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ABSTRACT. The study of high-dimensional distributions is of interest in prob-
ability theory, statistics and asymptotic convex geometry, where the object of
interest is the uniform distribution on a convex set in high dimensions. The
(P spaces and norms are of particular interest in this setting. In this paper,
we establish a limit theorem for distributions on ¢P spheres, conditioned on a
rare event, in a high-dimensional geometric setting. As part of our proof, we
establish a certain large deviation principle that is also relevant to the study
of the tail behavior of random projections of ¢P balls in a high-dimensional
Euclidean space.

1. INTRODUCTION

The classical Poincaré-Maxwell-Borel lemma (see, e.g., [15, Section 6.1] or [33])
states that for any fixed number of coordinates of a random vector drawn uniformly
from a high-dimensional Euclidean sphere, the joint distribution of the coordinates
is approximately standard Gaussian. An analogous description (recalled precisely
in Proposition 2.2 to follow) holds in the setting of P spheres, for general p € [1, o0],
which yields an asymptotic probabilistic characterization of the geometry of an ¢
sphere.

In this paper, we establish a conditional analog of the aforementioned uncon-
ditional result. Roughly stated, we prove the following asymptotic probabilistic
description of the geometry of an ¢P sphere under an £¢ norm constraint:

For 1< q < p< oo, in high dimensions, a random point on the ¢P
sphere of R™ conditioned on having a sufficiently small {7 norm is
close (in the sense of distribution) to a random point drawn from
an appropriately scaled {1 sphere of R™.

That is, conditioning on a small ¢¢ norm induces a probabilistic change that admits
a geomelric interpretation.

As part of our proof, we establish a large deviation principle for the empirical
measure of the coordinates of a random vector distributed according to the uniform
(cone or surface) measure on a suitably scaled P sphere in R™, for p € [1, oc], with
respect to the g-Wasserstein topology for every ¢ < p. This large deviation principle
is also of relevance to the study of the tail behavior of random projections of ¢
balls.
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The remainder of the paper is organized as follows:

e SECT. 2: We precisely state our main result, Theorem 2.3, a conditional
limit theorem for #P spheres.

e SECT. 3: We establish a large deviation principle (LDP) for the sequence
of empirical measures of the coordinates of the random vector nl/?X (p)
distributed uniformly on the sphere n'/?S!~!. We emphasize that the
aforementioned LDP holds in the g-Wasserstein topology for every ¢ < p
(which is stronger than the usual weak topology), and as summarized in
Remark 3.4, we crucially utilize this fact in order to prove Proposition 4.1,
as well as to establish a variational formula in a related paper [19, Theorem
2.7].

e SECT. 4: We apply the LDPs of Sect. 3 and recall the “Gibbs conditioning
principle” in order to establish the proof of our main result Theorem 2.3.

2. STATEMENT OF MAIN RESULT

To precisely state the unconditional limit theorem for ¢ spheres, for n € N, let
| llnp denote the 7 norm on R, and write Sp~' := {a € R" : ||a||n,, = 1} for
the unit ¢P sphere in R™. There are two natural notions of “uniform” measure on
the sphere SZ’ls the cone measure 7y, p, and the surface measure oy, 5, defined in
Definitions 3.5 and 3.15, respectively. Assume that all random variables we define
are supported on a common probability space (Q,F,P).

Definition 2.1. For n € N, p € [1,00], we write X (") = (X{"’p),...,XT(Ln’p))
for an n-dimensional random vector in S;}*l, distributed according to either the
surface measure o, , or the cone measure 7, , (i.e., all of our results hold under
either distribution for X (™?) unless explicitly specified otherwise).

Let 1, denote the generalized Gaussian distribution with location 0, shape p,
and scale p!/P. That is, for p € [1,00),

(2.1) ip(dy) 1

- WPy yeR
2p /T (1+ 1) vy

For p = oo, define

poo(dy) = $111)(y) dy, yER.
The aforementioned “fP version” of the Poincaré-Maxwell-Borel lemma is stated as
follows. Let = denote weak convergence of probability measures, that is, given
probability measures p, pn,m € N, on R, the notation pu, = p implies that
[ fdpn — [ fdp for every bounded continuous function on R.

Proposition 2.2. Fizp € [1,00] and k € N. As n — oo,
Law [nl/p(an’p), e ,X,g"’p))} = uf?k.

This result is due to [30, Theorems 4.1 and 4.4] in the case of the cone measure,
and [27] in the case of the surface measure. In addition, the work [29, Theorems 3
and 4] offers a simplification of the proof for both the cone and surface measures.

Note that the scaling n'/? is natural from a geometric perspective, due to the
following reasoning: the typical coordinate of the random vector X () (uniformly
distributed on the unit ¢P-sphere of dimension n) has length n =1/ (since the n-fold
sum of p-th powers of the coordinates is constrained to sum to 1). Therefore, in
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order to have the joint law of the coordinates of X (") be non-trivial, one must
scale the random vector X ("P) appropriately; that is, by a factor of n!/?.

Our main result, Theorem 2.3, yields a conditional analog of Proposition 2.2. To
state this precisely, we first set some notation. For 8 > 0 and ¢ € [1, o0, let

(2.2) Agﬁf) -— Law {51/qn1/q(X{”’q)’ o ’Xlgn,q))} _

k)

In addition, let X;ﬁz’)‘q denote the conditional law,

(23) AR ._p (nl/p(xf’l@,...,x,g”’p)) € - ‘ Lint/ex e e < 5).

n,plg "

For 1 < ¢ < p < oo, define

(TN
” et ()

Lastly, let p be a metric which metrizes the topology of weak convergence of prob-
ability measures (e.g., Lévy-Prohorov, bounded Lipschitz) [7, Appendix IIT].

