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Abstract

A flow vessel with an elastic wall can deform significantly due to viscous fluid flow
within it, even at vanishing Reynolds number (no fluid inertia). Deformation leads to
an enhancement of throughput due to the change in cross-sectional area. The latter
gives rise to a non-constant pressure gradient in the flow-wise direction and, hence,
to a nonlinear flow rate–pressure drop relation (unlike the Hagen–Poiseuille law for
a rigid tube). Many biofluids are non-Newtonian, and are well approximated by gen-
eralized Newtonian (say, power-law) rheological models. Consequently, we analyze
the problem of steady low Reynolds number flow of a generalized Newtonian fluid
through a slender elastic tube by coupling fluid lubrication theory to a structural
problem posed in terms of Donnell shell theory. A perturbative approach (in the
slenderness parameter) yields analytical solutions for both the flow and the defor-
mation. Using matched asymptotics, we obtain a uniformly valid solution for the
tube’s radial displacement, which features both a boundary layer and a corner layer
caused by localized bending near the clamped ends. In doing so, we obtain a “gener-
alized Hagen–Poiseuille law” for soft microtubes. We benchmark the mathematical
predictions against three-dimensional two-way coupled direct numerical simulations
(DNS) of flow and deformation performed using the commercial computational engi-
neering platform by ANSYS. The simulations show good agreement and establish
the range of validity of the theory. Finally, we discuss the implications of the theory
on the problem of the flow-induced deformation of a blood vessel, which is featured
in some textbooks.
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1 INTRODUCTION

Microfluidics is the study of the manipulation of microscopic volumes of fluids at small scales [1]. Though the subfield of fluid
mechanics pertaining to flows at small scales, i.e., low Reynolds number hydrodynamics [2], is not a new field, its relevance to
technologies at the microscale (and thus the emergence of the term “microfluidics”) was realized only in the 1990s [3]. Techno-
logical advancements in microfabrication over the past few decades [4–6] havemademicroscale fluid mechanics more accessible
experimentally. A number of applications have emerged, including the connection between microfluidics and technologies for
global medial and social problems [7], such as lab-on-a-CD medical diagnostics [8, 9] and platforms fot in vitro isolation of
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cancer cells [10], amongst a variety of lab-on-a-chip devices [11] and micro-total analysis (�TAS) systems [12, 13]. Microflu-
idic devices afford many advantages over their traditional counterparts: portability, low reagent consumption and short analyses
times, often at higher resolutions than macroscopic counterparts [14].
A feature of microscale fluid mechanics is that fluid–structure interactions (FSIs) occur in both external and confined flows

due to the compliance of the various solid-wall materials [15, 16]. For example, in inertialess locomotion, a swimmer may be
deformable (e.g., a bacterium has a flexible flagellum) or the fluid may be “deformable” (e.g., a polymeric substance dissolved
into a liquid). On the one hand, in external flows, the elasticity of a swimmer affects its propulsive thrust and ability to navigate
[17]. On the other hand, in confined flows, the flow conduit may be made of a deformable material [16], such as polydimethyl-
siloxane (PDMS) (a polymeric gel) [4] or elastin (a constituent of arteries) [18]. Then, “creeping” flows can delaminate an
elastic membrane from a solid boundary, forming blisters [19], which are prone to a wealth of mechanical instabilities [20] and
whose inflation dynamics are sensitive to the contact line conditions [21]. The hydrodynamic pressure within such conduits is
affected by their deformation due to two-way FSI. Extensive experimental work over the past decade has sought to understand
FSI in microfluidics, specifically the effect of FSI on the flow rate–pressure drop relationship in a soft microchannel [22–25].
Specifically, for the case of steady, low Reynolds number flow in microchannels for which the ambient and outlet pressures are
the same (no extramural pressure differences), the pressure drop across a soft microchannel is significantly smaller compared
to the rigid case. Consequently, deviations are expected from the classical Hagen–Poiseuille law [26], which relates the viscous
pressure drop across a length of pipe to the volumetric flow rate through it, the fluid properties and the pipe dimensions. A goal
of the present study of microscale fluid–structure interactions is to mathematically analyze and quantify such deviations for
axisymmetric geometries (i.e., microtubes rather than microchannels).
The study of moderate Reynolds number instabilities due to FSIs in elastic tubes is a time-honored subject [27–31], primar-

