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Abstract

We study a sequence of many-agent exit time stochastic control problems, parameterized by the number
of agents, with risk-sensitive cost structure. We identify a fully characterizing assumption, under which
each such control problem corresponds to a risk-neutral stochastic control problem with additive cost, and
sequentially to a risk-neutral stochastic control problem on the simplex that retains only the distribution of
states of agents, while discarding further specific information about the state of each agent. Under some
additional assumptions, we also prove that the sequence of value functions of these stochastic control
problems converges to the value function of a deterministic control problem, which can be used for the
design of nearly optimal controls for the original problem, when the number of agents is sufficiently large.

1 Introduction

1.1 Motivation and Background

In this paper, we study many-agent exit time stochastic control problems with risk-sensitive cost. Each
agent occupies a state that takes values in a finite set X', and by controlling the transition rates between
states for each agent, we try to keep the system away from a “ruin” set C, for as long as possible and with
the least cost. We prove, under suitable assumptions, that for every finite number n of agents the control
problem is equivalent to one with an additive cost structure. Moreover, when K C X™ can be identified
with a subset of the simplex of probability measures P(X), in the sense that for every permutation o of
{1,2,...,n} we have oK = K, then we can replace the original problem by one on P"(X) = P(X) N 174,
getting in this way a control problem whose state is the empirical measure on the states of the individual
agents. We also study the behavior as n — oo of the sequence of suitable renormalized value functions, and
prove uniform convergence to the value function of a deterministic control problem.

We first describe the model without control, which we call the “base” or ‘nominal” model. Let X =

{e1,...,eq}, where e; is the ith unit vector in R%. Let also v = {Vzy } (2,y)exxx denote the rates of an ergodic
Markov jump process on X. This process has the generator
Lylf)(@) = vy [f () — ()], (L.1)
yeX
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for functions f : X — R. For n € N, consider n agents that move independently and stochastically, with each

taking values in X = {e1,...,eq}. Then the dynamics of these agents can be represented by a stochastic
process taking values in X”. Let ™ = (zf,...,2])) denote a generic element of X™. Also, for z,y € X,
ie{l,...,n}, let vy := y—x and let Vi = (0,...,0,v4y,0,...,0) be a dxn matrix with all columns equal

to zero apart from the ith column, which is equal to the vector vg,. Also, let Z := {(z,y) € X XX : v, > 0},
and define Z, := {y € X : (z,y) € Z} to be the set of allowed transitions from x. Then the generator of the
state process of the base model takes the form

=3 > gy @+ vlary) — S(@™)] (1.2)

=1 yeZ:c"]‘
i

for f: X" — R. Note that the span of Z is the hyperplane

H:= Z AryVgy * Agy > 0, (x,y) €z, (13)
(zy)ez

which, since 7 is ergodic, coincides with the hyperplane through the origin that is parallel to P(X). We claim
that the set H does not change if the a,, are allowed to be arbitrary real numbers. To see why this is true, note
that by ergodicity, for any two states (x,y) € Z there is a sequence of states x = x1,...,x; = x that satisfies
y = x2 and the property that (x;, z;+1) € Z fori=1,...,7—1, and hence, Zf;ll Vya = 0. Repeating this
for every possible (z,y) € Z, there are strictly positive integers b, such that Z(w,y)e 2 bayVgy = 0, which
implies the claim.

Next we introduce the empirical measure process. This process is obtained by projecting from X" onto

P(X) = P(X) N1z C P(X), and has the generator

MIAm) = 3 g | (ot L) - g (1.4)

(z,y)eZ

for functions f : P™"(X) — R.

One can interpret the base model introduced above as a collection of independent agents with each
evolving according to the transition rate «. This is the “preferred” or “nominal” dynamics, and is what
would occur if no “outside influence” or other form of control acts on the agents. If a controller should wish
to change this behavior, then it must pay a cost to do so. We would like to model the situation in which
limited information about the system state, and in particular information relating only to the empirical
measure of the states of all agents, is used to produce a desired behavior of the group of agents, which again
will be characterized in terms of their empirical measure.

To precisely formulate the control problem, we consider a continuous “reward” function R : P(X) —
[0, 00), where we recall

P(X) = {mG]RX:meOforallmeXandmezl}
reX

is the simplex of probability measures on X'. We also have a cost function C = {Cyy : [0,00) — [0, 0]} (5 y)ez-
In the controlled setting, the jump rates of each agent can be perturbed from + to u, and we let x™ denote
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the corresponding controlled state occupied by the collection of agents. If the problem is of interest over the
interval [0, 7], where T can be a random variable, and the initial state is ™ = {z] };<,, € X", then there is
a collective risk-sensitive cost (paid by the coordinating controller) equal to

E s C BN o) | 1.5
xn | eXp 0 Z Z T2 @)y Xt )y -n ( (X ())) ) ()

i=1yeZn xp )y

where for any " = {2 },<, € X", define

L(z") := % Z S (1.6)

Here, the control process u takes values in a space that will be defined later, and for a collection of n|Z|
independent Poisson random measures (PRM) {Nil,xy}lgign,(:p,y)e =z with intensity measure equal to Lebesgue
measure, the controlled dynamics are given by

O =ats 3 v |
(

1
09 o oy M0t ), )
T,Y)EZ ’ )

Thus x}' changes from state x to y with rate u;,. The formulation of the dynamics in terms of a stochastic
differential equation will be convenient in the analysis to follow.

In this paper we present two results. The first is that, under additional assumptions on the cost C, for
each n, the risk-sensitive control problem is equivalent to an ordinary control problem with the cost function
F = {Fyy}(2,)cz, where I is defined by

q u
ny(‘]) ‘= Ssup ny(an) and Gmy(ua Q) = |:u£ <*> - 'VIyCmy <>:| s (1'8)
u€(0,00) U Vxy
with
(q) :=qlogqg—q+1, for ¢ > 0. (1.9)

Under the additional conditions we do not end up with a stochastic game, as is typically the case for
risk-sensitive control problems, but rather a control problem with additive cost. Control problems are
often substantially simpler than games, and in particular are often more tractable from a computational
perspective. The second contribution, again under additional assumptions on C, is that the sequence of value
functions, suitably renormalized, converges to the value function (4.3) of a deterministic control problem.
This convergence result is also helpful in the construction of near-optimal controls for a large n-agent system.

Example 1.1 As an example consider the issue of modeling the users of a resource such as energy. Here
the agents would be households or similar entities. The state of an agent indicates their use of the common
resource, and this usage evolves in a Markovian fashion. In exchange for a cost paid by the central controller
to the individual agents, the agents agree to modify their behavior based on the current loading of the system.
Thus an energy consumer would agree to give up control on if or when certain activities requiring enerqgy
consumption take place thus altering the evolution of his own state, but will be compensated for doing so
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by the central controller. The goal of the central controller, and the motivation for paying this cost, is to
manage the group behavior so as to keep the system, as characterized by the empirical measure, in a desired
operating region for as long as possible and with minimal cost. In this context, the use of risk sensitive cost
18 motivated in part by the resulting properties of robustness with respect to model error.

Remark 1.1 If one wishes, it is possible to work with sequences C™, R"™ of cost and reward functions, as
long as some type of convergence is assumed for when n goes to infinity. The reader that is interested in such
a generalization can look at a previous version of our paper in http: //www. wias-berlin. de/preprint/
2407/ wias_ preprints_ 2407_ 20180212. pdf

1.2 Related literature and remarks

For ordinary discrete-time and continuous-time stochastic control problems (also referred to as Markov
decision processes) [1, 17, 24, 27, 14], one controls a random process to optimize an expected cost. The
most common objective function that is optimized for continuous-time escape (or ruin) stochastic control
problems are of the form

(w0, 7) = g r [ /O (X up)dt 1 P(XT)} , (1.10)

where C' is some cost function that depends on the state x € X and the control/action u € U, and 7 is a
policy or strategy that influences the dynamics {X;,¢ > 0}, and P is a terminal cost that depends on the
final state of the system. For risk-sensitive stochastic control problems one deals with optimality criteria of
the form

Jr(zo,m) =g * (Exo,ﬂ [g (/OT C (X, ug)dt + P(XT))D : (1.11)

where ¢ is a monotone convex/concave function, and C' and P are as above. One motivation behind the use
of risk-sensitive cost structures is that, depending on the type of monotonicity, variation from the average is
more (risk-averting behavior) or less (risk-seeking behavior) penalized. One of the most studied cases is the
entropic risk measure corresponding to gg(z) = €%%,0 € R (see [2, 7, 8, 13, 16, 18, 20, 21] for discrete time
and [10, 11, 15] for continuous time). The function gg(z) = e is special because it satisfies the property

%log (E[exp (0X)]) = X + %log (E [e9<X—X)D ,
where X is a random variable and X its expectation. This property implies that the weight that is given to
deviations from the expectation depends only on the difference from the expectation and not the expectation
itself. It can be proved that the exponential is the only function that satisfies such a property (see [26]).
Furthermore, exponential integrals have a variational characterization involving entropy, which turns out to
be convenient from the mathematical point of view, and also allows for an explicit analysis of the robust
and model insensitivity properties of the resulting controls [9, 23]. In our problem 6 is integrated into the
choice of cost C.

1.3 Notation

We now introduce some common notation that will be used throughout the article. For a locally compact
Polish space S, the space of positive Borel measures on S is denoted by M(S). We use M¢(S) and M.(S)

4
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to denote the subspaces of M(S) consisting, respectively, of finite measures, and of measures that are finite
on every compact subset. Letting C.(S) denote the space of continuous functions with compact support, we
equip M,(S) with the weakest topology such that for every f € Cc(S), the function v — [ fdv, v € M.(S),
is continuous. Let B(S) be the Borel o-algebra on S and P(S) the set of probability measures on (S, B(S)).
Finally, for a second Polish space S&’, we let

F(S;8)={f:8— & : fmeasurable} (1.12)
denote the space of measurable functions from S to &’. For the finite set X and a > 0, let
Pu(X)={m € P(X):my >0 forall z € X} and Pu(X)={m € P(X):my >aforalzeX}. (1.13)

For a set K C P(X), the closure K, the complement K¢ and the interior K°, will be considered with
respect to the restriction of the Euclidean topology on the set P(X). Let D([0,00);S) denote the space of
cadlag functions on S, equipped with the Skorohod topology (see [4, Section 16]), i.e., the Skorohod space.
This space is separable and complete [4, Theorem 16.3], and a set is relatively compact in D([0,00);S), if
and only if for every M < oo, its natural projection on D([0, M]; S), is relatively compact [4, Theorem 16.4].

For M = M([0,00)2), let P be the probability measure on (M, B(M)), under which the canonical
map N(w) = w is a Poisson measure with intensity measure equal to Lebesgue measure on [0,00)2. Let
Gt = o{N((0,s] x A): 0 <s<t,AeB(0,00))}, and let F; be the completion of G; under P. Let P be the
corresponding predictable o-field in [0, 00) x M. For natural numbers k, k', we similarly define a measure kK
on (M* B(M*)) under which the maps NF(w) = w;, 1 <4 < k', are independent Poisson measures with
intensity measure equal to k times the Lebesgue measure on [0, c0)?. {gf ’k,}, {ff ’kl}, and PF*" are defined
analogously. Let A be the class of P\ B(]0, o0)) measurable maps ¢ : [0, 00) x M — [0, 00), and A the subset
of these maps that are uniformly bounded from below away from zero and above by a positive constant.
Similarly we define A** to be the set of P \ B([0,00)¥ ) measurable maps ¢ : [0, 00) x M* — [0,00)¥,
and Alg’k/ the subset of these maps for which each component is uniformly bounded from below and above
by strictly positive constants.

2 Model Description

Throughout this section, fix n € N, and let C and R be, respectively, the cost and reward functions introduced
in Section 1.1.

