds

 = Ṽ (m),

and therefore by (3.21)

Em
[
Ṽ (µ(t ∧ TK))

]
+ Em

∫ t∧TK

0

(1− ε)
∑

(x,y)∈Z

µx(t)Fn(q̄xy(µ(s))) +R(µ(s))

 ds

 ≤ Ṽ (m).

16



February 5, 2021

Again using Lemma 3.12 and the monotone convergence theorem gives

(1− ε)Em

∫ TK

0

 ∑
(x,y)∈Z

µx(t)Fn(q̄xy(µ(s))) +R(µ(s))

 ds

 ≤ Ṽ (m),

and therefore V n
K(m) ≤ JnK(m, q̂) ≤ 1

1−ε Ṽ (m). Since ε is arbitrary we get V n
K(m) = Ṽ (m), which implies

the uniqueness of Ṽ . We now proceed with the proof that Wn
K is the unique solution to

sup
u∈(0,∞)|Z|

 ∑
(x,y)∈Z

µx

(
uxy

(
W (µ)−W

(
µ+

vxy
n

)
W (µ)

)
− γxyCxy

(
uxy
γxy

)) = −R(µ). (3.22)

Since V n
K is a solution to (3.4), by Lemma 3.1 we get that 1

n log(V n
K) is a solution to (3.22), and thus

uniqueness will imply 1
n log(V n

K) = Wn
K . Let W̃ be any solution to (3.22), m ∈ Pn(X ), and u ∈ An,|Z|b , and

let µ solve (2.6). Further assume that there exists τ <∞ such that for t > τ∑
(x,y)∈Z

µx(t)γxyCxy

(
uxy(t))

γxy

)
−R(µ(t)) ≤ 0. (3.23)

To show JnK(m,u) ≥ W̃ (m) we can assume that JnK(m,u) <∞, since otherwise there is nothing to prove.
By Lemma 3.11

W̃ (µ(t ∧ TK))

W̃ (m)
exp

−
∫ t∧TK

0

∑
(x,y)∈Z

µx(s)uxy(s)
∆nW̃ (µ(s))

W̃ (µ(s))
ds


is a martingale. Taking expectations gives

Em

W̃ (µ(t ∧ TK)) exp

−
∫ t∧TK

0

∑
(x,y)∈Z

µx(s)uxy(s)
∆nW̃ (µ(s))

W̃ (µ(s))
ds


 = W̃ (m),

and by (3.4) and the definition of ∆n

Em

W̃ (µ(t ∧ TK)) exp

n
∫ t∧TK

0

 ∑
(x,y)∈Z

µx(s)γxyCxy

(
uxy(s)

γxy

)
−R(µ(s))

 ds


 ≥ W̃ (m).

We claim that

Em

W̃ (µ(t ∧ TK)) exp

n
∫ τ∧TK

0

 ∑
(x,y)∈Z

µx(s)γxyCxy

(
uxy(s)

γxy

)
−R(µ(s))

 ds


 <∞. (3.24)

Since W̃ is uniformly bounded this term can be ignored. One can then bound what remains in (3.24) by
using

∞ > JnK(m,u) = Em

exp

n
∫ TK

0

 ∑
(x,y)∈Z

µx(s)γxyCxy

(
uxy(s)

γxy

)
−R(µ(s))

 ds


 ,
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breaking the integral over [0, TK ] into contributions over [0, τ ∧ TK ] and [τ ∧ TK , TK ], and then conditioning
on Fτ and using the lower bound on the term corresponding to [τ ∧ TK , TK ] provided by Lemma 3.12 (as in
the proof of Lemma 3.13). Since (by Lemma 3.12) TK is finite almost surely, and (3.23) holds for t ≥ τ , by
dominated convergence theorem and (3.24) it follows that

JnK(m,u) = E

exp

n
∫ TK

0

 ∑
(x,y)∈Z

µx(s)γxyCxy

(
uxy(s)

γxy

)
−R(µ(s))

 ds


 ≥ W̃ (m).

By minimizing over all u that satisfy (3.23) and applying Lemma 3.13, we get Wn
K(m) ≥ W̃ (m).

Next let ε ∈ (0, 1/2). For m ∈ Pn(X ), t ≥ 0 we choose ū(m, t) such that

∑
(x,y)∈Z

mx

(
ūxy(m, t)

(
W̃ (m)− W̃

(
m+

vxy
n

)
W̃ (m)

)
− γxyCxy

(
ūxy(m, t)

γxy

))
≥ −R(m)− ε

t2 + 1
. (3.25)

As before we can solve (2.6) and then generate a corresponding element u of An,|Z|b by composing ūxy(m, t)

with the solution. It is easy to see that u is an element of An,|Z|b , since very big or very small values of
ūxy(m, t) will make the left hand of (3.25) tend to −∞. Arguing as before, for fixed t <∞

Em

W̃ (µ(t ∧ TK)) exp

n
∫ TK∧t

0

 ∑
(x,y)∈Z

µx(s)γxyCxy

(
ūxy(µ(s), s)

γxy

)
−R(µ(s))− ε

s2 + 1

 ds


 ≤ W̃ (m).

By sending t→∞ and using the boundary condition, Fatou’s lemma gives

Em

exp

(∫ ∞
0
− ε

s2 + 1
ds

)
exp

n
∫ TK

0

 ∑
(x,y)∈Z

µx(s)γxyCxy

(
ūxy(µ(s), s)

γxy

)
−R(µ(s))

 ds


 ≤ W̃ (m),

from which we get Wn
K(m) ≤ W̃ (m) exp[ε

∫∞
0 1/(s2 + 1)ds]. Sending ε to zero shows Wn

K(m) ≤ W̃ (m).
The proof that VnK(xn) = − 1

n log(Wn
K(xn)) is similar and thus omitted. It remains only to prove

V n
K(L(xn)) = VnK(xn). We have established that V n

K is the only function that satisfies

inf
q∈(0,∞)|Z|

 ∑
(x,y)∈Z

mx

(
qxy∆

n
xyV

n
K (m) + Fxy(qxy)

) = −R(m),

and that VnK is the only function that satisfies

inf
q∈(0,∞)n|Z|


n∑
i=1

∑
y∈Zxn

i

(
qxni y∆

n
i,xni y
VnK (xn) + Fxni y(qxni y)

) = −nR(L(xn)). (3.26)

Since K ⊂ X n is invariant under permutations, and therefore can be identified with a subset of Pn(X ), we
have that there exists a function V̄ : Pn(X ) → [0,∞) such that V̄ (L(xn)) = VnK(xn), and therefore (3.26)
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becomes

inf
q∈(0,∞)n|Z|


n∑
i=1

∑
y∈Zxn

i

(
qxni y∆

n
i,xni y

V̄ (L(xn)) + Fxni y(qxni y)
) = −nR(L(xn)).

For ε > 0, let q̄ ∈ (0,∞)n|Z| satisfy

n∑
i=1

∑
y∈Zxn

i

[
q̄xni y∆

n
i,xni y

V̄ (L(xn)) + Fxni y(q̄xni y)
]
≤ −nR(L(xn)) + ε.

Now pick q̃ ∈ (0,∞)|Z| by requiring nLx(xn)q̃xy =
∑n

i=1 Ixni =xq̄xni y, so that

∑
(x,y)∈Z

nLx(xn)q̃xy∆
n
xyV̄ (L(xn)) +

n∑
i=1

∑
y∈Zxn

i

Fxni y(q̄xni y) ≤ −nR(L(xn)) + ε.

By using convexity of Fxy (see Lemma 3.7) we get∑
(x,y)∈Z

Lx(xn)
[
q̃xy∆

n
xyV̄ (L(xn)) + Fxy(q̃xy)

]
≤ −R(L(xn)) + ε/n,

and sending ε ↓ 0 gives

inf
q∈(0,∞)|Z|

 ∑
(x,y)∈Z

Lx(xn)
[
qxy∆

n
xyV̄ (L(xn)) + Fxy(qxy)

] ≤ −R(L(xn)).

The other direction is trivial, and follows if in (3.26) one uses rates that are the same for all agents in
the same position.

4 Discussion regarding convergence

Before we introduce the deterministic control problem, we define the set of admissible controls and controlled
trajectories.

Definition 4.1 We define the space of paths and controls by

C .
=
{

(µ, q) ∈ D([0,∞);P(X ))×F
(
[0,∞); [0,∞)⊗Z

)
: µxqxy is locally integrable ∀(x, y) ∈ Z

}
,

where F
(
[0,∞); [0,∞)⊗Z

)
was defined in (1.12). We define Λ : C × P(X )→ D([0,∞);P(X ) by

Λ(µ, q,m)(t)
.
= m+

∑
(x,y)∈Z

vxy

∫
[0,t)

µx(s)qxy(s)ds. (4.1)

Also we define the set of all deterministic pairs that correspond to a solution of the equation µ = Λ(µ, q,m),
i.e.,

Tm
.
= {(µ, q) ∈ C : µ = Λ(µ, q,m),µ(0) = m}
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Finally we introduce the set of controls that generate controlled trajectories

Um
.
=
{
q ∈ F([0;∞); [0,∞)⊗Z) : ∃µ ∈ D([0,∞);P(X )) such that (µ, q) ∈ Tm

}
. (4.2)

Then the deterministic control problems are given by

VK(m)
.
= inf

(µ,q)∈Tm
JK(m,µ, q), (4.3)

with

JK(m,µ, q)
.
=


∫ TK

0

 ∑
(x,y)∈Z

µx(t)Fxy(qxy(t)) +R(µ(t))

 dt

 , TK
.
= inf

t∈[0,∞]
{µ(t) ∈ K} .

In this section we consider sets K ⊂ P(X ) that satisfy the following assumption.