ily due its relevance to biofluid mechanics of the arteries and the lungs, for example in the contraction of the trachea during
coughing [28]. Consequently, microtubes traditionally reside on the opposite end of the FSI spectrum from microchannels, in
terms of Reynolds number. Specifically, the study of collapsible tubes concerns conduits whose radius decreases owing to a
negative transmural pressure difference, eventually completely collapsing [32–34]. Here, the flow field is approximated as one-
dimensional, by averaging across the cross-section, but it is not fully-developed [32]. Viscous effects are captured using a pipe
flow friction factor. A tube law is obtained to relate the local transmural pressure difference to the change in area due to circum-
ferential and axial bending and tension, from postulated simple relations [32] to rigorous derivations from shell theory [35]. The
mathematical analysis of stability of such three-dimensional (3D) flows is an ongoing challenge [36].
Nevertheless, there is also a need to develop accurate models for low Reynolds Number FSI in soft tubes due to the relevance

to blood flow through small arteries [37]. Meng et al. [38] studied such a problem of drainage of liquids from collapsible tubes of
circular and elliptical cross-sections. The tubes had been stretched initially with a prescribed tension in the radial direction and
then filled with a fluid. The pressure built up inside the fluid is then a function of the prescribed tension. Assuming plane-strain
conditions inside the structure with zero net axial force and the Hagen–Poiseuille law for the Newtonian flow within, Meng et
al. [38] obtained a set of differential equations governing the evolution of the tube axes. Neither the flow rate nor pressure drop
across the tube were specified initially, but they could be computed by this approach.
Most of the latter research has focused on Newtonian fluids. Biofluids are, however, non-Newtonian [39, 40]. Blood is often

modeled as a Casson fluid, which has both a yield stress and a shear-dependent viscosity [41, Ch. 3]. Research onmicroscale FSIs
has only just begun to take into account the non-Newtonian nature of the working fluids [42–45]. Raj M et al. [44] performed
experiments on FSIs in a microchannel with circular cross-section, which is more akin to a blood vessel. This conduit was
fabricated from PDMS using a pull-out soft lithography process form a large slab. Xanthan gum was used as a non-Newtonian
blood-analog fluid. Measurements of the pressure drop at different inlet flow rates were shown to match a simple mathematical
model of one-way FSI, meaning that the pressure was calculated using the Hagen–Poiseuille law for a rigid tube and then
imposed as a load on the structure, without coupling the microchannel shape change back into the hydrodynamics. Microtubes
andmicrochannels of circular cross-section are now of significant scientific interest due to “a new, direct peeling-based technique
for building long and thin, highly deformable microtubes” [46], which can be used in building bioinspired and biocompatible
soft devices [47].
In a recent series of works [43, 48, 49], two-way FSI coupling was employed to analyze the transient pressure and deformation

characteristics of a shallow, deformable microtube. Employing the Love–Kirchhoff hypothesis, a relation was obtained between
the internal pressure load in a soft tube and its radial and axial deformations, up to the leading order in slenderness. Treating
the structural problem as quasi-static, an unsteady diffusion-like equation for the fluid pressure was obtained and analyzed for
both Newtonian [48, 49] and generalized Newtonian [43] fluids. However, the effect of non-trivial deformation on the resulting
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flow rate–pressure drop relation for the tube (transient or steady-state) was not considered or benchmarked against simulations
and/or experiments. Anand et al. [45] discussed the former for FSI between a microchannel and a generalized Newtonian fluid.
Meanwhile, Vedeneev et al. [50] obtained results on moderate-Reynolds-number instabilities in collapsible tubes conveying
generalized Newtonian fluids. However, the steady problem has not received much attention, and a detailed study of the latter
is the goal of this work.
Thus, it should be clear that microscale fluid–structure interactions (FSIs) are an important problem in mechanics, and the

recent literature suggests that asymptotic and perturbation methods can be used to develop theories of these FSIs. To this end,
in this paper, we present a comprehensive theoretical and computational study of steady non-Newtonian FSIs in deformable
tubes. To account for the non-Newtonian rheology of biofluids, we employ a generalized Newtonian model with a power-law
shear-dependent viscosity, which is suitable for steady flows. To account for the compliance of the (initially) cylindrical flow
conduit, we employ classical (linear) shell theories. In §2, we describe the problem of interest, specifying the physical domain
and the notation. Then, in §3, we solve for the flow field under the lubrication approximation. In §4, we employ thin-shell theory
to solve for the deformation field. We bring all this together in §5, wherein the flow and the deformation fields are coupled,
yielding a complete theory of steady non-Newtonian FSI in a tube. In §6, the predictions of the proposed theory developed
are benchmarked against full two-way coupled, 3D direct numerical simulations (DNS) of steady-state FSI carried out using
commercial computational engineering tools. The benchmark against DNS allows us to both validate our mathematical results
as well as to determine the theory’s range of applicability. Finally, §7 summarizes our results and presents an outlook for future
work. To make the present work self-contained, appendices are provided discussing the DNS approach (Appendix A) and the
relation of our work to textbook models of flow in elastic blood vessels (Appendix B).