Theorem 2.3 (Conditional limit theorem). Assume 1 < g <p < oo, and 8 < B, 4.
Then, for fized k € N,
(2.5) lim lim_ p ( A ,\gg&m) = 0.

We defer the proof of Theorem 2.3 to Sect. 4. It is worth emphasizing that a
suitable choice of the conditioning event, as in the expression (2.3), is required to
obtain a meaningful conditional limit theorem that has a geometric interpretation.
As discussed above, the typical coordinate of the random vector X (™?) has length
n~ VP and so %Hnl/I’X("’p)H%ﬂ is typically an order one quantity. Thus, for all
sufficiently small 3, the event %Hnl/pX(”’p)H‘}w < B, would be expected to be a
rare event, in that its probability decays to zero. Theorem 2.3 shows that for the
subset of 8 that lies in the interval (0, 8, 4], the conditioning event

(2.6) Appg={aecR": %||a||317q < g}

provides a geometric example of a rare event in high dimensions for which a geo-
metric conditional limit theorem can be established. A basic intuition from the
theory of large deviations suggests that for large n, given a rare event such as
Ap g+e, the conditional law will be close to a “tilted” measure under which the
event A, g4c is in fact typical. The goal of finding a measure under which the
event A, gt is typical motivates the scaling B4 and the random variable X (")
n (2.2). That is, it follows from the definition of ¢, 4 and 7, 4 that for all n € N
and € > 0, P(pYapt/ax(ma) ¢ A, p+e) = 1. Although the probability of the condi-
tioned event P(n'/PX("P) € A, 5, ) can decay exponentially to zero even for some
B > Bp.q, as explained in Remarks 4.4, 4.5, and 4.6, the restriction 8 < 3, 4 allows
for the conditioned event to admit the geometric interpretation, of converging to
the cone (or surface) measure on a scaled ¢, sphere in R™.

The preceding paragraph’s general ideas of conditioning and tilting have been
realized to great effect in statistical mechanics, where large deviations theory can
describe the most probable state of a system of particles under an energy constraint
(see, e.g., the surveys [6, 17]). Of particular utility is the so-called “Gibbs condition-
ing principle”, which transforms an LDP for empirical measures into a statement
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about the most probable behavior of the underlying sequence of random variables,
conditional on a rare event. A central motivation of this work is to employ such
a conditional probabilistic perspective in a high-dimensional geometric setting, by
investigating how LDPs can inform the analysis of “geometric” rare events in high
dimensions, like A,, g of (2.6).

More generally, this work continues a body of research that lies at the intersection
of large deviations theory and high-dimensional geometry. Properties of finite-
dimensional ¢P spaces have been well studied for many decades since they play an
important role in the geometry of Banach spaces. Recent years have seen a renewed
interest in their study in high dimensions, which falls under the rubric of asymptotic
geometric analysis, and is often facilitated by a probabilistic perspective (see, e.g.,
[3] and [32]). While central limit theorems for projections of ¢? balls (and more
general convex sets) had been established in several previous works (see, e.g., [23]), a
new large deviations perspective was adopted in [19, 18]. Specifically, it was shown
in [19, 18] that the sequence of one-dimensional scalar projections of a random
vector drawn uniformly from an ¢P ball in R™ satisfy (both quenched and annealed)
LDPs when p € [1,00]. Subsequently, an LDP for the norms of k,-dimensional
projections of these random vectors, when k,, grows with n, was established in [1],
and an LDP for the empirical measure of the coordinates of such k,-dimensional
projections was established in [21, 22]. The latter result holds in fact for a more
general class of random vectors, which includes vectors uniformly distributed in a
large class of sequences of Orlicz balls and certain Gibbs distributions. Subsequent
to the present work, a multivariate central limit theorem for ¢?-norms of random
vectors from /£, balls, and some related large deviation results were also established
in [20].

3. LARGE DEVIATIONS RESULTS

In this section, we state and prove a large deviation principle for the following
empirical measure: for n € N, p € [1, o0], define

1 n
(3.1) Lop = > Bpisox (-
i=1

In Sect. 3.1, we review some basic elements of large deviation theory. In Sect. 3.2
(resp., Sect. 3.3), we prove the LDP for (£, ,)nen in the Wasserstein topology,
assuming X ("P) is distributed according to the cone measure (resp., the surface
measure). This Sanov-type LDP complements the existing Glivenko-Cantelli-type
law of large numbers and Donsker-type central limit theorem for (£, ,)nen under
the cone measure [32, Theorem 1].

3.1. Background on large deviations. For a broad review of large deviations,
we refer to [14]. In particular, recall the following definition:

Definition 3.1. Let X be a topological space equipped with its Borel o-algebra, and
let P(X) denote the space of probability measures on X. A sequence of probability
measures (un)neny C P(X) is said to satisfy a large deviation principle with a rate
function I : X — [0, 00] if I(-) is lower semicontinuous, and for all Borel measurable
sets I' C X,

— inf I(z) < linrgicgf Llog pun (I'°) < limsup + log i, (I') < — inf I(z),

zel° n—o00 zel
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where I'° and T' denote the interior and closure of T', respectively. Furthermore, I
is said to be a good rate function if it has compact level sets. Similarly, we say the
sequence of X-valued random variables (£, )nen satisfies an LDP if the sequence of
laws (P o &, 1) en satisfies an LDP.