2.1 The many-agent control problem

For a subset K of A", we define a risk-sensitive cost Z¢ : X" x Aé’nlz‘ — [0, 00| that corresponds to the
cost /reward up to the first time of hitting K as follows:

Tk n
Ti(x",u) := Egn |exp /0 > ) wewCry

=lyeznm

<uxg<t>y<t, i)

X (t)y

)—nR(L(X”(t))) a ||, (2.1)
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where Egn denotes the expected value given x™(0) = x™, {x"(t),t > 0} follows the dynamics given in (1.7),
and Tx is the hitting time
Ty :=inf {t € [0,00] : x"(t) € K} . (2.2)

We define the value function W¢ : X™ — [0, 0o] by

Wi(x") = inf  Z@(x", u). (2.3)
uEA;’"‘Zl
Similarly, for a set L C X™ we define the ordinary cost Jy* : X" x A;’nlzl — [0, 00] and corresponding
value function V¢ : X — [0, 00] by

T n
T (x",q) = Egn lz > Fowy(temyt ) + RIEOMD) | dt | (2.4)
0 n

=1 yEZX:;L(t)
where F' = {Fyy}(y,y)ez) is defined in (1.8), and

Vi(x™):= inf J¢(x",q), (2.5)
qui’"‘Zl

where the dynamics of {x"(¢),t > 0} are now given by (1.7) with u replaced by g, and the stopping time
Tk is, as earlier, given by (2.2). We remark that the reason for two different notations for controls is to
aid the reader, by associating one with the risk sensitive problem and one with the regular control problem.
Moreover, there are occasions that both variables appear at the same time, as in the definition of F' or that
of the Hamiltonian. Specific conditions on the cost functions will be given in Section 3.1, and properties of
F will be proved in Lemma 3.7. Note that for the many agent systems there are n|Z| PRMs, each with unit
intensity.

2.2 The mean-field control problems

Suppose that we have some exchangeability in the sense that for every permutation o of {1,2,...,n},
oK = K. Then K can be identified with the subset

K :={L(x"):x" € K},

of the simplex of probability measures P(X). Here, L is as defined in (1.6). Then we can replace a control
problem on X™ by one on P(X). In this case Wi and Vi can be considered as functions on P"(X), in the sense
that we can find Wi, V2 : P*(X) — [0,00], such that Wg(x") = Wg(L(z")) and V¢(x") = VZ(L(z")),
where L is as defined in (1.6). To see this, pick a starting point ™ € X™ and some permutation o. Then for
any admissible control u, the total cost generated starting at ™ is the same as that generated when starting
from ]} and picking u, as the control. Therefore, for every " € X™, 0 € S,,, we have Vi (z") = Vic(x).

Define A" : D([0, 00); P(X)) x Al 5 Pr(x) x M2l 5 D([0, 00); RY) by

1 1
hT <p,’ u,m, N”) (t) =m+ Z Vgy / / 1[07uz(—8)uzy(8)] (T)—N;‘y(dsdr).
n (x7y)ez (Ovt] [0,00) n
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Since u € AZ’|Z| implies the rates ug,(s) are uniformly bounded, one can explicitly construct a unique
D([0,00); P"(X))-valued process that satisfies

1
u=nh" <u,u,m, N”) . (2.6)
n
[12]. Here p is the controlled process, u is the control, m is an initial condition, and N /n is scaled noise.

Now with Tk := inf {t € [0,00] : u(t) € K}, the functions I}, Jj, : P*(X) xAZ"Zl — [0, 00] and W3, V2 :
P™(X) — [0, 00] are given by

Wig(m) = inf Ig(m,u), (2.7)
el
where
T ugy (t)
I;L((m, ’Ll,) — Em en fo K (Z(m,y)EZ /‘z(t)'}’zyczy<7,yzy )*R(/"(t)))dt L= 5 <H) u,m, 1NTL>:| ’ (28)
n
and
Vi(m) = inf_Jp(m,q), (2.9)
qEAZ"Zl
where
Tk 1
Bt @)= | [ 5 a0y (0) + ROule) | s = (u,q,m, nN"> @)

(z,y)EZ

For these control problems, there are | Z| PRMs, each with intensity n. In contrast, recall from the discussion
prior to (1.7) that the n-agent system dynamics are driven by n|Z| PRMS, each with intensity 1.

3 Equivalence of the control problems

In this section we prove that, after a natural renormalization, the value function W¢ defined in (2.3) is
linked to V¢ defined in (2.5) which, as noted before, is the value function of an ordinary stochastic control
problem with a new cost function. Specifically, we show that —log(W})/n equals Vi, and that the many
agent and the mean field control problem are equivalent when the exchangeability condition holds:

- %log(W}é(L(w"))) = Ve (L(z")) = V¢ (=") = —% log(Wi(x"))- (3.1)

3.1 The cost function

One of the aims of this paper is to identify cost structures that make sense for the problem formulation and
for which the risk-sensitive problem is equivalent to a control problem (rather than a game). The only place
where restrictions are needed are in the cost C paid by the centralized controller to the agents for deviating
from the nominal rates . To see what conditions will be needed, we first discuss briefly the strategy to be
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used for the proof of (3.1). The proof will use a related Bellman equation. Let H : P(X) x RIZl — R be
given by

H(m,§):= inf Z M (Qeyey + Fay(qey)) o (3.2)
q€[0,00)1=1
(z,y)eZ
where
q U
Fpy(q) := sup Guy(u,q) and Guy(u,q) = [uf (7) — YayCuy ()] . (3.3)
u€(0,00) u Vzy
Consider the equation
H(m,A"V(m))+ R(m)=0in P"(X)\ K, (3.4)

where A"V (m) denotes the |Z|-dimensional vector n (V(m + “2) — V(m)), and A7,V (m) is the compo-
nent n (V(m + %) — V(m))a;y’ (x,y) € Z. We will show that V is the unique solution V' to (3.4) that

satisfies the boundary condition V(m) = 0 for m € K. We will also prove that W} is the unique solution
to the equation

sup Z My (“er (W(m) _WW(/n(:;q’ * Zy)) — YayCay (:my>> = —R(m) (3.5)

uE(O,OO)‘Z‘ (z,y)eZ Yy

for m € P"(X) \ K with boundary condition W (m) =1 for m € K.

In the proof of the relation —i log(Wg) = V%, we will use the following lemma, which holds under
suitable conditions on the cost functional specified in Assumption 3.2 below. The proof of the lemma is
given in Section 3.2 (right after Lemma 3.9).

Lemma 3.1 Suppose Assumption 3.2 below holds. Then, if V : P*(X) — [0,00) is a solution to (3.4) and
V(m) =0 form e K, then W = eV P(X) — (0,00) is a solution of (3.5) and W(m) =1 for m € K.

We now provide an outline of the proof of Lemma 3.1 and also provide motivation for the form of our
main assumption, Assumption 3.2 below, on the cost function. First, note that by (3.2)-(3.3), we have

H(m, é) = inf Z my (quixy + me((hy))
g€[0,00)1=1
(z,y)EZ
= inf sup Z My (qacy‘fmy + Gry(uxya me)) (3'6)

9€[0.00)/ %! ue(0,00)121 | (prez

= inf sup Z mmLacy(Uacy7QJ:y) )
€[00/ %! ue(0,00)121 | (prez

where, L, is defined, in terms of &y, Yay, Cry, Lzy and the function ¢ defined in (1.9), as

q u
ny(ua Q) = qgmy + ul (E) - ’mecmy <")/) .

Yy

8
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The proof of Lemma 3.1 will proceed by first showing that Isaac’s condition holds, that is, that the supremum
and infimum in (3.6) can be exchanged:

up Z My Ly (Upy, uy) p = SUD inf Z Mg Ly (Uzy, Quy) ¢ - (3.7)

inf s
€[0,00)12] 4e(0,00)I] (egez ue(0,00)|21 g€[0,00)! = (g ez

Equation (3.7) is clearly equivalent to

inf sup  Layy(Ugy, @ey) =  Sup inf  Lyy(Uay, @uy), V(z,y) € Z. (3.8)
G2y €[0,00) 41, €(0,00) Uy €(0,00) Gy €[0,00)

We show in Lemma 3.4 below that (3.8) holds under the following main assumption on the cost function.

Assumption 3.2 R : P(X) — [0,00) is a continuous function. Moreover, for every (z,y) € Z, Cyy :
[0,00) = [0,00] is a convex function that satisfies the following:

1. uCyy (v) —u is increasing on the mazimal open interval where Cyy is finite;
2. Cpy(1) = 0.

The following result, which is proved in Appendix A, shows that part 1 of Assumption 3.2 is close to
being necessary for (3.7) to hold.

Theorem 3.3 If (3.7) is satisfied and for each (x,y) € Z, Cyy is twice differentiable on some non-empty
interval (U1 zy, U2.2y), then part 1 of Assumption 3.2 is satisfied on that interval.

Part 2 of Assumption 3.2 is not necessary, but it simplifies the analysis, and it is appropriate for the
situation being modeled to have zero cost when there is no change from the nominal rates. The proof
of Lemma 3.4, which relies on (a modification of) Sion’s theorem (Corollary 3.3 in [25]), is also deferred
to Appendix A. We proceed by providing a concrete example of a family of cost functions that satisfy
Assumption 3.2.

Example 3.1 The family of functions Cyy(u) = ﬁ + %q — %, where p > 1 and q > 1, satisfy Assumption
3.2. Clearly, Cyy(1) = 0. The derivative of Cyy is —ﬁ +u?t, and so uCyy(u) —u = — L+ ul —u, which
s always finite. Taking the derivative again gives uzf% + qui—! — 1, which is always bigger than zero, since
u;’ﬁ and qui~! are everywhere positive and bigger than one on the intervals [0,1] and [1,00), respectively.

Lemma 3.4 Under Assumption 3.2, the relation (3.8) holds for each (x,y) € Z, and hence, the Isaac’s
condition stated in (3.7), is satisfied.

As an immediate corollary of the lemma, we have the following result:

Corollary 3.5 Under Assumption 3.2, for each m € P(X) and & € RIZ|,

H(m,€) = 3" maay(Coy)* (1- 7).

(z,y)EZ

where (Cypy)* 1 (—00,1) = R is given by
(ny)*(z) = SUPu>0 [ZU - ny(u)] . (39)
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Proof. First, note that for each (x,y) € Z, using the fact that JyL.y(u,q) = &y + log(q/u), and
OgqLay(u,q) > 0 for ¢ > 0, we see that

u
inf  Layy(tUgy, Guey) = Ugy (1 —e &) — . O <wy> 3.10
4oy el0,00) y(Uay; Gay) y( ) = YayCay Yoy ( )
Also note that, by the definition of (Cyy)*,
— uI * —
SUP | Ugy(1 — €75) — 7, Coy (yﬂ = Yy (Cy ) (1 — e752). (3.11)
Ugy €(0,00) Vxy

The corollary is then a simple consequence of the above two observations, (3.6) and Lemma 3.4. =
We now summarize some other properties of the cost function that will be useful in the sequel.

Lemma 3.6 Under Assumption 3.2, the cost function Cyy satisfy the following on (0,00):
1. for every (z,y) € Z we have (Cyy)'(u) > 1— 1 for u> 1, and therefore liminf, o0 (Cay)'(u) > 1,
2. for every (x,y) € Z and u € (0,00) we have Cypy(u) > —logu +u — 1.

Proof. It follows from the monotonicity that uCy, (u) —u > —1 for u > 1, which gives the first statement.
The second follows by comparing Cyy(u) with [ [I — 1] ds and using Cpy(1) =0. m

We conclude with a lemma that collects some properties of F,, and whose proof is provided in Appendix
B.

Lemma 3.7 For every (z,y) € Z, let Fyy be as in (1.8), where {Cyy} satisfy Assumption 3.2. Then the
following properties hold:

1. Fry(q) > Yayl (q) >0, 2. Fpy(yey) =0, 3.Fyy is conver on [0,00).

’}/Z'y
3.2 Equivalence of the stochastic problems
Theorem 3.8 Letn € N, K C X", (resp. K C P"(X)), and C, R be as in Assumption 3.2. Then
n 1 n
Vi(m) = T log(Wg (m)) (3.12)

and

VE(a") = —log(W(a"). (3.13)

If, in addition, I C X™ is invariant under permutations, and therefore can be identified with a subset of

P™M(X), then
T log(WR(L@™)) = VR(L(@") = VE(") = — - losOWR (). (3.14)

10
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The proof of this result appears later in this section. Also, we will only prove the first equality and note
that the third follows in a similar manner. We begin with some preparatory lemmas.