2 PRELIMINARIES

We consider an initially cylindrical flow conduit geometry. As shown in Fig. 1, the geometry of the tube is slender, i.e., its
streamwise dimension is much larger than its cross-sectional dimension, and shallow (or, thin), i.e., its wall thickness is much
smaller than its cross-sectional dimension. The cylindrical coordinate system has its origin at the center of the inlet of the tube
but it is displaced in Fig. 1 for clarity. The wall of the tube has a finite thickness, and it is soft; hence, it deforms elastically due to
the fluid flow within it. Specifically, the tube has an undeformed radius a, a constant length l, and constant (within the classical
shell theories to be discussed below) thickness t. The radial deformation of the tube is denoted by ur(z) so that the radius of the
deformed tube isR(z) = a+ur(z). Axisymmetry ensures that the latter only depends on the streamwise coordinate z. The tube’s
wall is composed of a linearly elastic material with constant modulus of elasticity (Young’s modulus) E and a constant Poisson
ratio �.
Fully-developed steady flow of a non-Newtonian fluid enters the tube across the inlet (z = 0 plane) at a constant flow rate q.

The non-Newtonian behavior of the fluid is due to its shear-dependent viscosity. Our main objective is to determine the relation
between the pressure drop Δp, across the length of the tube, and the imposed flow rate q. In other words, we seek to derive,
mathematically, the Hagen–Poiseuille law for steady non-Newtonian flow in a deformable tube. To this end, we simplify the
fluid flow (§3) and structural mechanics (§4) problems independently in the appropriate asymptotic limit(s). Then, we solve the
two sets of governing equations, which are coupled together by the hydrodynamic pressure (the normal forces exerted by the
fluid), which act as a load on the structure.

3 FLUID MECHANICS PROBLEM

The assumptions made pertaining to the fluid flow problem are:

1. Steady flow: )( ⋅ )∕)t = 0.

2. Axisymmetric flow without swirl: )( ⋅ )∕)� = 0 and v� = 0.

3. Slender tube: l ≫ a ⇔ � ∶= a∕l ≪ 1.

Assumption 3 is key to our analysis. Davis [51] highlights the “importance of being thin” in making analytical progress on
nonlinear fluid mechanics problems.
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FIGURE 1 Schematic of the slender and thin tube geometry in its deformed configuration. The notation for the flow and the
deformation is also labeled. [Reprinted/adapted with permission from “On the Deformation of a Hyperelastic Tube Due to
Steady Viscous Flow Within,” Vishal Anand, Ivan C. Christov, Dynamical Processes in Generalized Continua and Structures,
Advanced Structured Materials 103, pp. 17–35, doi:10.1007/978-3-030-11665-1_2. c© Springer Nature 2019].

First, we determine the kinematics of the flow. In the cylindrical coordinates labeled in Fig. 1, and under assumption 2 above,
the fluid’s equation of continuity (conservation of mass) is

1
r
)
)r
(rvr) +

)vz
)z

= 0. (1)

Let us now introduce the following dimensionless variables:

r̄ = r∕a, z̄ = z∕l, v̄r̄ = vr∕r, v̄z̄ = vz∕z, p̄ = p∕c , (2)

Here, z and r are characteristic velocity scales in the axial and radial directions respectively, while c is the characteristic
pressure (stress) scale: e.g., the full pressure drop in pressure-controlled scenarios or the viscous pressure scale in flow-rate-
controlled situations.c can be determined from the velocity scale [see Eq. (17) below]. Introducing the dimensionless variables
from Eq. (2), Eq. (1) becomes

r
a
1
r̄
)
)r̄
(r̄v̄r̄) +

z
l
)v̄z̄
)z̄

= 0. (3)

Balancing all terms in Eq. (3) yields the characteristic radial velocity scale: r ≡ �z. Consequently, to the leading order in �,
the velocity field is unidirectional: v̄ = v̄z̄(r̄)k̂, where k̂ is the unit normal vector in the z-direction. Below, we show that, due to
FSI, the unidirectional profile “picks up” a weak z̄ dependence as well, which is “allowed” under the lubrication approximation
[3].
Next, we consider the dynamics of the flow field. Since we are dealing with flow at the microscale, the Reynolds number Re