Assumption 4.2 K = K◦ 6= ∅.

For such sets we show that the sequence of values functions V n
K converges uniformly to the function VK .

To simplify the notation we will drop the index that corresponds to the set from the stopping time. We split
the study of the convergence in two parts. In the first part, without making any extra assumptions on the
cost functions and in great generality, we prove that for any sequence {mn}, with mn ∈ Pn(X ) converging
in m ∈ P(X ),

lim inf
n→∞

V n
K(mn) ≥ VK(m).

The other direction of the inequality, i.e., lim supn→∞ V
n
K(mn) ≤ VK(m), is not as straightforward and its

analysis can be quite involved. In order to avoid technical issues relating to controllability we will add some
assumptions.

Before we present the extra assumptions on C we discuss an almost trivial choice for the cost function
that will motivate these extra assumptions. As stated in Lemma 3.6, for every (x, y) ∈ Z we have Cxy(u) ≥
− log u+ u− u. Actually the function Cxy(u) = − log u+ u− 1 satisfies Assumption 3.2 and therefore is an
eligible cost function. Setting Cxy(u) ≡ C(u) = − log u+ u− 1, we get

Gxy(u, q) = u`
( q
u

)
− γxyCxy

(
u

γxy

)
= q log

q

u
− q + u+ γxy log

u

γxy
− u+ γxy (4.4)

= q log q + (γxy − q) log u− q + γxy.

Examining (4.4) and referring to the definition of Fxy in (1.8), we observe that if qxy > γxy then the
“maximizing player” (the one that picks u), can produce an arbitrarily large cost by making uxy as small as
needed. If qxy < γxy, this player can produce an arbitrarily large cost by making uxy as big as needed. Hence
the minimizing player must keep qxy = γxy, and the value function V (m) is infinite unless the solution of the
equation ν̇(t) = ν(t)γ passes through K for the specific choice of initial data m. To resolve this difficulty
we could start by imposing the following assumption on the cost.

lim
u→0

u(Cxy)
′(u) = −∞, lim inf

u→∞
{u(Cxy)

′(u)− u} ≥ 0.
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This assumption makes F finite on (0,∞) and allows for some controllability. Specifically, if the first
point is true and if m, m̃ ∈ Pa(X ) for some a > 0, then one can observe (see the proof of Lemma 3.7) that
the total cost V{m̄}(m) for moving from point m to m̃ is uniformly bounded by ca‖m− m̃‖, where ca > 0
is an appropriate constant, where the minimizing player picks q̃xy(t) to be uniformly bounded from above,
but big enough to reach the desired point. In particular, the maximizing player cannot impose an arbitrarily
large cost by taking uxy small. In an analogous fashion, the second point implies that the minimizer can
choose controls so that the total cost V{m̃}(m) for moving from point m to m̃ is uniformly bounded by
c′a‖m− m̃‖ by picking q̃xy(t) bounded from below but small enough.

However, if m̃ is in the natural boundary of the simplex P(X ) an additional complication arises, because
to reach the natural boundary it must be true that for at least one (x, y) ∈ Z the quantity q̃xy(t) will scale
like 1/µ̃x(t). In that case, the first point is not enough for a finite cost, since sending q̃xy(t) to infinity in
order to reach the natural boundary may result in an infinite total cost. Taking all these issues into account
we end up with the following assumption.

Assumption 4.3 Let C, R be as in Assumption 3.2. Assume that for all (x, y) ∈ Z, the following are
valid.

1. There exists p > 0 such that
lim
u→0

up+1C ′xy(u) = −∞.

2.
lim inf
u→∞

{uC ′xy(u)− u} ≥ 0.

It is straightforward to see that Assumption 4.3 is satisfied by all functions in Example 3.1, with p, q > 1.
Now we state the second main theorem of the paper.

Theorem 4.4 Let C, R, satisfy Assumption 4.3. Let also K be a closed subset of P(X ) that satisfies
Assumption 4.2. Finally assume that in every compact subset of Kc, R is bounded from below by a positive
constant. Then the sequence of functions V n

K defined in (2.9) converges uniformly to VK defined in (4.3).

Before proceeding with the proof, we state some properties of Fxy.

Lemma 4.5 For every (x, y) ∈ Z, let Fxy be as in (1.8), where Cxy satisfy Assumption 4.3. Then the
following hold.

1. There exists a constant M ∈ (0,∞) and a decreasing function M̄ : (0,∞) → (0,∞), such that for
every ε > 0 and every q ≥ ε,

Fxy(q) ≤ q log
q

min
{
γxy (γxy/q)

1/p ,M
} + M̄(ε).

2. Fxy is continuous on the interval (0,∞).

The proof of the Lemma 4.5 can be found in Appendix B. It is worth mentioning that it is possible that
Fxy(0) =∞. In the sequel we will make use of the following remark, which states a property proved in [12,
Proposition 4.14]
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Remark 4.6 There exists D ≥ 1 and b1 > 0, b2 < ∞ such that for every m ∈ P(X), if ν(m, t) is the
solution of ν̇(t) = ν(t)γ with initial point ν(0) = m, then

1. ∀x ∈ X , νx(m, t) ≥ b1tD and 2. ‖ν(m, t)−m‖ ≤ b2t.

Before proceeding with the proof of Theorem 4.4, we prove that the function V (m) is continuous. We
will actually prove something stronger. Recall that γ denotes the original unperturbed jump rates and the
definitions of P∗(X ) and Pa(X ) in (1.13).

Theorem 4.7 There is a constant c̄ ∈ R that depends only the dimension d and the unperturbed rates γ,
such that for every m ∈ P∗(X ), m̃ ∈ P(X ) there exists a control q ∈ Um, that generates a unique µ with
(µ, q) ∈ Tm, satisfying

1. µ is a constant speed parametrization of the straight line that connects m and m̃,

2. the exit time T{m̃} is equal to ‖m− m̃‖,

3. γxy ≤ qxy(t) and µx(t)qxy(t) ≤ c̄.

Furthermore, if m, m̃ ∈ Pa(X ) then

γxy ≤ qxy(t) ≤
c̄

a
,

and we can find a constant ca < ∞ such that the total cost for applying the control is bounded above by
ca‖m−m̃‖. Finally, for every ε > 0 there exists δ > 0, such that ‖m̄−m̃‖ ≤ δ implies V{m̃}(m̄), V{m̄}(m̃) ≤
ε, and therefore as a function of two variables V is continuous on P(X )× P(X ).

Proof. Recall the definitions above (1.3), and let m ∈ P∗(X ), m̃ ∈ P(X ). We can find a positive constant
c̄ that depend only the dimension d and on the rates γ, and also rates q such that

1. qxy ≥ γxy, 2.
∑

(x,y)∈Z

mxqxyvxy =
m̃−m
‖m̃−m‖

, 3. max{mxqxy, (x, y) ∈ Z} ≤ c̄.

Indeed, since (1.3) holds, we can find a constant c < ∞ such that for every point m ∈ P∗(X ), there
exist vectors qxymxvxy with qxymx ≤ c, and

∑
(x,y)∈Z mxqxyvxy = m̃−m

‖m̃−m‖ . Now if for some (x1, y1) ∈ Z
we do not have qx1y1 ≥ γx1y1 , then by ergodicity we can pick x1, x2 = y1, x3, . . . , xj , with j ≤ d, such that∑j−1

i=1 vxixi+1 = 0. If we pick the new qxixi+1 equal to maxxy{γxy}/mxi plus the original qxixi+1 , then property
2 is still satisfied, but we now also have qx1y1 ≥ γx1y1 . We have to repeat the procedure at most |Z| times to
enforce property 1, and can then set c̄

.
= max{mxqxy, (x, y) ∈ Z}.

Let
µ̃(t) = [(m̃−m)t/‖m̃−m‖+m], (4.5)

and define q̃ ∈ Um by
µ̃x(t)q̃xy(t) = mxqxy ≤ c̄. (4.6)

Then automatically ∑
(x,y)∈Z

vxy

∫
[0,t)

µ̃x(s)q̃xy(s)ds = t
m̃−m
‖m̃−m‖

= µ̃(t)−m,
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and thus (µ̃, q̃) ∈ Tm. This will lead to hitting {m̃} in time T{m̃} = ‖m − m̃‖. Using properties stated in
Lemma 4.5 we get

inf
(µ,q)∈Tm

J{m̃}(m,µ, q) ≤ J{m̃}(m, µ̃, q̃) ≤
∑

(x,y)∈Z

∫ T{m̃}

0
µ̃x(t)Fxy(q̃xy(t)) +RmaxT{m̃}

(4.6)

≤
∑

(x,y)∈Z

∫ T{m̃}

0

µ̃x(t)q̃xy(t) log
q̃xy(t)

min
{
γxy (γxy/q̃xy(t))

1/p ,M
} + max

(x,y)∈Z
M̄(γxy)

dt+RmaxT{m̃}

≤
∑

(x,y)∈Z

∫ T{m̃}

0
|µ̃x(t)q̃xy(t) log q̃xy(t)| dt+

∑
(x,y)∈Z

∫ T{m̃}

0

∣∣∣µ̃x(t)q̃xy(t) log (γxy/q̃xy(t))
1/p
∣∣∣ dt+

+
∑

(x,y)∈Z

∫ T{m̃}

0
|µ̃x(t)q̃xy(t) log γxy| dt+

∑
(x,y)∈Z

∫ T{m̃}

0
|µ̃x(t)q̃xy(t) logM | dt+ c′T{m̃}

(4.6)

≤ c̄
∑

(x,y)∈Z

∫ T{m̃}

0
| log q̃xy(t)|dt+ c̄

∑
(x,y)∈Z

∫ T{m̃}

0

∣∣∣log (γxy/q̃xy(t))
1/p
∣∣∣ dt+ c′′T{m̃}

(4.6)

