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Abstract   
 

This paper formulates stress-assisted and strain-induced austenite to martensite transformation kinetics 
laws within a crystal plasticity framework to enable modeling of strain path sensitive elasto-plastic 
deformation of austenitic steels taking into account the evolution of crystallographic texture and the 
directionality of deformation mechanisms in the constituent phases. Consistent with experimental 
observations for mechanically induced martensitic transformation, the stress-assisted transformation is 
modeled as direct from γ-austenite to 𝛼𝛼′-martensite, while the strain-induced transformation is modeled 
as indirect through an intermediate ε-martensite phase, which subsequently transforms to 𝛼𝛼′-martensite. 
While the stress-assisted transformation law is conceived based on an energy criterion, the strain-induced 
transformation law relies on the local stress state sensitive motion of partial dislocations forming shear 
bands of ε-martensite phase, which after intersecting with other shear bands give rise to 𝛼𝛼′-martensite. 
The kinetic models are implemented in the elasto-plastic self-consistent polycrystal plasticity model to 
facilitate modeling of strain path and crystallographic texture dependence of martensitic transformation, 
while predicting deformation behavior of metastable austenitic steels. Due to its morphology, the ε-
martensite is modeled using a flat ellipsoid approximation, which is a new numerical feature in the model. 
Simple tension, simple compression, and simple shear data of an austenitic steel have been used to 
calibrate and to illustrate predictive characteristics of the overall implementation. In doing so, stress-
strain response, texture, and phase fractions of γ-austenite, intermediate ε-martensite, and α’-martensite 
are all calculated, while fully accounting for the crystallography of the transformation mechanisms. It is 
demonstrated that the appropriate modeling of phase fractions and crystallography facilitates predicting 
the experimentally measured data. The implementation and insights from these predictions are presented 
and discussed in this paper. 
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1. Introduction 

Improved strength, work hardening rate, and formability of steels can be achieved by optimizing 
fraction and distribution of constituent phases, as well as grain size and crystal lattice orientation 
distributions per phase, and also by controlling the transformation-induced plasticity phenomena 
(Cantara et al., 2019; Olson and Cohen, 1972, 1975; Polatidis et al., 2018; Poulin et al., 2020a; Poulin et 
al., 2019; Poulin et al., 2020b; Talonen and Hänninen, 2007). Steels comprised of γ-austenite phase (face-
centered cubic structure, FCC) either fully or in part can transform into α’-martensite (body-centered 
tetragonal structure, bct, which is usually approximated as body-centered cubic, BCC) upon deformation. 
The transformation contributes to the plastic flow and improves hardening behavior and formability of 
the material. The microstructural optimization of steels exhibiting transformation plasticity can be 
accelerated by the development of reliable material models sensitive to mechanically induced martensitic 
transformation. These models would facilitate better understanding of underlying phenomena and enable 
the prediction of mechanical response and microstructure evolution. The present work is concerned with 
formulating mechanically induced martensitic transformation kinetics laws within a crystal plasticity 
framework to enable simulating strain path sensitive elasto-plastic deformation of steels taking into 
account the evolution of crystallographic texture and the directionality of deformation mechanisms acting 
at grain level in the constituent phases.  

During mechanical straining of steels containing metastable γ-austenite, nucleation sites for α’-
martensite have been observed to be intersections of shear bands (Olson and Cohen, 1972, 1975; Polatidis 
et al., 2018; Talonen and Hänninen, 2007) and deformation twins (Das et al., 2016; Talonen and Hänninen, 
2007). The martensite forming at these structural defects accommodating the plasticity is referred to as 
strain-induced (Haidemenopoulos et al., 2014; Olson and Azrin, 1978; Olson and Cohen, 1975; Yukio, 
1987). The strain-induced martensite forms in the slip bands of the austenite as sheaves of fine parallel 
laths strung out on the {111}γ  planes of the γ-austenite phase. In contrast, mechanically induced 
martensitic transformation can initiate from existing martensite formed either during cooling or 
mechanically (Tian et al., 2017). Transformation at such sites is referred to as stress-assisted (Olson, 2002; 
Olson and Cohen, 1972). The mechanically induced martensite sites are more effective for steels with 
lower stacking fault energy (SFE) (Tian et al., 2017). Together, a martensite transformation that occurs 
either via the stress-assisted or strain-induced mechanism is referred to as a mechanically induced 
martensite transformation (Marketz and Fischer, 1994). When both stress-assisted and strain-induced 
martensites form under deformation, it is observed that the strain-induced martensite forms first (Snell 
et al., 1977). However, the stress-assisted transformation can occur before yielding, while the strain-
induced cannot (Olson and Cohen, 1982). Generally, the martensite formed during deformation is finer 
and less regular than the unstressed martensite formed during cooling (Snell et al., 1977).  

Structural defects introduced by plastic deformation facilitating strain-induced α’-martensite 
nucleation are primarily intersections of slip bands formed by dissociation of perfect dislocation to partials 
(Olson and Cohen, 1972, 1975). If dislocations are at every 2nd {111}γ plane in austenite, the slip band has 
hexagonal close-packed (HCP) structure. This structure is 𝜀𝜀-martensite phase. The HCP ε-martensite phase 
usually undergoes further transformation under continuous mechanical straining to the 𝛼𝛼′-martensite 
phase but can exist as a metastable phase depending on the conditions like strain level, temperature and 
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alloy chemistry. However, if dislocations are at every {111}γ plane in austenite, the band has the FCC 
structure and the twin orientation relationship with the parent grain. Formation of HCP or FCC within a 
slip band depends on the stacking fault energy. If stacking fault energy is low, formation of 𝜀𝜀-martensite 
is preferred, while if the stacking fault energy is high, formation of twins is more prominent. The strain-
induced transformation is strongly affected by crystal orientation (Burgers and Klostermann, 1965; 
Goodchild et al., 1970; Lagneborgj, 1964; Petit et al., 2007; Polatidis et al., 2018; Zecevic et al., 2019). 
Grains with 〈011〉 and 〈111〉 parallel to tension form slip bands of 𝜀𝜀-martensite during deformation. In 
contrast, grains with 〈001〉 parallel to tension direction do not form slip bands (Goodchild et al., 1970) 
since partial dislocations do not have driving force to form wide stacking faults (Zecevic et al., 2019). 
Therefore, deformed microstructure of 〈011〉 and 〈111〉 grains consist of planar arrays of dislocations, 
while  〈001〉 grains developed cellular microstructure.  

Due to the strain energy dominated nature of the stress-assisted martensite kinetics starting from 
available heterogeneous sites under deformation (Bhattacharyya and Weng, 1994), the transformation 
rates are intrinsically sensitive to the stress state caused by imposed boundary conditions as well as local 
stresses caused by adjacent transformations. The stress field that arises from a transformation interacts 
with the applied stress field in a way that may reduce or increase the change in free energy caused by the 
martensite transformation. If the shape change caused by transformation into a given variant out of 24 
possible variants of martensite is compatible with the existing stress field then this variant forms and is 
said to be assisted by the given stress state. The volume fraction of transforming martensite vs plastic 
strain as a consequence of stress driven transformation shows linear behavior (Olson and Azrin, 1978).  

Temperature, strain path, strain rate, crystallographic texture, and chemical composition are 
deformation conditions and microstructural features known to affect the rate of the martensitic 
transformation (Beese and Mohr, 2011; Han et al., 2004; Hecker et al., 1982; Iwamoto et al., 1998; Kim et 
al., 2015; Lebedev and Kosarchuk, 2000; Miller and McDowell, 1996; Shen et al., 2012; Talyan et al., 1998). 
The effects of chemical composition and temperature are linked with the SFE driving the stacking fault 
width (SFW) when a perfect dislocation dissociates into Shockley partials in FCC materials (Olson and 
Cohen, 1976; Talonen and Hänninen, 2007). Under the influence of external stress, the SFW increases 
resulting in the formation of a shear band.  

The evolution of the volume fraction of 𝛼𝛼′ -martensite during strain-induced transformation is 
typically a function of sigmoidal shape with respect to the plastic strain. Most of kinetic models for the 
strain-induced transformation present in the literature assume such functions for the evolution of 𝛼𝛼′-
martensite volume fraction in terms of plastic strain (Olson and Cohen, 1975; Santacreu et al., 2006). Such 
observations formed based for the classical Olson-Cohen kinetics model (Olson and Cohen, 1975). 
Although empirical in nature, this model has been advanced in a number of studies to include variables 
characterizing the stress state like stress triaxiality (Haidemenopoulos et al., 2014; Santacreu et al., 2006; 
Stringfellow et al., 1992) and the Lode angle parameter (Beese and Mohr, 2011; Kim et al., 2015; Lebedev 
and Kosarchuk, 2000; Mansourinejad and Ketabchi, 2017). The addition of these variable makes the 
evolution of martensite using the extended Olson-Cohen kinetics model sensitive to strain paths. 
However, the strain path taken into account through the stress state parameters neglects the physics 
pertaining to the loading direction influencing the SFW (Copley and Kear, 1968) and shear bands (Byun, 
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2003; Martin et al., 2015; McCabe et al., 2014; Talonen and Hänninen, 2007; Ullrich et al., 2016). 
Diffraction experiments have shown that the suppression or facilitation of the martensitic transformation 
during plastic deformation stems from the changes in the SFW and the different resolved shear stresses 
imparted to the leading and trailing partial dislocations (Polatidis et al., 2018). More recently, 
crystallographic texture evolution has been incorporated into models for the martensitic transformation. 
To this end, the classical Olson-Cohen kinetic model has been incorporated into the visco-plastic self-
consistent (VPSC) crystal plasticity model (Wang et al., 2016). The coupled model accounts for the role of 
crystal lattice orientation and anisotropy on plastic strain at the single crystal level in a polycrystal 
influencing the grain level martensite evolution. However, the underlying assumption in this model was 
that the martensite evolution per grain is purely a function of the plastic strain. As a result, any two grains 
with similar plastic strain evolution will have similar martensite fraction although their stress state may 
be different. While successful for uniaxial simulation cases, the implementation is not capable of 
predicting the strain path sensitivity of martensitic transformation. To relax the issue, another 
crystallographicaly extended Olson-Cohen kinetic model has been proposed and implemented in an 
elasto-plastic self-consistent (EPSC) crystal plasticity model (Zecevic et al., 2019). In this mode, the 
resolved shear stress on a slip plane in the direction perpendicular to the Burgers vector governs SFW and 
thus the local nucleation kinetics for shear band formation is sensitive to the local stress state. The model 
successfully interpreted and predicted the mechanical response, texture, and phase fractions for several 
austenitic steels subjected to simple tension (ST), simple compression (SC), plain strain tension, equibiaxial 
tension, and torsion.  

The objective of this paper is to develop physically based kinetics models for both stress-assisted and 
strain-induced γ-austenite to α’-martensite transformation sensitive to strain path. The proposed model 
for the strain-induced transformation is not another extension of the empirical Olson-Cohen model but a 
more physical formulation involving partial dislocations. The strain-induced transformation model 
conceived here treats phase transformation physically as an additional deformation mode, while the 
stress-assisted transformation model relies on an energy criterion. Consistent with experimental 
observations, the kinetics model for the strain-induced transformation is first transforming γ-austenite to 
an intermediate ε-martensite phase in shear bands driven by local stress state sensitive motion of partial 
dislocations and subsequently transforming the ε-martensite phase to 𝛼𝛼′-martensite after shear bands 
intersect. In contrast, the stress-assisted transformation is direct from γ-austenite to 𝛼𝛼′ -martensite 
kinetically driven by an energy criterion. Thus, crystallographic, kinetic, and thermodynamic aspects of 
the martensite transformation are captured by these laws. Since local crystal orientation has a strong 
influence on the active transformation mechanisms, the laws are implemented in EPSC, which was 
originally developed in (Turner and Tomé, 1994) and advanced in a number of studies (Barrett and 
Knezevic, 2019; Neil et al., 2010; Zecevic et al., 2017; Zecevic and Knezevic, 2015; Zecevic and Knezevic, 
2017, 2018; Zecevic et al., 2015a; Zecevic et al., 2016b). The overall implementation facilitates modeling 
of strain path and crystallographic texture dependence of martensitic transformation, while predicting 
deformation behavior of metastable austenitic steels. ST, SC, and simple shear data of an austenitic steel 
have been used to calibrate and to illustrate predictive characteristics of the overall implementation. In 
doing so, stress-strain response, phase fractions of γ-austenite, intermediate ε-martensite, and α’-
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martensite, and texture are all calculated, while fully accounting for the crystallography of the 
transformation mechanisms.  

 

2. Modeling framework 

This section presents kinetics models for mechanically induced martensitic transformation within a 
crystallography-based modeling framework of EPSC. The section begins with a summary of EPSC and then 
describes the stress-assisted and strain-induced transformation formulations. The formulations are 
physically based and do not assume functions for the evolution of α’-martensite fraction.  