In the remaining sections, we will also make occasional reference to the following
related notion.

Definition 3.2. A sequence of probability measures (i, )nen C P(X) is said to be
exponentially tight if for every a < oo, there exists a compact set K, C X such that

limsup £ log 1, (K§) < —av.
n—oo

There are two particularly well known examples of LDPs. For one, Cramér’s
theorem (see, e.g., [14, Sect. 2.2.2]) establishes an LDP for the sum of i.i.d. random
variables, with the rate function shown to be the so-called Legendre transform of
the log moment-generating function of the underlying distribution. For another,
Sanov’s theorem (see, e.g., [14, Sect 6.2]) establishes an LDP for the empirical
measure of i.i.d. random variables, with the rate function shown to be the so-called
relative entropy.

For v, u € P(X), recall that the relative entropy of v with respect to p is defined
as

log dvyagy,  ify < ,
(3.2 o — | 18 g
400 else,

where v < p denotes that v is absolutely continuous with respect to pu. For g €
[1,00), define the g-th absolute moment map,

(3.3) mg(v) == / |z|?v(dx), v e P(R).
R
For q = oo, let
Moo (V) :=1nf{a > 0: v([—a,a]®) =0}, v e P(R).
For p € [1,00], define H,, : P(R) — [0,00] to be a modification of the relative

entropy with respect to p,, perturbed by some p-th moment penalty,

H,(v) == { H(v|pp) + %(1 —mp(v)) ifmy(v) <1,

(3-4) +00 else,

where we take the convention é = 0. We will show in Propositions 3.6 and 3.16
that (£, p)nen satisfies an LDP with rate function H,.

Our LDP holds with respect to the so-called g-Wasserstein topologies on P,(R),
introduced below.

Definition 3.3. Let ¢ € [1, 00|, and let
P4(R) = {1 € P(R) : my() < o0}.

We equip this space with the ¢- Wasserstein topology: a sequence (g, )nen C Pg(R)
is said to converge to pu € Py(R) (with respect to the ¢g-Wasserstein topology) if 1y,
converges weakly to p (denoted by p, = ) and mg(pn) — mq(p) as n — oo.



6 STEVEN SOOJIN KIM AND KAVITA RAMANAN

Remark 3.4. For an extensive review of the Wasserstein topology, and in particular,
to see that the definition given above is equivalent to alternative definitions of
the g-Wasserstein topology, see [37, §6]. We consider the g-Wasserstein topology
on probability measures (instead of, e.g., the weak topology or the T topology)
because we must consider a topology that is weak enough to allow an LDP to hold,
but at the same time strong enough to allow certain moments to be continuous
functionals of measures. In particular, we require a topology strong enough such
that the moment map m, is continuous for ¢ < p, which is used in the proofs of both
the Gibbs conditioning result of Proposition 4.1 and the variational formula of [19]
that relates “quenched” and “annealed” LDP rate functions for random projections
of /P balls.

3.2. LDP under the cone measure. In this section, we establish an LDP for
(Lnp)nen assuming X (P) is distributed according to the cone measure on Sg_l
defined below.

Definition 3.5. Let vol,(-) denote the Lebesgue measure on R™, and let 7, .,
denote the cone measure on Sg—l,
vol, ({ex i@ € S,c € [0,1]})

vol, (B, ) ’

’Yn,p(S) =
for S a Borel measurable subset of S;“l.

Proposition 3.6 (LDP under the cone measure). Let p € [1,00] and assume
X(p) Yn,p- For ¢ < p, the sequence of empirical measures (L, p)nen of (3.1)
satisfies an LDP in Py(R) with the strictly convex good rate function H,, of (3.4).

The proof of Proposition 3.6 is given at the end of this subsection.

Remark 3.7. The primary obstacle in the proof of Proposition 3.6 (which differen-
tiates it from the classical i.i.d. setting of Sanov’s theorem) is that the coordinates

Xi(mp), i =1,...,n, are dependent, by virtue of the fact that the vector X (P) ig
constrained to lie in the sphere Sg’l. Although LDPs for empirical measures of
random vectors with other dependency structures have been established (such as
[14, §6.3-6.6] for Markov chains or stationary sequences satisfying certain mixing
conditions, or [5] for empirical spectral measures of random matrices), none of these

apply in our setting.

Remark 3.8. It is natural to try to establish an LDP for (£,, ,)nen by exploiting the

fact that the sequence (X (Lp) x@p) .) can be viewed as an infinite triangular
array, where each row X (") for n € N, is an exchangeable vector. However, such
an attempt fails. Indeed, in [30, p. 653], which contains general large deviations

results for the empirical measure of a row-wise exchangeable triangular array, it is
stated that “Even in the simple case of binary valued finite exchangeable random
variables there is no general result for the LD behavior of [the row-wise empirical
measure].” The aforementioned quote is in reference to the result [36, Theorem 2].
That is, an exchangeable structure on its own is not sufficient for a general LDP
result (and in particular, not sufficient for an LDP for (£, p)nen). Instead, we take
a different route, which relies on the following preliminary results.