≤ c̄
∑

(x,y)∈Z

∫ T{m̃}

0

∣∣∣∣log
mxqxy
µ̃x(t)

∣∣∣∣ dt+ c̄
∑

(x,y)∈Z

∫ T{m̃}

0

∣∣∣log (µ̃x(t)γxy/mxqxy)
1/p
∣∣∣ dt+ c′′T{m̃}

(4.6)

≤ c̄
∑

(x,y)∈Z

∫ T{m̃}

0
|log µ̃x(t)| dt+ c̄

∑
(x,y)∈Z

∫ T{m̃}

0

1

p
|log µ̃x(t)| dt+ c′′′T{m̃},

where the constants c′, c′′, c′′′ depend only on γ, c̄ and Rmax.
Now if m, m̃ ∈ Pa(X ), then all elements are bounded by a constant ca (that depends on γ, c̄, Rmax, and

a) times T{m̃} = ‖m̃−m‖, and therefore the first part of the theorem follows.
Let 1 > δ > 0, and m̄, m̃ ∈ P(X ), with ‖m̄ − m̃‖ < δ. We take m = ν(m̄, δ), where ν(m̄, t) is

the solution of ν̇(t) = ν(t)γ, with initial data ν(0) = m̄. Now by appropriate use of the inequality
µ̃x(t) ≥ min{mx,mx(T{m̃} − t)}, that we get from (4.5), and using the last display, we get

V{m̃}(m) ≤ c′′′′
 ∑

(x,y)∈Z

∫ T{m̃}

0

(
| logmx|+ | log(T{m̃} − t)|

)
dt+ T{m̃}

 .

By a simple change of variable and Remark 4.6, we have

V{m̃}(m) ≤ c′′′′
 ∑

(x,y)∈Z

∫ b2δ

0

(
| log b1δ

D|+ | log t|
)
dt+ b2δ

 .

Therefore

V{m̃}(m̄) ≤ V{m}(m̄) + V{m̃}(m) ≤ δRmax + c′′′′

 ∑
(x,y)∈Z

∫ b2δ

0

(
| log b1δ

D|+ | log t|
)
dt+ b2δ

 ,

and the right hand side can be made as small as desired by making δ small enough. The estimate for
V{m̄}(m̃) is proved in a symmetric way. This proves the last statement of the theorem.
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5 Lower bound

For the proof of Theorem 4.4, we first prove the lower bound: for every sequencemn ∈ Pn(X ) andm ∈ P(X ),
with mn →m, we have

lim inf
n→∞

V n
K(mn) ≥ VK(m).

Without loss of generality we can assume that the liminf is actually a limit, otherwise we can just work with
a subsequence. If the limit is ∞ then the conclusion is trivial, therefore we can assume that there is c ∈ R
such that

sup
n∈N

V n
K(mn) ≤ c. (5.1)

Let ε ∈ (0, 1). Recalling (2.9), let qn ∈ An,|Z|b be such that

Emn

∫ Tn

0

 ∑
(x,y)∈Z

µnx(t)Fxy(q
n
xy(t)) +R(µn(t))

 dt

 < V n
K(mn) + ε, (5.2)

where µn = hn (µn, qn,mn,Nn/n) and Tn
.
= inf {t ∈ [0,∞] : µn(t) ∈ K} . For δ > 0 such that

‖m̄− m̃‖ ≤ δ ⇒ Vm̄(m̃) ≤ ε,

we define Kδ
.
= {m : d(m,K) ≤ δ} and Tn,δ

.
= inf{t ∈ [0,∞] : µn(t) ∈ Kδ}.

The existence of such a δ is given by Theorem 4.7. Now for µn, qn as in (5.2) and Tn,δ as above, we define
the sequences µn,δ(t) = µn(t ∧ Tn,δ),

qn,δ(t) =

{
qn(t) t ≤ Tn,δ

γ T > Tn,δ
.

We note that for t > T δ, qn,δ(t) does not actually generate µn, but we define it this way to simplify some
arguments later on. We will show that

lim inf
n→∞

Emn

∫ Tn

0

 ∑
(x,y)∈Z

µnx(t)Fxy(q
n
xy(t)) +R(µn(t))

 dt

 ≥
lim inf
n→∞

Emn

∫ Tn,δ

0

 ∑
(x,y)∈Z

µn,δx (t)Fxy(q
n,δ
xy (t)) +R(µn,δ(t))

 dt

 ≥ VKδ(m),

(5.3)

and then by an application of Theorem 4.7 and (5.2) deduce limn→∞ V
n
K(mn) + 2ε ≥ VK(m). Since ε is

arbitrary the lower bound will follow. The first inequality in (5.3) is true since Fxy ≥ 0, R ≥ 0 and Tn,δ ≤ Tn.
Therefore only the second inequality needs to be proved.

Before proceeding we introduce some auxiliary random measures. For (x, y) ∈ Z, qxy ∈ F([0,∞); [0,∞)),
and t ∈ [0,∞), define

ηxy(dr; t)
.
= δqxy(t)(dr)µx(t).
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For each t ∈ [0,∞), (x, y) ∈ Z we have that ηxy(·; t) is a subprobability measure on [0,∞). Also we consider
the measures θxy(drdt) = ηxy(dr; t)dt on [0,∞)× [0,∞) as equipped with the topology that generalizes the
weak convergence of probability measures to general measures that have at most mass T on [0,∞)× [0, T ].
This can be defined in terms of a distance (a generalization of the Prohorov metric) dT ,and the metric on
measures on [0,∞)× [0,∞) is ∑

T∈N
2−T [dT (µ|T ,ν|T ) ∨ 1] , (5.4)

where µ|T denotes the restriction to [0, T ] in the last variable.
Let θn,δ = {θn,δ}(x,y)∈Z be the random measures that correspond to µn,δ, qn,δ, according to the con-

struction above. We observe that

µn,δ(t) = mn +
∑

(x,y)∈Z

vxy

∫ t∧Tn,δ

0

∫ ∞
0

rθn,δxy (drds) + a martingale,

where the martingale will converge to zero as n→∞, and that for every (x, y) ∈ Z,

Emn

[∫ Tn,δ

0
Fxy(q

n,δ
xy (t))µn,δx (t)dt

]
= Emn

[∫ Tn,δ

0

∫
0
Fxy(r)θ

n,δ
xy (drdt)

]
. (5.5)

We will split the proof of (5.3) in three parts. First we prove that (µn,δ,θn,δ, Tn,δ) is tight. Then
we show that for every limit point (µδ,θδ, T δ), θδxy has the decomposition θδxy(drdt) = ηδxy(dr; t)dt, with∑

y∈X η
δ
xy([0,∞); t) = µδx(t), and for qδ defined by µδx(t)qδxy(t) =

∫∞
0 rηδxy(dr; t), that

µδ(t) = m+
∑

(x,y)∈Z

vxy

∫ t∧T δ

0

∫ ∞
0

rθδxy(drds) = m+
∑

(x,y)∈Z

vxy

∫ t∧T δ

0
µδx(s)qδxy(s)ds.

Finally, by an application of Fatou’s Lemma, for such a qδ, we get

lim inf
n→∞

Emn

[∫ Tn,δ

0

∫ ∞
0
Fxy(r)θ

n,δ
xy (drdt)

]
≥Em

[∫ T δ

0

∫ ∞
0
Fxy(r)θ

δ
xy(drdt)

]
≥Em

[∫ T δ

0

∫ ∞
0

Fxy(r)η
δ
xy(dr; t)dt

]

≥ Em

[∫ T δ

0
Fxy

(∫ ∞
0

r
ηδxy(dr; t)

ηδxy([0,∞); t)

)
ηδxy([0,∞); t)dt

]
= Em

[∫ T δ

0
Fxy(q

δ
xy(t))µ

δ
x(t)dt

]
,

where for the third estimate, we applied Jensen’s inequality. Together with µn,δ → µδ, Fxy, R ≥ 0 and
another application of Fatou’s Lemma, this gives (5.3).

5.1 Tightness of (µn,δ,θn,δ, T n,δ)

First, we prove that (µn,δ(·), Tn,δ), which takes values in D([0,∞);P(X ))× [0,∞) ⊂ D([0,∞);Rd)× [0,∞),
is tight. For that, we introduce some auxiliary random variables µ̃n,δ in D([0,∞);Rd), to compare with
µn,δ, given by

µ̃n,δ(t) = mn +
∑

(x,y)∈Z

vxy

∫ t∧Tn,δ

0
µnx(s)qnxy(s)ds. (5.6)
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Since γxy` (·/γxy) ≤ Fxy(·), recalling (5.1), (5.2) and that R is bounded away from zero in Kδ = {m :
d(m,K) ≥ δ} by a constant Rδmin, we get

Emn

∫ Tn,δ

0

 ∑
(x,y)∈Z

µnx(t)γxy`

(
qnxy(t)

γxy

) dt+RδminT
n,δ

 ≤ c+ 1, (5.7)

which shows tightness of {Tn,δ}. By setting γmax = max{γxy : (x, y) ∈ Z}, we get

Emn

∫ Tn,δ

0

 ∑
(x,y)∈Z

γmax
µnx(t)γxy
γmax

`

(
qnxy(t)

γxy

) dt+RδminT
n,δ

 ≤ c+ 1.

Using the fact that ` is convex and `(1) = 0, by Jensen’s inequality a`(b) ≥ `(ab + 1 − a) for a ∈ [0, 1] and

b ≥ 0. By setting a =
µnx(t)γxy
γmax

, the inequality above gives

Emn

∫ Tn,δ

0

 ∑
(x,y)∈Z

γmax`

(
µnx(t)

γmax
qnxy(t) + 1− (µnx(t)γxy)

γmax

) dt+RδminT
n,δ

 ≤ c+ 1.