(to be properly defined below upon introducing the fluid’s rheology) is assumed to be small (i.e., Re ≪ 1), and the lubrication
approximation applies. Consequently, inertial forces in fluid are negligible in comparison to pressure and viscous forces, and we
begin our analysis with the following simplified equations expressing the momentum conservation in the (radial) r- and (axial)
z-directions [52]:

0 = 1
r
)
)r
(r�rr) +

)�zr
)z

−
)p
)r
, (4a)

0 = 1
r
)
)r
(r�rz) +

)�zz
)z

−
)p
)z
. (4b)

Here, � is the fluid’s shear stress tensor, and p is the hydrodynamic pressure. We have already made use of the assumptions of
axisymmetry in Eqs. (4), by neglecting the circumferential stress and any derivatives with respect to �. The same assumption
also leads to the momentum equation in � direction being reduced to zero identically.
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Now, we need to express the rate-of-strain tensor ̇ in terms of the velocity components. For axisymmetric flow with no swirl,
the only non-vanishing rate-of-strain components are

̇rr =
)vr
)r

=
�z
a
)v̄r
)r̄
, (5a)

̇zz = 2
)vz
)z

= 2
�z
a
)v̄z̄
)z̄

, (5b)

̇rz = ̇zr =
)vr
)z

+
)vz
)r

=
�2z
a

)v̄r
)z̄

+
z
a
)v̄z̄
)r̄
, (5c)

having used the dimensionless variables from Eq. (2). Clearly, (a∕z)̇zz = (�) and (a∕z)̇rr = (�), while (a∕z)̇rz =
(a∕z)̇zr have one(1) term. Therefore, to the leading order in �, the rate-of-strain tensor has two components, consistent with
the kinematic reduction to unidirectional flow; vr and its derivatives, as well as )vz∕)z, are negligible.
Next, we move onto the constitutive equations for the fluid under consideration. Keeping biofluid mechanics applications in

mind, we consider the fluid to be non-Newtonian [53]. Blood is known to exhibit shear-dependent viscosity at steady state, and
it is often modeled as a Casson fluid, which captures both a yields stress and a shear-dependent viscosity [41, Ch. 3]. However,
detecting the yield stress (at zero shear rate) in a suspension of blood cells is extremely difficult (perhaps even “controversial”
[54]), and some experiments [55] show it to be vanishing; see also [41, p. 65]. Therefore, we consider the special case of zero
yield stress, which reduces the Casson fluid model to the power-law fluid (also known as Ostwald–de Waele [56]) model, which
connects the stress tensor � to the rate-of-strain tensor ̇ as

� = �̇. (6)

For an incompressible shear flow, the apparent viscosity � is a function of the invariants of the rate-of-strain tensor [52].
Specifically, it depends solely on the second invariant 1

2
II (see, e.g., [57, §8.8]):

�(̇) = m
|

|

|

|

1
2
II
|

|

|

|

(n−1)∕2
, (7)

where m is the consistency factor (a non-negative quantity), and n is the power-law index (also a non-negative quantity). Under
the condition of axisymmetry, the second invariant takes the form

1
2
II = 2

(

)vr
)r

)2

+
(

)vz
)z

)2

+
(

)vr
)z

+
)vz
)r

)2

= 2
(

�z
a

)2
[

(

)v̄r̄
)r̄

)2

+
(

)v̄z̄
)z̄

)2
]

+
(

z
a

)2(

�2
)v̄r̄
)z̄

+
)v̄z̄
)r̄

)2

=
(

z
a

)2()v̄z̄
)r̄

)2

+ (�2).

(8)

Now, the shear stress components are

�rz = �zr = �(̇)
(

)vz
)r

+
)vr
)z

)

. (9)

Introducing c as the scale for the shear stress, Eq. (9) can be written in dimensionless form:

�rz = c �̄r̄z̄ = �zr = c �̄z̄r̄ = m
|

|

|

|

1
2
II
|

|

|

|

(n−1)∕2
(

�2z
a

)v̄r
)z̄

+
z
a
)v̄z̄
)r̄

)

= m
(

z
a

)n
|

|

|

|

|

)v̄z̄
)r̄

|

|

|

|

|

n−1 )v̄z̄
)r̄

+ (�n−1),

(10)

which suggest the choice of stress scale:

c = m
(

z
a

)n

. (11)
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Similarly, to the leading order in �, the normal stress components are