2.1 EPSC crystallographic platform for integrating phase transformation kinetic models  

Notations with “∙” representing a dot product and “⊗” representing a tensor product will be used in 
the description that follows. The original description of the EPSC model can be found in (Turner and Tomé, 
1994). The model has been advanced since the original publication in a number of studies (Ghorbanpour 
et al., 2020; Ghorbanpour et al., 2017; Lentz et al., 2015a; Lentz et al., 2015b; Risse et al., 2017; Zecevic 
and Knezevic, 2019; Zecevic et al., 2015a; Zecevic et al., 2019). The particular version advanced here is 
from (Zecevic et al., 2019), where the martensitic phase transformation of several austenitic steels was 
modeled based on an extended Olson-Cohen kinetics model. The constitutive relation is: 

𝛔𝛔�𝑐𝑐 = 𝐂𝐂𝑐𝑐�𝛆̇𝛆𝑐𝑐 − 𝛆̇𝛆𝑝𝑝𝑝𝑝,𝑐𝑐 − 𝛆̇𝛆𝑝𝑝𝑝𝑝,𝑐𝑐� − 𝛔𝛔𝑐𝑐𝑡𝑡𝑡𝑡(𝛆̇𝛆𝑐𝑐).        (1) 

In Eq. (1), 𝛆̇𝛆𝑝𝑝𝑝𝑝,𝑐𝑐  is the phase transformation rate of strain, 𝛔𝛔�𝑐𝑐  is the Jaumann rate of stress, 𝐂𝐂𝑐𝑐  is the elastic 
stiffness, 𝛆̇𝛆𝑐𝑐 is the total rate of strain, and 𝛆̇𝛆𝑝𝑝𝑝𝑝,𝑐𝑐  is the plastic rate of strain. As is evident, the total rate of 
strain includes the elastic, plastic and phase transformation contributions. The phase transformation rate 
of strain can further consist of strain-induced (𝛆̇𝛆𝑝𝑝𝑝𝑝,𝜀𝜀,𝑐𝑐) or stress-assisted (𝛆̇𝛆𝑝𝑝𝑝𝑝,𝜎𝜎,𝑐𝑐 ) portions, i.e. 𝛆̇𝛆𝑝𝑝𝑝𝑝,𝑐𝑐 =
𝛆̇𝛆𝑝𝑝𝑝𝑝,𝜀𝜀,𝑐𝑐 + 𝛆̇𝛆𝑝𝑝𝑝𝑝,𝜎𝜎,𝑐𝑐 . In our implementation, an austenite grain can form either stress-assisted or strain-
induced martensite. If an austenite grain forms stress-assisted martensite first, it can also form strain-
induced martensite while the progression of the stress-assisted transformation is terminated. The plastic 

strain is calculated using 𝛆̇𝛆𝑝𝑝𝑝𝑝,𝑐𝑐 = ∑ 𝐦𝐦𝑠𝑠𝛾̇𝛾𝑠𝑠𝑠𝑠  with 𝐦𝐦𝑠𝑠 = 1
2

(𝐛𝐛𝑠𝑠 ⊗ 𝐧𝐧𝑠𝑠 + 𝐧𝐧𝑠𝑠 ⊗ 𝐛𝐛𝑠𝑠), where 𝐛𝐛𝑠𝑠  is the unit slip 

system Burgers vector and 𝐧𝐧𝑠𝑠 is the slip system unit normal vector. 𝛾̇𝛾𝑠𝑠 is a shear rate on the slip system, 
s. A slip systems activates upon 𝛔𝛔𝑐𝑐 ∙ 𝐦𝐦𝑠𝑠 = 𝜏𝜏𝑐𝑐𝑠𝑠 and 𝛔𝛔�𝑐𝑐 ∙ 𝐦𝐦𝑠𝑠 = 𝜏̇𝜏𝑐𝑐𝑠𝑠 conditions are fulfilled. Here, 𝜏𝜏𝑐𝑐𝑠𝑠 is the slip 
resistance of a slip system s (appendix A). The single crystal constitutive relation is conveniently expressed 
as: 

𝛔𝛔�𝑐𝑐 = 𝐋𝐋𝑐𝑐(𝛆̇𝛆𝑐𝑐 − 𝛆̇𝛆𝑝𝑝𝑝𝑝,𝑐𝑐) = 𝛔̇𝛔𝑐𝑐 + 𝛔𝛔𝑐𝑐𝐖𝐖𝑐𝑐 −𝐖𝐖𝑐𝑐𝛔𝛔𝑐𝑐.        (2) 

In Eq. (2), 𝐋𝐋𝑐𝑐 is the instantaneous elasto-plastic stiffness, 𝐖𝐖𝑐𝑐 is grain spin tensor, and 𝛔𝛔𝑐𝑐  is Cauchy 
crystal level stress. 𝐋𝐋𝑐𝑐 is derived using a selected hardening law and the crystal constitutive law using 

 𝐋𝐋𝑐𝑐 = 𝐂𝐂𝑐𝑐 − 𝐂𝐂𝑐𝑐 ∑ 𝐦𝐦𝑠𝑠
𝑠𝑠 ⊗ �∑ �𝑋𝑋𝑠𝑠𝑠𝑠′�

−1
𝐦𝐦𝑠𝑠′

𝑠𝑠′ (𝐂𝐂𝑐𝑐 − 𝛔𝛔𝑐𝑐 ⊗ 𝐢𝐢)� − 𝛔𝛔𝑐𝑐 ⊗ 𝐢𝐢     (3) 
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with 𝑋𝑋𝑠𝑠𝑠𝑠′ = ℎ𝑠𝑠𝑠𝑠′ + 𝐂𝐂𝑐𝑐 ∙ 𝐦𝐦𝑠𝑠 ⊗𝐦𝐦𝑠𝑠′, ℎ𝑠𝑠𝑠𝑠′ = 𝜕𝜕𝜏𝜏𝑐𝑐𝑠𝑠

𝜕𝜕𝛾𝛾𝑠𝑠′
, and 𝐢𝐢 is the second rank identity matrix. Similarly, the 

polycrystal constitutive relation is:  

𝛔𝛔� = 𝐋𝐋(𝛆̇𝛆 − 𝛆̇𝛆𝑝𝑝𝑝𝑝) = 𝛔̇𝛔 − 〈𝐖𝐖c𝛔𝛔c〉 + 〈𝛔𝛔c𝐖𝐖c〉.        (4) 

Here, 𝛔𝛔� is the Jaumann stress rate, 𝛆̇𝛆 is the total rate of strain, and 𝛆̇𝛆𝑝𝑝𝑝𝑝 is the phase transformation rate of 
strain of the polycrystal, while 𝐋𝐋  is the instantaneous elasto-plastic stiffness of the homogenized 
polycrystal. 〈 〉 indicates the volume average. The phase transformation rate of strain at the polycrystal 
level can further consist of the strain-induced and stress-assisted portions. 𝐋𝐋 and 𝛆̇𝛆𝑝𝑝𝑝𝑝 are unknown and 
are evaluated using the standard self-consistent homogenization scheme (Masson et al., 2000; Zecevic 
and Knezevic, 2018). To this end, the difference between a crystal stress rate and the stress rate of the 
polycrystal is proportional to the difference in strain rates using the interaction tensor, 𝐋𝐋∗: 

𝛔𝛔�𝑐𝑐 − 𝛔𝛔� = −𝐋𝐋∗(𝛆̇𝛆𝑐𝑐 − 𝛆̇𝛆).           (5) 

The tensor 𝐋𝐋∗ is defined in terms of the symmetric Eshelby tensor, 𝐒𝐒c, as: 𝐋𝐋∗ = 𝐋𝐋�𝐒𝐒c−1 − 𝐈𝐈�. Combining 
Eqs. (2), (4) and (5) results with: 

𝐋𝐋𝑐𝑐(𝛆̇𝛆𝑐𝑐 − 𝛆̇𝛆𝑝𝑝𝑝𝑝,𝑐𝑐) − 𝐋𝐋(𝛆̇𝛆 − 𝛆̇𝛆𝑝𝑝𝑝𝑝) = −𝐋𝐋∗(𝛆̇𝛆𝑐𝑐 − 𝛆̇𝛆).       (6) 

From Eq. (6), the crystal level rate of strain in terms of the unknown reference rate of strain is (Lebensohn 
et al., 1996): 

𝛆̇𝛆𝑐𝑐 = 𝐀𝐀𝑐𝑐𝛆̇𝛆𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐚𝐚𝑐𝑐,           (7) 

with: 

𝐀𝐀𝑐𝑐 = (𝐋𝐋𝑐𝑐 + 𝐋𝐋∗)−1(𝐋𝐋 + 𝐋𝐋∗),          (8)  

𝐚𝐚𝑐𝑐 = (𝐋𝐋𝑐𝑐 + 𝐋𝐋∗)−1(𝐋𝐋𝑐𝑐𝛆̇𝛆𝑝𝑝𝑝𝑝,𝑐𝑐 − 𝐋𝐋𝛆̇𝛆𝑝𝑝𝑝𝑝).         (9) 

Here, 𝛆̇𝛆𝑟𝑟𝑟𝑟𝑟𝑟 is the reference rate of strain. Equating the volume average of the crystal level rates of strain 
to the rate of strain of the polycrystal results with an equation for 𝛆̇𝛆𝑟𝑟𝑟𝑟𝑟𝑟 as:  

𝛆̇𝛆𝑟𝑟𝑟𝑟𝑟𝑟 = 〈𝐀𝐀𝑐𝑐〉−1𝛆̇𝛆 − 〈𝐀𝐀𝑐𝑐〉−1〈𝐚𝐚𝑐𝑐〉.         (10) 

Since the volume average of the crystal level stress rates is equal to that of the polycrystal, the Jaumann 
stress rate is: 

𝛔𝛔� = 〈𝐋𝐋𝑐𝑐𝐀𝐀𝑐𝑐〉〈𝐀𝐀𝑐𝑐〉−1𝛆̇𝛆 − 〈𝐋𝐋𝑐𝑐𝐀𝐀𝑐𝑐〉〈𝐀𝐀𝑐𝑐〉−1〈𝐚𝐚𝑐𝑐〉 + 〈𝐋𝐋𝑐𝑐(𝐚𝐚𝑐𝑐 − 𝛆̇𝛆𝑝𝑝𝑝𝑝,𝑐𝑐)〉      (11) 

The instantaneous elasto-plastic stiffness and the phase transformation strain rate are obtained by 
comparing Eqs. (4) and (11): 

𝐋𝐋 = 〈𝐋𝐋𝑐𝑐𝐀𝐀𝑐𝑐〉〈𝐀𝐀𝑐𝑐〉−1,           (12) 

𝛆̇𝛆𝑝𝑝𝑝𝑝 = 〈𝐚𝐚𝑐𝑐〉 − 𝐋𝐋−1〈𝐋𝐋𝑐𝑐(𝐚𝐚𝑐𝑐 − 𝛆̇𝛆𝑝𝑝𝑝𝑝,𝑐𝑐)〉.         (13) 
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Finally, for texture evolution, the rate of spin of a crystal c is: 

𝐖𝐖𝑐𝑐 = 𝐖𝐖𝑐𝑐,𝑎𝑎𝑎𝑎𝑎𝑎 −𝐖𝐖𝑝𝑝𝑝𝑝,𝑐𝑐,          (14) 
where 𝐖𝐖𝑐𝑐,𝑎𝑎𝑎𝑎𝑎𝑎 is an applied spin and 𝐖𝐖𝑝𝑝𝑝𝑝,𝑐𝑐  is a plastic spin. The applied spin consists of an overall 
applied macroscopic spin, 𝐖𝐖, and a spin originating from the antisymmetric Eshelby tensor for crystal c, 
𝚷𝚷𝑐𝑐.  Using the Eshelby solution for a grain inhomogeneity inside the effective medium under a given 
boundary conditions, the spin is 𝚷𝚷c = 𝐏𝐏c(𝐒𝐒c)−1(𝛆̇𝛆𝑐𝑐 − 𝛆̇𝛆). Here, 𝐏𝐏c is the antisymmetric Eshelby tensor. 

The plastic spin is 𝐖𝐖𝑝𝑝𝑝𝑝,𝑐𝑐 = ∑ 𝛾̇𝛾𝑠𝑠𝐪𝐪𝑠𝑠𝑠𝑠  with 𝐪𝐪𝑠𝑠 = 𝟏𝟏
𝟐𝟐

(𝐛𝐛𝑠𝑠 ⊗ 𝐧𝐧𝑠𝑠 − 𝐧𝐧𝑠𝑠 ⊗ 𝐛𝐛𝑠𝑠).  