By applying Jensen’s inequality once more

Emn

∫ Tn,δ

0
|Z|γmax`

 1

|Z|γmax

∑
(x,y)∈Z

µnx(t)qnxy(t) +
∑

(x,y)∈Z

[
1− (µnx(t)γxy)

|Z|γmax

] dt+RδminT
n,δ

 ≤ c+ 1.

Now by multiplying with 1
|Z|γmax

, using (5.6) and the fact that q ≤ q′ implies `(q) ≤ `(q′) + 1, we get

Emn

[∫ Tn,δ

0
`

(
| ˙̃µn,δ(t)|
|Z|γmax

)
dt+

(
1

|Z|γmax
Rδmin − 1

)
Tn,δ

]
≤ c+ 1

|Z|γmax
.

Finally, by using that for every c̄ > 0 there exists c1 > 0, c2 <∞ such that `(c̄q) ≥ c1`(q)− c2, we get

Emn

[∫ Tn,δ

0
c1`
(
| ˙̃µn,δ(t)|

)
dt+

(
1

|Z|γmax
Rδmin − 1− c2

)
Tn,δ

]
≤ c+ 1

|Z|γmax
,

which implies

Emn

[∫ Tn,δ

0
`
(
| ˙̃µn,δ(t)|

)
dt+

1

|Z|γmaxc1
RδminT

n,δ

]
≤ c+ 1

|Z|γmaxc1
+

(c2 + 1)

c1
Emn [Tn,δ] ≤ c′,

where

c′ =
c+ 1

|Z|γmaxc1
+

(c+ 1)(c2 + 1)

c1
. (5.8)

It will follow from the following lemma that µ̃n,δ is a tight sequence in D([0,∞);Rd). Let S be the elements
(µ, T ) of C([0,∞);P(X ))× [0,∞) that satisfy µ(t) = µ(T ) for t ≥ T .
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Lemma 5.1 For every positive number a, the function

H(µ, T ) =

{∫ T
0 ` (|µ̇(t)|) dt+ aT, µ ∈ AC([0,∞);Rd), T ∈ [0,∞)

∞, otherwise,

is a tightness function on S, where AC([0,∞);Rd) is the set of all absolutely continuous functions from
[0,∞) to Rd.

The proof of this lemma is in Appendix C. Using the bound (5.1), it follows from Lemma 5.1 that {µ̃n,δ}
is tight in D([0,∞);Rd). Now we have that

|µn,δ(t)− µ̃n,δ(t)| ≤
∑

(x,y)∈Z

∣∣∣∣∣
∫ t∧Tn,δ

0
µnx(s)qnxy(s)ds−

∫ t∧Tn,δ

0

∫ ∞
0

1[0,µnx(s)qnxy(s)](r)
1

n
Nn
xy(dsdr)

∣∣∣∣∣ ,
where the summands on the right side, denoted from now on by Qn,δxy,t, are all martingales with quadratic

variation Qn,δ
xy,t that is bounded above by

1

n2
Emn

[∫ t∧Tn,δ

0

∫ ∞
0

1[0,µnx(s)qnxy(s)](r)N
n
xy(dsdr)

]
=

1

n
Emn

[∫ t∧Tn,δ

0
µnx(s)qnxy(s)ds

]

≤ 1

n
Emn

[∫ t∧Tn,δ

0
(`(µnx(s)qnxy(s)) + e)ds

]
(5.8)

≤ c′ + eEmn [Tn,δ ∧ t]
n

≤ c′ + eEmn [Tn,δ]

n

(5.7)

≤

(
(c+1)e

Rδmin

+ c′
)

n
,

where in the first inequality of the last line, the estimate ab ≤ ea + `(b), with a = 1, b = µnx(s)qnxy(s) was
used. By using the Burkholder-Gundy-Davis inequality, for every T ∈ (0,∞)

Emn

[
sup
t∈[0,T ]

|Qn,δxy,t|

]
≤ cBGDEmn [Qn,δ

xy ]
1/2
T ≤ cBGD

√√√√( (c+1)e

Rδmin

+ c′
)

n
, (5.9)

from which we get that Emn [supt∈[0,T ] |Q
n,δ
xy,t|] converges to zero as n→∞. Recalling that we already proved

{µ̃n,δ} is tight in D([0,∞);Rd), it follows from Emn

[
d(µn,δ, µ̃n,δ)

]
→ 0 that {(µn,δ, Tn,δ)} is tight as well.

To show that the variable θn,δ is tight, we combine (5.5) and (5.1), (5.2) and use the monotonicity with
respect to δ to get

Emn

 ∑
(x,y)∈Z

∫ Tn,δ

0

∫ ∞
0

Fxy(r)θ
n,δ
xy (drdt) +

∫ Tn,δ

0
R(µn,δ(t))

 < c+ 1.

Since, by part 1 of Lemma 3.7, we have γxy` (·/γxy) ≤ Fxy(·), and qn,δ = γ for t > Tn,δ, we get

Emn

 ∑
(x,y)∈Z

∫ ∞
0

∫ ∞
0

γxy`

(
r

γxy

)
θn,δxy (drdt)

 = Emn

 ∑
(x,y)∈Z

∫ Tn,δ

0

∫ ∞
0

γxy`

(
r

γxy

)
θn,δxy (drdt)

 < c+ 1.
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Now by using the fact that

H̃(θ) =

∫ ∞
0

∫ T

0
γxy`

(
r

γxy

)
θ(drdt),

is a tightness function on the space of measures on [0,∞)× [0, T ] with mass no greater than T , we conclude

that for every (x, y) ∈ Z, θn,δxy is tight with the topology introduced in (5.4).

5.2 Distributional limits and the lower bound

From the previous two subsections we have that (µn,δ, µ̃n,δ,θn,δ, Tn,δ), is tight. For proving the lower
bound, we can assume without loss that the sequence has a distributional limit (µδ, µ̃δ,θδ, T δ). By using the
Skorohod representation theorem we can also assume the sequence of variables is on the same probability
space (Ω,F ,P), and that (µδ, µ̃δ,θδ, T δ) is an a.s. pointwise limit.

Consider any ω ∈ Ω for which there is convergence. Since by the definition of θn,δ

θn,δxy ([0,∞)×A) =

∫
A∩[0,Tn,δ ]
µn,δx (t)dt, ∀A ∈ B(R),

for every continuity set A of θδxy([0,∞)× ·) we have∣∣∣∣∣θδxy([0,∞)×A)−
∫
A∩[0,T δ ]
µδx(t)dt

∣∣∣∣∣ ≤ ∣∣∣θδxy([0,∞)×A)− θn,δxy ([0,∞)×A)
∣∣∣+

∣∣∣∣∣
∫
A∩[0,Tn,δ ]
µn,δx (t)dt−

∫
A∩[0,T δ ]
µδx(t)dt

∣∣∣∣∣
≤
∣∣∣θδxy([0,∞)×A)− θn,δxy ([0,∞)×A)

∣∣∣+

∣∣∣∣∣
∫
A∩[0,T δ ]
µn,δx (t)dt−

∫
A∩[0,T δ ]
µδx(t)dt

∣∣∣∣∣+

∫
A∩[min{Tn,δ ,T δ},max{T δ ,Tn,δ}]
µn,δx (t)dt

≤
∣∣∣θδxy([0,∞)×A)− θn,δxy ([0,∞)×A)

∣∣∣+ d(µn,δx , µδx) + |T δ − Tn,δ| → 0.

Therefore for every continuity set A of θδxy([0,∞)× ·)

θδxy([0,∞)×A) =

∫
A∩[0,T δ ]

µδx(t)dt,

from which we conclude that for all (x, y) ∈ Z, θδxy has the decomposition θδxy(drdt) = ηδxy(dr; t)dt, with

ηδxy([0,∞); t) = µδx(t). Also, since
∫∞

0

∫∞
0 `(r)θn,δxy (drdt) is uniformly bounded and ` is superlinear, we have

convergence of the first moments of the first marginal, i.e.,∫
R
f(t)rθn,δxy (drdt)→

∫
R
f(t)rθδxy(dt), ∀f ∈ Cb(R).

Hence for qδ defined by µδx(t)qδxy(t) =
∫∞

0 rηδxy(dr; t), we get that for all (x, y) ∈ Z∫ ∞
0

f(t)µn,δx (t)qn,δxy (t)dt→
∫ ∞

0
f(t)µδx(t)qδxy(t)dt, ∀f ∈ Cb(R). (5.10)
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Using the fact that d(µn,δ, µ̃n,δ)→ 0 and (5.6), we get∣∣∣∣∣∣µn,δ(t)−mn −
∑

(x,y)∈Z

vxy

∫ Tn,δ∧t

0
µn,δx (s)qn,δxy (s)ds

∣∣∣∣∣∣ =
∣∣∣µn,δ(t)− µ̃n,δ(t)∣∣∣→ 0, (5.11)

for a.e. t. Applying (5.10) for suitable choices of f and using (5.11),

µδ(t) = m+
∑

(x,y)∈Z

vxy

∫ T δ∧t

0
µδx(s)qδxy(s)ds

for a.e. t, and since the left side is cadlag and the right side is continuous in the last display, equality
holds for t ≥ 0. We conclude that qδ is the control that generates µδ, and we also already noticed that
µδx(t)qδxy(t) =

∫∞
0 rηδxy(dr; t). Finally, since µn,δ(Tn,δ) ∈ Kδ and d(µn,δ,µδ)→ 0, by continuity of µδ we get

µδ(T δ) ∈ Kδ. As discussed below (5.5), this concludes the lower bound proof.