�̄z̄z̄ = �c
|

|

|

|

|

)v̄z̄
)r̄

|

|

|

|

|

n−1 )v̄z̄
)z̄

, (12a)

�̄r̄r̄ = �c
|

|

|

|

|

)v̄z̄
)r̄

|

|

|

|

|

n−1 )v̄r̄
)r̄
, (12b)

which are of order (�) and, clearly, negligible compared to the shear stress components in Eq. (10).
Next, we nondimensionalize the z-momentum equation (4b):

0 = c
1
r̄
)
)r̄
(r̄�̄r̄z̄) + �2c

)�̄z̄z̄
)z̄

− �c
)p̄
)z̄

(13)

and observe that this equation has a leading-order balance only if

c =
c
�
, (14)

i.e., c ≫ c , as expected under lubrication theory [58, Ch. 21]. It follows that the gradient of the normal stress is negligible to
the leading order in � ≪ 1.
Next, we employ all the information deduced so far to render the radial momentum equation (4a) dimensionless:

0 = �2c
1
r̄
)
)r̄
(r̄�̄r̄r̄) + �2c

)�̄r̄z̄
)z̄

− c
)p̄
)r̄
, (15)

where we have used Eq. (14) to replace c with c∕�. No undetermined scales remain to attempt to balance the last equation;
to the leading order in �, it simply becomes

0 =
)p̄
)r̄
. (16)

Therefore, the pressure is a function of neither r̄, from the last equation, nor �, by assumption 2, hence it is at most a function
of z̄, i.e., p̄ = p̄(z̄). From Eqs. (14) and (11), we can re-express c in terms of z as

c =
mln

z

an+1
. (17)

In a flow-rate-controlled experiment/simulation, we can choose a velocity scale z = q∕(�a2) based on the constant inlet flow
rate q, then c = mlqn∕(a3n+1�n).
For axisymmetric flow, we expect that the axial velocity will attain its maximum along the centerline (r = 0), decreasing with

the radius until it reaches zero at the tube wall (due to no slip) in this steady flow. Consequently, the velocity gradient is negative
and |

|

)v̄z̄∕)r̄|| = −)v̄z̄∕)r̄. Then, Eq. (10) becomes

�̄r̄z̄ = −
(

−
)v̄z̄
)r̄

)n

. (18)

Substituting the latter expression for into the z-momentum equation (13), having neglected the normal stresses of (�2), yields

1
r̄
)
)r̄

[

r̄
(

−
)v̄z
)r̄

)n
]

= −
dp̄
dz̄
. (19)

Next, substituting Eq. (17) into Eq. (19) and integrating the resulting equation with respect to r̄ and requiring that v̄z̄ be finite
along the centerline, as well as enforcing no slip along the tube’s inner wall, v̄z̄(r̄ = R̄) = 0, yields

v̄z̄ =
(

−1
2
dp̄
dz̄

)1∕n( R̄1+1∕n − r̄1+1∕n
1 + 1∕n

)

, (20)

where R̄ = R∕a is the dimensionless deformed tube radius. Note that R̄ is not necessarily unity because we allow the tube to
deform due to FSI, as discussed in the next section. As a result, while p̄ is at most a function of z̄, v̄z̄ can depend upon both r̄
and z̄.
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4 STRUCTURAL MECHANICS PROBLEM

In §3, the momentum conservation equations for a power-law fluid were reduced to unidirectional flow. They explicitly depend
only on the radial coordinate, up to the leading order under the assumptions of axisymmetry and the lubrication approximation.
In a similar manner, we nowmodel the structural mechanics of the tube. Tomake the problem tractable analytically, the equations
stating the equilibrium of forces in the solid are simplified under the following assumptions:

1. The tube is thin; its thickness is negligible compared to its radius: t ≪ a.

2. The tube is slender; its radius is small compared to its length: a ≪ l.

3. The material from which the tube is composed is isotropic and linearly elastic, with elasticity (Young’s) modulus E and
Poisson ratio �, so the relationship between stress and strain is linear.

4. The strains are small, so the relationship between strain and displacement is linear.

5. The characteristic radial deformationc is small compared to the (smallest) characteristic dimension of the tube:c ≪ t.