The analysis of the LDP for (£,, ,)nen is facilitated by the following probabilistic
representation for cone measures:
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Lemma 3.9 ([30, §3] and [31, Lemma 1]). Fix n € N and p € [1,00]. Suppose
XP) oy, o and let Y ™) ~ u®" . Then,

y (n.p)
3.5 xop) @ _ Y
(3 YT,
Some extensions of Lemma 3.9 can also be found in [3]. The preceding represen-

tation is used in the proof of the following result, which generalizes a result from
[4, Theorem 6.6] beyond the special case where p = 2 (for which the cone and sur-
face measures coincide, and the surface measure can be expressed in terms of i.i.d.
Gaussians). Specifically, the preceding representation of the cone measure in terms
of product measures allows us to use the approach of [4, Theorem 6.6]; namely,
we establish an LDP for sums of i.i.d. random variables in the space P(R) x Ry.
We then derive a more interpretable representation of the rate function via the
Donsker-Varadhan formula for relative entropy (see Lemma 3.11).

Proposition 3.10. Let p € [1,00] and assume Xmp) Ynp- The sequence
(Lnp)nen of (3.1) satisfies an LDP in P(R) equipped with the weak topology, with
the good rate function H, of (3.4).

To prove Proposition 3.10, we appeal to the following representation of relative
entropy; recall the definition of relative entropy given in (3.2).

Lemma 3.11 (Donsker-Varadhan; see, e.g., Lemma 1.4.3(a) of [16]). Let Cy(X)
denote the space of bounded continuous functions from X into R. Then, for all

v, i € P(X), we have

H(v||u) = sup {/ fdz/flog/ efdu}.
feCy(R) X X

Proof of Proposition 3.10. Let Y (™P) ~ u®" be as in Lemma 3.9, and let LY
denote the empirical measure of Y ("),

LY 1 f )
== (n.p)-
P n 4 y,; "
=1

Since (L) ,)nen satisfies an LDP in P(R) by Sanov’s theorem (see, e.g., [14, Sect.
6.2]), (L p)nen is also exponentially tight (recall Definition 3.2, and see e.g., [20,
Lemma 2.6]). Furthermore, due to the finite exponential moment E[e HY P, r] <

oo for [t| < 1/p, for m, as in (3.3), the sequence (my,(LY ,))nen satisfies an LDP
in R by Cramér’s theorem (see, e.g., [14, Sect. 2.2.2]), and hence (my(LY ,))nen is
also exponentially tight. As a consequence, the joint sequence (LY ,mp(L) )))nen
is also exponentially tight, with respect to the product topology on P(R) x Ry.
We claim (and prove below) that the joint sequence (L) ,my, (LY ,))nen satisfies
an LDP in P(R) x R, with the convex good rate function J defined as follows: for

A€ PR) and ¢ € Ry, let

36)  JOho) = s {/f Ady) —I—tc—log/

S ) +tlyl” up(dy)} ,
feCy R) teRrR R

where Cy(R) denotes the space of all bounded continuous functions from R to R.
Due to Cramér’s theorem for general Polish spaces (see, e.g., [14, Theorem 6.1.3]),

the sequence (L,’;p,mp(L,’;p))neN satisfies a weak large deviation principle in the



8 STEVEN SOOJIN KIM AND KAVITA RAMANAN

space P(R) x R, with rate function J of (3.6); that is, the LDP upper bound in
Definition 3.1 holds only for compact sets (see [14, pg.7] for a precise definition of
a weak large deviation principle). The full LDP with good rate function J then
follows as a consequence of the weak LDP combined with the previously established
exponential tightness (see, e.g., [14, Lemma 1.2.18]).

We now derive an alternative form of the rate function J defined in (3.6).
Note that for ¢ > -, we have log [y ef W+ (dy) = 4o0o. Define as Z,; =
Je €1 1, (dy) and note that for ¢ < 1/p, Z,, is finite due to the definition of s,
from (2.1), and serves as a normalizing constant that makes the following measure
fpt(dy) = —e”y' tp(dy) a probability measure. Using the fact that Z,; is infi-

nite for ¢ > 1 / p and the definition of relative entropy in (3.2), we can then rewrite
the functional J(A, ¢) defined in (3.6) as follows: for (), c) € P(R) x Ry,

J(A\ ) = sup {/f A(dy) —|—tc—logZpt—log/

t<L,FECH(R) R

sup § tc —log Z, 4+ + sup {/ fly log/ (y)ﬂp,t(dy)} )
t<% feCHR) R

Next, applying the Donsker-Varadhan variational formula for relative entropy (as
stated in Lemma 3.11) to the space X = R, the bounded continuous function f and
the probability measure fi, +, we find that for (A, ¢) € P(R) x R4,

W g, t(dy)}

J(A,e) = sup {tc+ H(A||fip,:) —log Zp+}

t<1/p
dpp

= H(M|up) + sup < tc+ log )\(dy) log Z, +
t<1/p d

= H(M|up) + sup {tc — / tly[PA(dy) + log Z,, , — log Zp,t}
t<1/p R

= H(Mpp) + sup {tc—tmy(A\)},
t<1/p

where we used the definition (3.2) of relative entropy, and the decomposition
dX/dp, ¢ = (dN/dp)(dp/dpp+) in the second equality above. Thus, we have

(3.7) J(\ ) :{ ! glluw Le—my(N)) zflsvzm <e

Next, for (A, ¢) € P(R) x Ry, define G,(\, ¢) := A(- x ¢!/P). An elementary con-
sequence of Slutsky’s theorem is that the map G, : P(R) xRy — P(R) is continuous
(w.r.t. the weak topology on P(R) and the induced product topology on P(R)xRy).
By (3.1) and Lemma 3.9, £y, , is equal in distribution to Gp(L} ,, mp(LY ), so the
contraction principle (see, e.g., [14, Theorem 4.2.1]) and the expression for J in
(3.7) yield an LDP for (£, p)nen With the good rate function

Jp(v) :=inf {J(\,¢) : A € P(R),c € Ry, Gp(A, ¢) = v}

infso { H(- x /7)) + Se—emy())} it my(v) <1,
400 else.
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If m,(v) < 1, then using the definition of y, in (2.1) to calculate du,/dpu,(- x ¢'/P),
and the definition of relative entropy in (3.2), we have

3,0) = inf {H@ (- x /7)) + 51— my () )

H(vlpsy) + inf {~F loge = 152m, (v) 4 £(1 = my(v)) | = H, (v).