6 Upper bound

Before we proceed with the proof of the upper bound

lim sup
n→∞

V n
K(mn) ≤ VK(m),

we establish some preliminary lemmas. In the following lemmas, we make use of Tm, Um and Fxy, defined
in (4.1), (4.2), and (3.3) respectively. For the properties of Fxy, see Lemma 3.7.

Lemma 6.1 Let m ∈ P∗(X ), and q ∈ Um be such that (µ, q) ∈ Tm. Given T < ∞ and ε > 0, we can find
a1, a2, a3 ∈ (0,∞) and q̃ ∈ Um, with (µ̃, q̃) ∈ Tm, such that

a1 ≤ inf
(x,y)∈Z,t∈[0,T ]

q̃xy(t) ≤ sup
(x,y)∈Z,t∈[0,T ]

q̃xy(t) ≤ a2, inf
x∈X ,t∈[0,T ]

µ̃x(t) > a3, sup
t∈[0,T ]

‖µ(t)− µ̃(t)‖ < ε,

and
∑

(x,y)∈Z

∫ T

0
µ̃x(t)Fxy(q̃xy(t))dt ≤

∑
(x,y)∈Z

∫ T

0
µx(t)Fxy(qxy(t))dt.

(6.1)

Proof. Recall that m ∈ P∗(X ) implies mx > 0 for all x ∈ X . Let ν(m, t) be the solution to the
equation ν̇(t) = γν(t), with initial data m. By Remark 4.6, we know that there exists 1 ≥ a > 0 such that
ν(m, t) ∈ Pa(X ), for every t ∈ [0, T ]. We can assume without loss that the right hand side on the second
line of (6.1) is greater than zero, since if not true then the controlled rates are γ and the conclusion of the
lemma is automatic. For ε

2 ≥ δ > 0, let

µδ(·) .
= δν(m, ·) + (1− δ)µ(·), (6.2)

and note that µδx(t) > 0 for every t ∈ [0, T ] and x ∈ X . Therefore, for δ as above and (x, y) ∈ Z, we can
define

qδxy(·) = γxy
δνx(m, ·)
µδx(·)

+ qxy(·)
(1− δ)µx(·)

µδx(·)
. (6.3)
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Then it is straightforward to check that (µδ, qδ) ∈ Tm. Moreover, since δνx(m,t)
µδx(t)

+ (1−δ)µx(t)
µδx(t)

= 1 for all

t ∈ [0, T ], by the convexity of F we obtain

∑
(x,y)∈Z

∫ T

0
µδx(t)Fxy

(
qδxy(t)

)
dt =

∑
(x,y)∈Z

∫ T

0
µδx(t)Fxy

(
γxy

δνx(m, t)

µδx(t)
+ qxy

(1− δ)µx(t)

µδx(t)

)
dt ≤

∑
(x,y)∈Z

∫ T

0
µδx(t)

δνx(m, t)

µδx(t)
Fxy (γxy)dt+

∑
(x,y)∈Z

∫ T

0
µδx(t)

(1−δ)µx(t)

µδx(t)
Fxy (qxy(t))dt ≤(1−δ)

∑
(x,y)∈Z

∫ T

0
µx(t)Fxy (qxy(t))dt,

where in the second inequality, we used the fact that F∞(γxy) = 0 [see Lemma 3.7]. Therefore, we get a
couple (µδ, qδ) ∈ Tm with cost strictly less than the initial one, and with µδ that satisfies

µδx(t) ≥ δa and
(1− δ)µx(t)

µδx(t)
≤ (1− δ)
δa+ (1− δ)

≡ c < 1, (6.4)

for all t ∈ [0, T ]. However, since this couple does not necessarily satisfy condition (6.1), we modify it even
further. Specifically, we pick M ∈ (2γmax,∞) big enough such that

∑
(x,y)∈Z

∫ T

0
µδx(t)

∣∣∣min
{
qδxy(t),M

}
− qδxy(t)

∣∣∣ dt ≤ aδ(1−
√
c)√

2
, (6.5)

and define

µδ,M (t) =

∫ t

0

∑
(x,y)∈Z

µδx(t) min
{
qδxy(t),M

}
vxydt. (6.6)

Then

∣∣∣µδ,Mx (t)− µδx(t)
∣∣∣ ≤ ∥∥∥µδ,M (t)− µδ(t)

∥∥∥ (6.6)
=

∥∥∥∥∥∥
∑

(x,y)∈Z

∫ T

0

(
µδx(t)

(
qδxy(t)−min

{
qδxy(t),M

}))
vxydt

∥∥∥∥∥∥
≤

∑
(x,y)∈Z

∫ T

0

∣∣∣µδx(t)
(
qδxy(t)−min

{
qδxy(t),M

})∣∣∣ ‖vxy‖dt
≤
√

2
∑

(x,y)∈Z

∫ T

0

(
µδ,Mx (t)

(
qδxy(t)−min

{
qδxy(t),M

}))
dt

(6.5)

≤ aδ(1−
√
c),

(6.7)

and therefore for t ∈ [0, T ],

µδ,Mx (t) ≥ µδx(t)−
∣∣∣µδ,Mx (t)− µδx(t)

∣∣∣ (6.4)

≥ aδ −
∣∣∣µδ,Mx (t)− µδx(t)

∣∣∣ (6.7)

≥ aδ
√
c. (6.8)

We also get ∣∣∣∣∣1− µδ,Mx (t)

µδx(t)

∣∣∣∣∣ (6.7)

≤ aδ(1−
√
c)

minx µδx(t)

(6.4)

≤ (1−
√
c)
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or
µδx(t)

µδ,Mx (t)
≥ 1

2−
√
c

and
µδx(t)

µδ,Mx (t)
≤ 1√

c
=

√
c

c
. (6.9)

We deduce that µδ,M (t) ∈ P∗(X ), for all t ∈ [0, T ], and therefore can define

qδ,Mxy (t) =
min

{
qδxy(t),M

}
µδx(t)

µδ,Mx (t)
, (6.10)

which will give (µδ,M , qδ,M ) ∈ Tm. We can see that (6.1) is satisfied, since by (6.3) and the first inequality
in (6.9) for the bound from below and the second inequality in (6.9) for the bound from above we have

γxyδνx(m, ·)
2

≤ qδ,Mxy (t) ≤M
√
c

c

It is worth mentioning at this point that trying to get an estimate for the cost of (µδ,M , qδ,M ), with respect
to the cost of (µδ, qδ), would require some extra properties of F . However, we can obtain an estimate of the
cost (µδ,M , qδ,M ) with respect to the cost of the initial triplet (µ, q), by utilizing only the convexity of Fxy,
and choosing the right parameters. Using the fact that Fxy is increasing on [γxy,∞) in the first inequality,

and that Mµδx(t)/µδ,Mx (t) ≥ γxy by (6.9) and M ≥ 2γxy,

Fxy

(
qδ,Mxy (t)

)
(6.10)

= Fxy

(
min

{
qδxy(t),M

}
µδx(t)

µδ,Mx (t)

)
≤ Fxy

(
qδxy(t)µ

δ
x(t)

µδ,Mx (t)

)
(6.3)
=

Fxy

(
µδx(t)

µδ,Mx (t)

(
γxy

δνx(m, t)

µδx(t)
+ qxy(t)

(1− δ)µx(t)

µδx(t)

))
= Fxy

(
γxy

δνx(m, t)

µδ,Mx (t)
+ qxy(t)

(1− δ)µx(t)

µδ,Mx (t)

)
.

(6.11)

However, from (6.4) and (6.9), we have

(1− δ)µx(t)

µδ,Mx (t)
=

(1− δ)µx(t)

µδx(t)

µδx(t)

µδ,Mx (t)
≤ c
√
c

c
=
√
c < 1.

Therefore using the convexity of F we have

Fxy

(
γxy

δνx(m, t)

µδ,Mx (t)
+ qxy(t)

(1− δ)µx(t)

µδ,Mx (t)

)
=Fxy


(

1− (1−δ)µx(t)

µδ,Mx (t)

)
(

1− (1−δ)µx(t)

µδ,Mx (t)

)γxy δνx(m, t)

µδ,Mx (t)
+ qxy(t)

(1− δ)µx(t)

µδ,Mx (t)


≤

(
1− (1− δ)µx(t)

µδ,Mx (t)

)
Fxy

(
γxy

δνx(m, t)

µδ,Mx (t)− (1− δ)µx(t)

)
+

(1− δ)µx(t)

µδ,Mx (t)
Fxy (qxy(t)) .

(6.12)

Combining (6.11) and (6.12) and then using (6.2), we obtain

µδ,Mx (t)Fxy

(
qδ,Mxy (t)

)
≤
(
µδ,Mx (t)− (1− δ)µx(t)

)
Fxy

(
γxy

δνx(m, t)

µδ,Mx (t)− (1− δ)µx(t)

)
+ (1− δ)µx(t)Fxy (qxy(t))

=
(
µδ,Mx (t)− µδx(t) + δνx(M, t)

)
Fxy

(
γxy

δνx(m, t)

µδ,Mx (t)− µδx(t) + δνx(m, t)

)
+ (1− δ)µx(t)Fxy (qxy(t)) .