Here, assumptions 3 and 4 ensure that the relation between stress and displacement is linear. Thus, the corresponding theory
developed in this paper pertains to what we shall term linear FSI. The ramifications of assumptions 1 and 2 will be discussed in
the context of shell theories. Assumption 5 implies our theory is a small-deformation FSI theory, thus we may work the problem
in Eulerian coordinates. In general, soft elastic structures (e.g., blood vessels) can exhibit a nonlinear material (hyperelastic)
response, as well as viscoelasticity and even anisotropy (see, e.g., [41, Ch. 8 and 9]). Therefore, the linear FSI theory developed
in the present work, under the above five assumptions, must be understood as the simplest mathematical model with the key FSI
features.
A shell theory models the dynamics of a 3D entity in two dimensions, thus it by definition an approximate theory. Approxi-

mations are introduced in every facet of shell theory: in the strain–displacement relation (kinematics), in the stress equilibrium
relation (statics), and in the stress–strain relation (constitutive). There are many shell theories, of varying degree of approxi-
mation, as discussed in the classic monographs by Kraus [59], Flugge [60], and Timoshenko and Woinowsky-Krieger [61]. We
focus only on the “simplest” shell theories capable of describing the FSI problem posed above.

4.1 Membrane theory
The thinness assumption (t ≪ a) allows us to analyze the tube using membrane theory for sufficiently small t∕a. Membrane
theory of shells pertains to structures that sustain only tension (in the axial and/or in the circumferential directions) but cannot
support bending or twisting moments [60, Ch. 3]. Furthermore, the radial stress developed inside the structure is negligible, at
the leading order in t∕a, compared to the hoop and axial stress.
Owing to the slenderness of the geometry, i.e., � = a∕l ≪ 1, we start our exposition of the membrane theory by assuming

a state of plane strain. In other words, "zz = )uz∕)z = 0. Next, since the edges are clamped, we conclude that uz = 0 along
the length of the tube. Indeed, most tubes in physiology, like arteries, tracheoles, urethra are longitudinally constrained in situ
[62, 63]. Note that neglecting the axial displacement is a fairly common assumption in the hemodynamics literature [64–67];
for a more rigorous derivation, see [68].
From the constitutive equation of linear elasticity [see, e.g., Eqs. (3.17) and (3.18a) in [60]], we then have:

"zz =
1
E
(�zz − ����) = 0 ⇒ �zz = ���� , (21)

where ��� is the hoop stress, while �zz and "zz are the axial stress and strain, respectively. To find an expression for ��� , we
appeal to the equation of static equilibrium in the radial direction:

N� = ap, (22)

whereN� is the stress resultant in the azimuthal direction of the tube. Here, the hydrodynamic pressure p(z) provides the load,
and we have shown in §3 that p is, at most, a function of z. Next, membrane theory assumes that due to the cylinder being thin,
the stress across the thickness is uniform. Therefore, ��� is simply the corresponding stress resultant divided by the cylinder’s
thickness t:

��� =
N�

t
=
(

a
t

)

p. (23)
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Finally, under the assumption of axisymmetric deformation [60, Eq. (3.18b)] and Eqs. (21) and (23), we obtain

ur(z) = "��a =
1
E
(��� − ��zz)a = (1 − �2)

(

a2

Et

)

p(z) (24)

for the radial displacement. The most important conclusion to be drawn from the analysis in this subsection is that, under the
membrane theory, the tube’s radial displacement is simply proportional to the local hydrodynamic pressure, with the geometric
and elasticity parameters setting the proportionality constant.

4.2 Donnell shell theory
From the several theories for thin shells of revolution based on the Love–Kirchhoff hypothesis [69], perhaps the earliest and
most “popular” is Donnell’s shell theory [70]. Donnell’s shell theory is a straightforward extension of thin-plate theory to shells
[59], which itself is an extension of Euler-beam theory to two dimensions. Furthermore, for the special case of axisymmetric
loads with zero curvature, Donnell’s shell theory reduces identically to the Kirchhoff–Love thin-plate theory [59], which we
have successfully employed to analyze microchannel FSIs [45, 71]. Improving upon the membrane theory of §4.1, Donnell’s
shell theory takes into account bending moments and the variation of the stresses across the shell’s thickness [59, 60].
To be consistent with the membrane theory of §4.1, we again neglect the axial displacement (uz ≡ 0). Then, following

Dym [72, Ch. V], the equation expressing the momentum balance (for axisymmetric deformation and loading) of a Donnell
shell is

d2Mz

dz2
−
N�

a
= −p(z). (25)