O

Remark 3.12. Note that the above proof of Proposition 3.10 relies on an LDP for the
joint sequence (L,{’p, mp(L};p))neN. An alternative approach to the one presented
would be to appeal to results on the “partial large deviation principle” established

for self-normalized processes, as stated in [12, Theorem 1.1].

Remark 3.13. Note that Proposition 3.10 cannot be obtained via a direct appli-
cation of the contraction principle to the map v — Gp(v,mp(v)). Indeed, there
does not appear to be a standard topology on P(R) such that both the sequence
(LY )nen satisfies an LDP with good rate function and the map my(-) is continu-
ous with respect to that topology. In particular, m,(-) is continuous with respect
to the Wasserstein-r topology if and only if 7 > p; on the other hand, [25] and [38)]
show that the sequence (Lz’p)neN satisfies an LDP with good rate function with
respect to the Wasserstein-r topology if and only if r < p.

Lemma 3.14. For p € [1,00], let K, := {v € P(R) : my,(v) < 1}. Then, for all
g < p, the set K, C Py(R) is compact in Py(R). In addition, K, is conver and
non-empty.

Proof. The convexity and non-emptiness of K, are elementary. As for compactness,
we first prove that K, is weakly compact in P(R). For v € K, for all M > 0,
Chebyshev’s inequality yields v([—M, M]¢) < m,(v)/MP < 1/MP, so K, is tight,
and by Prokhorov’s theorem, precompact. Note that K, is weakly closed in P(R),
since it is a level set of the lower semicontinuous map m,. Therefore, K, is weakly
compact.

To verify Wasserstein compactness, it suffices to show that the set of probability
measures in K, have uniformly integrable ¢g-th moments [2, Proposition 7.1.5].
This latter condition follows from the de la Vallée-Poussin criterion (see, e.g., [11,
11.22]) since for g(x) := |z|P/? (which satisfies the superlinear growth condition
limy| o0 g(t)/t = 00), we have

sup /g(\az|q)u(dx) = sup mp(v) <1< oo.
uer R uer

(]

Proof of Proposition 3.6. Fix p € [1,00] and ¢ < p. In view of the fact that
(Lnp)nen satisfies an LDP in P(R) with respect to the weak topology due to
Proposition 3.10, in order to establish the LDP for (£, ,)nen in Py(R) with re-
spect to the g-Wasserstein topology, it suffices to show exponential tightness of
(Lnp)nen in Py(R) (see [14, Corollary 4.2.6]). Let K, be the compact set defined
in Lemma 3.14. Note that m,(£L, ) = 1 as., so P(L,, € KJ) = 0 and hence
logIP(£L,,, € K;) = —oo for all n € N, implying exponential tightness of (£, 5)nen-

The strict convexity of H, follows from the strict convexity of the relative entropy
H(-||p) and the linearity of the p-th moment m,,. O
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3.3. LDP under the surface measure. In this section, we establish an LDP for
(Ln,p)nen assuming X (mp) is distributed according to the surface measure on SZ*I,
which is defined below.

Definition 3.15. Let area, ,(-) denote the (unnormalized) surface area measure
on Sgil, and let o, , denote the (normalized) surface measure on ngl,

area,, ,(.5)

np(S) = )
7np(5) area, ,(Sp~ ')

for S a Borel measurable subset of S;}_l.

Proposition 3.16 (LDP under the surface measure). Let p € [1,00] and assume
Xp) Onp- For g < p, the sequence of empirical measures (Lnp)nen of (3.1)
satisfies an LDP in Py (R) with the strictly convex good rate function H, of (3.4).

The proof of Proposition 3.16 is deferred to the end of this subsection, after first
establishing some preliminary lemmas.

Note that the cone measure coincides with the surface measure on Sgil if and
only if p = 1,2, or co. See [30, §3] and [28, §3] for more extensive discussions.
More generally, we have the following relationship between the cone and surface
measures.

Lemma 3.17 ([29, Lemma 2]). Let p € [1,00). Then,
J " 1/2
On,p _ 12p—2 n—1
B @)= Coy (;mw ) , zeSp,
where C, ,, is a normalizing constant.

Next, we state a general result about LDPs for two sequences of measures that
satisfy a particular absolute continuity relation.

Lemma 3.18. Let X be a Polish space, and for n € N, let 1, : X — R. Suppose
that there exists a sequence of finite constants (M, )nen satisfying lim, % =0,
such that,

(3.8) [Vn(N)| < M, pp-ae. X€X, VneN.

Let (un)nen C P(X) be a sequence of probability measures that satisfies an LDP
with a good rate function I(-). Define

(39) l/n(d)\) = mew"o‘)un(d}\)
Then, (Vn)nen satisfies an LDP with the same good rate function I(-).