(6.13)
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We can make |µδ,Mx (t)− µδx(t)| uniformly as close to zero as desired and therefore we can make the quantity

γxy
δνx(m,t)

µδ,Mx (t)−µδx(t)+δνx(m,t)
as close to γxy as desired by picking M sufficiently large. Since Fxy (γxy) = 0 and

Fxy (·) is continuous on (0,∞) by Lemma 4.5, we can pick M <∞ such that for every t ∈ [0, T ],

Fxy

(
γxy

δνx(m, t)

µδ,Mx (t)− µδx(t) + δνx(m, t)

)
≤ 1

2T

∫ T

0
µx(s)Fxy(qxy(s))ds. (6.14)

Then from (6.13) and (6.14) and the fact that νx(m, t) ≤ 1 and (6.7), for t ∈ [0, T ]

∑
(x,y)∈Z

∫ T

0
µδ,Mx (t)Fxy

(
qδ,Mxy (t)

)
dt ≤

∑
(x,y)∈Z

∫ T

0
(2δ)

(
1

2T

∫ T

0
µx(s)Fxy(qxy(s))ds

)
dt

+

∫ T

0
(1− δ)µx(t)Fxy (qxy(t)) dt =

∑
(x,y)∈Z

∫ T

0
µx(t)Fxy (qxy(t)) dt.

Next, we are going to prove the following result.

Lemma 6.2 (Law of large numbers) Let T ∈ (0,∞) be given. There exists a constant c <∞ such that
if (µn,γ) ∈ T nm (see (2.6)), and (ν,γ) ∈ Tm, then

P

(
sup
t∈[0,T ]

‖µn(t)− ν(m, t)‖ ≥ ε

)
≤ c

ε
√
n
. (6.15)

Proof. We have

‖µn(t)− ν(m, t)‖ ≤
∑
(x,y)

∣∣∣∣∫ t

0

∫ ∞
0

1[0,µnx(s)γxy ](r)
1

n
Nn
xy(dsdr)−

∫ t

0

∫ ∞
0

1[0,νx(m,s)γxy ](r)dsdr

∣∣∣∣
≤
∑
(x,y)

∣∣∣∣∫ t

0

∫ ∞
0

1[0,µnx(s)γxy ](r)
1

n
Nn
xy(dsdr)−

∫ t

0

∫ ∞
0

1[0,µnx(s)γxy ](r)dsdr

∣∣∣∣
+
∑
(x,y)

∣∣∣∣∫ t

0

∫ ∞
0

1[0,µnx(s)γxy ](r)dsdr −
∫ t

0

∫ ∞
0

1[0,νx(m,s)γxy ](r)ds

∣∣∣∣ .
For a constant K that depends on d and the maximum of γxy,∑

(x,y)

∣∣∣∣∫ t

0

∫ ∞
0

1[0,µnx(s)γxy ](r)dsdr −
∫ t

0

∫ ∞
0

1[0,νx(m,s)γxy ](r)ds

∣∣∣∣ ≤ K sup
0≤s≤t

‖µn(s)− ν(m, s)‖ .

Hence by Gronwall’s inequality, for r ∈ [0, T ]

‖µn(r)− ν(m, r)‖ ≤ eKT sup
0≤t≤r

∑
(x,y)

∣∣∣∣∫ t

0

∫ ∞
0

1[0,µnx(s)γxy ](r)
1

n
Nn
xy(dsdr)−

∫ t

0

∫ ∞
0

1[0,µnx(s)γxy ](r)dsdr

∣∣∣∣ .
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Using the Burkholder-Gundy-Davis inequality as was done to obtain (5.9),

P

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

∫ ∞
0

1[0,µnx(s)γxy ](r)
1

n
Nn
xy(dsdr)−

∫ t

0

∫ ∞
0

1[0,µnx(s)γxy ](r)dsdr

∣∣∣∣ ≥ ε
)
≤ c̄

ε
√
n
,

and hence

P

(
sup
t∈[0,T ]

‖µn(t)− ν(m, t)‖ ≥ ε

)
≤ d2 e

KT c̄

ε
√
n
,

which is (6.15).
We now obtain the following result.

Lemma 6.3 The sequence V n(m) is bounded, uniformly in n and m ∈ P(X).

Proof. Let τ = diameter(P(X )). By Remark 4.6, there exists a > 0 such that ν(m, τ) ∈ P2a(X ) regardless
of the initial data m. We can further assume that Pa(X ) ∩K◦ 6= ∅, and in particular that there exists an
element m̃ such that B(m̃, a/2) ⊂ Pa(X ) ∩K◦.

Since m̃ ∈ Pa(X ), the first part of Theorem 4.7 implies that for every point m in Pa(X ) we can find a
control qm with the following properties: there is a unique µ such that (µ, qm) ∈ Tm; µ is a constant speed
parametrization of the straight line that connects m to m̃ in time T{m̃} = ‖m − m̃‖; and the control qm
satisfies

γxy ≤ qm,xy(t) ≤
c1

a
,

for t ∈ [0, T{m̃}], (x, y) ∈ Z, where c1 > 0 is a constant that does not depend on a. For every m, we let

qxy(m, t) =

{
qm,xy(t) t ≤ ‖m− m̃‖,
γxy t > ‖m− m̃‖,

denote the control that takes m to m̃ in time ‖m− m̃‖, in the sense that it was described above, and after
that time is equal to the original rates.

For i ∈ N we define a control for the interval iτ ≤ t < (i+ 1)τ as follows. Let f(t−) denote the limit of
f(s) from the left at time t, and recall that µ(m, ·) is the straight line that connects m to m̃ in time T{m̃},
where m̃ is fixed and we explicitly indicate the dependence on m. Then set

qnxy(t) =

{
qxy(m, t− iτ) µnx(t−)

µx(m,t−iτ) , if
(

sups∈[iτ,t] ‖µ(m, t)− µn(t)‖ ≤ a
2

)
and (µn(iτ) = m ∈ Pa(X ))

γxy, otherwise.

The idea with these controls is that, within each time interval with length τ , the control considers the
starting point m, and then if m ∈ Pa(X ), it attempts to force the process to follow the straight line to
m̃. If m /∈ Pa(X ) or the process goes close to the boundary of the simplex P(X ) \ P∗(X ), then we just use
original rates to push the process inside Pa(X ). Since all controls used are bounded from above and below,
the total cost is a multiple of E[Tn]. Thus we need only show this expected exit time is uniformly bounded.

By using (5.9), we can find constant c <∞ such that

P

(
sup

t∈[iτ,(i+1)τ ]
‖µn(t)− µ(m, t)‖ ≥ a

2

∣∣∣∣∣µn(iτ) = m ∈ Pa(X )

)
≤ c 2√

na
,
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from which we get

P(Tn > (i+ 1)τ |µn(iτ) ∈ Pa(X))≤ inf
m∈Pa(X )

P

(
sup

t∈[iτ,(i+1)τ ]
‖µn(t)− µ(m, t)‖ ≥ a

2

∣∣∣∣∣µn(iτ) = m

)
≤c 2√

na
.

By Lemma 6.2, we have that for some c′ <∞

P

(
sup

t∈[iτ,(i+1)τ ]
‖µn(t)− ν(m, t)‖ ≥ a

2

∣∣∣∣∣µn(iτ) = m /∈ Pa(X )

)
≤ c′ 2

a
√
n
,

which implies that

P
(
µn((i+ 1)τ) /∈Pa(X )

∣∣∣∣µn(iτ) /∈Pa(X )

)
≤ inf
m/∈Pa(X )

P

(
sup

t∈[iτ,(i+1)τ ]
‖µn(t)− ν(m, t)‖≥a

2

∣∣∣∣∣µn(iτ)=m

)
≤ 2c′

a
√
n
.

Thus the probability to escape in the next 2τ units of time has a positive lower bound that is independent
of n and the starting position. This implies the uniform upper bound on the mean escape time.

Now we proceed with the proof of the upper bound.
Proof of upper bound. We will initially assume that m is in Pa(X ), for some a > 0. Recall that
VK(m) <∞. Let ε > 0. By the definition of VK(m), we can find a pair (µ, q) ∈ Tm and a T ∈ [0,∞], such
that ∫ T

0

 ∑
(x,y)∈Z

µx(t)Fxy (qxy(t)) +R(µ(t))

 dt ≤ VK(m) + ε.

Since we assumed that R is bounded from below by a positive constant for every compact subset of Kc, we
can furthermore find a δ such that for finite time T δ ∈ [0,∞) we have

∫ T δ

0

 ∑
(x,y)∈Z

µx(t)Fxy (qxy(t)) +R(µ(t))

 dt ≤ VK(m) + ε,

and d(µ(T δ),K) ≤ δ. By the second part of Theorem 4.7, we can extend the path so it can reach a point m̃
of K, with extra cost less than ε. Since K = (K◦), by a second application of Theorem 4.7, we can assume
that m̃ is an internal point of K, by again adding an extra cost less than ε.

Let r > 0 be such that B(m̃, r) ⊂ K◦. From Lemma 6.1, without any loss of generality, we can assume
that there exist a1, a2, a3 ∈ (0,∞) such that

a1 ≤ inf
(x,y)∈Z,t∈[0,S]

qxy(t) ≤ sup
(x,y)∈Z,t∈[0,S]

qxy(t) ≤ a2, inf
x∈X ,t∈[0,S]

µx(t) > a3, ‖µ(T )− m̃‖ < r

2
, (6.16)

where the S used above is the one obtained by starting with T δ and adding segments as just described.
Finally, we can assume the existence of a r1 > 0 such that for every point m̄ in B(m, r1), we can find a
path like the one described above, by connecting m̄ with a straight line to m. Of course this could generate
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a1, a2, a3, S different from the initial ones, though universal for all m̄ in B(m, r1), (see Theorem 4.7 for
details).