Here, the bending momentMz is expressed through the linear elastic law as

Mz = −K
d2ur
dz2

, (26)

whereK = Et3∕[12(1−�2)] is the bending (flexural) rigidity of the shell. The stress resultant in the circumferential direction is

N� = D
(

ur
a

)

, (27)

where D = Et∕(1 − �2) is the extensional rigidity of the shell. Then, Eq. (25), when written in terms of the displacement using
Eqs. (26) and (27), and simplified by substituting the expressions forD andK , becomes an ordinary differential equation (ODE)
for the radial deflection ur(z) forced by the hydrodynamic pressure p(z):

Et3

12(1 − �2)

(

d4ur
dz4

+ 12
a2t2

ur

)

= p. (28)

To understand the dominant balance(s) in Eq. (28), we introduce dimensionless variables, some of which are restated from
Eq. (2), as follows:

z̄ = z∕l, ūr̄ = ur∕c , p̄ = p∕c . (29)

The characteristic scale for the radial deflection of the tube, c , is to be determined self-consistently as part of this analysis.
Substituting the dimensionless variables from Eq. (29) into Eq. (28) yields

(

t
a

)2( a
l

)4 d4ūr̄
dz̄4

+ 12ūr̄ =
12(1 − �2)a2c

Etc
p̄. (30)

For a thin and slender shell we can neglect, in an order of magnitude sense to the leading order in t∕a and a∕l, the first term on
the left-hand side of Eq. (30) to obtain:

ūr̄ =
a2c
Etc

(1 − �2)p̄. (31)

Since Eq. (31) represents a leading-order balance, we are free to choose the deformation scale in terms of the pressure scale as

c =
a2c
Et

. (32)

Hence, the deformed tube radius is
R̄(z̄) ≡

a + ur(z)
a

= 1 + �ūr̄(z̄), (33)
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where � ∶= c∕a is a dimensionless parameter that “controls” the fluid–structure interaction. It is a measure of the magnitude
of the characteristic radial deformationc compared to the undeformed radius a. A larger value of � corresponds to “stronger”
fluid–structure coupling and, thus, a larger deformation.
Thus, at the leading order in t∕a and a∕l, Eq. (30) yields a simple deformation–pressure relation:

ūr̄(z̄) = (1 − �2)p̄(z̄). (34)

Note that Eq. (34) is identically the dimensionless version of our membrane theory result in Eq. (24). Also, in obtaining Eq. (34),
we have singularly perturbed Eq. (30), a point that we revisit in §5.3.

Remark 1. Mathematical analogues to Eq. (28) exist in at least two different domains of structural mechanics. First is the
governing equation of bending of a beam placed on an elastic foundation due to Winkler [73] (see also the book [74] and recent
review article [75]). The force generated by the elastic foundation is directly proportional to the local displacement of the beam
and this leads to the linear term in Eq. (28). The fourth-order derivative term is due to the beam’s bending resistance. Second, is
the governing equation of the quasi-static planar spreading of a fluid under an elastic beam (ignoring tension) driven by gravity—
a problem that arises in geophysical fluid dynamics; see [21, Eq. (4.2)] and [76, 77]. In this example, the fourth-order derivative
term is again due to bending resistance, but the term that is linear in the displacement arises from the hydrostatic pressure due
to gravity.

Remark 2. To the leading order in t∕a and a∕l, bending in Donnell’s shell theory is negligible and this theory leads to the same
result as the membrane theory, namely Eq. (24) [and its dimensionless counterpart, Eq. (34)], which dictates that the radial
deflection of the tube is directly proportional to the pressure at a given flow-wise cross-section. This result is also in agreement
with the results of Elbaz and Gat [48, 49], taking into account, of course, the different boundary conditions employed therein.

5 COUPLING THE FLUID MECHANICS AND STRUCTURAL PROBLEMS: FLOW
RATE–PRESSURE DROP RELATION

Wenow turn to themain task, which is evaluating the pressure drop and thus generalizing theHagen–Poiseuille law to deformable
tubes. The flow rate in the tube is by definition

q =

2�

∫
0

R(z)

∫
0

vz(r, z) r dr d� = z2�a2
R̄(z̄)

∫
0

v̄z̄(r̄, z̄) r̄ dr̄, (35)

where the second equality follows from performing the (trivial) azimuthal integration and introducing the dimensionless
variables from Eq. (2). Now, substituting the expression for v̄z̄ from Eq. (20) into Eq. (35) yields:

q
z�a2

=
(

−1
2
dp̄
dz̄

)1∕n [R̄(z̄)]3+1∕n

3 + 1∕n
. (36)

In a steady incompressible flow, conservation of mass requires that the volumetric flow rate is a constant independent of z. Then,
owing to our choice of axial velocity scale, q∕(z�a2) = 1 [recall the discussion after Eq. (17)], and the above equation can be
rewritten as:

dp̄
dz̄

= −2[(3 + 1∕n)]n[R̄(z̄)]−(3n+1). (37)

This is an ODE for p̄(z̄), subject to an appropriate closure relation for R̄(z̄).