2.2 Kinetics model for stress-assisted martensitic transformation under mechanical load 

The formation of stress-assisted martensite is the result of the interaction of the applied stress with 
the transformation strain to give an energetic contribution to the driving force for the martensite 
transformation (Maxwell et al., 1974). The transformation occurs when the summation of chemical driving 
force and mechanical driving force reaches a critical value. The mechanical driving force is defined as: 

𝑈𝑈 = 𝛔𝛔𝑐𝑐 ∙ 𝛆𝛆𝑝𝑝𝑝𝑝,𝜎𝜎  ,           (15) 

where 𝛔𝛔𝑐𝑐  is the stress in an austenite grain and 𝛆𝛆𝑝𝑝𝑝𝑝,𝜎𝜎  is the phase transformation strain. Ignoring the 
interfacial energy and the boundary misfit strain energy, the stress-assisted transformation occurs once 
the mechanical driving force is fulfilling the relation: 

𝑈𝑈 = 𝑈𝑈𝑐𝑐 ,           (16) 

where 𝑈𝑈𝑐𝑐  is the critical force (Levitas et al., 1998). In our self-consistent formulation, a crystal is an 
inclusion surrounded by matrix having homogenous effective properties. Given an applied deformation, 
grain level as well as the overall stress-strain values are calculated using EPSC. When Eq. (16) is satisfied 
in any inclusion grain, the transformation starts. It is assumed that every inclusion has a pre-existing site 
created during cooling or a site from a prior mechanically induced transformation for subsequent stress-
assisted transformation. Driving force or potency for transformation at each site is a uniform grain stress, 
which is used to test the condition, Eq. (16). 𝑈𝑈𝑐𝑐 can be interpreted as an average critical driving force over 
all nucleation sites. The eigenstrain i.e. stress free change of shape and volume, is added to the inclusion 
corresponding to the phase transformation strain and volume fraction of the martensite (Eqs. (1) and (2)). 
The increment in the phase transformation strain assigned to the austenite grain, Δ𝛆𝛆𝑝𝑝𝑝𝑝,𝜎𝜎,𝑐𝑐 = 𝛆̇𝛆𝑝𝑝𝑝𝑝,𝜎𝜎,𝑐𝑐𝛥𝛥𝛥𝛥, is 
calculated using: 

Δ𝛆𝛆𝑝𝑝𝑝𝑝,𝜎𝜎,𝑐𝑐 = Δ𝑓𝑓𝛼𝛼,𝜎𝜎𝛆𝛆𝑝𝑝𝑝𝑝,𝜎𝜎            (17) 

where Δ𝑓𝑓𝛼𝛼,𝜎𝜎  is the increment in the volume fraction of martensite relative to the austenite grain volume 
and 𝛆𝛆𝑝𝑝𝑝𝑝,𝜎𝜎  is the phase transformation strain of the transforming volume. Δ𝑓𝑓𝛼𝛼,𝜎𝜎 is calculated by satisfying 
the following condition: 

Δ𝑈𝑈 = Δ𝛔𝛔𝑐𝑐 ∙ 𝛆𝛆𝑝𝑝𝑝𝑝,𝜎𝜎 = 0 .          (18) 
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The equation is stating that the total applied driving force cannot be larger than critical driving force, 
otherwise further transformation would occur until the matrix constraining the grain induces the stress 
necessary to stop the transformation. From Eq. (18), we can calculate increment in martensite volume 
fraction as: 

Δ𝑓𝑓𝛼𝛼,𝜎𝜎 = 𝛆𝛆𝑝𝑝𝑝𝑝,𝜎𝜎∙(𝐋𝐋𝑐𝑐Δ𝛆𝛆𝑐𝑐)
𝛆𝛆𝑝𝑝𝑝𝑝,𝜎𝜎∙(𝐋𝐋𝑐𝑐𝛆𝛆𝑝𝑝𝑝𝑝,𝜎𝜎)

.          (19) 

The volume fraction evolution is calculated for every of 24 possible α’-martensite variants fulfilling the 
condition of Eq. (18). From Eq. (19), we get that Δ𝑓𝑓𝛼𝛼,𝜎𝜎  is approximately linearly proportional to the strain, 
Δ𝛆𝛆𝑐𝑐, as observed in (Olson and Azrin, 1978). For simplicity, in our implementation only the most active 
variant is re-oriented into a new α’-martensite grain as soon as the volume fraction of the variant reaches 
a threshold value, 𝑓𝑓𝛼𝛼′

𝑐𝑐𝑐𝑐 = 0.01. The initial stress and strain is the new grain are set equal to the austenite 
parent grain. Details pertaining to the crystal lattice orientation of the new grain along with the variant 
selection and phase transformation strain are provided in appendix B.  

2.3 Kinetics model for strain-induced martensitic transformation under mechanical load 

As the formation of α’ phase in the strain-induced manner involves an intermediate ε phase, we first 
describe γ → ε and then ε→α’.  

2.3.1 γ → ε 

The formation of slip bands is a prerequisite for strain-induced transformation. Slip bands occur once 
the local stress causes the separation between partials to increase and span the whole grain, thereby 
increasing the area of stacking fault (SF) between partials. Slip bands usually include multiple dislocations 
on nearby {111}𝛾𝛾  planes. These partial dislocations on neighboring {111}𝛾𝛾  planes can be treated as 
superdislocations which are boundaries of a thick fault (Olson and Cohen, 1976). The term slip band is 
used for thick faults that have expanded under the action of applied stress to span the whole grain as very 
thin bands. Although spanning the entire inclusion, the thickness of a slip band is small requiring a flat 
ellipsoid formulation in EPSC, as will be described shortly. Following the derivation presented in (Zecevic 
et al., 2019), the separation between superdislocations is: 

𝑑𝑑 = 𝑐𝑐𝑁𝑁2 /  �2𝛾𝛾𝑁𝑁 − 𝑁𝑁𝑁𝑁𝑝𝑝 ��𝐛̂𝐛𝑙𝑙 − 𝐛̂𝐛𝑟𝑟�𝛔𝛔𝑐𝑐� ∙ 𝐧𝐧��        (20) 

where 𝑁𝑁 is the number of intrinsic SF in the thick fault, 𝛾𝛾𝑁𝑁  is the fault energy, 𝑏𝑏𝑝𝑝  is magnitude of the 
Burgers vector of partial dislocation, 𝐛̂𝐛𝑙𝑙 is a unit vector in the direction of left partial, 𝐛̂𝐛𝑟𝑟  is a unit vector in 
the direction of right partial, 𝛔𝛔𝑐𝑐  is the stress in the crystal, c, and 𝐧𝐧� is the glide plane normal unit vector. 
The thick fault can have either FCC or HCP structure, depending on the ratio between the intrinsic SFE and 
the surface energy of the fault. The surface energy is the free energy per unit area of the 
austenite/martensite interface (Olson and Cohen, 1976). In this study we will focus on the case when the 
thick fault has HCP structure, meaning that the intrinsic SFE is lower than the surface energy of the fault. 
The formed HCP structure inside the fault is the 𝜀𝜀-martensite.  
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If under the applied stress, 𝛔𝛔𝑐𝑐 , denominator in Eq. (20) tends to zero, the separation of 
superdislocations, 𝑑𝑑, will tend to infinity. Therefore, the following condition can be used to test whether 
a slip band is present on a given slip system and in the grain under stress 𝛔𝛔𝑐𝑐:  

2𝛾𝛾𝑁𝑁 − 𝑁𝑁𝑁𝑁𝑝𝑝 ��𝐛̂𝐛𝑙𝑙 − 𝐛̂𝐛𝑟𝑟�𝛔𝛔𝑐𝑐� ∙ 𝐧𝐧� ≤ 0.         (21) 

If a slip band is formed by one active slip system in a given grain, all other active slip systems within the 
grain are assumed to form slip bands. The formation of only one slip band will initiate the creation of slip 
bands on intersecting slip systems, since the slip band allows only leading partials to pass. As partial 
dislocations are moving on the intersecting slip systems, a leading partial enters the given slip band and 
glides on a pyramidal slip system in the band of 𝜀𝜀-martensite contributing to the subsequent formation of 
α’-martensite within the band, which will be described in the next section. The trailing partial stays pinned 
at the shear band. The leading partial can exit the band and continue moving, creating a new shear band 
since the trailing partial is left behind pinned at the boundary of the sheared band. In summary, once Eq. 
(21) is fulfilled for one active slip system in the grain, bands of all active slip systems in the grain form 𝜀𝜀-
martensite, while the intersections form α’-martensite.  

The 𝜀𝜀-martensite volume fraction increment is proportional to shear strain increment: 

Δ𝑓𝑓𝑠𝑠,𝜀𝜀 = Δ𝛾𝛾𝑠𝑠,𝑝𝑝

𝑠𝑠𝜀𝜀
,           (22) 

where Δ𝑓𝑓𝑠𝑠,𝜀𝜀  is the ε-martensite volume fraction increment, Δ𝛾𝛾𝑠𝑠,𝑝𝑝  is the shear strain increment in the 
direction 〈11�2�〉𝛾𝛾  on the {11�1}𝛾𝛾  plane and 𝑠𝑠𝜀𝜀  is the characteristic shear related to the austenite to 𝜀𝜀-
martensite transformation. The shear increment in the direction 〈110〉𝛾𝛾  is Δ𝛾𝛾𝑠𝑠 . Thus, Δ𝛾𝛾𝑠𝑠,𝑝𝑝  can be 
calculated using:  

Δ𝛾𝛾𝑠𝑠,𝑝𝑝 = Δ𝛾𝛾𝑠𝑠

cos30°
= 2

√3
Δ𝛾𝛾𝑠𝑠,         (23) 

where, cos 30° is the dot product between 〈11�2�〉𝛾𝛾 and 〈110〉𝛾𝛾. The remaining shear strain produced by 

leading partial is in direction �𝐛̂𝐛𝑙𝑙 − 𝐛̂𝐛𝑟𝑟� for 1
2
Δ𝛾𝛾𝑠𝑠,𝑝𝑝. This shear strain is assigned as eigenstrain to parent 

austenite grain. The characteristic shear is: 

 𝑠𝑠𝜀𝜀 = 𝑠𝑠𝑡𝑡𝑡𝑡

2
= 1

2√2
 ,          (24) 

where 𝑠𝑠𝑡𝑡𝑡𝑡  is the characteristic twinning shear (Christian and Mahajan, 1995). The relationship is derived 
from the fact that twins are produced by passage of partial dislocations on every {111}𝛾𝛾 plane, while 𝜀𝜀-
martensite is produced by passage of partial dislocations on every 2nd  {111}𝛾𝛾 plane. Therefore, if the 
volume of twin and the 𝜀𝜀-martensite is the same, the shear strain accommodated by twin is two times 
larger than the shear strain accommodated by 𝜀𝜀-martensite.  

The volume fraction of 𝜀𝜀-martensite bands in a given grain is driven by the shear strain increments 
(Eq. (22)). A new grain representing 𝜀𝜀-martensite is introduced once the volume fraction of 𝜀𝜀-martensite 
reaches a threshold value, 𝑓𝑓𝑐𝑐𝑐𝑐𝜀𝜀 = 0.01  per variant. In our implementation, multiple 𝜀𝜀 -martensite 
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grains/variants are allowed to form. However, only one with the highest propensity to be wide will be 
selected for the re-orientation into an α’-martensite grain. An 𝜀𝜀-martensite grain is contained within a slip 
band spanning over the whole grain but the thickness is small corresponding to its volume fraction. Since 
we use a self-consistent model we need to represent the new grain as an ellipsoidal inclusion in the matrix. 
Fitting an ellipsoid to the slip band results in an ellipsoid with two axis of similar length, 𝑎𝑎1 ≈ 𝑎𝑎2, while 
the length of the third axis is several orders of magnitude lower, 𝑎𝑎3 ≪ 𝑎𝑎1,𝑎𝑎2. Such ellipsoids are referred 
to as flat. Regular numeric integration of Green tensor, necessary to find the Eshelby tensor, will provide 
erroneous results. The issue can be resolved by using a flat ellipsoid approximation i.e letting 𝑎𝑎3 → 0 
(Huang and Liu, 1998). Therefore, we use expressions from (Huang and Liu, 1998) to calculate the Eshelby 
tensor for flat ellipsoids that are representing the 𝜀𝜀-martensite. The results of flat ellipsoid approximation 
are validated by using a regular definition of integrals in Eshelby tensor calculation and performing the 
numerical integration with the integral2 function in Matlab, which is able to handle highly oscillating 
integrand function accurately.   