Lemma 3.9 Letn e N, ) # K C P"(X), and C, R be as in Assumption 3.2. Then, the equation (3.4) has
at least one solution.

Proof. For the proof we use the equivalent discrete time stochastic control problem. We consider the
following set of controls

1
Aq(m) = qe[0,00) %] : . > Z MaQzy(m) > a p and Ayp(m) = Ugzsoda(m). (3.15)
(z,y)ez

For such a control the probability of moving from state m to state m + %’Uiﬂ] will be given by

m; sy (m)
Z(x,y) ez Maqzy (m>

)

and the (conditional) expected cost till the time of transition is given by

Z(x,y)EZ My Py (qey(m)) + R(m)

n Z(m,y)EZ MaQzy (m)

Also, with some abuse of notation, we define the set of feedback controls
Ag ={q € [0,00)P"X)*Z . g(m) € Ay(m)) and AL = UgsoAq. (3.16)

Given controlled transition probabilities as above, let (7)) be the corresponding controlled discrete time
process. We define the value function V2(m) : P(R?) — [0, 00) by

% 2 (ay)ez Ma(t) Fay(qay (1(7))) + R(pa(9))
i=1 n Z(a:,y)GZ Ha (Z)Qaty(“(Z))

V2(m) = inf Ep,

3.17
Jnf : (3.17)

where E,,, denotes expected value given p(0) = m and Tk :=inf{i € N: u(i) € K}.
To see that V2(m) is finite, we just have to use the original rates and note that the total cost is
proportional to the expected exit time, which is finite by classical results on Markov chains. Since F,, R > 0,

and Fj, is convex with ;¢ (%) as a lower bound (see Lemma 3.7), one can see that we can find a constant

ap > 0 such that only controls in A,, (or any a < ag) should be considered. More specifically to see that
a term in the sum appearing on the RHS of (3.17) gets large when >_ .y z 12 (1)gzy(p(i)) gets small we
bound the denominator by | Z| times the biggest term and the nominator by the same term and then we use
the fact that Fj,(0) > v;,. For the other bound we use the superlinearity of F},. Now by [3, Proposition
1.1 in Chapter 3|, we have that this value function satisfies

_ . My Fry(qry) + R(M Qad _ 1
Vn ) . Z( Y)EZ y(q y) ( ) i Z Z Mzqzj VI? < )

m + —Vgzg
q€Aqy(m) n Z(:p,y)ez My (G)EZ (z,y)EZ Mgy n

11
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It then follows that V}¢(m) satisfies the last display if and only if [with AZ, Vi2(m) := n (Vi (m + Z22) — Vii(m))]

n

qejnf( : Z M (Guy AT, VR(M) + Fry(qey)) ¢ + R(m) = 0.
a0 "M (z,y)eZ2

Since ag can be chosen arbitrary small and the left side on the previous display is continuous with respect
to q, we get

inf > ma (qay AL Vi(m) + Fry(4ay)) ¢ + R(m) =0.
9€[0,00) /7! (z,y)EZ

Then using the definition (3.2) this is the same as
H" (m, A"V (m)) + R(m) =0,
and we also have the boundary condition Vj2(m)=0forallme K. m

Proof of Lemma 3.1. Let V be a solution to (3.4). We then have H"(m, A"V (m)) + R(m) = 0. Using
Corollary 3.5 and the definition (3.9) of C*, this implies

sup Z My (ny (1 _ e—n(f/(m-s-viy)—f/(m))) — 7ayClay <uW>> + R(m) = 0.

u€(0,00)!Z! (z,y)EZ Yy

nV

By making the substitution W = e~V we have

W (m 2 .

sup Z My (uwy (1 — M) — Yoy Cuy <uy>> + R(m) =0,
u€(0,00)I21 (z,y)€Z W(m) Yy

which is the same as (3.5). m

Lemma 3.10 Let f: P"(X) = R, m € P*(X), and q € AZ"Z‘ be given, and let p solve (2.6). Then

tATx

FEATI) = AT = [ 7 ps)an(5) %, (u(s)) s,

AT (@ y)ez
is a martingale with respect to the filtration {F;}.

This is a classical result, and the proof entails a suitable application of Ito’s formula (see [19, Chapter
2, Theorem 5.1] for more details).

Lemma 3.11 Let g : P*(X) — (0,00), m € P*(X), and u € A:’|Z| be given, and let p solve (2.6). Then

g(p(t ANTk)) B /MTK Mds (3.18)

o T0) ") " 2 i)

is a martingale with respect to the filtration JF;.

12
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Proof. The proof is a direct application of the corollary in [22, Page 66]. m

Lemma 3.12 Let m € P"(X) and u € .An‘ | There exists a constant ¢ > 0, that depends only on the
bounds on w, the dimension d, the constant Rmax = max{R(m) : m € P"(X)}, and the number n of agents,
such that for every t > t' > 0,

E [ e-anax(tATK—t’ATK)’ ]:t,} > c.

Furthermore it is true that
Tk <0 a.s., and En, [e‘"R"‘“(TK_t,/\TK)‘}}/} >c.

Proof. We claim there exists g such that for all s

Ayg(u(s))
Z ,ux(s)uxy(s)m > nRyax. (3.19)

(z,y)eZ

To show the existence of such a g we use the following procedure. Since the one agent process with generator
given in (1.1) is ergodic, we have that the process on X™, with generator given in (1.2), as well as the one
on P"(X), with generator given in (1.4), are also ergodic. We split P"(X) into sets {K;}o<i<in.., Where
Ky = K, and K;; is generated inductively as the set of all points in P™(X) that do not belong to K;
but such that the process with generator (1.4) can reach K; in one jump. Since the original process has d
states, it is easy to see that iyax < d™. Since u € AZ’|Z|, there exist constants 0 < ¢; < ¢ < 0o such that
c1 < ugy(t) < e for all t >0 as. Let g be defined by

. [ nRmax + nd?co + ¢1
g(m) =

tmax —?
) , for me K;.
C1
Let p(-) be the process with control u. For 0 < s < t suppose that pu(s) € K; for some ¢ > 1. Then there
exists at least one (Z,9) € Z such that pu(s) + 2% € K;_1. Therefore

g(p(s)) AZg(p(s)) g(p(s) + 222)
(g (5) 2N g () 22T T o (5)tay ()
(%Z“ g(uis) " 9(n(s)) (W)E%y)#m g(uis) "
S Ag~ S
cn S LD () 2 palohus() D S )

(z,y)€Z,(z,y)#(2,7) g(u(s)) g(/vl’(s)>

(anax + nd202 +c1
>l
C1

(z,y)EZ

- 1> - n62d2 > nlRmax,

where in the next to last inequality we used the fact that pz(s) > % (because otherwise there is no agent at
T to move), and that A7 V(m) =n (V(m + 22) — V(m)).
Using Lemma 3.11, we have

Em,

g(p(t ANTk)) _ /MTK wds Ful =1

ol A Ti)) O a8y (3) =0 )

/
NE (py)ez

13
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from which we get

T AZy9(p(s))
Ep, |exp —/MTK ( Z Mw(s)uw(s)mds

minpn(x) g

.Ft/ Z c= .
maXP7L(X) g

z,Yy)EZ

By applying equation (3.19)
Em [e_anBX(t/\TK_tl/\TK)}]:t’j| Z c.

Now choose now 7 > 0 such that e "Fmax™ < ¢/2. We claim that
(T <t'+7) e (Tg AN(t'+27) —t' ANTg) <.

Indeed if ¢ > Tk, then both parts are trivially true. Let assume that ¢ < Tk, and Tx < t + 7. Then
T AN (t' +27) = Tk, and t' A Tg = t/, and therefore (Tx A (t' 4+ 27) =t/ NTr) = Tk —t' < 7. If on the
other hand ' < Tk and (T A (t' +27) =t/ ANTk) < 7, we get (T A (t' 4+ 27)) < 7+ t/, which gives that
Tx < (t +27), and therefore Tx = (Tk A (t' +27)) < + 7. Using the claim just proved gives

Pon(Ti < ¥+ 7IF0) =Pon(Tic A (¢ +27) = ' A Tig < 7| Fy) =Py R TN =0NTH) > o=t | 7, )

Let By = {e "imax(Tk A(t'+27)=t'ATk) > g=nFmaxT} and Fy = E¢. Then since Tk A (' 4+ 27) —t' ATk > 0

E,, [ efanaX(TK/\(t’+2T)ft’/\TK)‘ ]_—t,] ~E,, [1E1 efnRgax(TK/\(t’JrQT)ft’/\TK)’ ]_-t,}

+ By [1y e Pl TeNC420 =N | ) | < By [1,

‘Ft/] + e_RmaxT‘

From this, the first part of the lemma and e™™max™ < ¢/2, we get

P,, (e—anax(TK/\(t’—i—Q‘r)—t’/\TK) > e—nRgaxr‘}—t,) >E,, [e—anax(TK/\(t’+2T)—t’/\TK))ft/:| _ g "Rmaxt 5 &
- - -2
Now we have &
P (Tk = 00) = lim P (Tk > k1) =Py (T > 0) lim [ (1 =P (T < (K + 1)7| Tk > K'7))
k—oo k—o0

k’=0
k
< lim (1—5) —0,

T k—oo 2

where in the second inequality we iteratively used the formula for conditional probability. The remaining
inequality is just an application of the monotone convergence theorem. m

Lemma 3.13 Given m € P"(X),e >0 and u € AZ"Z| with

Yy

E,. [e” I (S s 1 (Cey (2U0) - RGu(e) )at ] _

|2

there exists u € AZ and T < 0o, such that

Z fiz (1) Yoy Cay (ufyy(t)> —R(@a(t)) <0 forevery t>7, and Ig(m,u)<Ig(m,u)+e
(xy)eZ e

14
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Proof. Let such m € P*(X),e > 0, and u € AZ"Z‘ be given, and let ¢ > 0 from Lemma 3.12 be such that
E,, [ eanax(TKft’/\TK)‘ ]:t,} > (3.20)

for ¢’ € [0,00). Since by Lemma 3.12 Tk is finite a.s., we can find 7 < oo such that

T ugy (t)
E,. [I{TK>T}enfoK(z<z,y)ez (812 Cry (220 )—R(u(t))>dt] <ec.