Now let mn be a sequence that converges to m. For big enough n, we can assume that mn ∈ B(m, r1).
By the continuity of F on compact subsets of (0,∞), we can find r > r2 > 0 such that if m1,m2 ∈ Pa3

2
(X )

and ‖m1 −m2‖ ≤ r2, then for every q that satisfies (6.16), we have∑
(x,y)∈Z

∣∣∣∣m1,xFxy(qxy)−m2,xFxy

(
qxy

m1,x

m2,x

)∣∣∣∣ ≤ ε

S
. (6.17)

Now for every n ∈ N, we define the following control for the time interval [0, S],

qnxy(t) =

{
qxy(t)

µnx(t−)
µx(t) , if sups∈[0,t] ‖µ(t)− µn(t)‖ ≤ r2

γxy, otherwise.
(6.18)

Note that either µn enters K by time S, or the control has switch to γxy before S. For every n, we
define an auxiliary stopping time Sn = inf{t ∈ [0, S] : ‖µn(t) − µ(t)‖ > r2}, and also we define Rmax =
supm∈P(X )R(m). We can get an estimate of the cost accumulated up to time S, for the pair (µn, qn) ∈ T nmn .
Specifically,

E

∫ S

0

 ∑
(x,y)∈Z

µnx(t)Fxy
(
qnxy(t)

)
+R(µn(t))

 dt


≤ E

∫ S

0

 ∑
(x,y)∈Z

µnx(t)Fxy
(
qnxy(t)

)
+R(µn(t))

 dt · 1{supt∈[0,S] ‖µ(t)−µn(t)‖≤r2}


+ P

(
sup
t∈[0,S]

‖µn(t)− µ(t)‖ > r2

)
×E

∫ Sn

0

 ∑
(x,y)∈Z

µnx(t)Fxy
(
qnxy(t)

)
+R(µn(t))

 dt

∣∣∣∣∣ sup
t∈[0,S]

‖µn(t)− µ(t)‖ > r2

+ SRmax


Now by (6.18) the last quantity is equal to

E

∫ S

0

 ∑
(x,y)∈Z

µnx(t)Fxy

(
qxy(t)

µnx(t−)

µx(t)

)
+R(µn(t))

 dt · 1{supt∈[0,S] ‖µ(t)−µn(t)‖≤r2}


+ P

(
sup
t∈[0,S]

‖µn(t)− µ(t)‖ > r2

)
×E

∫ Sn

0

 ∑
(x,y)∈Z

µnx(t)Fxy

(
qxy(t)

µnx(t−)

µx(t)

)
+R(µn(t))

 dt

∣∣∣∣∣ sup
t∈[0,S]

‖µ(t)− µn(t)‖ > r2

+ SRmax

 .
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Then using (6.17) with m1,x = µx(t),m2,x = µnx(t−), for big enough n we can bound

E

∫ T

0

 ∑
(x,y)∈Z

µnx(t)Fxy
(
qnxy(t)

)
+R(µn(t))

 dt


above by

VK(m) + 2ε+ P

(
sup
t∈[0,S]

‖µn(t)− µ(t)‖ > r2

)
(VK(m) + SRmax + 2ε).

By using (5.9), the probability that there was no exit in the time interval [0, S] is

P(Sn ≥ S) ≤ P

(
sup
t∈[0,S]

‖µn(t)− µ(t)‖ > r2

)
≤ c 1√

nr2
.

Letting Vmax be the upper bound identified in Lemma 6.3 for the given a > 0, the total cost satisfies

V n
K(mn) ≤ E

∫ S

0

 ∑
(x,y)∈Z

µnx(t)Fxy
(
qnxy(t)

)
+R(µn(t))

 dt+ V (µn(S ∧ Sn))


≤ VK(m) + 2ε+ P

(
sup
t∈[0,S]

‖µn(t)− µ(t)‖ > r2

)
(VK(m) + SRmax + 2ε) + P(Sn ≥ S)Vmax

≤ VK(m) + 2ε+ 2(SRmax + Vmax + 2ε)
c√
nr2

.

By sending n to infinity we get the upper bound if m ∈ Pa(X ) for some a > 0. Next let m ∈ P(X ) \P∗(X ).
Let t0 ≤ ε be such that VK(ν(m, t0)) ≤ VK(m) + ε, where ν(m, t) is the solution to the original equation
after time t. We can find a r > 0 such that for every m̃ ∈ B(ν(m, t0), r), VK(m̃) ≤ VK(m) + 2ε. If qn(m̄, t)
is an ε-optimal control that corresponds to each initial condition m̄, we define the control

qnxy(t) =

{
γxy, t ≤ t0,
qnxy(µ

n(t0), t− t0), t > t0,

which gives

V n
K(mn) ≤ E

∫ Tn

0

 ∑
(x,y)∈Z

µnx(s)Fxy
(
qnxy(s)

)
+R(µn(s))

 dt


≤ E

∫ t0

0

 ∑
(x,y)∈Z

µnx(s)Fxy
(
γnxy(s)

)
+R(µn(s))

 dt


+ E

∫ Tn

t0

 ∑
(x,y)∈Z

µnx(s)Fxy
(
qnxy(µ

n(t0), s− t0)
)

+R(µn(s))

 dt

 ≤ t0Rmax + E [V (µn(t0))]

Lemma 6.3
≤ εRmax + P (µn(t0) ∈ B(ν(m, t0), r)) (VK(m) + 2ε) + P (µn(t0) /∈ B(ν(m, t0), r))Vmax

≤ VK(m) + (2 +Rmax)ε+ P (µn(t0) /∈ B(ν(m, t0), r))Vmax.
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Now by an application of Lemma 6.2, we get that the last term goes to zero as n goes to ∞, and since ε is
arbitrary, we get that lim sup V n

K(mn) ≤ VK(m).

A Properties of Hamiltonians

In this section we establish Lemma 3.4 and Theorem 3.3. We start with the proof of Lemma 3.4.
Proof of Lemma 3.4. To prove the exchange between supremum and infimum, we will apply a modifica-
tion of Sion’s Theorem (Corollary 3.3 in [25]), which states that if a continuous G(u, q) is quasi-concave for
every u is some convex set U and quasi-convex for every q in some convex set Q, and if one of the two sets
is compact, then we can exchange the supremum with the infimum. We start by investigating the validity
of these properties when G = Lxy. Since ` is convex, for each u ≥ 0,

Lxy(u, q) = qξ + u`
( q
u

)
− γxyCxy

(
u

γxy

)
is convex with respect to q. It is easy to see that u 7→ Lxy(u, q) is not concave for each q ≥ 0. However we
now show that under Assumption 3.2, for each q ≥ 0, u 7→ Lxy(u, q) is quasi-concave, or equivalently, that
{u ≥ 0 : Lxy(u, q) ≥ c} is convex for every c ∈ R. By differentiating with respect to u we get

∂uLxy(u, q) = − q
u

+ 1− (Cxy)
′
(
u

γxy

)
.

If we prove that for each q the set of roots for ∂uLxy(u, q) is an interval or a point we are done, because a real
function that changes monotonicity from increasing to decreasing at most once is quasi-concave. However

∂uLxy(u, q) has the same roots as Q(u) = u(Cxy)
′
(

u
γxy

)
− u + q. By part 1 of Assumption 3.2, Q(u) is

increasing, which gives what is needed.
Thus, we are almost in a situation where we can apply Sion’s theorem, except that our sets are [0,∞)

and hence, non-compact. However, as we explain below, we can still apply this result by using the fact that
limq→∞ Lxy(q, 1) =∞. If we prove that

inf
q∈[0,∞)

sup
u∈(0,∞)

Lxy(u, q) = lim
r→∞

inf
q∈[0,∞)

sup
u∈[r, 1r ]

Lxy(u, q),

then we are done, since by Corollary 3.3 in [25]

inf
q∈[0,∞)

sup
u∈(0,∞)

Lxy(u, q) = lim
r→∞

inf
q∈[0,∞)

sup
u∈[r, 1r ]

Lxy(u, q) =

lim
r→∞

sup
u∈[r, 1r ]

inf
q∈[0,∞)

Lxy(u, q) = sup
u∈(0,∞)

inf
q∈[0,∞)

Lxy(u, q).

Let M := infq∈[0,∞) supu∈(0,∞) Lxy(u, q). We will assume that M < ∞, and note that the case M = ∞
is treated similarly. Since limq→∞ Lxy(q, 1) = ∞, we can find q̃ such that Lxy(q, 1) > 2M for every q ≥ q̃.
Now we have

inf
q∈[0,∞)

sup
u∈(0,∞)

Lxy(u, q) = inf
q∈[0,q̃]

sup
u∈(0,∞)

Lxy(u, q),
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and
inf

q∈[0,q̃]
sup

u∈[r, 1r ]
Lxy(u, q) = inf

q∈[0,∞)
sup

u∈[r, 1r ]
Lxy(u, q),

which gives

inf
q∈[0,∞)

sup
u∈(0,∞)

Lxy(u, q) = inf
q∈[0,q̃]

sup
u∈(0,∞)

Lxy(u, q) = sup
u∈(0,∞)

inf
q∈[0,q̃]

Lxy(u, q) =

lim
r→∞

sup
u∈[r, 1r ]

inf
q∈[0,q̃]

Lxy(u, q) = lim
r→∞

inf
q∈[0,q̃]

sup
u∈[r, 1r ]

Lxy(u, q) = lim
r→∞

inf
q∈[0,∞)

sup
u∈[r, 1r ]

Lxy(u, q).