Proof. For ¢ : X — R continuous and bounded, define

1
Ay = lim flog/ e N (dN),
x

n—oo M

where the limit exists due to the LDP for (un)neny and Varadhan’s Lemma (see,
e.g., [14, Theorem 4.3.1]). The definition of v, in (3.9), the common bound on ¥,
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for all n € N given in (3.8), and the assumption that M, /n — 0 imply that

1 1
lim inf = log / e"*My, (d)) > liminf — log / e PN =M (AN
X X

n—oo n n—oo n

M,
:Aqb* hm 7:A¢,

n—oo N

1 1
lim sup — log/ e *My, (d)) < limsup — log/ e P M ()
X n X

n—oo TN n—00
M,
=Ay+ nl;ngo = Ay.
Thus, we have shown that
~ 1
Ay =Ay:= lim — log/ e *Ny, (dN).
X

n—oo N
Note that (un)nen is exponentially tight since it satisfies an LDP with good
rate function and X is Polish [26, Lemma 2.6]. We claim that (v,)nen is also
exponentially tight. Let L < oo, and let K7, C X be a compact set such that
1
(3.10) lim sup — log p, (K7) < —L.
n—oo N
Then, given L < 0o, note that
log i (K5) = o | ¥y (@) ~log [ O (@)
K¢ x
< My +1og pin(KT) + My — 10g pin (X).
Taking the limit supremum as n — oo, using (3.10), and applying the fact that
% — 0, we find that

1 1
limsup — log v, (K7¥) < limsup — log u, (Kf) < —L.
n—oo N n—osoo N
Since Ay = A¢, and both sequences (p, )nen and (vy,)nen are exponentially tight,
Bryc’s inverse lemma (see, e.g., [14, Theorem 4.4.2]) implies that the two sequences
satisfy the same LDP with the good rate function I(\) = supyec, () {1#(A) — Mg}
([l

We apply the preceding lemma to the absolute continuity relation of Lemma
3.17 to prove the LDP under the surface measure.

Proof of Proposition 3.16. For p = 1,2, 00, we have 0y, , = p,p, and so the result
trivially follows from Proposition 3.6. Therefore, we restrict to p € (1,2) or p €
(2,00). For fixed p in this range and ¢ < p, define the map £y, : S~ — P,(R) that
takes a vector a € SI™! to the measure £ 37" | 6,1/5,, € P¢(R), and note that £,
maps S7~! onto the set

1 = n—1
A, = {nz(snl,m ta€S) } C Py(R).

i=1
We then apply Lemma 3.18 to the following setting:
o X =P,(R),
® lin = Vnp OLgl and v, =opp0L
o Yp =1 = §logma, o,

~Lon A, and p,(AS) = v,(AS) =0,

n
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o M, :=|:- %\logn,

and note that clearly M,,/n — 0. It remains to show that our setup satisfies the
remaining hypotheses of Lemma 3.18. We know from Proposition 3.6 that (t,)nen
satisfies an LDP in P,(R) (for ¢ < p), with good rate function H,. Further, using
Lemma 3.17, we can write the Radon-Nikodym derivative of v,, with respect to u,
for A € A,, (which is a set of full p, measure since p,(A4,) = 1), as

dv,, 1/2

donp .
%(A) = Wm:(ﬁnb\) =Cnp (nz/pm2p—2(>\)> = nl/pcn,p e,
from which (3.9) is verified.
To verify the remaining boundedness property of ¥, = ¥ = %log Mop_2, as

stipulated in (3.8) of Lemma 3.18, first consider the case 1 < p < 2. To develop
an upper bound for ¢)(\) = mg,_2(A), note that due to Holder’s inequality, for any
0<r<s<ooand A€ PR), we have m,(\) < [ms(N)]/%. Then 0 < 2p — 2 < p,
and so applying the preceding inequality with » = 2p — 2 and s = p, we see that
for A € A,,

fin(map—2(A) > 1) < Mn(mp()‘)2_(2/p) >1)

1 n 2—(2/p)
=P - 1/p x (n.p)1p 1
(23wt}

i=1
— n, 2—(2

—P (||X( p)||n7p( /p) > 1)
= 0’

where the final equality follows since X (") ¢ Sp~t, so ||X("*p)||i},(2/p) =1, P-as.
On the other hand, to obtain a lower bound for ¥(A) = mg,_2(A), recall that for
0 <r<s<ooanda € R” we have |a|,s < ||a|]lnr. Applying this inequality
with r = 2p — 2 and s = p, and recalling the definition of the empirical measure
L, p from (3.1), we have P-a.s.,
Miap—2(Lnp) = %Z[|n1/pX(n,p)|]2p—2
i=1

— n 2p—2
=n!=C/P) x( ’p)||n1,32p—2

> | x ) 22

— pl-@/p)

where the last equality once again uses the fact that P-a.s. (under the cone mea-
sure), X ("P) lies on the unit £7 sphere Sp—t.

In a similar fashion, for the case 2 < p < 0o, we can show (i, (Map—2(A) < 1) =0
for A € Ay, and mop_2(Ly,p) < nt=2/P) P.as.

Since p,(Ay,) = 1, we have shown that for p,-a.e. A € P(R),

6| = |§logmap-2(V)] < |3 = | 1ogn = My,

which concludes the verification of all the hypotheses of Lemma 3.18. Thus, it
follows from that lemma that the sequence of empirical measures (£, p)nen under
the surface measure o, , satisfies an LDP with the same good rate function as
under the cone measure 7y, p. (]
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4. GIBBS CONDITIONING

In this section, we use the LDPs of Propositions 3.6 and 3.16 to prove our main
result Proposition 4.1, which states a conditional limit law: that is, the asymptot-
ically most likely distribution of a sequence of random variables, conditional on a
large deviation. In the novel setting of /P spheres, we are able to lend a geometric
meaning to this conditional limit law.