The initial stress and strain of the new grain are set equal to the austenite parent grain. The elastic 
spin of 𝜀𝜀-martensite grains, used to evolve the crystal orientation, is enforced to be the same as the parent 
austenite grains. The crystal orientation of 𝜀𝜀-martensite formed on a slip system defined with plane 
normal, 𝐧𝐧𝛾𝛾 = {11�1}𝛾𝛾, and burgers vector of perfect dislocation, 𝐛𝐛𝛾𝛾 = 〈110〉𝛾𝛾, is: 

𝐧𝐧𝛾𝛾 ∥ {0001�}𝜀𝜀            (25a) 

𝐛𝐛𝛾𝛾 ∥ 〈21�1�0〉𝜀𝜀  .           (25b) 

Given slip system plane normals and Burgers vectors of 𝜀𝜀-martensite perfect dislocations, the orientations 
of multiple 𝜀𝜀-martensite grains are determined using Eq. (25). It is already indicated that for simplicity of 
our implementation, only one of multiple 𝜀𝜀-martensite grains possible to form in a given austenite grain 
will give the crystal orientation to a new α’-martensite grain. It is the 𝜀𝜀-martensite band having the highest 
separation. As a result, one austenite grain is producing one α’-martensite grain, although multiple 𝜀𝜀-
martensite bands have formed in the austenite grain. The active deformation modes and corresponding 
slip resistance of 𝜀𝜀-martensite are closely related to 𝛼𝛼′-martensite formation. Therefore, these aspects 
will be discussed after considering the 𝛼𝛼′-martensite transformation.  

2.3.2 ε→α’  

Transformation of FCC to BCC by means of two slip bands involves: T/2 shear, T/3 shear and a volume 
change (Bogers and Burgers, 1964; Olson and Cohen, 1972). In the description that follows, shear is a 
uniform deformation of a block of atoms, which is usually produced by either or both dislocations and 
shuffles. A shuffle is a translation of atomic planes, while a dislocation moves one half of the crystal for a 
Burger vector. Two mechanisms for the formation of 𝛼𝛼′-martensite from 𝜀𝜀-martensite are distinguished: 
within 𝜀𝜀-martensite bands at slip band intersections (Yang et al., 2014) and within 𝜀𝜀 -martensite bands 
but not at slip band intersections (Yang et al., 2015). Both mechanisms can be reduced to a combination 
of the T/2 and T/3 shears that produce BCC structure from the FCC structure containing 𝜀𝜀-martensite 
bands, where T refers to the twinning shear. T/2 and T/3 shears refer to lattice deformation and structures 
produced by uniform shearing of FCC lattice. Thus, these shears are relative to the FCC structure. 𝜀𝜀-
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martensite can be converted to either T/2 or T/3 shear structures with appropriate atom shuffles and the 
introduction of dislocations. Thus, following the formation of shear bands with HCP structure and upon 
encountering of two of them, one of the bands spontaneously undergoes a shuffle to form a T/2 structure, 
while the other band introduces a T/3 shear over the intersecting region undergoing the transformation. 
It is not clear whether T/2 shear or T/3 shear happen first. The other shear producing 𝛼𝛼′-martensite (T/3 
if T/2 happened first or T/2 if T/3 happened first) can be introduced by passing partial dislocations from 
surrounding austenite or it can initiate in the 𝜀𝜀-martensite. The later refers to the mechanism of 𝛼𝛼′-
martensite formation without slip band intersections but plastic deformation of ε by pyramidal slip. In 
both cases, with and without intersecting bands, certain amount of plastic strain is accommodated in the 
𝜀𝜀 -martensite accompanied by the transformation to 𝛼𝛼′ -martensite. Therefore, we relate the 𝛼𝛼′ -
martensite to the plastic deformation of 𝜀𝜀-martensite without making a clear distinction between the 
partials that come from austenite and partials that are nucleated within 𝜀𝜀-martensite. 

We consider the case in which 𝜀𝜀-martensite is converted to T/2 structure by shuffle on every 2nd 
{0001}𝜀𝜀  plane in 

𝑎𝑎𝛾𝛾
12
〈11�2�〉𝛾𝛾  (Bracke et al., 2007). By applying this shuffle, two {011�1}𝜀𝜀  planes become 

uniformly distorted {111}𝛾𝛾  planes. The T/3 shear is then on {011�1}𝜀𝜀  planes (Yang et al., 2015). As is 
evident, the directions and planes are described in different structures, some intuitive in FCC and some in 
HCP.  For example, {0001}𝜀𝜀  is in the HCP structure because the translation/shuffle is applied to it. 

However, the Burgers direction of the partial dislocation (
𝑎𝑎𝛾𝛾
12
〈11�2�〉𝛾𝛾) is much more intuitive in FCC, as it 

has no special meaning when converted to the HCP structure. Figure 1a and b show appearance of one 
{011�1}𝜀𝜀  planes produced by applying two different shuffles in 

𝑎𝑎𝛾𝛾
12
〈11�2�〉𝛾𝛾  on every 2nd {0001}𝜀𝜀  plane. 

More elaborate description is given in appendix C. From Figure 1 it is seen that on every {011�1}𝜀𝜀  plane 
there are two directions for T/3 shear that will produce the BCC structure, depending on the T/2 shear 
direction (Bogers and Burgers, 1964; Bracke et al., 2007; Olson and Cohen, 1972). Specifically, there are 
two equally possible shuffles that produce two different distortions of one {011�1}𝜀𝜀  plane, shown in Fig. 
1. For each distortion there is one T/3 shear that will produce the BCC structure. The angle between 
〈01�12〉𝜀𝜀  direction and T/3 shearing direction is ≈ 126° , meaning that T/3 direction corresponds to 
≈ 〈51�4�3�〉𝜀𝜀. It appears that partial dislocations that cause contraction of c-axis of 𝜀𝜀-martensite form BCC, 
while partial dislocations causing extension of c-axis of 𝜀𝜀-martensite do not form BCC. Hence, we restrict 
the shearing of 𝜀𝜀  -martensite on the {011�1}𝜀𝜀  planes in the 〈51�4�3�〉𝜀𝜀  directions to those satisfying 
〈51�4�3�〉𝜀𝜀 ∙ [0001] < 0. However, no such restriction has been reported in any experimental observations. 
To facilitate c-axis extension in 𝜀𝜀-martensite and the fact that every intersection forms α-martensite, we 
assume that in case of partial dislocations causing the extension of c-axis, 𝜀𝜀-martensite is converted to 
T/3 shear structure by the introduction of appropriate shuffles and T/6 shear (Yang et al., 2015). This is 
the case when the 𝜀𝜀-martensite transforms to T/3 structure first. Then the missing shear is T/2. The 
necessary T/2 shear is formed by passing dislocations and appropriate shuffles over the T/3 structure to 
get α’-martensite. We model this situation by considering shearing of 𝜀𝜀  -martensite in the 〈01�12〉𝜀𝜀  
direction on the planes {011�1}𝜀𝜀 , with the following restriction 〈01�12〉𝜀𝜀 ∙ [0001] > 0. The orientation 
relationship between austenite, 𝜀𝜀-martensite and 𝛼𝛼′-martensite is (Bracke et al., 2007):  

{111}𝛾𝛾 ∥ {0001}𝜀𝜀 ∥ {110}𝛼𝛼′           (26a) 
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〈110〉𝛾𝛾 ∥ 〈21�1�0〉𝜀𝜀 ∥ 〈111〉𝛼𝛼′  .         (26b) 

 

Figure 1. Schematic showing uniformly distorted {111}𝛾𝛾 planes (or equivalently  {011�1}𝜀𝜀  planes) after 
T/2 shear by two possible shuffles in 

𝑎𝑎𝛾𝛾
12
〈11�2�〉𝛾𝛾 on every 2nd {111}𝛾𝛾 (or equivalently {0001}𝜀𝜀). Subsequent 

T/3 shear to get BCC structure is indicated in the figure. The views are along the normal to {111}𝛾𝛾 planes 
that are distorted. Both blue and brown atoms make up the same distorted planes.  

 

The description above was about the mechanism for the formation of the 𝛼𝛼′-martensite from the 𝜀𝜀-
martensite within the 𝜀𝜀-martensite bands upon intersections with other slip bands. We now turn our 
attention to the mechanism of 𝛼𝛼′ -martensite formation within ε-martensite bands but not at 
intersections with other slip bands. Here, we assume that 𝜀𝜀-martensite plastically deforms by shearing on 
the planes {011�1}𝜀𝜀  in the directions 〈51�4�3�〉𝜀𝜀  and 〈01�12〉𝜀𝜀 , with the restrictions 〈51�4�3�〉𝜀𝜀 ∙ [0001] < 0 
and 〈01�12〉𝜀𝜀 ∙ [0001] > 0 . In our implementation, these two directions on {011�1}𝜀𝜀  are provided as 
available slip systems for the ε-martensite phase (table 1). The shear is directional, meaning that it 
happens only in one sense.  

 

Table 1. List of pyramidal slip systems in HCP phase.  

n b 
0  1 1�  1 0 1�  1  2 
0  1 1�  1 5 1� 4� 3� 
0  1 1�  1 5�  4  1 3� 
1  0 1�  1 1�  0  1  2 
1  0 1�  1 1�  5 4� 3� 

〈01�12〉𝜀𝜀   

Direction of T/3 shear 
to form BCC 

Direction of T/3 shear 
to form BCC 

〈01�12〉𝜀𝜀   
a) b) 

〈51�4�3�〉𝜀𝜀  〈51�4�3�〉𝜀𝜀  
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1  0 1�  1 4 5�  1 3� 
1 1�  0  1 1�  1  0  2 
1 1�  0  1 4  1 5� 3� 
1 1�  0  1 1� 4�  5 3� 
0 1�  1  1 0  1 1�  2 
0 1�  1  1 5 4� 1� 3� 
0 1�  1  1 5�  1  4 3� 
1�  0  1  1 1  0 1�  2 
1�  0  1  1 4�  5 1� 3� 
1�  0  1  1 1 5�  4 3� 

 

As mentioned above, both mechanisms (with and without intersecting bands) are a combination of 
the T/2 and T/3 shears that produce BCC structure from the FCC structure containing 𝜀𝜀-martensite bands. 
The increment in volume fraction of 𝛼𝛼′ -martensite is related to the shear increments through the 
characteristic shear of transformation:  

Δ𝑓𝑓𝑠𝑠,𝛼𝛼′ = Δ𝛾𝛾𝑠𝑠

𝑠𝑠𝜀𝜀→𝛼𝛼′
,            (27) 

where Δ𝑓𝑓𝛼𝛼′ is the increment in volume fraction of 𝛼𝛼′-martensite with respect to 𝜀𝜀-martensite, Δ𝛾𝛾𝑠𝑠 is the 
increment in shear strain on the planes {011�1}𝜀𝜀  in the directions 〈51�4�3�〉𝜀𝜀  and 〈01�12〉𝜀𝜀 , with the two 

restrictions 〈51�4�3�〉𝜀𝜀 ∙ [0001] < 0 and 〈01�12〉𝜀𝜀 ∙ [0001] > 0, and 𝑠𝑠𝜀𝜀→𝛼𝛼′ = 1
3√2

 is the characteristic shear 

of 𝜀𝜀 → 𝛼𝛼′ transformation. To calculate the total volume fraction of 𝛼𝛼′-martensite, for simplicity we sum 
𝛼𝛼′ -martensite volume fractions from all 𝜀𝜀 -martensite grains having the same parent austenite grain 
instead of modeling multiple 𝛼𝛼′-martensite child grains. Hence, we assign one volume fraction of 𝛼𝛼′-
martensite to each austenite grain that is transforming. Once the volume fraction of 𝛼𝛼′ -martensite 

reaches a critical value of, 𝑓𝑓𝑐𝑐𝑐𝑐𝛼𝛼
′ = 0.01, a new 𝛼𝛼′-martensite grain is introduced into the polycrystal. The 

parent 𝜀𝜀-martensite band for re-orienting is the one exhibiting the highest separation, while selecting the 
T/3 slip system involves a search for the one active system within the parent austenite grain giving rise to 
the 𝛼𝛼′-martensite crystal orientation. Only a specific combination of T/2 shuffle followed by T/3 shear will 
give α’. If multiple slip systems satisfy the condition to give 𝛼𝛼′, the one with the highest driving force is 
selected. More details on the orientation of the new grain and the phase transformation strain are given 
in appendix C. The calculated phase transformation strain is averaged over the austenite grain and 
assigned to: (1) austenite parent, (2) 𝜀𝜀-martensite grains nucleated from austenite parent and (3) newly 
created 𝛼𝛼′-martensite grain. Thus, the eigenstrain is assigned to austenite grain and all its product phases 
i.e. ε and 𝛼𝛼′. In that process, it needs to be averaged over the volume of all the grains that nucleated from 
the original austenite grain, since EPSC only understands one value of a uniform average eigenstrain per 
grain (Zecevic et al., 2019). Figure 2 presents a schematic showing an austenite grain represented with a 
sphere before and after martensitic transformation.  