Proof of Theorem 3.3. Let H− (respectively, H+) denote the left-hand side (respectively, right-hand
side), of (3.7). Since each term in the sum that generates H+ is bigger than the corresponding one in
the sum of H−, we get equality for all of them. By the theory of the Legendre transform we know that
infq∈[0,∞) supu∈(0,∞) {qξxy +Gxy(u, q)} is actually a concave function. Since we can exchange the order
between the supremum and infimum, then supu∈(0,∞) infq∈[0,∞) {qξxy +Gxy(u, q)}must be a concave function
as well. By using the formula

sup
u∈(0,∞)

inf
q∈[0,∞)

{qξ +Gxy(u, q)} =
∑

(x,y)∈Z

mxγxy (Cxy)
∗ (−`∗ (−ξxy))

we have that (Cxy)
∗ (−`∗ (ξ)) = (Cxy)

∗ (1− eξ) must also be concave. By differentiating with respect to ξ

we get, e2ξ ((Cxy)
∗)
′′ (

1− eξ
)
− eξ ((Cxy)

∗)
′ (

1− eξ
)
≤ 0, from which, by using the identity (f∗)′ = (f ′)−1,

we get

e2ξ
((

(Cxy)
′)−1

)′ (
1− eξ

)
− eξ

(
(Cxy)

′)−1
(

1− eξ
)
≤ 0.

By substituting ũ = 1− eξ we get

(1− ũ)
((

(Cxy)
′)−1

)′
(ũ)−

(
(Cxy)

′)−1
(ũ) ≤ 0, with ũ ≤ 1

(1− ũ) 1

(Cxy)′′
(
((Cxy)′)

−1
(ũ)
) − ((Cxy)′)−1

(ũ) ≤ 0, with ũ ≤ 1(
1− (Cxy)

′ (r)
)

1
(Cxy)′′(r)

− r ≤ 0, with (Cxy)
′ (r) ≤ 1

r (Cxy)
′′ (r) + (Cxy)

′ (r)− 1 ≥ 0, with (Cxy)
′ (r) ≤ 1.

Now the last inequality implies that either (Cxy)
′ (u) ≥ 1 or that u(Cxy)

′ (u) − u is locally increasing
and even more that if (Cxy)

′ (u0) ≥ 1 for some u0, then it must remain like that for every u ≥ u0. If that
was not the case then we can find u1 > u0 such that u1(Cxy)

′ (u1) − u1 < q̂ for some negative q̂, while
u0(Cxy)

′ (u0)− u0 ≥ 0. By a suitable application of the mean value theorem we will get the existence of an
r that the last inequality fails. If we set ũxy = inf{u : (Cxy)

′ (u) ≥ 1}, then the Assumption 3.2 is recovered.
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B Properties of Fxy

Proof of Lemma 3.7. (1) We have

Fxy(q) = sup
u∈(0,∞)

{
u`
( q
u

)
− γxyCxy

(
u

γxy

)}
≥ γxy`

(
q

γxy

)
− γxyCxy

(
γxy
γxy

)
≥ γxy`

(
q

γxy

)
≥ 0.

(2) We have

Fxy(γxy) = sup
u∈(0,∞)

Gxy(u, γxy) = sup
u∈(0,∞)

{
u`
(γxy
u

)
− γxyCxy

(
u

γxy

)}
= sup

u∈(0,∞)

{
γxy log γxy − γxy log u− γxy + u− γxyCxy

(
u

γxy

)}
,

and by applying part 2 of Lemma 3.6

γxyCxy

(
u

γxy

)
≥ γxy log γxy − γxy log u− γxy + u.

Therefore Fxy(γxy) ≤ 0. However, by part (1) of this lemma Fxy(γxy) ≥ 0, and therefore the equality follows.
(3) By definition Fxy(q) = supu∈(0,∞)Gxy(u, q). Let a ∈ (0, 1) and 0 ≤ q1 < q2 < ∞, and let q =

aq1 + (1− a)q2. Using the convexity of Gxy(u, q) for fixed u as a function of q, we have

Fxy(aq1 + (1− a)q2) = sup
u∈(0,∞)

Gxy(u, aq1 + (1− a)q2)

≤ sup
u∈(0,∞)

{aGxy(u, q1) + (1− a)Gxy(u, q2)}

≤ a sup
u∈(0,∞)

Gxy(u, q1) + (1− a) sup
u∈(0,∞)

Gxy(u, q2)

≤ aFxy(q1) + (1− a)Fxy(q2).

For the proof of Lemma 4.5 that is given below, we will use the following auxiliary lemma. Recall the
definition of Gxy in (1.8).

Lemma B.1 If {Cn} satisfies Assumption 4.3, then the following hold for every (x, y) ∈ Z.

1. There exists a positive real number M, that does not depend on (x, y), such that for the decreasing
function M1

xy : (0,∞)→ [0,∞), given by

M1
xy(q)

.
= min

{
γxy

(
γxy
q

)1/p

,M

}
,

we have that Gxy(u, q) is increasing as a function of u on the interval (0,M1
xy(q)].

2. There exists a decreasing function M2
xy : (0,∞) → [0,∞), with M2

xy(q) ≥ M1
xy(q), such that Gxy(u, q)

is decreasing as a function of u on the interval
[
M2
xy(q),∞

)
.
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Proof. By taking the derivative with respect to u in the definition (1.8) we get

− q
u
− (Cxy)

′
(
u

γxy

)
+ 1.

(1) By part 2 of Assumption 4.3 there exists M ∈ (0,∞) such that if u < M , then

− q
u
− (Cxy)

′
(
u

γxy

)
+ 1 ≥ − q

u
+
(γxy
u

)p+1
+ 1,

and by taking u ≤ γxy (γxy/q)
1/p we get

− q
u

+
(γxy
u

)p+1
+ 1 ≥ − q

u
+
q

u
+ 1 > 0.

Therefore for

M1
xy(q) = min

{
γxy

(
γxy
q

)1/p

,M

}
,

we have − q
u − (Cxy)

′
(

u
γxy

)
+ 1 ≥ 0 on the interval (0,M1

xy(q)].

(2) By applying part 3 of Assumption 4.3, we get that there exists decreasing M̃2
xy(q) <∞, such that if

u > M̃2
xy(q) then

u

γxy
(Cxy)

′
(
u

γxy

)
− u

γxy
≥ − q

γxy
. (B.1)

Then M2
xy(q)

.
= max{M1

xy(q), M̃
2
xy(q)}, is decreasing and bigger than M1

xy, and using (B.1) we get

− q
u
− (Cxy)

′
(
u

γxy

)
+ 1 = − q

u
− γxy

u

(
u

γxy
(Cxy)

′
(
u

γxy

)
− u

γxy

)
≤ 0

on the interval [M2
xy(q),∞).

Proof of Lemma 4.5. (1) Let ε > 0, and q ≥ ε. By Lemma B.1, we have that Gxy (u, q) , as a function
of u, is increasing on the interval (0,M1

xy(q)]. Therefore for all u ∈ (0,M1
xy(q)] we have

u`
( q
u

)
− γxyCxy

(
u

γxy

)
≤M1

xy(q)`

(
q

M1
xy(q)

)
− γxyCxy

(
M1
xy(q)

γxy

)
≤M1

xy(q)`

(
q

M1
xy(q)

)
≤ q log

(
q

M1
xy(q)

)
+M1

xy(q) ≤ q log

(
q

M1
xy(q)

)
+M1

xy(ε)

≤ q log (q)− q log
(
M1
xy(q)

)
+M1

xy(ε)

M1
xy(ε)≤M2

xy(ε)

≤ q log (q)− q log
(
M1
xy(q)

)
+M2

xy(ε).
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By the second part of Lemma B.1, we have that Gxy(u, q) is decreasing on the interval (M2
xy(ε),∞). Therefore

for all u ∈ (M2
xy(ε),∞)

u`
( q
u

)
− γxyCxy

(
u

γxy

)
≤M2

xy(ε)`

(
q

M2
xy(ε)

)
− γxyCxy

(
M2
xy(ε)

γxy

)
≤M2

xy(ε)`

(
q

M2
xy(ε)

)
≤ q log

(
q

M2
xy(ε)

)
+M2

xy(ε)

M2
xy(q)≤M2

xy(ε)

≤ q log (q)− q log
(
M2
xy(q)

)
+M2

xy(ε)

M1
xy(q)≤M2

xy(q)

≤ q log (q)− q log
(
M1
xy(q)

)
+M2

xy(ε).

.

Finally for the interval [M1
xy(q),M

2
xy(ε)] we have

u`
( q
u

)
− γxyCxy

(
u

γxy

)
≤ u`

( q
u

)
= q log q − q log u− q + u

≤ q log q − q log(M1
xy(q)) +M2

xy(ε).

Now if we recall the definition of M1
xy given in Lemma B.1 and set M̄(q)

.
= max{M2

xy(q) : (x, y) ∈ Z},
then

Gxy(u, q) ≤ q log
q

min

{
γxy

(
γxy
q

)1/p
,M

} + M̄(ε),

and by taking supremum over u we end up with Fxy(q) satisfying the same bound.
(2) This is straightforward since Fxy is finite on the interval (0,∞), and convex.

C Tightness functionals

Proof of Lemma 5.1. Let c2 > 0 and {(µn, Tn)} be a deterministic sequence in S with µn absolutely
continuous such that ∫ Tn

0
` (|µ̇n(t)|) dt+ c1T

n ≤ c2

and |µ̇n(t)| = 0 for t > Tn. We need to show that H has level sets with compact closure. Since all elements
are positive, we have that Tn ≤ c2/c1. Let µ̄n denote the restriction of µn to [0, c2/c1]. If we prove that µ̄n

converges along some subsequence then we are done. Using the inequality ab ≤ eca + `(b)/c, which is valid
for a, b ≥ 0, and c ≥ 1, we have that

|µn(t)− µn(s)| ≤
∫ s

t
|µ̇n(r)|dr ≤ (t− s)ec +

c2

c
.

This shows that {µ̄n} are equicontinuous. Since µ̄n(t) takes values in the compact set P(X ), by the Arzela-
Ascoli theorem there is a convergent subsequence.
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