To state our result, we first introduce some additional notation. Let h(-) denote
the differential entropy of a probability measure v € P(R),

— /R g—g log (g—;) dr if v < Lebesgue measure on R,

(4.1) h(v) :=
—00 else.

Differential entropy arises naturally in the analysis of the rate function H,, since
for measures v € P(R) that are absolutely continuous with respect to Lebesgue
measure and satisfy m,(r) < 1, we can use the definition of p, in (2.1) to rewrite
the function H, defined in (3.4) as:

(4.2) H,(v) = —h(v) + log(2p'/ "D (1 + 1)) + L.
We obtain the following result as a consequence of the LDP of Theorem 3.6, which
involves a constrained maximum entropy problem. In particular, we crucially use
the fact that the LDP for (£, ,)nen holds with respect to the Wasserstein topology,
which is stronger than the usual weak topology.

Proposition 4.1. Fiz p € [1, 00| and suppose that either X (™P) ~ Onp OT X (p)
Ynp- Fir a closed interval C = [a, B] C R, and for e > 0, let Cc := [ — €, 5 + €.
Then, for q < p, the optimizing measure

(4.3) v, = argmax{h(v) : m,(v) < 1,my(v) € C}
is well defined (i.e., exists and is unique), and

(4.4) lim lim P(L,, € |mg(Lnp) € Ce) =0y, .

e—0 n—oo

Moreover, for k € N,
(4.5) P (nl/P(Xl("’p), LX) e Lt x e e ce) = &k,
as n — oo followed by e — 0.

The proof of Proposition 4.1 relies crucially on the so-called “Gibbs conditioning
principle” (see, e.g., [10, 13, 34]), stated precisely below.

Proposition 4.2 (Gibbs conditioning principle, [24, Theorem 7.1]). Let X be a
topological space, and let (§,)nen be a sequence of X-valued random variables that
satisfies an LDP with good rate function 1. In addition, let F C X be a subset such
that

(1) I(F) := inf e p I(z) < 00;

(2) F is closed;

(8) F = Neso Fe for a family of sets (Fc)eso such that Fe C X for all € > 0

and P(&, € Fe) > 0 for all e > 0 and n € N;
(4) F C (F.)° for all e > 0.
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Let Mg be the set of x € F which minimize 1. That is,
Mp:={z e F:I(z) =LF)}.

Then, for all open G C X such that Mp C G, we have

1
(4.6) lim sup limsup — logP(¢,, € G | &, € F.) < 0.

e—0 n—oo T
As a consequence, if Mp = {Z} is a singleton, then

(4.7) lim lim P(&, € (€, € Fo) = 0z
Proof of Proposition /.1. Fix p € [1,00] and ¢ < p, and recall that due to Propo-
sitions 3.6 and 3.16, the sequence (L, p)nen satisfies an LDP in P4(R) (equipped
with the g-Wasserstein topology) with strictly convex good rate function H,.

We first show that Proposition 4.2 applies in the setting of Proposition 4.1. Fix
C = [a,0] C R and for € > 0, let Cc = [@ —¢,8 + €]. The set F, :== {v €
Py(R) : my(v) € Ce} is closed due to the continuity of m, of (3.3) with respect
to the ¢-Wasserstein topology, and hence, as an intersection of closed sets, the set
F :=NeoFe ={v € P(R) : my(v) € C} is also closed. Moreover, for € > 0, we
also have

F=m; (C) cm ' (C2) C [my ' (Co)]° = (F)°,

where the second inclusion again uses the continuity of m,. Next, let us show that
Mp is a singleton (i.e., v, of (4.3) is well defined). Recall that

Mp o= {V €F H,(v) = gg?Hp(u)} .

Note that F is closed and convex, since it is the preimage of a closed, convex
set C' under a continuous linear map m,. Because H,, is lower semicontinuous
and has compact level sets, it attains its minimum within /. That the minimum is
attained at a unique v, € F follows from the strict convexity of H,,. The “maximum
entropy” representation for v, given in (4.3) follows from the expression for H, given
n (4.2). Thus, the limit (4.4) follows from the limit (4.7) of Proposition 4.2 applied
in the following setting: the probability measure &, = £, p; the rate function
minimizing set Mg consists of the singleton {v.}; and the conditioning event is
F.={v € P4(R) : my(v) € Cc}, as defined above.

As for the second result (4.5), this follows from an elementary “propagation of
chaos” result [35, Proposition 2.2] that, under the assumption of exchangeability,
establishes the equivalence of statements like (4.4) (regarding convergence in prob-
ability of the empirical measure to a deterministic measure) and statements like
(4.5) (regarding joint convergence in distribution of any fixed k of the underlying
random variables). O

As a prerequisite for the proof of Theorem 2.3, recall the following basic information-
theoretic fact.



A CONDITIONAL LIMIT THEOREM FOR HIGH-DIMENSIONAL ¢? SPHERES 15

Lemma 4.3. Fizr; :R =R, a; €R, fori=1,...,m, and s; : R = R, 3; € R,
for 5 =1,...,n. Consider the following mazimization problem:
maximize h(v)
veP(R)

(4.8) subject to /Rri(x)y(dz) =q; fori=1,...,m,

/sj(as)l/(dx) <pjforj=1,...,n
R

Then, a probability measure v, € P(R) attains the mazimum in (4.8) if and only if
it is of the following form:

m n
vi(dz) =exp [ =1 — k§ — Z Afri(x) — Z,u;sj(x) dz,

i=1 =1
with non-negative constants ki, (A\;)ity, and (u})7_; chosen such that v. lies in
P(R) and satisfies the constraints in (4.8). Moreover, if v, attains the maximum
n (4.8), then

(19) ([ stomtn - 5) 45 =0
forallj=1,....n

The preceding lemma is standard. See [9, §12.1] for a slight simplification of
(4.8) with only equality constraints, or see [, Ex. 5.3] for a version of (4.8) with
discrete entropy and both equality and inequality constraints. The claim (4.9) is
the so-called “complementary slackness” condition (see, e.g., [, §5.5.2]).