The mechanical driving force for 𝜀𝜀 → 𝛼𝛼′ transformation reduces to: 

𝑈𝑈𝑠𝑠 = 𝜏𝜏𝑠𝑠 𝑇𝑇
3

+ 𝛔𝛔ℎ𝑦𝑦𝑦𝑦 ∙ 𝛆𝛆𝑝𝑝𝑝𝑝,𝜀𝜀,         (28) 
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where 𝜏𝜏𝑠𝑠 is the shear stress in the direction of the T/3 shear in 𝜀𝜀-martensite, 𝛔𝛔ℎ𝑦𝑦𝑦𝑦 is the hydrostatic stress 
and 𝛆𝛆𝑝𝑝𝑝𝑝,𝜀𝜀  is the phase transformation strain related to the volume change (see appendix C, Eq. (C5)). In 
other words, 𝜏𝜏𝑠𝑠  is the resolved shear stress on {011�1}𝜀𝜀  in directions 〈51�4�3�〉𝜀𝜀  and 〈01�12〉𝜀𝜀 , with the 
restrictions 〈51�4�3�〉𝜀𝜀 ∙ [0001] < 0 and 〈01�12〉𝜀𝜀 ∙ [0001] > 0. Note that for simplicity, we do not make a 
distinction between driving force for 〈51�4�3�〉𝜀𝜀  and 〈01�12〉𝜀𝜀  slip systems, even though according to the 
discussion above 〈51�4�3�〉𝜀𝜀 is the direction for T/3 shear and 〈01�12〉𝜀𝜀  is the direction of T/2 shear. The 𝜀𝜀 →
𝛼𝛼′ transformation occurs when the mechanical driving force reaches a critical value: 

𝜏𝜏𝑠𝑠 𝑇𝑇
3

+ 𝛔𝛔ℎ𝑦𝑦𝑦𝑦 ∙ 𝛆𝛆𝑝𝑝𝑝𝑝,𝜀𝜀 = 𝑈𝑈𝑐𝑐𝑐𝑐 .         (29) 

The critical 𝑈𝑈𝑐𝑐𝑐𝑐 mechanical driving force is the difference between the chemical driving force at which 
transformation occurs spontaneously and the chemical driving force at current temperature. It has a 
similar interpretation as 𝑈𝑈𝑐𝑐  in Eq. (16). Since the 𝜀𝜀 → 𝛼𝛼′  transformation occurs by motion of partial 
dislocation averaging one on every three {011�1}𝜀𝜀  planes, we rewrite Eq. (29) in a form similar to the 
Schmid law: 

𝜏𝜏𝑠𝑠 = 3𝑈𝑈𝑐𝑐𝑐𝑐
𝑇𝑇
− 3

𝑇𝑇
𝛔𝛔ℎ𝑦𝑦𝑦𝑦 ∙ 𝛆𝛆𝑝𝑝𝑝𝑝,𝜀𝜀.          (30) 

In Eq. (30) the right-hand side can be interpreted as the slip resistance consisting of two terms: a constant 

term  3𝑈𝑈𝑐𝑐𝑐𝑐
𝑇𝑇

 and a stress dependent term 3
𝑇𝑇
𝛔𝛔ℎ𝑦𝑦𝑦𝑦 ∙ 𝛆𝛆𝑝𝑝𝑝𝑝,𝜀𝜀. In the model we use 3𝑈𝑈𝑐𝑐𝑐𝑐

𝑇𝑇
 as the fitting parameter 

corresponding to an initial value of slip resistance. After each deformation step, we correct the slip 

resistance with  3
𝑇𝑇
𝛔𝛔ℎ𝑦𝑦𝑦𝑦 ∙ 𝛆𝛆𝑝𝑝𝑝𝑝,𝜀𝜀, until at least one slip system is active. After activation of slip systems, we 

allow for the strain hardening to take place. For strain hardening of the phase, we use the dislocation 
density-based hardening law provided in appendix A.  

While models combining the stress-assisted and strain-induced transformations can be formulated 
within a continuum thermodynamic principle framework (Levitas et al., 2017a; Ma and Hartmaier, 2015), 
more physical approaches dealing with dislocations face issues in attempting to unify the kinetics laws. 
While growth of preexisting phases can be unified, the physics of nucleation cannot, since the physics of 
nucleation is fundamentally different in stress-assisted versus in strain-induced transformations. In 
particular, the strain-induced transformation requires consideration of dislocations dissociating. In 
summary, the nucleation related to formation of twins and ε-martensite would be the main challenge to 
unification.  
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Figure 2. Schematic showing an austenite grain represented with a sphere before and after martensitic 
transformation of volume Δ𝑓𝑓𝛼𝛼′.   

 

3. Results 

In order to simulate mechanical response, evolution of texture, and evolution of phases using EPSC, 
the model is initialized with a starting texture for γ-austenite, initial grain shapes, a set of single crystal 
elastic constants per phase, and a set of slip systems per phase. In addition, parameters pertaining to the 
hardening law and the kinetic models are calibrated and validated by comparing the simulated and 
measured data in terms of mechanical response, texture, and phase fractions. The model is used to 
interpret the data of an austenitic steel.  

For the present simulation cases, the initial texture is assumed to be random with each grain initialized 
to be a spherical inclusion into the effective medium. Both texture and grain shape evolve with 
deformation and transformation. Simple tension (ST), simple compression (SC), and torsion boundary 
conditions are imposed and these cases simulated to certain strain levels. The ST/SC are simulated by 
imposing normal strain increments along the loading direction, while enforcing zero normal stresses in 
the lateral directions and zero shear strains. Torsion is simulated with plane stress state in the plane 
containing 1 and 2 directions, while applying shear strain increments, Δ𝜀𝜀12, and setting the normal strains 
in directions 1 and 2 to zero (Jahedi et al., 2015a; Jahedi et al., 2015b; Knezevic et al., 2013b; Zecevic et 
al., 2015b, c).  

The experimental results for austenitic steel 18Cr-10Ni reported in (Lebedev and Kosarchuk, 2000) 
have been simulated by the developed model. Chemical composition of this austenitic steel is provided in 
table 2. The material was tested in ST, SC, and torsion at 77 K and 293 K. The transformation to 𝜀𝜀-
martensite and 𝛼𝛼′-martensite happened at 77 K, while at 293 K there was no appreciable transformation. 
The determination of material parameters involves hardening parameters controlling the mechanical 
response and kinetic laws parameters controlling the onset and rate of transformation. In our first attempt 
to simulate the data, only the strain-induced kinetics model was active as is meant to be appropriate for 
the studied austenitic steel (Olson and Cohen, 1982). The model calibration involves adjusting three sets 
of parameters i.e. a set of the hardening law parameters for austenite, a set of the hardening law 
parameters for martensite, and a set of the kinetics law parameters. The measured mechanical response 

Δ𝑓𝑓𝛼𝛼′  

Δ𝑓𝑓𝛼𝛼′ ,𝛆𝛆𝑝𝑝𝑝𝑝,𝜀𝜀  

Austenite grain with 
shear bands 

Austenite grain containing 
transformed martensite  
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is a homogenized response of martensite and austenite, while the latter is transforming into the former. 
Arriving at a unique set of hardening parameters for both phases and the transformation kinetics 
simultaneously would be challenging since similar effects on the stress strain curve can be achieved by 
changing parameters of either martensite or austenite. To remove such ambiguities in the fitting 
procedure, we adjust the hardening parameters for austenite at 293 K, where the mechanical response is 
solely governed by the austenite phase with no phase transformation happening (see Fig. 3a). The 
hardening law is temperature sensitive and we allow this intrinsic temperature sensitivity to predict the 
response of austenite at 77 K. The kinetic law parameters were calibrated using the tension data at 77 K, 
see Fig. 3b and c. The 𝛼𝛼′ -martensite hardening law parameters were calibrated by comparing the 
measured and simulated stress-strain curve for tension at 77 K, see Fig. 3a. The parameters are provided 
in tables 3 and 4. The single crystal elastic constants for austenite are 𝐶𝐶11 = 209 𝐺𝐺𝐺𝐺𝐺𝐺, 𝐶𝐶12 = 133 𝐺𝐺𝐺𝐺𝐺𝐺 
and 𝐶𝐶44 = 121 𝐺𝐺𝐺𝐺𝐺𝐺 . The single crystal elastic constants for α’-martensite are 𝐶𝐶11 = 234 𝐺𝐺𝐺𝐺𝐺𝐺 , 𝐶𝐶12 =
135 𝐺𝐺𝐺𝐺𝐺𝐺  and 𝐶𝐶44 = 118 𝐺𝐺𝐺𝐺𝐺𝐺  (Wang et al., 2016). The crystal elastic constants for ε-martensite are 
calculated based on formulations from (Fellinger et al., 2019; Pronk and Frenkel, 2003) and are 𝐶𝐶11 =
268.7 𝐺𝐺𝐺𝐺𝐺𝐺 , 𝐶𝐶12 = 128.6 𝐺𝐺𝐺𝐺𝐺𝐺 , 𝐶𝐶13 = 77.67 𝐺𝐺𝐺𝐺𝐺𝐺 , 𝐶𝐶33 = 319.7 𝐺𝐺𝐺𝐺𝐺𝐺  and 𝐶𝐶44 = 49.26 𝐺𝐺𝐺𝐺𝐺𝐺 . The 
{11�1}〈110〉 and the {110}〈11�1〉 slip systems are used for austenite and α’-martensite, respectively, while 
slip systems in the HCP phase of ε-martensite are restricted to pyramidal slip on {011�1}𝜀𝜀  planes in 
〈51�4�3�〉𝜀𝜀  and 〈01�12〉𝜀𝜀  directions, with the restrictions 〈51�4�3�〉𝜀𝜀 ∙ [0001] < 0 and 〈01�12〉𝜀𝜀 ∙ [0001] > 0, 
facilitating ε→α’ transformation. The specific slip systems have been listed in table 1. The simulated 
volume fractions of 𝜀𝜀-martensite and 𝛼𝛼′-martensite for torsion and compression, shown in Fig. 3b and c, 
respectively, are predictions. To further demonstrate predictive characteristics and flexibility of the 
developed model, Fig. 4 presents results of simulations performed after enabling a small amount of the 
stress-assisted transformation, in addition to the already active strain-induced kinetics law. As is evident, 
the small addition of stress-assisted transformation improves the predictions. Simultaneous occurrence 
of strain-induced and stress-assisted transformations has been observed experimentally (Maxwell et al., 
1974; Snell et al., 1977). Figure 5 shows the predicted texture evolution per phase for the three simulation 
cases. These predictions have been validated using the model presented in (Zecevic et al., 2019) and since 
essentially indistinguishable, they are not shown. Additionally, texture evolution after the small addition 
of stress-assisted transformation is not appreciably different and these pole figures are not shown.   

It should be noted that some of the parameters pertaining to the hardening and kinetics laws such as 
slip resistance, drag stress, and SFE can be calculated using first principle- or atomistic-based simulation 
tools instead of calibrated using experimental data. Several recent works involving a continuum/atomistic 
approach to predicting stress-state sensitive phase transformations and in particular the role of 
instabilities in addition to the free energy minima have attempted to do so (Chen et al., 2019; Levitas et 
al., 2017a, b; Zarkevich et al., 2018). However some difficulties in attempting to perform such calculations 
for ESPC would likely arise due to complex chemical compositions of the technologically relevant 
austenitic steels used in the present work. Moreover, considering that some of the parameters like the 
initial hardening slope, 𝑘𝑘1, are volume averaged values, some form of averaging of the first principles 
calculations would be necessary to facilitate meaningful extractions and/or comparisons. Nevertheless, 
having the parameters either calculated using the first principle calculations or measured, as parameters 
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like slip resistance and SFE are measureable quantities, would eliminate any non-uniqueness, since 
obtaining good fits of experimental does not usually warrant that sets of parameters are unique. 

 

Table 2. Chemical composition (wt. %) of the austenitic steel considered in the present study. Fe balances 
the provided composition.  

C Cr Ni Si Mo Mn Cu Ti V 
0.07 15.4 12.3 0.43 1.91 1.45 0.12 0.41 0.05 

 

 

Figure 3. Comparison between measured and predicted (a) stress-strain response for simple tension (ST) 
at 77 K and 293 K, (b) volume fraction of 𝜀𝜀 -martensite for simple tension (ST) to 0.2 strain, simple 
compression (SC) to 0.55 strain, and torsion to 0.4 shear strain at 77 K, (c) volume fraction of α’-martensite 
for ST, SC, and torsion at 77 K, and (d) fraction of austenite grains that transform for 18Cr-10Ni austenitic 
steel. Dots are experimental data, while solid lines are simulation results with only strain-induced phase 
transformations enabled in the model. 

 

a) b) 

c) d) 
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Figure 4. Comparison between measured and predicted (a) stress-strain response for ST at T = 77 K, (b) 
volume fraction of 𝜀𝜀-martensite for ST, SC, and torsion at 77 K, (c) volume fraction of α’-martensite for ST, 
SC, and torsion at 77 K, (d) fraction of austenite grains that transformed for 18Cr-10Ni austenitic steel. 
Dots are experimental data, solid lines are simulation results with only strain-induced phase 
transformations enabled, and dashed lines (and dash-dotted lines in d) are simulation results with both 
the stress-assisted and strain-induces transformations enabled.  