Now set @(t) = u(t) for t < 7, and @(t) = v so that Cuy (fuy(t)/Vey) = 0 for t > 7. Let 1 and Tk be
the corresponding controlled process and stopping time. Then the first claim of the lemma follows. The
remaining claim follows from the following display, where the first inequality uses again that Cj, (1) = 0,
the following equality uses that (@, f, TK) had the same distribution as the original versions up till time 7,
and the second inequality uses (3.20):

I (. ) = B [e” I ¥ (S wanez (i1 Coy (W}R(ﬂ(tn)dt]

Yry

<Em [I{T < }enfoTK (z(z,y)EZ ﬂz(t)’vzyCzy(ﬂzy“))—R(ﬁ(t)))dt]
< <t

Yy

+E |:I{T > }€nf°TKM(Z(Evy>€Zﬁw(t)%ycw(W)_R(ﬁ(t)))dt}
m K>T

Yry

& [I{T 3 }enfoTK (Cemrez uz(tmyczy(““y‘”)R(u(t)))dt]
m KST

Ty AT uzy (t)
B iy (Eeomee (252 i)

T, gy (t)
€n fTII({/\T (Z(z,y)ez pa () Yoy Cuy (7171/) —R(u(t))) dt

Em

X

Tk ugy (t)
Em en fTK AT (Z(z,y)ez Hx (t)'\/xyczcy ( "/zy )-R(M(t))) dt

<E, [en Jo ¥ (Zopez #a(®)Cay (“212) —R(u(t)))dt}

T uzy (t)
+En [I{TKZT}G%K(z@,y)ezuz(ww@/%( )RW))‘ﬁ] < Tg(mou) +e

Proof of Theorem 3.8. We are first going to prove that V} is the unique solution to (3;4). We will prove
that, by showing that if V' is any solution to (3.4), then it has to coincide with V}}. Let V' be any solution
to (3.4), and let m € P(X). Let also q € AZ"Z‘ be given and let p solve (2.6). By Lemma 3.10,

tATk
V(u(t A Ti)) — V() — /0 S () ay (5) A"V (1a(5)) ds
(z,y)EZ

15
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is a martingale. Taking expectation gives

tATx R R
B [VRUATI)] =B | [ w0t 9A" T pas))ds | =V (m).
0 (z,y)ez

and since V is a solution to (3.4) and by (3.2),

tAT ~
Em [V(l”(t N TK))} +Em / Z o (8) Fay(qzy (8)) + R(p(s)) | ds| > V(m).
0 (z,y)eZ

By Lemma 3.12, Tx < oo almost surely. Letting ¢ — oo, Lemma 3.7 and the monotone convergence theorem
imply

Jﬁ(m, Q) =Em e § M:Jc(t>Facy(me($>) + R(/J’(s))ds > f/(m)
0
(zy)€2

Since q € AZ"Z| was arbitrary we get Vi2(m) > V(m). We will now prove the opposite inequality. Let e > 0.
For m € P"(X), we can find g(m) that satisfies

5 (aatmin (7 (et Ly ) = V) ) 40y () ) + Rm) < ¢ el (021)

(z,y)€Z (zy)eZ

To see that such a g(m) exists and it is actually bounded away from zero, we take a minimizing se-

quence @,,(m) in the definition of H (m,A”V(m)) (see (3.2)). By using the continuity of the function

Z(x,y)ez@_x’y(m)n (‘7 (m+Log,) — V(m))) + mmme((jwy(m))> with respect to q,,(m), we can assume that
all qgyn are strictly positive. Furthermore, with no loss of generality we can assume that the sequence is
converging. If all elements converge to the original rates, by recalling (3.4), we notice that we can just take
those and the inequality is satisfied trivially. If on the other hand it converges to different values the right
hand will be always bounded away from zero while the left hand will converge to zero by (3.4), therefore for
sufficiently large value of n, we will recover the desired control. We can construct a solution to (2.6) with u

replaced by the feedback control q(u), and then obtain q € ALZ| by setting q(t) = q(p(t)). Then

tA\Tk . -
B [V(u(EATID] < B | [ 50 a5y () A"V (a(s))ds| = V),
0 (z,y)EZ

and therefore by (3.21)

tATx -
Em [V((t A Ti))| + Em /0 1= 3wl F" (G (n(s)) + R(u(s)) | ds| < V(m).
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Again using Lemma 3.12 and the monotone convergence theorem gives

Ty ~
(1 -6)Em / D (O F @y (1(5)) + R(u(s)) | ds| < V(m),
0 (z,y)e2Z

and therefore V2(m) < Ji(m,q) < %_GV(m) Since ¢ is arbitrary we get Vjt(m) = V(m), which implies

the uniqueness of V. We now proceed with the proof that W is the unique solution to

sup Z Hz (ny (W(“) _WI;V(IEII; i ;y)) — YayCoy <:xy)> = —R(p). (3.22)

’U,E(O,OO)‘Z‘ (ac,y)EZ Yy

Since V2 is a solution to (3.4), by Lemma 3.1 we get that Llog(V}j2) is a solution to (3.22), and thus

uniqueness will imply & log(V2) = WJ. Let W be any solution to (3.22), m € P*(X), and u € AZ"Z‘, and
let p solve (2.6). Further assume that there exists 7 < oo such that for ¢t > 7
Ugy (T
S seltnCoy (M) < RO < 0. (323)

(z,y)eZ2 Y

To show J3(m,u) > W(m) we can assume that J3(m,u) < oo, since otherwise there is nothing to prove.
By Lemma 3.11

T tATx A
W(l{(t/\ K)) exp _/ ,U;L«(S)ny(S) WW<“(S))dS
W (m) 0 ez (1(s))
is a martingale. Taking expectations gives
_ tATg ATLW S _
Em [W(p(tANTk))exp{ — / Z ux(s)uxy(s)ﬂds =W(m),
0 ez W (p(s))

and by (3.4) and the definition of A"

tATK uo (s 3
o | W(a(t A Ti))exp 4 0 [ a5y Coy (220 ) = Rlp(o) | s | = W)

(wy)eZ oy

We claim that

TATK U S
Eo | W ((t A Tk)) exp n/o ux(s)%way( gfyy( )> — R(p(s)) | ds p| < oo. (3.24)

(z,y)€Z ’”y

Since W is uniformly bounded this term can be ignored. One can then bound what remains in (3.24) by
using

Tk
o> T (m,w) =B [exp 0 [ Mx(S)%nyycmy(s))—R(M(S)) as b | |
0 (@y)eZ Vxy

17
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breaking the integral over [0, T | into contributions over [0,7 A Tk] and [t A Tk, Tk |, and then conditioning
on F; and using the lower bound on the term corresponding to [T A Tk, Tk| provided by Lemma 3.12 (as in
the proof of Lemma 3.13). Since (by Lemma 3.12) Tk is finite almost surely, and (3.23) holds for ¢ > 7, by
dominated convergence theorem and (3.24) it follows that

Tx Ugy (S
Setm.w) = |exp o [ 2 m(smycxy( W”)—Rws)) ds §| > W (m).

(z,y)€Z Y

By minimizing over all w that satisfy (3.23) and applying Lemma 3.13, we get W7 (m) > W(m).
Next let € € (0,1/2). For m € P™*(X),t > 0 we choose u(m,t) such that

S m, (ﬂxy(m,t) ( W”(’ () )) — ayCiy <W>> > —R(m) - 7. (325)

(z,y)EZ

As before we can solve (2.6) and then generate a corresponding element u of AZ"Zl by composing iz, (m,t)

with the solution. It is easy to see that w is an element of AZ"Z‘, since very big or very small values of
Ugy(m, t) will make the left hand of (3.25) tend to —oo. Arguing as before, for fixed ¢ < oo

_ T Nt _
Em [W(p(t ANTk)) exp n/ Z e (8)Vay Cay ds p | <W(m).
0

(z,y)EZ

<uxy(l1’(5)7 5)

Vﬁ Y

) - Rlute)) -

241
By sending ¢ — oo and using the boundary condition, Fatou’s lemma gives
X« T Uy (11(5), 8) 7
Epm [exp </ —st> exp n/ Z () Yy Cay <y’) — R(p(s)) | ds p | < W(m),
0 s2+1 0 Yy
(z,y)eZ
from which we get W2 (m) < W(m) exple Jo° 1/(s* + 1)ds]. Sending € to zero shows W}t(m) < W(m).

The proof that Vi (z") = —2Ilog(Wi(x")) is similar and thus omitted. It remains only to prove
VR(L(z™)) = Vi (x"). We have established that V2 is the only function that satisfies

inf D ma (quy AL, ViE (M) + Fay(day)) p = —R(m),
q€(0,00) 12!
(zy)e2
and that Vi is the only function that satisfies

S (Al Vi @) + Fapylangy) b = —nR(LE"). (3.26)

n|Z|
OOO) =1 yeZz, n

Since K C A" is invariant under permutations, and therefore can be identified with a subset of P"(X), we
have that there exists a function V' : P"(X) — [0, 00) such that V(L(x")) = Vi (x™), and therefore (3.26)
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becomes

n

it A0 D (el V(L) + Farylaa)) p = —nR(L))

n|Z|
q6(07oo i=1 yezwn
i

For € > 0, let @ € (0, 00)™2! satisfy

3

S0 @A,V (E@") + Fapy (@) € —nR(L") +c.

i=lyez,n
Now pick g € (0, oo)|Z| by requiring nLg(")qzy = > iy Iyp—3Gzry, so that
> nLe(®")qr AT,V (L) + Z > Fapy( —nR(L(x")) + e
(zy)eZ i=1yeZ, o

By using convexity of F, (see Lemma 3.7) we get
Z L (x") [dmyAgyv (L(z")) + me((jmy)} < —R(L(z")) + ¢/n,
(z,y)EZ

and sending € | 0 gives

Y La(@") [amy A%,V (L") + Fuy(ay)] p < —R(L(").

inf .
q€(0,00)/%! (z,y)EZ

The other direction is trivial, and follows if in (3.26) one uses rates that are the same for all agents in
the same position. m

4 Discussion regarding convergence

Before we introduce the deterministic control problem, we define the set of admissible controls and controlled
trajectories.

Definition 4.1 We define the space of paths and controls by
C = {(m,q) € D([0,00); P(X)) x F ([0, 00); [0, oo)®z) ! iz ey is locally integrable V(z,y) € Z},
where F ([0,00); [0, 00)%%) was defined in (1.12). We define A : C x P(X) — D([0,00); P(X) by
A(.U’7Qa =m + Z 'Ua:y/ ,Uoc me d (4'1)
(z,y)EZ 0,¢)

Also we define the set of all deterministic pairs that correspond to a solution of the equation p = A(u, g, m),
1.e.,
Tm ={(n,q) € C: p = A(p, g, m), u(0) = m}
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Finally we introduce the set of controls that generate controlled trajectories
Unm = {q € F([0;00); [0,00)%%) : I € D([0,00); P(X)) such that (p,q) € Tm} - (4.2)
Then the deterministic control problems are given by

Vk(m)= inf Jg(m,p,q), (4.3)
(H;q)GTm

with

Tk
Jrk(m, 1, q) = / D (8 Fuy(qry(t) + R(u(t) | dt ¢, Tx = inf {u(t) € K}.
0 (rg)eZ t€(0,00]

In this section we consider sets K C P(X) that satisfy the following assumption.

Assumption 4.2 K = K° # ().

For such sets we show that the sequence of values functions V converges uniformly to the function Vi.
To simplify the notation we will drop the index that corresponds to the set from the stopping time. We split
the study of the convergence in two parts. In the first part, without making any extra assumptions on the
cost functions and in great generality, we prove that for any sequence {m"}, with m” € P"(X) converging
in m e P(X),
liminf V¢ (m") > Vi (m).
n—oo

The other direction of the inequality, i.e., limsup,,_,,, VZ(m") < Vi (m), is not as straightforward and its
analysis can be quite involved. In order to avoid technical issues relating to controllability we will add some
assumptions.

Before we present the extra assumptions on C' we discuss an almost trivial choice for the cost function
that will motivate these extra assumptions. As stated in Lemma 3.6, for every (z,y) € Z we have Cyy(u) >
—logu + u — u. Actually the function Cpy(u) = —logu + u — 1 satisfies Assumption 3.2 and therefore is an
eligible cost function. Setting Cyy(u) = C(u) = —logu +u — 1, we get

U u
Gay(u,q) = ul (g) — YayCuy () = qlog q_ q+ U+ Yoy log — —u+ vy (4.4)
U ’Yﬂcy U 7zy

= qlogq—|— ('ny_Q)logu_Q‘i")’zy-

Examining (4.4) and referring to the definition of F,, in (1.8), we observe that if g, > v, then the
“maximizing player” (the one that picks w), can produce an arbitrarily large cost by making u,, as small as
needed. If g,y < 7uy, this player can produce an arbitrarily large cost by making u,, as big as needed. Hence
the minimizing player must keep ¢y = 72y, and the value function V' (m) is infinite unless the solution of the
equation v(t) = v(t)~y passes through K for the specific choice of initial data m. To resolve this difficulty
we could start by imposing the following assumption on the cost.

lim u(Cyy) (u) = —o0o,  liminf{u(Cyy) (u) — u} > 0.

u—0 U—00
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This assumption makes F finite on (0,00) and allows for some controllability. Specifically, if the first
point is true and if m, m € P,(X) for some a > 0, then one can observe (see the proof of Lemma 3.7) that
the total cost Vi) (m) for moving from point m to m is uniformly bounded by c,[|m — 7|, where c, > 0
is an appropriate constant, where the minimizing player picks gz, (t) to be uniformly bounded from above,
but big enough to reach the desired point. In particular, the maximizing player cannot impose an arbitrarily
large cost by taking ug;, small. In an analogous fashion, the second point implies that the minimizer can
choose controls so that the total cost V{m}(m) for moving from point m to m is uniformly bounded by
¢, |lm — m|| by picking ¢, (t) bounded from below but small enough.