As a final preliminary, define the following family of probability measures for
q¢€ [1,00), B> 0:

(4.10) a5 dr) = :

2B T+ 1)
Note that p, 1 corresponds to u, of (2.1).

e—lﬂr\q/(BQ)dCL.7 r eR.

Proof of Theorem 2.5. For a random variable X ~ p,, note that pYIX ~ .3
Due to the unconditional limit theorem Proposition 2.2, under either the surface
measure or the cone measure, we have )\(B LN ,u;@’g, where 5 < 8,4 of (2.4), and
lqp is as in (4.10). Therefore, it suffices to show that under either the surface
}:(ﬁJre,k)
n,plq

measure or the cone measure, the conditional distribution also converges

weakly to the same limit M?Z' In view of (4.5) of Proposition 4.1, it suffices to show
that when C' = [0, 8], the unique maximizer v, of (4.3) satisfies v, = 3. Note
that due to the maximum entropy calculations of Lemma 4.3, we have for 8 > 0,

(4.11) g 8 = argmax{h(v) : my(v) < B}.
To show that g 3 = vy, it suffices to show that my(ue,3) < 1. After some elemen-

tary calculations, we find that since 8 < 3, 4, and using the expression for 3, 4 in
(2.4),

(e (3) L(2)
m p/q p/q q _ q /a a 7 _
) =1 NES RN (r(p“)) "y
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O

Remark 4.4 (“small” 3). The constant 8, 4 is chosen such that for 8 < 3, , and the
interval C' = [0, ], the variational problem of (4.3) has an explicit solution with
a natural geometric interpretation. Note that the explicit solution to the simpler
variational problem (4.11) holds for all § > 0. However, the original variational
problem of (4.3) involves not only the g-th moment constraint mq(rv) € C, but
also an additional constraint on the p-th moment, m,(v) < 1. To simplify the
variational problem (4.3), it suffices to consider values of 8 small enough such that
myp(pg,) < 1, so that the maximizer of (4.11) is also the maximizer of (4.3) when
C =10,0]. Tt is easy to see that

(=)

(4.12) myp(a.p,,) = gquqp/ng
q

That is, 8,4 is the threshold value such that for 8 < 8, ,, we have my(uq5) < 1.
Note however, that this discussion of 5, 4 (and thus, Theorem 2.3) is valid only for
p € [1,00), since for p = oo, we have mqo(pq,3) = oo for all ¢ < co and 8 > 0. That
is, for ¢ < oo, there is no value of 8,4 > 0 such that an analog of (4.12) can hold
for p = o0.

Remark 4.5 (“large” 57). Now suppose 3 > prq = mgy(1p). An easy consequence
of Lemma 4.3 is that

(4.13) pp = argmax{h(v) : my(v) < 1}.

For 8 > Bp’q and C = [0, f], the ¢-th moment constraint of (4.3) is automatically
satisfied by v = p,, so the maximizer of (4.13) is also the maximizer of (4.3). In
this case, the “conditional” limit of Proposition 4.1 is equivalent to the “uncondi-
tional” limit of Proposition 2.2. In other words, for sufficiently large 5, the £¢ norm
conditioning event of (2.3) is extraneous.

Remark 4.6 (“intermediate” B). As for C'=[0,5] and 5,4 < 8 < Bp,q, this regime
is less amenable to an immediate geometric interpretation. Whereas the small 3
regime of Theorem 2.3 and Remark 4.4 allows an ¢? sphere interpretation via the
measure 4,3, and the large 8 regime of Remark 4.5 allows an ¢” sphere interpreta-
tion via the measure p,, we have different behavior in the intermediate 8 regime.
Recall that the maximum entropy considerations of Lemma 4.3 imply that the
unique maximizer of Proposition 4.1 is of the form

(4.14) vi(dx) = exp (=1 — Ko — Kplz|? — Kqlz]|?),

with constants ko, kp, £q such that v, is a probability measure that satisfies m,(v,) <
1 and my(vs) < B. To gain insight on these constants, consider the following cases:

e if k, =0 and k4 > 0, then the complementary slackness condition of (4.9)
implies mg(v4) = 8, so the form (4.14) implies v, = py 5. But this is not a
feasible solution, since my,(pq,3) > 1 for 8 > B, 4;

e similarly, if x, > 0 and x4, = 0, then we have v, = p,, but this is not a
feasible solution since myq(up) = B, , > f;

e lastly, if kK, = 0 and x, = 0, then v, is not a probability measure for any
choice of k.
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Therefore, it must be the case that x, > 0 and r, > 0, which implies that v, of
(4.14) is not of the form p,p for any r € [1,00), b > 0. Instead, v, is of an expo-
nential family that is genuinely different from the generalized normal distributions.

In this paper, we have only discussed applications of Proposition 4.1 to inter-
vals C of the form C = [0, 8], and primarily for small 8, with some discussion of
larger 5 in Remark 4.5 and Remark 4.6. We leave for future work the question of
finding other examples of intervals C' C R which lead to an explicit and meaningful
maximizing measure v,, and other geometric conditional laws.
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