 

a) 

c) 

b) 

d) 
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Figure 5. Pole figures showing the simulated texture evolution with strain-induced transformation only (a) 
ST, (b) SC, and (c) torsion to strain levels of 0.2, 0.55, and 0.4 respectively at 77 K for γ-austenite and α’-
martensite. The loading direction (RD) is at the center of pole figures for ST and SC. The torsion pole figures 
are plotted in the shear plane.  

 

Table 3. Parameters pertaining to the phase transformation kinetics laws.   

𝑈𝑈𝑐𝑐 [
𝑀𝑀𝑀𝑀
𝑚𝑚3] 

𝛾𝛾𝑁𝑁
𝑁𝑁  [

𝑚𝑚𝑚𝑚
𝑚𝑚2] 𝑓𝑓𝑐𝑐𝑐𝑐𝛼𝛼

′
 𝑓𝑓𝑐𝑐𝑐𝑐𝜀𝜀  

65.0 7.6 0.01 0.01 
 

Table 4. Parameters pertaining to the hardening law.  

Phase 𝜏𝜏0 [𝑀𝑀𝑀𝑀𝑀𝑀] 𝑘𝑘1 [𝑚𝑚−1] 𝑔𝑔 𝐷𝐷 [𝑀𝑀𝑀𝑀𝑀𝑀] 𝑞𝑞 𝑏𝑏� [Å] 

𝛾𝛾 145@77𝐾𝐾 
80@293𝐾𝐾 

0.92
× 10−8 0.15 100 4 2.54 

𝜀𝜀 100 0.21
× 10−8 

1 ×
106* 100 4 1.47 

𝛼𝛼′ 250** 1.00
× 10−8 0.25 100 4 2.49 

𝛼𝛼′-martensite simulated in torsion 

𝛾𝛾-austenite simulated in torsion  

RD 

TD 

c) 
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𝛼𝛼𝑆𝑆𝑆𝑆′  225 1.00
× 10−8 0.25 100 4 2.49 

* The value is high to promote linear hardening, since plastic deformation in 𝜀𝜀 transforms it into the 𝛼𝛼′-
martensite. The c/a ratio is 1.58 for the HCP phase.  
**The value is reduced to 225 for the simulation cases when both stress-assisted and strain-induced 
transformations are active. 
 
 
4. Discussion  

This paper developed physically based kinetics laws for both stress-assisted and strain-induced γ-
austenite to α’-martensite transformation sensitive to strain path in crystal plasticity. The volume fraction 
evolution of martensite are predicted by the model. In terms of non-elastic equivalent strain, 𝛾𝛾 → 𝜀𝜀 
transformation during tension starts first, followed by torsion and finally compression. The total fraction 
of austenite grains that form 𝜀𝜀-martensite phase is shown in Fig 3d. The interaction of the stress state 
with separation between partials on active slip systems, defined by crystal orientation, determines if the 
grain will form 𝜀𝜀-martensite (Zecevic et al., 2019). The process of separation between partials is the most 
favorable in ST, while the least favorable in SC. After initial increase of 𝜀𝜀-martensite fraction at roughly 
constant rate, the 𝜀𝜀 → 𝛼𝛼′ transformation initiates, decreasing the rate of 𝜀𝜀-martensite fraction evolution. 
At an instant, the rate of 𝜀𝜀 → 𝛼𝛼′ transformation is equal to 𝛾𝛾 → 𝜀𝜀 transformation, which is seen as the 
maximum in  𝜀𝜀 -martensite volume fraction. After this point, the volume fraction of 𝜀𝜀 -martensite is 
decreasing, meaning that the rate of 𝜀𝜀 → 𝛼𝛼′  transformation is greater than the rate of 𝛾𝛾 → 𝜀𝜀 
transformation.  

In the model of the strain-induced transformation developed here, the 𝛼𝛼′-martensite is the product 
of 𝜀𝜀 -martensite phase. The difference in content of 𝛼𝛼′ -martensite between tension, torsion and 
compression in the model, seen in Fig 3c, is driven by the difference in 𝜀𝜀-martensite content and behavior 
of 𝜀𝜀-martensite under different stress states. The 𝜀𝜀-martensite deforms by plastic slip accompanied by 
the transformation to 𝛼𝛼′-martensite. The stress state will affect the slip resistance according to Eq. (30). 
The slip resistance for 𝜀𝜀-martensite is lowest for tension (𝛔𝛔ℎ𝑦𝑦𝑦𝑦 ∙ 𝛆𝛆𝑝𝑝𝑝𝑝 > 0), followed by torsion (𝛔𝛔ℎ𝑦𝑦𝑦𝑦 ∙
𝛆𝛆𝑝𝑝𝑝𝑝 = 0) and compression (𝛔𝛔ℎ𝑦𝑦𝑦𝑦 ∙ 𝛆𝛆𝑝𝑝𝑝𝑝 < 0).  

Note that the model under-predicts content of 𝛼𝛼′ -martensite for compression and torsion. The 
mismatch could originate from assumption that only grains developing slip bands transform. There are 
experimental evidence that show even grains without slip bands form 𝛼𝛼′-martensite. The simulation cases 
with stress-assisted kinetics further improve the results and demonstrate flexibility of the overall model 
(Fig. 4). The model successfully predicts low addition of the stress-assisted transformation during SC as 
low magnitude of stress triaxiality inhibits the transformation (Patel and Cohen, 1953).  

The kinetics models presented in this work relate the martensite fraction with the shear strain on the 
slip systems in each grain. The fraction of martensite depends on the crystal lattice orientation relative to 
the loading direction governing the stress state in the crystal. As a result, the effect of crystal lattice 
orientation on the fraction of martensite is intrinsically accounted for by the model. Figure 6 shows the 
propensity of different crystal orientations to form martensite using the inverse pole figure (IPF) maps. 
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Normalized values of volume fraction of ε-martensite are plotted for the strain-induced transformation 
under ST and SC at an arbitrary strain level during the transformation. Similarly, normalized values of 
driving force (Eq. 15) to obtain α’-martensite are plotted for the stress-assisted martensite transformation 
at an arbitrarily selected value of stress for every crystal in the IPF map. The plots for the strain-induced 
transformation show the transformation propensity is at the minimum for the 〈001〉 crystals parallel to 
the ST direction, while it is at the maximum for 〈011〉 and 〈111〉 crystals parallel to the ST direction. These 
predictions are consistent with the observations from (Burgers and Klostermann, 1965; Goodchild et al., 
1970; Lagneborgj, 1964; Petit et al., 2007). In contrast, the model reveals that crystals with the <001> 
orientation parallel to the SC direction have the highest propensity to transform. The prediction is 
consistent with experimental observation reported in (Polatidis et al., 2018). The crystals compressed 
along <011> or <011> do not transform in SC, as reported in (Goodchild et al., 1970). Figure 6c incicates 
easy transformation for soft grains like those with [001] paralel with SC/ST direction (Hilkhuijsen et al., 
2013).  
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Figure 6. Contours showing the effect on crystal orientation on the probability to transform: (a) 
normalized volume fraction of ε-martensite in ST and SC and (b) normalized driving force to obtain α’-
martensite in ST and SC under the stress-assisted transformation.   

 

5. Conclusions 

This paper presented kinetics models for both stress-assisted and strain-induced γ-austenite to α’-
martensite transformation sensitive to strain paths. The models do not assume functions for the evolution 
of 𝛼𝛼′-martensite fraction and are not formulated as extensions of the empirical Olson-Cohen model but 
are physically based. The strain-induced transformation model conceived here treats phase 
transformation physically as an additional deformation mode, while the stress-assisted transformation 
model relies on an energy criterion. Consistent with experimental observations, the kinetics model for the 
strain-induced transformation is first transforming γ-austenite to a separate/intermediate ε-martensite 
phase in shear bands driven by local stress state sensitive motion of partial dislocations and subsequently 
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transforming the ε-martensite phase to α'-martensite after shear bands intersect. To model the ε-
martensite morphology, a flat ellipsoid approximation is incorporated into EPSC. The stress-assisted 
transformation is direct from γ-austenite to α'-martensite. Crystallographic, kinetic, and thermodynamic 
aspects of the martensite transformation are captured by the laws. Since local crystal orientation has a 
strong influence on the active transformation mechanisms, the laws are implemented in EPSC. The overall 
implementation facilitates modeling of strain path and crystallographic texture dependence of martensitic 
transformation, while predicting deformation behavior of metastable austenitic steels. Simple tension, 
simple compression, and torsion data of an austenitic steel have been used to calibrate and to illustrate 
predictive characteristics of the overall implementation. In doing so, stress-strain response, phase 
fractions of γ-austenite, intermediate ε-martensite, and α’-martensite, and texture are all calculated, 
while fully accounting for the crystallography of the transformation mechanisms. Good predictions 
demonstrate flexibility and utility of the developed EPSC implementation.  
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Appendix A. Dislocation density-based hardening law within EPSC  
The dislocation-based hardening law available in EPSC is briefly summarized for completeness of the 

paper. The evolution of slip resistance, within the EPSC framework, is governed by the relation: 

𝜏̇𝜏𝑐𝑐
𝑐𝑐,𝑠𝑠 = ∑ ℎ𝑠𝑠𝑠𝑠′𝑠𝑠′ 𝛾̇𝛾𝑐𝑐,𝑠𝑠′,         (A1) 

where ℎ𝑠𝑠𝑠𝑠′  is the hardening matrix, 𝜏̇𝜏𝑐𝑐  is the rate of slip resistance and 𝛾̇𝛾 is the shear rate on a slip system. 
Assuming the slip resistance is a function of shear strain allows writing the hardening matrix as a matrix 
of partial derivatives: 

ℎ𝑠𝑠𝑠𝑠′ = 𝜕𝜕𝜏𝜏𝑐𝑐𝑠𝑠

𝜕𝜕𝛾𝛾𝑠𝑠′
 .          (A2) 

Next, the evolution of slip resistance with shear strain is defined using the dislocation-based strain 
rate and temperature sensitive hardening law (Ardeljan and Knezevic, 2018; Ardeljan et al., 2015a; 
Beyerlein and Tomé, 2008 ; Knezevic et al., 2014a ; Knezevic et al., 2012 ; Knezevic et al., 2014b). 𝛼𝛼 
enumerates slip modes, while s slip systems. The total slip resistance on a slip system consists of several 
terms: 

𝜏𝜏𝑐𝑐𝑠𝑠 = 𝜏𝜏0𝛼𝛼 + 𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠 + 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝛼𝛼 ,         (A3) 

where 𝜏𝜏0𝛼𝛼  is an initial slip resistance, 𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠  is a forest term, 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝛼𝛼  is a debris term. The initial slip 
resistance includes all contributions to slip resistance which remain constant during deformation, e.g. the 
Hall-Petch contribution, the solid solution contribution etc. The forest term describes the contribution to 
slip resistance from the statistically stored dislocations: 
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𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠 = 𝑏𝑏𝛼𝛼𝜒𝜒𝜇𝜇𝛼𝛼�∑ 𝐿𝐿𝑠𝑠𝑠𝑠′𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠′𝑠𝑠′           (A4) 

where 𝑏𝑏𝛼𝛼  is the Burgers vector having values of 2.538 10−10 𝑚𝑚 and 2.488 10−10 𝑚𝑚 for austenite and 
martensite phases, respectively , 𝜒𝜒 = 0.9 is an interaction constant, 𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠  is the total forest dislocation 
density per slip system (𝑠𝑠 ∈ 𝛼𝛼) and 𝐿𝐿𝑠𝑠𝑠𝑠′  is a strength interaction matrix with entries set to 1 (Franciosi and 
Zaoui, 1982; Khadyko et al., 2016). The debris term describes the contribution to slip resistance from 
dislocations stored as debris (Ardeljan et al., 2017; Ardeljan et al., 2016; Ardeljan et al., 2015b): 

𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝛼𝛼 = 0.086 𝜇𝜇𝛼𝛼𝑏𝑏𝛼𝛼�𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙 �
1

𝑏𝑏𝛼𝛼�𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑
�         (A5) 

where 𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑 is the debris dislocation density (Madec et al., 2003). 
With known total dislocation density, 𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠′ , and debris dislocation density, 𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑, the current value of 

slip resistance, 𝜏𝜏𝑐𝑐𝑠𝑠, can be evaluated. 𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠′  and 𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑 evolve with shear strain on the slip systems according 
to the evolution laws (Khadyko et al., 2016 ; Knezevic et al., 2013c; Kocks and Mecking, 1981): 