However, if m is in the natural boundary of the simplex P(X) an additional complication arises, because
to reach the natural boundary it must be true that for at least one (x,y) € Z the quantity ¢, (t) will scale
like 1/fi,(t). In that case, the first point is not enough for a finite cost, since sending gG.,(t) to infinity in
order to reach the natural boundary may result in an infinite total cost. Taking all these issues into account
we end up with the following assumption.

Assumption 4.3 Let C, R be as in Assumption 3.2. Assume that for all (x,y) € Z, the following are
valid.

1. There exists p > 0 such that

lim wP ™Y (u) = —oo.
lim u Cry(u) 00

liun_1>iolgf{u0;y(u) —u} > 0.

It is straightforward to see that Assumption 4.3 is satisfied by all functions in Example 3.1, with p, ¢ > 1.
Now we state the second main theorem of the paper.

Theorem 4.4 Let C, R, satisfy Assumption 4.3. Let also K be a closed subset of P(X) that satisfies
Assumption 4.2. Finally assume that in every compact subset of K¢, R is bounded from below by a positive
constant. Then the sequence of functions V¥ defined in (2.9) converges uniformly to Vi defined in (4.3).

Before proceeding with the proof, we state some properties of Fi,.

Lemma 4.5 For every (z,y) € Z, let Fyy be as in (1.8), where Cyy satisfy Assumption 4.3. Then the
following hold.

1. There exists a constant M € (0,00) and a decreasing function M : (0,00) — (0,00), such that for
every € > 0 and every q > €,

q
Fry(q) < qlog + M(e).
min {1y (10y/)'/" M}

2. Fyy is continuous on the interval (0, 00).

The proof of the Lemma 4.5 can be found in Appendix B. It is worth mentioning that it is possible that
Fyy(0) = oo. In the sequel we will make use of the following remark, which states a property proved in [12,
Proposition 4.14]
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Remark 4.6 There exists D > 1 and by > 0,bs < oo such that for every m € P(X), if v(m,t) is the
solution of v(t) = v(t)y with initial point v(0) = m, then

1.Vz € X,vp(m,t) > byt? and 2. |v(m,t) — m|| < bt.

Before proceeding with the proof of Theorem 4.4, we prove that the function V(m) is continuous. We
will actually prove something stronger. Recall that v denotes the original unperturbed jump rates and the
definitions of P, (X) and Py (X) in (1.13).

Theorem 4.7 There is a constant ¢ € R that depends only the dimension d and the unperturbed rates =,
such that for every m € P.(X), m € P(X) there exists a control q € Uy, that generates a unique p with

(1, q) € T, satisfying
1. w is a constant speed parametrization of the straight line that connects m and m,
2. the exit time Ty, is equal to [|[m —m|,
8. Yoy < Quy(t) and pg(t)qey(t) < €.
Furthermore, if m,m € P,(X) then
Yoy < Quy(t) < E

and we can find a constant ¢, < oo such that the total cost for applying the control is bounded above by
callm—m||. Finally, for every e > 0 there exists d > 0, such that |m—m|| < & implies Vg, (1), Vigy(m) <
€, and therefore as a function of two variables V is continuous on P(X) x P(X).

Proof. Recall the definitions above (1.3), and let m € P,(X), m € P(X). We can find a positive constant
¢ that depend only the dimension d and on the rates =, and also rates g such that

m—-—m _
1. Qxy > Yy Z MyQryVgy = ||m m” 3. max{me:ﬁyy (1"5 y) € Z} <ec
(z,y)eZ

Indeed, since (1.3) holds, we can find a constant ¢ < oo such that for every point m € P.(X), there
exist vectors gpymevazy with gym, < c, anq Z(w,y)ez Mooy Voy = ﬁ Now if for some (z1,y1) € Z
we do not have q¢z,y, > Va1, then by ergodicity we can pick x1,z2 = y1,23,...,x;, with j < d, such that
Zl 1 Vzz0, = 0. If we pick the new gg,4,,, equal to maxgy{7vzy}/ms, plus the original ¢,z ,, then property
2 is still satisfied, but we now also have gz, > Yz,y,- We have to repeat the procedure at most | Z| times to
enforce property 1, and can then set ¢ = max{m;q.,, (z,y) € Z}.

Let

p(t) = [(m —m)t/|m — m|| + m], (4.5)
and define q € U,,, by
fiz (1) Gy (1) = Mgqey < C. (4.6)

Then automatically .
~ ~ m—-m ~
Z Uzy/ iz (8)qay(s)ds = tm = f(t) —m,
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and thus (f,q) € Tm. This will lead to hitting {72} in time T{,) = |[m — m||. Using properties stated in
Lemma 4.5 we get

o Ty
inf J{Th} (m> K, Q) < J{rh}( ) by q Z / /~Lx )F:cy(qgcy( )) + RmaxT{m}

(1,@)ETm (x ez
46) T{m} Gy (T
<Y / i (t) Gy (t) log — q yE ) - + max_ M (Yay)|dt + Ruax Ty
(x,y YEZ min {'Y:ch (’me/qasy (t)) b M} (@y)ez
Ty T{m} B 1p
< 3 [T i @i Ol [ 0 (0108 Gy 0) | e
(z,y)EZ (z,y)EZ
T{m} B T{m} B
+ Z / )Gy (t) log Yay | dt + Z / t) Gy (t) log M| dt 4 ¢ Ty
z,y)EZ (z,y)e2Z
Tty 1 "
Z / |10g uy (t)|dt + € Z / ‘log (Y / Gy (1) P’dt—kc Ty
(z,y)eZ2 (z,y)EZ
{m} quz {m} 5
c Yy / y dt +¢ Z / )log (i (D) Yy /00 y) ”‘ dt + ¢ Ty
(z,y)eZ
(4. 6) (m} Timy 1
Z / [log fi(t)| dt + ¢ Z / - |10g fiz (1) dt + " Ty,
(-Z’,y EZ ,y EZ

where the constants ¢, ¢”’, ¢’ depend only on 4, ¢ and Ryax.

Now if m,m € P,(X), then all elements are bounded by a constant ¢, (that depends on 7, ¢, Ryax, and
a) times Ty = [[1 — m||, and therefore the first part of the theorem follows.

Let 1 > 6 > 0, and m,m € P(X), with |[m — m| < . We take m = v(m,J), where v(m,t) is
the solution of ©(t) = v(t)7y, with initial data ¥(0) = m. Now by appropriate use of the inequality
fiz(t) > min{mg, ma(Tymy —t)}, that we get from (4.5), and using the last display, we get

Tty
Vi (m) < llogm$\+\log(Tm —t)|) dt + T
{m} {m} {m}
(z,y)EZ

By a simple change of variable and Remark 4.6, we have

bod
Vi) (m) < " Z/ (|log b16”| + |logt|) dt + bad
(r,y)eZ

Therefore

bod
Viiny () < Vi () + Vi (m) < 6Rmax + ¢ | ) / (|logb16”| + |logt|) dt + bad | |
(z,y)eZ

and the right hand side can be made as small as desired by making § small enough. The estimate for
Vim) () is proved in a symmetric way. This proves the last statement of the theorem. m
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5 Lower bound

For the proof of Theorem 4.4, we first prove the lower bound: for every sequence m™ € P"(X) and m € P(X),
with m™ — m, we have

hrr_l)inf Vi (m™) > Vi (m).

Without loss of generality we can assume that the liminf is actually a limit, otherwise we can just work with
a subsequence. If the limit is oo then the conclusion is trivial, therefore we can assume that there is ¢ € R
such that

sup Vg(m") <ec. (5.1)
neN

Let € € (0,1). Recalling (2.9), let g™ € AZ"Z‘ be such that

"
B | [ | X iR 5 0) + R | dt| < ViRtm) + e, (5.2)
0 (z,y)eZ

where p™ = h" (u",q",m", N"/n) and T" = inf {t € [0,00] : p"(t) € K}. For § > 0 such that
|lm —m| <§= Vin(m) <e,

we define Ks={m:d(m,K)<d§} and T™ =inf{t e [0,00]: p,(t) € Ks}.

The existence of such a ¢ is given by Theorem 4.7. Now for p”, g™ as in (5.2) and 7™ as above, we define
the sequences ™0 (t) = u"™(t A T™),

n(t t < Tn,&
qn,d(t) _ q ( ) = 5
~ T >T

We note that for ¢ > 19, q”"s(t) does not actually generate p”, but we define it this way to simplify some
arguments later on. We will show that

T?’l
lim il E,py /0 (Z)GZM;L(t)ny(qzy(t»+R<w<t>> at| >
aj7y

L (5.3)

Tn,(s
liminf B | [ (30 0B (0) + B (0) | dt]| = Vieg(m),
0

n—oo
(zy)eZ

and then by an application of Theorem 4.7 and (5.2) deduce lim, o Vi(m™) + 2¢ > Vi (m). Since € is
arbitrary the lower bound will follow. The first inequality in (5.3) is true since Fuy > 0,R > 0and 0 < T™,
Therefore only the second inequality needs to be proved.

Before proceeding we introduce some auxiliary random measures. For (z,y) € Z, ¢y € F([0,00); [0, 0)),
and t € [0, 00), define

Nay(dr;t) = 0q,, (1) (dr)pz(t).
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For each t € [0,00), (z,y) € Z we have that 7,,(-;t) is a subprobability measure on [0, c0). Also we consider
the measures 0y, (drdt) = nzy(dr;t)dt on [0,00) x [0,00) as equipped with the topology that generalizes the
weak convergence of probability measures to general measures that have at most mass 7" on [0, c0) x [0, T].
This can be defined in terms of a distance (a generalization of the Prohorov metric) dr,and the metric on
measures on [0,00) x [0,00) is

> 2 [dr(plr,vlr) V1], (5-4)
TeN

where p|r denotes the restriction to [0,77] in the last variable.
Let 9™° = {9”"5}(1731)6 = be the random measures that correspond to p™?®, g™, according to the con-
struction above. We observe that

tAT™0
' =m" + Z vxy/ / 9”5 drds) + a martingale,
(z,y)eZ

where the martingale will converge to zero as n — oo, and that for every (z,y) € Z,

T8 "8
/0 ny(qg?f(t))u?";( ] Eppn [/ / oy ( 0”5 (drdt) | .

We will split the proof of (5.3) in three parts. First we prove that (u”’é,en"s,T"";) is tight. Then
we show that for every limit point (u®,0°, 79), Hgy has the decomposition Ggy(drdt) = ngy(dr; t)dt, with

Y yex 15,((0,00);t) = p(t), and for q° defined by ud(t)qd,(t) = [5° rnd, (dr;t), that

tAT? tAT?
=m + Z U:cy/ / dT‘dS =m + Z vxy/ :u:p )Q:py( )d

(:D’y GZ (z,y)EZ

Epr (5.5)

Finally, by an application of Fatou’s Lemma, for such a q°, we get

779 T°
nrginfﬂzmn[/ / wy (r)0100 (drdt) / / wy (162, drdt]>E / / Fay(r)ng, (dr; t)dt]
n—oo 0

T ol (drst)
/O F(/o rm>nxy<[o,oo>, tdt| = /0 Fuy(d, (1)) x()dt],

where for the third estimate, we applied Jensen’s inequality. Together with p™ — p? yFry, R > 0 and
another application of Fatou’s Lemma, this gives (5.3).