 𝜕𝜕𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡
𝑠𝑠

𝜕𝜕𝛾𝛾𝑠𝑠
= 𝑘𝑘1𝛼𝛼�∑ 𝑔𝑔𝑠𝑠𝑠𝑠′𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠′𝑠𝑠′ − 𝑘𝑘2𝛼𝛼(𝜀𝜀̇,𝑇𝑇)𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠′ ,       (A6) 

where 𝑘𝑘1𝛼𝛼  determines the rate of generation of statistically stored dislocations, 𝑘𝑘2𝛼𝛼  is a rate-sensitive 
coefficient for dynamic recovery (Beyerlein and Tomé, 2008), and 𝑔𝑔𝑠𝑠𝑠𝑠′  is a matrix governing the slip 
system interaction in terms of accumulation of forest dislocations (Khadyko et al., 2016; Kocks et al., 1991; 
Teodosiu and Raphanel, 1991). Here we adopted the diagonal form of 𝑔𝑔𝑠𝑠𝑠𝑠′ matrix, i.e. 𝑔𝑔𝑠𝑠𝑠𝑠 = 1 and 𝑔𝑔𝑠𝑠𝑠𝑠′ =
0 , meaning that there are no interactions between slip systems in terms of accumulation of forest 
dislocations. The initial total dislocation density is set to 1011  𝑚𝑚−2 . While 𝑘𝑘1𝛼𝛼  is a constant number 
governing the rate of generation of dislocations, 𝑘𝑘2𝛼𝛼 is defined in terms of temperature and strain rate as 
(Knezevic et al., 2013a; Knezevic et al., 2016; Zecevic et al., 2016a):  

𝑘𝑘2𝛼𝛼

𝑘𝑘1𝛼𝛼
= 𝜒𝜒𝑏𝑏𝛼𝛼

𝑔𝑔𝛼𝛼
�1− 𝑘𝑘𝐵𝐵𝑇𝑇

𝐷𝐷𝛼𝛼(𝑏𝑏𝛼𝛼)3
𝑙𝑙𝑙𝑙 � 𝜀̇𝜀

𝜀̇𝜀0
��,

         
(A7)  

where, 𝑘𝑘𝐵𝐵 ,  𝜀𝜀0̇ = 107 𝑠𝑠−1, 𝑔𝑔𝛼𝛼 and 𝐷𝐷𝛼𝛼
 
are the Boltzmann constant, a reference strain rate, an effective 

activation enthalpy and a drag stress, respectively. The debris dislocation density in the grain evolves with 
shear strain on the slip systems as:  

𝜕𝜕𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑
𝜕𝜕𝛾𝛾𝑠𝑠

= 𝑞𝑞𝛼𝛼𝑏𝑏𝛼𝛼�𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑 𝑘𝑘2𝛼𝛼(𝜀𝜀̇,𝑇𝑇)𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠 ,                                                                      (A8) 

where 𝑞𝑞𝛼𝛼 is a dislocation recovery rate constant. The initial debris dislocation density is 0.1 𝑚𝑚−2. 

 

Appendix B. 𝜶𝜶′-martensite crystal orientation and phase transformation strain 
associated with the stress-assisted phase transformation 

A new martensite grain has a specific crystallographic relationship with its parent austenite grain. The 
lattice parameters of austenite and martensite are 0.3589 nm and 0.2873 nm, respectively (Wang et al., 
2016). From these lattice parameters, the Bain strain and stretching tensor needed for the transformation 
from the FCC to the BCC structure can be calculated. Enforcing the condition that a direction in the plane 
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(101) and the normal to the plane containing the direction [1�01] are invariant after transformation, two 
unique solutions for the rotation matrix can be found (Bhadeshia, 2001; Malet and Godet, 2015). The two 
solutions produce two solutions for the transformation matrix from a parent austenite grain/frame (𝐠𝐠𝑎𝑎) 
to a product martensite grain/frame (𝐠𝐠𝑚𝑚). 𝐠𝐠𝑚𝑚 and 𝐠𝐠𝑎𝑎 describe the coordinate transformation from the 
local crystal lattice frame to the sample frame for a grain of martensite and austenite, respectively. The 
transformation matrix corresponding to the usually reported orientation relationship in experimental 
studies is adopted (𝐠𝐠𝑚𝑚 = 𝐠𝐠𝑎𝑎(𝐓𝐓𝑎𝑎→𝑚𝑚)𝑇𝑇), where: 

𝐓𝐓𝑎𝑎→𝑚𝑚 = �
0.7239 −0.6896 −0.0183
0.6778 0.7160 −0.1670
0.1283 0.1085 0.9858

�.       (B1) 

The total deformation gradient related to the phase transformation is the product of the rotation 
matrix and the right stretching tensor described by the Bain strain. The total deformation gradient related 
to shape change is found by assuming a lattice invariant deformation occurs prior to Bain stretching and 
rotation (Cahn et al., 1996). The lattice invariant deformation is simple shear on the (101)𝛾𝛾 plane in the 
direction [1�01]𝛾𝛾, consistent with the above adopted invariant direction and plane normal (Bhadeshia, 
2001). The shape change deformation is the general plane strain on the habit plane with the plane normal 
𝐩𝐩 = [−0.1846, −0.7821, −0.5951]𝑇𝑇  in the direction 𝐝𝐝 = [0.2090, −0.7088, 0.6738]𝑇𝑇 . The 
deformation gradient related to the general plane strain is (Wang et al., 2016):  

𝐅𝐅𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = �
0.9913 −0.0369 −0.0281
0.0296 1.1252 0.0953
−0.0281 −0.1190 0.9094

�.        (B2) 

The phase transformation strain in the parent austenite frame is calculated from the deformation gradient 
describing the shape change (Wang et al., 2016): 

𝛆𝛆𝑝𝑝𝑝𝑝,𝜎𝜎 =
𝐅𝐅𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎
𝑇𝑇 𝐅𝐅𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝐈𝐈

2
= �

−0.0078 0.0 −0.0253
0.0 0.1408 0.0

−0.0253 0.0 −0.0815
�       (B3) 

After applying 24 cubic crystal symmetry operators, 24 transformation matrices, 𝐓𝐓𝑎𝑎→𝑚𝑚, and the phase 
transformation strains, 𝛆𝛆𝑝𝑝𝑡𝑡,𝜎𝜎 , are generated, corresponding to 24 marentsite variants. One out of 24, 
which is the most active i.e. the most energetically favorable is selected for the transformed grain.  

In what follows, we elaborate more on the derivation of Eq. (18). We arrive to Eq. (18), which is 
suitable to implement into mean-field models such as EPSC, from a sophisticated full-field formulation for 
modeling phase transformations. To that end, we use a particular phase-field model from (Levin et al., 
2013). A block of austenite with martensite nucleus, as a necessary condition for stress-assisted 
transformation, is considered with the phase-field variable of 0 in austenite and 1 in martensite. Small 
strains and elastic materials were assumed. The additional Ginzburg-Landau field equation for the 
determination of the phase-field variable is (Levin et al., 2013): 

1
𝐿𝐿
𝜂̇𝜂 = 𝛽𝛽∇2𝜂𝜂 + 𝛔𝛔 ∙ 𝛆𝛆𝑝𝑝𝑝𝑝 𝜕𝜕𝜕𝜕(𝜂𝜂)

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜓𝜓𝑒𝑒𝑒𝑒(𝜂𝜂)

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕(𝜂𝜂)

𝜕𝜕𝜕𝜕
,       (B4) 
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where L is a kinetic coefficient, η is the phase-field variable, 𝛽𝛽 is a gradient energy coefficient, 𝜑𝜑 is an 
interpolation function, 𝜓𝜓𝑒𝑒𝑒𝑒 is the elastic strain energy density, and 𝑓𝑓 is a contribution from the free energy 
difference between the two phases, i.e. the chemical driving force, and a double well potential. Note that 
the term 𝛽𝛽∇2𝜂𝜂 is coming from an interface energy. In mean-field formulations, the objective is to reduce 

the field η to a single variable giving a fraction of martensite, 𝑓𝑓𝛼𝛼′ in an austenite volume. After averaging 
of Eq. (B4) over volumes of austenite and martensite, we get: 

1
𝐿𝐿
1
𝑉𝑉 ∫ 𝜂̇𝜂𝑉𝑉 𝑑𝑑𝑑𝑑 = 1

𝐿𝐿
𝑓𝑓̇𝛼𝛼′ = 1

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖
∫ �𝛽𝛽∇2𝜂𝜂 + 𝛔𝛔 ∙ 𝛆𝛆𝑝𝑝𝑝𝑝 𝜕𝜕𝜕𝜕(𝜂𝜂)

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜓𝜓𝑒𝑒𝑒𝑒(𝜂𝜂)

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕(𝜂𝜂)

𝜕𝜕𝜕𝜕
�𝑑𝑑𝑑𝑑𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖

,    (B5) 

where 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 is the volume of interface. Since in regions of uniform 𝜂𝜂 = 0 and 𝜂𝜂 = 1 all terms in Eq. (B4) 
vanish, the integration is only over the interface volume.  Rewriting Eq. (B5) with volume averaged terms 
gives: 

1
𝐿𝐿
𝑓𝑓̇𝛼𝛼′ = 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑈𝑈 − 𝐹𝐹𝑒𝑒𝑒𝑒 − Δ𝐺𝐺𝑐𝑐ℎ.         (B6) 

Assuming uniform stress in the interface domain, which corresponds to austenite stress, we write: 

𝑈𝑈 = 𝛔𝛔 ∙ 𝛆𝛆𝑝𝑝𝑝𝑝 1
𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖

∫ 𝜕𝜕𝜕𝜕(𝜂𝜂)
𝜕𝜕𝜕𝜕𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡

𝑑𝑑𝑑𝑑.         (B7) 

Since we are not dealing with strain path reversals, we limit 𝑓𝑓̇𝛼𝛼′ ≥ 0 . This condition implies that 
preexisting martensite nucleus cannot disappear i.e. any reverse transformation from martensite to 
austenite is not possible. From here, we see that the condition for growth of an initial nucleus is: 

𝛔𝛔 ∙ 𝛆𝛆𝑝𝑝𝑝𝑝 ≥ −𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖+𝐹𝐹𝑒𝑒𝑒𝑒+Δ𝐺𝐺𝑐𝑐ℎ
1

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖
∫ 𝜕𝜕𝜕𝜕(𝜂𝜂)

𝜕𝜕𝜕𝜕𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑

.          (B8) 

Once this condition is fulfilled, the rate of martensite fraction can be found from Eq. (B6). If we set the 

kinetic coefficient to a large value in Eq. (B6), we end up with a condition for the calculation of  𝑓𝑓̇𝛼𝛼′ as: 

𝛔𝛔 ∙ 𝛆𝛆𝑝𝑝𝑝𝑝 = −𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖+𝐹𝐹𝑒𝑒𝑒𝑒+Δ𝐺𝐺𝑐𝑐ℎ
1

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖
∫ 𝜕𝜕𝜕𝜕(𝜂𝜂)

𝜕𝜕𝜕𝜕𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑

.          (B9) 

Since we do not know how the right hand side depends on 𝑓𝑓𝛼𝛼′, we assume that the ratio −𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖+𝐹𝐹𝑒𝑒𝑒𝑒+Δ𝐺𝐺𝑐𝑐ℎ1
𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖

∫ 𝜕𝜕𝜕𝜕(𝜂𝜂)
𝜕𝜕𝜕𝜕𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑
 

is a constant. As a result, the behavior of phase transformation process is similar to the perfectly plastic 
yield function behavior. Differentiating Eq. (B9) with respect to time, provides an equation for the 

calculation of 𝑓𝑓̇𝛼𝛼′, which is analogous to the consistency condition (Eq. 18). A similar condition to onset 
of transformation was implemented in a mesoscopic continuum thermomechanical approach to modeling 
of strain-induced martensitic transformation in (Levitas et al., 1998). As grain stress continuously evolves 
every increment in EPSC with the evolution of hardening and crystal reorientation, the mechanical driving 
force for the stress-assisted transformation calculated using Eq. (15) takes into account such changes in 
stress per grain. This driving force is compared with the criterion to onset of transformation. A theory of 
phase transformation in elastoplastic materials developed in (Levitas, 2000a, b) also takes this stress 
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variation into account, as well as the continuum theory of strain-induced transformation at the 
intersection of shear bands (Levitas et al., 1998). 

A consistent relation −𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖+𝐹𝐹𝑒𝑒𝑒𝑒+Δ𝐺𝐺𝑐𝑐ℎ1
𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖

∫ 𝜕𝜕𝜕𝜕(𝜂𝜂)
𝜕𝜕𝜕𝜕𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑
 in function of 𝑓𝑓𝛼𝛼′ could be derived by fitting to results of a full-

field model, which is a significant effort and outside the scope of this work. The assumption of not 
considering the interfacial energy and the boundary misfit strain energy explicitly in EPSC is one of the 
intrinsic assumptions involved in the mean-field modeling framework. While complex stress fields in the 
vicinity of the phase interfaces can be captured by full-field phase transformation models, such fields 
reduce to uniform stress per grain in the modelling approach relying on the mean-field model such as 
EPSC. A new grain in the microstructure introduces a new interface i.e. a new grain boundary. However, 
the intrinsic feature of the mean-field models is to assume uniform stress within a crystal, disregarding 
any grain boundary effects. While evaluating the effects of ignoring the interfacial energy and the 
boundary misfit strain energy will be attempted in future works using a full-field solution procedures, we 
speculate that the effects would be small on the overall material response but likely more significant on 
the local material response. It is worth noting that modeling of deformation twinning in mean-field models 
involves making the same assumption as for phase transformations. Twinning models usually have an 

evolution law for −𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖+𝐹𝐹𝑒𝑒𝑒𝑒
1

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖
∫ 𝜕𝜕𝜕𝜕(𝜂𝜂)

𝜕𝜕𝜕𝜕𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑

 with dislocation density build up, also known as the twin hardening law. 