>Em

> Em

5.1 Tightness of (u™%,0™°, T"9)

First, we prove that (u™9(-), T™%), which takes values in D([0, 00); P(X)) x [0,00) C D([0, 00); R%) x [0, 00),
is tlght For that, we introduce some auxiliary random variables ™ in D( [0, 00); RY), to compare with
w0, given by

tAT™d

(z,y)eZ
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Since Yayl (+/Vay) < Fuy(- ), recalling (5.1), (5.2) and that R is bounded away from zero in K5 = {m :

d(m,K) > &} by a constant RS . | we get
e e (t) 5 )
Eopn / > ) vayl ( v > dt + R, T™° | <c+1, (5.7)
0 (z,y)eZ Ty

which shows tightness of {T™°}. By setting Ymax = max{yz, : (z,y) € Z}, we get

Tn,5 n n

t t

Erpn / > SOy (qu( )> dt + Ry, T | < c+ 1.
0 (w)EZ “max Vzy

Using the fact that ¢ is convex and ¢(1) = 0, by Jensen’s inequality af(b) > £(ab+ 1 — a) for a € [0, 1] and

b > 0. By setting a = %, the inequality above gives

™90 n n

t t

o / 3 Yl (“Z’( )qggy(t) F1- WW) Gt R T < opt
0 (m,y)GZ 'Ymax ’Ymax

By applying Jensen’s inequality once more

Tn,5 n
1 £,
By / 2ot | r— 2 m0O0+ 3 [1—W] dt+ R T | <l
0 max

min
(zy)EZ (zy)EZ Pnas
Now by multiplying with Zhom | , using (5.6) and the fact that ¢ < ¢’ implies £(q) < ¢(¢") + 1, we get
Tn8 ‘ <n,d
p" (t)|> ( 1 5 ) B ct1
Epn / 14 ( dt + R. —1)T™
" 0 | Z]Ymax | Z]Ymax min ’Z ”Ymax

Finally, by using that for every ¢ > 0 there exists ¢; > 0, co < oo such that ¢(¢q) > ¢14(q) — c2, we get

m,d
[ et (o) s (R —1-) 79 <
0 ’Z")’max

c+1
‘Z”)’max

Epn

which implies

Tn,é
. 1
By E(N""St )dt . Ry e
m [/(; ’l’l’ ()‘ + ‘Z"Ymaxcl min

;o c+1 (c+1)(c2+1)
| Z|Ymaxc1 1 '

c+1 (c2+1)

E nTn’(S < !
‘Zh/maxcl C1 m [ ] =

where

(5.8)

It will follow from the following lemma that ™ is a tight sequence in D([0, 00); R%). Let S be the elements
(pe, T) of C([0,00); P(X)) x [0,00) that satisfy p(t) = p(T) for t > T.
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Lemma 5.1 For every positive number a, the function

H(u,T) = fo Ndt +aT, pe AC([0,00);RY), T € [0, 00)
H otherwise,

is a tightness function on S, where AC([0,00);R%) is the set of all absolutely continuous functions from
[0,00) to RY.

The proof of this lemma is in Appendix C. Using the bound (5.1), it follows from Lemma 5.1 that {z™°}
is tight in D([0, 00); R?). Now we have that

s 5 tAT™9 tAT™S oo 1
‘l"’m (t) -p" (t)‘ < Z /(; MZ(S)q;E(S)dS _/(; /0 1[0,#2(5)(]%(8)](T)gN:?y(deT) )

(zy)ez
where the summands on the right side, denoted from now on by Q.-

2, t, are all martingales with quadratic

variation @my,t that is bounded above by

1 tAT™0 00 1 tAT™8
Epmn /0 /O oz (9 (VN2 (d5dr) | = o /O B ()l (5)ds

(c+1)e
(5<8) ¢ + eBpn [T A ] < ¢ + eBpn [T™9] (5<7) ( R T C/)

min

< ZEppn
n

f— —_ )

n n n

tAT™0
/0 (C(5)a, (9)) + e)ds

where in the first inequality of the last line, the estimate ab < e® + £(b), with a = 1,b = uj(s)qy,(s) was
used. By using the Burkholder-Gundy-Davis inequality, for every T' € (0, c0)

Emn | sup Q|| < cpapEmn (@17

t€[0,T]

from which we get that Epyn [supycp 7 |Qxy ¢|] converges to zero as n — oo. Recalling that we already proved
{@™°} is tight in D(]0, c0); R%), it follows from Eqp,n [d(u"";,ﬁ”"s)] — 0 that {(u™°, T™)} is tight as well.

To show that the variable 8™ is tight, we combine (5.5) and (5.1), (5.2) and use the monotonicity with
respect to & to get

Tn5 Tn,5
By Z/ / Fyy ()67 (drdt) + /0 R(u™ ()| < e+1.

x,Y)EZ

Since, by part 1 of Lemma 3.7, we have v,y ¢ (-/Vay) < Fuy(+), and g =~ for t > T™%, we get

Emn | ) / / M( )0"5(drdt) =Emn | /TM/ m( )9"5(drdt) <c+1.

(z,y)EZ (z,y)EZ
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Now by using the fact that

fe’e) T r
:/ /)%¢<>e@mm
0 0 Vzy

is a tightness function on the space of measures on [0, c0) x [0, 7] with mass no greater than 7', we conclude
that for every (z,y) € Z, 0y; y is tight with the topology introduced in (5.4).

5.2 Distributional limits and the lower bound

From the previous two subsections we have that (p™9, @™ ™% T™%) is tight. For proving the lower
bound, we can assume without loss that the sequence has a distributional limit (p?, f2°, 0°, T?). By using the
Skorohod representation theorem we can also assume the sequence of variables is on the same probability
space (€, F,P), and that (u, 5%, 0%, T°%) is an a.s. pointwise limit.

Consider any w € 2 for Wthh there is convergence. Since by the definition of §™9

n’é _ n,d
050,00 x 4) = [ i), vA € BR),

N[0,7:9]

for every continuity set A of Ggy([(), o0) X -) we have

7,(10,00) x A4) = 025([0,00) x 4)| +

Jumswar— [+ [
AN[0,T9] ANI0,T9) AN[min{T™%,T%} max{T9%,T™9}]

2,([0,00) x A) = 07([0,00) x A)| + (i, ) + [T° = T™] 0.

s o [
02, ([0, 00) x 4) /ﬁmﬁs

N[0,7%]

/uwwﬁ—/@wﬁ
AN[0,T7:9) AN[0,T9]

2,([0,00) x A) = 027([0,00) x A)| +

Therefore for every continuity set A of Hgy([(), 00) X +)

(000 x )= [ i
AN[0,T9]

from which we conclude that for all (z,y) € Z, chy has the decomposition Hgy(drdt) = ngy(dr;t)dt, with

ngy([O, o0);t) = pd(t). Also, since 10 E(r)@?gf(drdt) is uniformly bounded and ¢ is superlinear, we have
convergence of the first moments of the first marginal, i.e.,

/f W%Mt%/f7@cﬁ Vf € Cy(R).
R

Hence for q° defined by ui(t)qu(t) =I5 rngy(dr; t), we get that for all (z,y) € Z

/‘f B ( ﬁ%/ FOEB (e, (Hdt, Vf € Cy(R). (5.10)
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Using the fact that d(u™°, @™°) — 0 and (5.6), we get

Al 5/\t
ORI S B O O e ARy A OISRt
(z,y)EZ

for a.e. t. Applying (5.10) for suitable choices of f and using (5.11),

oAt
=m + Z Umy/ Mx Qxy s)ds

(zy)eZ

for a.e. t, and since the left side is cadlag and the right side is continuous in the last display, equality
holds for ¢t > 0. We conclude that q° is the control that generates u®, and we also already noticed that
ui(t)qu(t) =y rngy(dr;t). Finally, since p™9(T™%) € K5 and d(u™?, u®) — 0, by continuity of u® we get
u®(T°) € Ks. As discussed below (5.5), this concludes the lower bound proof.

6 Upper bound
Before we proceed with the proof of the upper bound

lim sup Vi2(m") < Vi(m),

n—oo
we establish some preliminary lemmas. In the following lemmas, we make use of Tp,, Uy, and Fyy, defined

n (4.1), (4.2), and (3.3) respectively. For the properties of Fj,, see Lemma 3.7.

Lemma 6.1 Let m € P.(X), and q € Uy, be such that (,q) € Tm. Given T' < oo and € > 0, we can find
ai,az,as € (0,00) and q € Uy, with (ft,q) € Tm, such that

a1 < inf Quy(t) < sup Gzy(t) < ag, inf G, (t) > a3, sup ||p(t) — @) <e,
" (z,y)€Z,t€[0,T) y( ) (z,y)EZ 4€[0,T] y( ) z€X,te[0,T) ( ) t€[0,7] H ( ) ( )H
(6.1)
and Z / ,U,x :(:y qu dt < Z / ,u:(: :J:y qgcy( ))dt
(z,y)eZ (z,y)€Z

Proof. Recall that m € P.(X) implies m, > 0 for all z € X. Let v(m,t) be the solution to the
equation ©(t) = yv(t), with initial data m. By Remark 4.6, we know that there exists 1 > a > 0 such that
v(m,t) € Py(X), for every ¢t € [0,7]. We can assume without loss that the right hand side on the second
line of (6.1) is greater than zero, since if not true then the controlled rates are v and the conclusion of the
lemma is automatic. For § > § > 0, let

() = d(m, ) + (1= d)u(), (6.2)

and note that pl(t) > 0 for every ¢t € [0,T] and = € X. Therefore, for § as above and (z,y) € Z, we can

define
dvg(m, )

1= 6) 1 (-
wﬁmum+wwfo (6.3)

119,
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Then it is straightforward to check that (u’,q°) € Ty,. Moreover, since 5VZ§7(?)’t) + (1;‘?(’29)”@) =1 for all
t € [0,T], by the convexity of F we obtain

> / 1o (1) Fry qu dt Z / po(t acy( 5yzgm’t)+qmy(1_5)”x(t)>dt§

é
xy EZ ,y EZ x(t) :U’x(t)
5% (1— 5 -
Z/ )xy %‘deZ / u() Fay @y (t)dt < (1— 52 /Mx Foy (quy(t))d,
(z,y)EZ (z,y)EZ (z,y)€Z

where in the second inequality, we used the fact that F'*°(7y;y) = 0 [see Lemma 3.7]. Therefore, we get a
couple (,u5, q5) € Trn with cost strictly less than the initial one, and with p® that satisfies

(1= Opalt) _  (1-0)

4
>
pa(t) = da and pS(t) T da+(1-0)

=c<]1, (6.4)

for all ¢ € [0,T]. However, since this couple does not necessarily satisfy condition (6.1), we modify it even
further. Specifically, we pick M € (2ymax, 0) big enough such that

> / b (t) [min {2, (8), M} — ab, (1) dt < W (6.5)
(z,y)e2
and define
/ Z £ (t) min {qmy( ), M} Vgydt. (6.6)
(z,y)€Z
Then

M(SI,M() Ma: ‘<HH5M) Mls(t) (6.6) Z / ,Ucc z (t) — min{qu(t),M}))vwdt

< ¥ [ o (- min{qiyu»M})\ukudt (67)
(:Jc,yEZ
<3 Z/ 1) () = min {2, (0. M}) ) &t < a1 = V),
(zy)ez

and therefore for ¢t € [0, 7],

(6.4) (6.7)
WM ) = ) = [N @0 = Wb 0] 2 b — SN @)~ ih(1)] 2 asve (6.8)
We also get
SM 4y | (6.7) - (6.4)

pa(t) min, p,(t)
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or

é é
t 1 t 1
/;ﬁ; ) > and '?3"\/5 ) < — = ﬁ (6.9)
pe(t) T 2— e WMy Ve e
We deduce that u®M(t) € P,(X), for all t € [0,T], and therefore can define
s min{ad, (8), M} (1)
Q;vy (t) - §,M
pa (t)
which will give (u®M, g>M) € T,,,. We can see that (6.1) is satisfied, since by (6.3) and the first inequality
in (6.9) for the bound from below and the second inequality in (6.9) for the bound from above we have

Ve

Cc

; (6.10)

Yy Ovz(Mm, *)
2
It is worth mentioning at this point that trying to get an estimate for the cost of (p q , with respect
to the cost of (u‘s, q‘s), would require some extra properties of F'. However, we can obtain an estimate of the
cost (,u‘S*M .qM ) with respect to the cost of the initial triplet (u, ), by utilizing only the convexity of Fy,,
and choosing the right parameters. Using the fact that F,, is increasing on [.,,00) in the first inequality,
and that Mu‘;(t)/,ug’M(t) > Yy by (6.9) and M > 2v,,,

5.0 (6.10) min {qu (1), M} Hi (t) qu (t):u(sz (t) (6.3)
P (4100) = ( p (1) ) - ( ey )

o(t Svg(m,t 1— 8) gt Svg(m,t 1—8) gt
o <u§ﬁ()t) (m ué(t) a0 uizg | )>> " (M Mé’(M Hean e )> |
However, from (6.4) and (6.9), we have

(L= 0pa(t) _ (1= 0)palt) ps(t) _ Ve
M (t) et My e

Therefore using the convexity of ' we have

<@ty <M

5,M7 6,M)

(1 _ (1—5)#x(t)>
F 6 el <><1—5>Mx<f>>_ 2w, elml) | Lok
zy | fxy Ty —Lxy Yy Y
™ (1) ™ (1) (1 — 7(1“”’“(”> ™ (t) ™ (t)

5, M
pz (1)

. (1 - (1—5)mc(t)> 7, ( vz (M, 1) ) L 0= 0n() Fuy (42 (8).-

Yxy
pa (1) pa (1) — (L= 0pa(t) ) ™ (8)
Combining (6.11) and (6.12) and then using (6.2), we obtain

WM () Fry (a2 (8))

(6.12)

ovg(m,t)
(t) = (1 = 6)pa(t)
vz (m,t)
(t) — pa(t) + vz (m, 1)

< (ui’M(t) —(1- 5%(75)) Fiy (mﬂm ) + (1 = 6)pa(t) Fay (qzy(t)) (6.13)

= (15 (1) — 138) + Dva (M, 1)) Py (v 5 > (1= ) () Fry (d (1))
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We can make |ud™ (t) — pd(¢)| uniformly as close to zero as desired and therefore we can make the quantity
Yy e M(t) 6”““((";?6 ) as close to 7,y as desired by picking M sufficiently large. Since Fyy (7zy) = 0 and
N Vg

Foy () is continuous on (0, c0) by Lemma 4.5, we can pick M < oo such that for every ¢ € [0,T],

vy (m,t) 1 (T
<%yﬂg T (m’t)> < [ o)y lan(5)s (6.14)

Then from (6.13) and (6.14) and the fact that v,(m,t) <1 and (6.7), for ¢t € [0, 7]

2 / qu ()) < > / (20) (2{[/ 112(5) Fay (Qay (5 ))ds>d

(z,y)eZ (z,y)eZ
4 / (1= 0 (1) Foy (@) dt = 3 / 1 (8) Fay (g () .
0 (z,y)EZ

|
Next, we are going to prove the following result.

Lemma 6.2 (Law of large numbers) Let T' € (0,00) be given. There exists a constant ¢ < oo such that
if (W) € TE (see (2.6)), and (v,7) € Tm, then

P QSE&F’T " (0) = vim )] > ) < (6.15)

Proof. We have
t 00 1 t 00
||u”<t>—u<m,t>||§z' /0 | om0 dsdn) = [ [ s )dsde

1[07%(8)%1/ ) y (dsdr) / / Lj0,m (s)yzy) (T)dsAT

t 00
1[0,},&2 (S)’wa] (r)der - /0 /[) 1[07Vm (mvs)'wa] (T)ds

For a constant K that depends on d and the maximum of 7y,

t e’} ¢ o
Z '/0 /O 1[07,‘12(8)73:?4} (r)dsdr B A /0' 1[07%(7”78)%:?4] (r)dS
(z.y)

Hence by Gronwall’s inequality, for r € [0, T

< K sup [[p"(s) —v(m,s)].
0<s<t

" (r) — v(m, )| < e sup
O<t<7’

1[0,uT $)ve] ) y(dsdr) // Lo, (s)70) (T)dsdr|
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Using the Burkholder-Gundy-Davis inequality as was done to obtain (5.9),

(Sup / / Lio,un (s) %y] ) dsdr / / (0,427 (5) V] (r)dsdr| >
t€[0,T]

1"(8) — v(m, )| 2
P sup [|[p"(t) —v(m,t)|]| >e] < ,
t€[0,7) ev/n

and hence

which is (6.15). m
We now obtain the following result.

Lemma 6.3 The sequence V'™*(m) is bounded, uniformly in n and m € P(X).

Proof. Let 7 = diameter(P(X)). By Remark 4.6, there exists a > 0 such that v(m, 7) € Pa,(X) regardless
of the initial data m. We can further assume that P,(X) N K° # (), and in particular that there exists an
element m such that B(m,a/2) C Py(X) N K°.

Since m € P,(X), the first part of Theorem 4.7 implies that for every point m in P,(X) we can find a
control q,,, with the following properties: there is a unique g such that (w, g,,,) € Tm; i is a constant speed
parametrization of the straight line that connects m to m in time Ty, = |[[m — m||; and the control q,,
satisfies

Yy < gm xy(t) < ;

for t € |0, T{m}], (z,y) € Z, where ¢; > 0 is a constant that does not depend on a. For every m, we let

Gmazy(t) t < |m —m|,
oy (1) — m.ay(t) | 7 |
Yy > ||m - m”a

denote the control that takes m to m in time ||m — m||, in the sense that it was described above, and after
that time is equal to the original rates.

For ¢ € N we define a control for the interval i7 <t < (i + 1)7 as follows. Let f(t—) denote the limit of
f(s) from the left at time ¢, and recall that p(m,-) is the straight line that connects m to 7 in time Ty.,,
where m is fixed and we explicitly indicate the dependence on m. Then set

o) — {qmy<m, t— i) (supegir a(m, ) — (D)) < §) and (u"(i7) = m € Po(X)
xy -

Yy otherwise.

The idea with these controls is that, within each time interval with length 7, the control considers the

starting point m, and then if m € P,(X), it attempts to force the process to follow the straight line to

m. If m ¢ P,(X) or the process goes close to the boundary of the simplex P(X) \ P«(X), then we just use

original rates to push the process inside P,(&X’). Since all controls used are bounded from above and below,

the total cost is a multiple of E[T™]. Thus we need only show this expected exit time is uniformly bounded.
By using (5.9), we can find constant ¢ < oo such that

IF’( S () — p(m, 1) =

telir,(i4+1)7]

u"(it) =m € Pa(X)> < C\/Qﬁav

e
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from which we get

B(I" > (i+ rlu"(ir) € Pa(X) < _inf B[ sup [lu"(t) — p(m, )] > 2
mePa(X) \telir,(i+1)7] 2

") =m|<c 2
p (i) )S\/ﬁa'

By Lemma 6.2, we have that for some ¢’ < oo

a
P( swp (1) = vlm. 0] > &
telir,(i+1)7]

which implies that

P(}Ln((i +1)7) ¢ Pu(X)

a
p"(it) P, X) < inf P sup ||p"(t) — v(m,t)||>=
(i1) € Pa(X) 2PLI te[ir,(i—&-l)J]‘ (t) —v(m,t)[[25

Thus the probability to escape in the next 27 units of time has a positive lower bound that is independent
of n and the starting position. This implies the uniform upper bound on the mean escape time. m

Now we proceed with the proof of the upper bound.
Proof of upper bound. We will initially assume that m is in P,(X), for some a > 0. Recall that
Vik(m) < co. Let € > 0. By the definition of Vi (m), we can find a pair (i, q) € Tm and a T € [0, oo], such
that

T
/0 S pe(t) Fay (Guy(8)) + R(u()) | dt < Vie(m) +c.
(z,y)EZ

Since we assumed that R is bounded from below by a positive constant for every compact subset of K¢, we
can furthermore find a & such that for finite time 79 € [0, 00) we have

T5
/0 S pa(t) Fay (@uy(0) + R(u(1)) | dt < Vie(m) + ¢,
(z,y)EZ

and d(pu(T°), K) < §. By the second part of Theorem 4.7, we can extend the path so it can reach a point 7
of K, with extra cost less than e. Since K = (K°), by a second application of Theorem 4.7, we can assume
that m is an internal point of K, by again adding an extra cost less than e.

Let r > 0 be such that B(m,r) C K°. From Lemma 6.1, without any loss of generality, we can assume
that there exist a1, as, a3 € (0,00) such that

r
a1 < inf Quy (1) < sup Quy(t) < ao, inf t) >as, |u(T)—m| < =, 6.16
. 2y (1) - wy(t) < az o s pa(t) > az, [W(T) —m| <3 (6.16)

where the S used above is the one obtained by starting with 7% and adding segments as just described.
Finally, we can assume the existence of a r; > 0 such that for every point m in B(m,r;), we can find a
path like the one described above, by connecting m with a straight line to m. Of course this could generate
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ay,az,as, S different from the initial ones, though universal for all m in B(m,r1), (see Theorem 4.7 for
details).

Now let m”™ be a sequence that converges to m. For big enough n, we can assume that m"™ € B(m,ry).
By the continuity of F' on compact subsets of (0,00), we can find r > ry > 0 such that if mi,mq € 73%3 (X)

and ||m; — mal| < ro, then for every g that satisfies (6.16), we have

>

(z,y)EZ

m €
M1 2 Foy (quy) — M2 2 Fry (%y m;“) ' < 5 (6.17)
T

Now for every n € N, we define the following control for the time interval [0, S],

p(t—) : _n
(1) = {qmy(t) LU i supgepog (8 — (@) < 72 (6.18)

Yeeys otherwise.

Note that either pu™ enters K by time S, or the control has switch to 7., before S. For every n, we
define an auxiliary stopping time S™ = inf{t € [0,S5] : [|u"(¢t) — p(t)|| > r2}, and also we define R0 =
SUPmep () R(m). We can get an estimate of the cost accumulated up to time S, for the pair (u", q@") € Toin.
Specifically,

S
E / SO ) Fay (a7, (D) + R(p"(2)) | dt

(z,y)EZ

S
<E /0 Z 11y (6) Fy (i () + R(p" (1)) At L p o o () (0| <ra}

(z,y)EZ
+P<Sup (" (t) — (t)H>7“2> X
t€[0,5]
S WO Ey ((0) + R 0) | ] sup [167(0) — ()] > 72| + SR
(z,9)€Z t€[0,5]

Now by (6.18) the last quantity is equal to

5 n 7szl(t_) n
E /O > up(t) Py (qu(t)ﬂux(t) >+R(u () ) 4t Legup, o 6 sty —pen (0)l<ra}

(z,y)EZ

+1P’< sup " (t) — p@)] > ?”2) X

tel0,5]

" n :ug(t_) n
B[ | X ir, (a0 ) o) |

(z,y)eZ

sup ||p(t) — p" ()| > r2| + SRimax
te[0,5]
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Then using (6.17) with mj » = px(t), me, = p(t—), for big enough n we can bound

T
E /0 S () Fay (42, (8) + R(u" () | dt

(z,y)EZ

above by

Vik(m) +2e+P ( sup [|p"(t) — p(t)]| > r2> (Vi (m) + SRmax + 2€).
t€[0,5]

By using (5.9), the probability that there was no exit in the time interval [0, S] is

t€[0,5] Vnry
Letting Vihax be the upper bound identified in Lemma 6.3 for the given a > 0, the total cost satisfies

P(S" > 5) <P ( sup " (1) — p(@)] > 7‘2) <o

S
Vg(m") <E /0 D () Fay (47,(8) + R(p™ (1)) | dt+V(u™(S A S™))
(z,y)EZ

< Vk(m)+2e+P ( sup ||[p"(t) — p(t)| > 7“2) (Vi (m) 4+ SRmax + 2¢) + P(S™ > S)Vinaa
te[0,5]

c
\/ﬁTg '

By sending n to infinity we get the upper bound if m € P,(X) for some a > 0. Next let m € P(X) \ P (X).
Let ty < € be such that Vg (v(m,tg)) < Vk(m) + €, where v(m,t) is the solution to the original equation

after time ¢. We can find a » > 0 such that for every m € B(v(m,ty),r), Vk(m) < Vik(m) + 2¢. If ¢"(m, t)
is an e-optimal control that corresponds to each initial condition m, we define the control

gt t <to
Gy (t) =14 ’
me(#’ (to),tfto), t > o,

< Vi (m) + 2€ + 2(SRmax + Vinax + 2€)

which gives

™
VE(m") <E D H(s) Py (any(s) + R(u"(s)) | dt
0 (z,y)e2

<E /O S ) Ey (0, (9) + R(u"(5)) |t

(z,y)EZ

.
PE| [ 3D B (a7 (1), 5 — ) + ROu(5)) | di| < toRons + B[V (1" (0))
to (z,y)EZ

Lemma6.3

< €Rmax + P (1" (to) € B(v(m,to),7)) (Vk(m) +2€) + P (u"(to) ¢ B(v(m, 10),7)) Vinax

< Vig(m)+ (24 Rmax)e + P (p" (to) ¢ B(v(m,t),7)) Vinax.
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Now by an application of Lemma 6.2, we get that the last term goes to zero as n goes to oo, and since € is
arbitrary, we get that limsup V2(m") < Vi (m).
|

A Properties of Hamiltonians

In this section we establish Lemma 3.4 and Theorem 3.3. We start with the proof of Lemma 3.4.