Twins form within parent grains and are separated from the parent by parent-twin boundaries. 
Nevertheless, they are modeled as independent entities/grains in the mean-field models. EPSC framework 
considering twinning has been shown to work well in capturing overall material response in a number of 
studies (Agnew et al., 2006; Zecevic et al., 2015a).  

 

Appendix C. 𝜶𝜶′-martensite crystal orientation and phase transformation strain 
associated with the strain-induced phase transformation  

To consistently derive the crystal orientation of the martensite grains and the associated phase 
transformation strain, we follow the mechanisms of strain-induced transformations as described in 
(Bogers and Burgers, 1964; Bracke et al., 2007; Olson and Cohen, 1972). In the strain-induced 
transformation, martensite forms at the intersection of two shear bands. The atoms in one shear band 
have positions corresponding to T/2 shear, where T refers to twinning shear. The twinning shear is 𝑇𝑇 =
𝑏𝑏𝑝𝑝
𝑑𝑑111

= 1
√2

, (Eq. 24), where 𝑑𝑑111 is the spacing between the {111}𝛾𝛾 planes. The T/2 shear structure can be 

formed from 𝜀𝜀-martensite by shuffles on every 2nd {0001}𝜀𝜀  plane for 
𝑎𝑎𝛾𝛾
12
〈11�2�〉𝛾𝛾. The shuffle transforms 

the {011�1}𝜀𝜀  planes into uniformly distorted {111}𝛾𝛾  planes. Next, the partial dislocations in austenite, 
averaging one on every three {111}𝛾𝛾 planes, pass through the uniformly distorted {111}𝛾𝛾 planes in the 
T/2 structure. These partial dislocations are part of the other shear band causing the T/3 shear in the T/2 
shear band. The intersection of the T/2 and T/3 shear bands has a BCC structure. Additionally, there is a 
volume increase of 2.59%, determined by the lattice parameters of austenite, 𝑎𝑎𝛾𝛾 =0.3589 nm, and 
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martensite, 𝑎𝑎𝛼𝛼′ =0.2873 nm (Wang et al., 2016). The orientation relationship between austenite, 𝜀𝜀 -
martensite and 𝛼𝛼′-martensite is (Bracke et al., 2007): 

{111}𝛾𝛾 ∥ {110}𝛼𝛼′ ∥ {0001}𝜀𝜀           (C1) 

〈110〉𝛾𝛾 ∥ 〈111〉𝛼𝛼′ ∥ 〈21�1�0〉𝜀𝜀  .         (C2) 

The deformation gradient for uniform shearing in the leading partial shearing direction, 𝐬𝐬�𝑙𝑙,𝑝𝑝, on the 
〈01�1〉{111}𝛾𝛾 slip systems is:  

𝐅𝐅𝑆𝑆 = 𝐈𝐈 + 𝑆𝑆𝐬𝐬�𝑙𝑙,𝑝𝑝 ⊗ 𝐧𝐧 ,          (C3) 

where S is the amount of shear, i.e. T/2 or T/3, in the direction 𝐬𝐬�𝑙𝑙,𝑝𝑝 on the plane with plane normal 𝐧𝐧. In 
our implementation, we first identify two slip systems that will form T/2 shuffle and T/3 shear. In fact, the 
first slip system converts 𝜀𝜀-martensite into T/2 structure by shuffles during the passage of the partial 
dislocations from the T/3 shear band. We remind that the 𝜀𝜀-martensite is the one having the highest SFW. 
To determine the relationship between the direction of the T/3 shear and the shuffles to produce the T/2 
structure from 𝜀𝜀-martensite, we examine the tetrahedron from (Bogers and Burgers, 1964), shown in 
Figure C1a. The four  {111} planes shown in Figure C1a have their normals pointing outwards from the 
tetrahedron, as in the Thompson tetrahedron. We use the plane labels from the Thompson tetrahedron 
shown in Figure C1d for convenience. Note that for our choice of the plane normal, 𝐧𝐧, the shearing 
direction due to the leading partial, 𝐬𝐬�𝑙𝑙,𝑝𝑝, is always from the Greek to the Roman letter on the Thompson 
tetrahedron. If partial dislocations with burgers vector in the direction 𝛿𝛿C pass on every 2nd ABC plane the 
𝜀𝜀-martensite within the first shear band is generated, shown in Figure C1b. The T/2 structure is formed by 

shuffling every 2nd ABC plane for 
𝑎𝑎𝛾𝛾
12

 in 𝛿𝛿A, 𝛿𝛿B or 𝛿𝛿C directions. The structure obtained after shuffling in 

𝛿𝛿A is identical to uniform shearing of the tetrahedron for T/2 in 𝛿𝛿A direction on ABC plane. Likewise, the 
structures obtained after 𝛿𝛿B and 𝛿𝛿C shuffles correspond to structures generated by uniform T/2 shear in 
𝛿𝛿B  and 𝛿𝛿C  respectively. The ε configuration is labeled with ‘, while the configuration after uniform 
shearing for T/2 on ABC planes is labeled with ‘’.  

We focus on plane BCD for examining the T/3 shear, the role of the second slip system. The indicated 
directions in the BCD plane for the FCC structure in Figure C1a represent the possible shearing directions 
due to the passage of the leading partial and are labeled as 𝛼𝛼B, 𝛼𝛼C and 𝛼𝛼D. If the T/3 shearing is on the 
BCD plane in the direction 𝛼𝛼𝛼𝛼, the needed shuffle is in 𝛿𝛿𝛿𝛿 on every 2nd basal plane, transforming two out 
of the six {11�01}𝜀𝜀  planes to two uniformly distorted {111}𝛾𝛾  planes, B’’C’’D’’ and A’’D’’C’’. This shuffle 
produces the T/2 shear transforming the HCP structure to the exact T/2 structure as the consequence of 
the shearing. After allowing the T/3 shear on plane B’’C’’D’’ in 𝛼𝛼′′B′′, a BCC is formed, as shown in Figure 
C1c. Similar procedure can be performed for the T/3 shearing in the 𝛼𝛼′′𝐶𝐶′′ direction, resulting in shuffle in 
𝛿𝛿′′𝐴𝐴′′  direction and the formation of the BCC structure of different orientation, both respecting the 
relationships described with relations (C1) and (C2). However, it is not possible to choose a shuffle that 
would lead to the BCC structure after shearing in 𝛼𝛼′′𝐷𝐷′′. While choosing the T/3 shear plane and direction, 
we disregard the slip systems which have the geometrical relationship between the leading partial shear 
and the T/2 shear plane analogous to the relation between the 𝛼𝛼𝛼𝛼 direction and the ABC plane. From the 
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remaining active planes in FCC, we choose the plane with the highest RSS on the leading partial to be the 
T/3 plane. If there are no active planes which satisfy these conditions, the search is expanded to include 
all slip planes in a crystal. Once we have determined the T/3 and T/2 planes and the directions, we can 
define the martensite orientation. 

The atomic illustrations in Figure C1 are created from an atomic model developed to explore the 
criteria of forming the BCC structure. The main criterion is that the second partial shear must be on an 
HCP slip plane that is parallel to a {111}𝛾𝛾 plane and in the direction of the shear band. The combinations 
of planes referenced in (Bracke et al., 2007; Olson and Cohen, 1972; Yang et al., 2014) produce near-cubic 
shapes with 90±5° angles. Therefore, an additional criterion is the final shape must have angles within 5° 
from orthogonal. Table C1 lists the combinations of shears that successfully produce the BCC structure 
and satisfy the two criteria. The model reveals the only valid combinations to involve pyramidal slips, 
which agrees with experimental observations. The model also predicts the second partial shear to be 
reversible where both positive and negative directions produce valid BCC structure. However, this is not 
allowed in the code since the negative direction would be in the opposite direction of the shear band, 
which violates the selection criterion.  

The deformation gradient related to the austenite to 𝛼𝛼′-martensite transformation can be written as: 

𝐅𝐅𝑝𝑝𝑝𝑝 = 𝐅𝐅𝑣𝑣𝑣𝑣𝑣𝑣𝐅𝐅𝑇𝑇/3𝐅𝐅𝑇𝑇/2 ,          (C4) 

where 𝐅𝐅𝑇𝑇/2  is the deformation gradient describing the shearing on the T/2 plane and 𝐅𝐅𝑇𝑇/3  is the 
deformation gradient describing the shearing on the T/3 plane both calculated using Eq. (C3), while 𝐅𝐅𝑣𝑣𝑣𝑣𝑣𝑣 
is the deformation gradient describing the volume change, defined as the volumetric part of the Bain 
deformation gradient (Eq. (B2)). The volume fraction of shear bands is calculated from plastic strain with 
Eq. (22). Therefore, at any instant in simulation plastic strain contains 𝐅𝐅𝑇𝑇/2 and 𝐅𝐅𝑇𝑇/3 deformation. Since 
the shear part of the phase transformation is already accounted for by the plastic strain, the phase 
transformation strain is simply calculated as: 

𝛆𝛆𝑝𝑝𝑝𝑝,𝜀𝜀 = �𝐅𝐅𝑣𝑣𝑣𝑣𝑣𝑣�
𝑇𝑇
𝐅𝐅𝑣𝑣𝑣𝑣𝑣𝑣−𝐈𝐈
2

 .           (C5) 
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Figure C1. (a) Tetrahedron consisting of the four {111} planes in the FCC austenite (Bogers and Burgers, 
1964). (b) Tetrahedron after passage of partial dislocations on every 2

nd
 ABC plane with the Burgers vector 

determined from the Thompson tetrahedron along with the resulting HCP unit cell. (c) Transformation of 
an HCP {11�01}𝜀𝜀 plane to uniformly distorted BCD plane, followed by shearing for T/3 in two different 
directions to produce BCC crystal structure. (d) Thompson tetrahedron (Cahn et al., 1996). The indicated 
directions in the BCD plane in (a) represent the possible shearing directions due to the passage of the 
leading partial and are labeled as 𝛼𝛼B, 𝛼𝛼C and 𝛼𝛼D. 
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Table C1. Combinations of partial, shuffle (T/2), and shear (T/3) directions that produce BCC α'-martensite. 
After examining in detail the combinations of T/2 shear and T/3 shear in the FCC Thompson Tetrahedron,  
four possible outcomes after T/2 shear are found: (1) The structure’s HCP slip planes are not parallel to a 
{111} plane on the tetrahedron, therefore no possible T/3 shear can be applied. These cells are colored 
red. (2) The combination does not form a T/2 structure. These cells are left white. (3) The general structure 
after T/3 shear is body-centered, but the unit cell is sheared to deviate from tetragonal definition. These 
cells are colored gray. (4) The T/3 shear successfully produces a BCC structure with angles within 5° 
difference from orthogonal. These cells are colored blue. 

First partial→ 𝛿𝛿𝛿𝛿 
T/3 ↓ T/2 → 𝛿𝛿′𝐴𝐴′ 𝐴𝐴′𝛿𝛿′ 𝛿𝛿′𝐵𝐵′ 𝐵𝐵′𝛿𝛿′ 𝛿𝛿′𝐶𝐶′ 𝐶𝐶′𝛿𝛿′ 
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝛿𝛿′′𝐴𝐴′′       
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐴𝐴′′𝛿𝛿′′       
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝛿𝛿′′𝐵𝐵′′       
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐵𝐵′′𝛿𝛿′′       
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝛿𝛿′′𝐶𝐶′′       
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐶𝐶′′𝛿𝛿′′       
𝐵𝐵𝐵𝐵𝐵𝐵 − 𝛼𝛼′′𝐵𝐵′′       
𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐵𝐵′′𝛼𝛼′′       
𝐵𝐵𝐵𝐵𝐵𝐵 − 𝛼𝛼′′𝐶𝐶′′       
𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐶𝐶′′𝛼𝛼′′       
𝐵𝐵𝐵𝐵𝐵𝐵 − 𝛼𝛼′′𝐷𝐷′′       
𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐷𝐷′′𝛼𝛼′′       
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝛽𝛽′′𝐴𝐴′′       
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐴𝐴′′𝛽𝛽′′       
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝛽𝛽′′𝐶𝐶′′       
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐶𝐶′′𝛽𝛽′′       
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝛽𝛽′′𝐷𝐷′′       
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐷𝐷′′𝛽𝛽′′       
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝛾𝛾′′𝐴𝐴′′       
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐴𝐴′′𝛾𝛾′′       
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝛾𝛾′′𝐵𝐵′′       
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐵𝐵′′𝛾𝛾′′       
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝛾𝛾′′𝐷𝐷′′       
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐷𝐷′′𝛾𝛾′′       
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