Proof of Lemma 3.4. To prove the exchange between supremum and infimum, we will apply a modifica-
tion of Sion’s Theorem (Corollary 3.3 in [25]), which states that if a continuous G(u, ¢) is quasi-concave for
every u is some convex set U and quasi-convex for every ¢ in some convex set Q, and if one of the two sets
is compact, then we can exchange the supremum with the infimum. We start by investigating the validity
of these properties when G' = L. Since £ is convex, for each u > 0,

q u
ny(ua Q) =q§ +ul (*> - ’nyny <>
U Yy
is convex with respect to ¢. It is easy to see that u +— Ly(u,q) is not concave for each ¢ > 0. However we
now show that under Assumption 3.2, for each ¢ > 0, u — Ly (u, q) is quasi-concave, or equivalently, that
{u>0:Lyy(u,q) > c} is convex for every ¢ € R. By differentiating with respect to u we get

q rf U
OuLlay(u,q) = ——=+1—(C — .
.0) = =4 41 (G ()
If we prove that for each ¢ the set of roots for 9, Ly (u, q) is an interval or a point we are done, because a real
function that changes monotonicity from increasing to decreasing at most once is quasi-concave. However

OuLgy(u,q) has the same roots as Q(u) = u(Cyy)’ (%) —u + q. By part 1 of Assumption 3.2, Q(u) is
increasing, which gives what is needed.

Thus, we are almost in a situation where we can apply Sion’s theorem, except that our sets are [0, 00)
and hence, non-compact. However, as we explain below, we can still apply this result by using the fact that

limg o0 Lazy(q,1) = 0o. If we prove that

inf  sup Lgy(u,q) = lim inf sup Lg,(u,q),
e T

then we are done, since by Corollary 3.3 in [25]

inf  sup Lgy(u,q) = lim inf sup Lgy(u,q) =

a7 gl Sy
lim sup inf L;,(u,q) = sup inf Lyy(u,q).
r~>oou€[r7ﬂ q€[0,00) wy( ) u€(0,00) 9€[0,00) Y )

Let M := inf,c(0,00) SUPye(0,00) Lay (U, q). We will assume that M < oo, and note that the case M = oo
is treated similarly. Since limg_o0 Lgy(g,1) = 00, we can find ¢ such that Lg,(q,1) > 2M for every ¢ > q.
Now we have

inf  sup Lg,(u,q)= inf sup Lg,(u,q),
oo uiomey D = (Mg ey et O
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and
inf 5up Lyy(u,q) = inf  sup Lgy(u,q),
qe[O,q]ue[ 1] w qE[(),OO)uE[r,H o
which gives

inf  sup Lgy(u,q) = inf sup Lyy(u,q) = sup inf Lyy(u,q) =

7€[0,00) ye(0,00) 9€[0,4] ue(0,00) u€(0,00) 9€[0,4]
lim su inf L., (u,q)= lim inf sup Lg,(u,q) = lim inf sup L., (u,q).
"7 ue [rl?%] q€[0,q] () = 0 g€0.d] ey pl] i) = 700 ¢€[0,00) ,, [rpl] y(u-a)

Proof of Theorem 3.3. Let H~ (respectively, H) denote the left-hand side (respectively, right-hand
side), of (3.7). Since each term in the sum that generates H™' is bigger than the corresponding one in
the sum of H~, we get equality for all of them. By the theory of the Legendre transform we know that
inf,e0,00) SUPye(0,00) 19€ay + Gay(u, @)} is actually a concave function. Since we can exchange the order
between the supremum and infimum, then sup,,c (g ) i0fge(0,00) 122y + Gay(u, q)} must be a concave function
as well. By using the formula

sup inf {qf + Ga;y Uu, q Z mx’)/a:y a:y (_E* (_ﬁmy))

u€(0,00) 9€[0,00) (@y)eZ

we have that (Cyy)* (—€* (€)) = (Cay)” (1 — €°) must also be concave. By differentiating with respect to &
we get, €% ((Cuy)™)" (1 —€8) — €8 ((Ciy)®) (1 — €f) < 0, from which, by using the identity (f*) = (f')7!,

we get
/
(€))7 (1= ) =t ()" (1) <0
By substituting @ = 1 — e we get

(1 - a) (((ny)’)_1>, (@) — ((Coy)) " (@) <0,  with @i <1
(@) <0, witha<1

(Cay) (cm')‘l(a))
(1- (M) @ — <0, with (Cyy) (1) <1
r(Ca ) ( )+ (Cay)' (r) =120, with (Cyy) (r) < 1.

Now the last inequality implies that either (Cy,)" (u) > 1 or that u(Cyy)’ (u) — u is locally increasing
and even more that if (Cyy) (ug) > 1 for some ug, then it must remain like that for every u > wg. If that
was not the case then we can find u; > ug such that ui(Cqy) (u1) — w1 < ¢ for some negative ¢, while
u0(Cry)’ (ug) — up > 0. By a suitable application of the mean value theorem we will get the existence of an
7 that the last inequality fails. If we set @iz, = inf{u : (Cyy)' (u) > 1}, then the Assumption 3.2 is recovered.
n
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B Properties of I,

Proof of Lemma 3.7. (1) We have

q U q Yzy q
F.,(q) = sup {ué =) — Y2 C <>} > Yl () — Yy Cx () > Yool () > 0.
y( ) ) (U) Tay*ay Vzy Y Yzy v Yzy Ty Yy

u€ (0,00
(2) We have
Fry(Vay) = G = o(Tw o o
wy(Yay) = sup Goy(u,Vay) = sup qu Yy Cay
u€(0,00) 1€(0,00) U Yy
u
= Ssup {'me log Yoy — Vxy log u — Yoy + U — 'Ya:yoxy () } s
u€(0,00) Yy

and by applying part 2 of Lemma 3.6
U
’Ya:yccr:y () > Yy IOg Yzy — Yxy 10gu — Yoy T U.
zy

Therefore Fyy(vVzy) < 0. However, by part (1) of this lemma Fy(vzy) > 0, and therefore the equality follows.
(3) By definition Fyy(q) = supyue(o,00) Gay(u;q)- Let a € (0,1) and 0 < q1 < g2 < o0, and let ¢ =
aqi + (1 — a)ga. Using the convexity of Gy(u,q) for fixed u as a function of ¢, we have

Fiylaq + (1 —a)g2) = sup Gay(u,aqr + (1 — a)ge)

u€(0,00)
< s(up ){CLny(U, Q1) + (1 - G)ny(u, QQ)}
u€ (0,00
<a sup Ggy(u,q1)+(1—a) sup Ggy(u,q2)
u€(0,00) u€(0,00)

< aFpy(q1) + (1 — a)Fry(ga).

]
For the proof of Lemma 4.5 that is given below, we will use the following auxiliary lemma. Recall the

definition of G in (1.8).
Lemma B.1 If {C"} satisfies Assumption 4.3, then the following hold for every (x,y) € Z.

There exists a positive real number M, that does not depend on (x,y), such that for the decreasing

function M%y : (0,00) = [0, 00), given by
1 Ya 1/
M:cy(Q) = min Py:Ey <qy) 7M )

we have that G,y(u,q) is increasing as a function of u on the interval (0, M;y(q)]

1.

There exists a decreasing function M3, : (0,00) — [0,00), with M2,(q) > M, (q), such that Guy(u,q)

is decreasing as a function of u on the interval [Mny(q), oo) .
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Proof. By taking the derivative with respect to u in the definition (1.8) we get
q [ U
———(C — | + L
Ly ()
(1) By part 2 of Assumption 4.3 there exists M € (0,00) such that if u < M, then
p+1
_q_K@y<U>+12_q+@m) L1
U Yy U U

and by taking u < 7y ('yxy/q)l/p we get

ST

p+1
+ (2T +1z-24 24050
u u u

1
M (¢) = mi 1w\
Y (q) = min ’me q ’ 9

we have —2 — (Cy,)’ <7:—y> +1 >0 on the interval (0, M, (q)].

u

Therefore for

(2) By applying part 3 of Assumption 4.3, we get that there exists decreasing ng(q) < 00, such that if
u > ng(q) then

u u u q
ey () -t (B.1)
Yoy \Vay)  Yay | Vay
Then ng(q) = max{Méy(q), ng(q)}, is decreasing and bigger than M%y, and using (B.1) we get

q P U q  Vxy U U U
()t (e () ) <o
w (O (’m) u o u 'ny( 2 Yey) Yoy

on the interval [M?,(g),00). ®
Proof of Lemma 4.5. (1) Let € > 0, and ¢ > €. By Lemma B.1, we have that G, (u,q), as a function
of u, is increasing on the interval (0, M}, (q)]. Therefore for all u € (0, M, (q)] we have

1 (2) - (1) i () o (222 2 20 (1)

< qlog <M%Z(Q)> + M, (q) < qlog <M%Z(Q)> + My, (e)

< qlog (q) — qlog (Mg, (a)) + My, (e)
M, (M2, (0 ) ,
< q IOg (Q) - qug (sz(q)) + Mry(e)'
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By the second part of Lemma B.1, we have that Gy (u, ¢) is decreasing on the interval (M2, (€), c0). Therefore
for all u € (M2, (€), o0)

ul (%) — ey Clay <7“wy> < M2 ()t (M%Z(e)) — YoyCoy (Mfiﬁ) ) < M (e)! (Mﬁ,(@)

gm%< 1 >+M@@

M2, (e)
M2, (@) <M, (0 , )
< qlog (q) — qlog (M, (q)) + M, (e)
ML, (q)<M2,(q)
< qk)g (q) ) log (M;y(q)) + MzQy(e)

Finally for the interval [M,, (q), M2, (€)] we have

ul (%) — Yoy Cry (7“) <ul (%) =gqlogqg —qlogu—q+u
zy
< qlog q — qlog(M,,(q)) + M2, (e).

Now if we recall the definition of M, given in Lemma B.1 and set M (q) = max{M? (q) : (z,y) € Z},
then

Guy(u, q) < qlog ! v + M (e),
3 Yzy
min {ymy (T) ,M}

and by taking supremum over u we end up with F,,(q) satisfying the same bound.
(2) This is straightforward since F, is finite on the interval (0,00), and convex. =

C Tightness functionals

Proof of Lemma 5.1. Let ¢a > 0 and {(#",7™)} be a deterministic sequence in S with pu™ absolutely
continuous such that

Tn
[ et onaerarm <e
0

and | (t)| = 0 for t > T™. We need to show that H has level sets with compact closure. Since all elements
are positive, we have that 7™ < c¢y/cy. Let @™ denote the restriction of pu™ to [0, ca/c1]. If we prove that g"
converges along some subsequence then we are done. Using the inequality ab < e“® + ¢(b) /¢, which is valid
for a,b > 0, and ¢ > 1, we have that

) =6 < [ il < (- s)e 2,

This shows that {fi"} are equicontinuous. Since " (t) takes values in the compact set P(X'), by the Arzela-
Ascoli theorem there is a convergent subsequence.
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