5.1 Rigid tube
First, for completeness and future reference, consider the case of R̄ = 1 (rigid tube of uniform radius). Equation (37) can be
immediately integrated, subject to an outlet boundary condition [p̄(1) = 0], to yield the usual linear pressure profile:

p̄(z̄) = 2[(3 + 1∕n)]n(1 − z̄). (38)

Since it is our convention that p̄(z̄ = 0) = Δp̄ is the full pressure drop across the length of the tube, then Δp̄ = 2[(3 + 1∕n)]n,
which is the well-known Hagen–Poiseuille law for a power-law fluid [52].
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5.2 Leading-order-in-thickness (membrane) theory
Next, inserting the relation R̄ = 1 + (1 − �2)�p̄ [having employed Eqs. (33) and (34)] into Eq. (37) yields:

dp̄
dz̄

= −2[(3 + 1∕n)]n[1 + (1 − �2)�p̄]−(3n+1). (39)

Separating variables and integrating subject to p̄(1) = 0, we have:

p̄(z̄) = 1
(1 − �2)�

{

[

1 + 2(3n + 2)(1 − �2)�[(3 + 1∕n)]n(1 − z̄)
]1∕(3n+2)

− 1
}

. (40)

Again, the full dimensionless pressure drop is obtained by evaluating Eq. (40) at z̄ = 0:

Δp̄ = 1
(1 − �2)�

{

[

1 + 2(3 + 1∕n)n(3n + 2)(1 − �2)�
]1∕(3n+2)

− 1
}

. (41)

Notice that Eqs. (40) and (41) are explicit relations for p̄ and Δp̄, respectively, which is unlike the case of microchannels [45,
71, 78].

Remark 3. Equation (39), when written in dimensional form, can be inverted to yield the flow rate in terms of the pressure
gradient:

q = &(p)
(

−
dp
dz

)1∕n

, &(p) ∶= 1
3 + 1∕n

(

a
2m

)1∕n [

1 + (1 − �2) a
Et
p
]3+1∕n

. (42)

This equation is, clearly, a generalization of the classic result of Rubinow and Keller [79] for steady low Re, Newtonian flow in
a deformable tube. Importantly, we have self-consistently derived the function &(p) that accounts for steady non-Newtonian FSI
in a tube.

Remark 4. The maximum radial displacement of the tube wall over its length is �ūr̄(0) [recall Eq. (33)]. Using Eqs. (34) and
(40), it can then computed to be

max
0≤z̄≤1

�ūr̄(z̄) =
{

1 + 2(3n + 2)(1 − �2)�[(3 + 1∕n)]n
}1∕(3n+2)

− 1. (43)

Note that, once the solid and fluid properties (� and n) are fixed, the maximum displacement is solely a function of the FSI
parameter �.

Remark 5. To perform the consistency check of recovering the rigid-tube pressure profile in Eq. (38) as the � → 0+ limit of
the deformable-tube pressure profile in Eq. (40), we must realize that � → 0+ in Eq. (40) is a “0∕0” limit. L’Hôpital’s rule or a
Taylor series in � ≪ 1 easily shows that Eq. (38) is indeed the � → 0+ limit of Eq. (40).

Remark 6. For the special case of a Newtonian fluid (i.e., n = 1 and m = �), Eq. (40) reduces to:

p̄(z̄) = 1
(1 − �2)�

{

[

1 + 40(1 − �2)�(1 − z̄)
]1∕5

− 1
}

. (44)

A Taylor series expansion in � ≪ 1 of Eq. (44) yields the pressure distribution in Poiseuille flow: p̄(z̄) = 8(1 − z̄) + (�).

5.3 Beyond leading-order-in-thickness theory
In §5.2, we obtained the flow rate–pressure drop relationship considering only the leading-order deformation profile as given
by Eq. (34). In this subsection, we venture beyond the leading-order approximation by solving the “full” ODE, namely Eq. (30)
for the deformation under Donnell’s shell theory. Equation (30) is coupled to Eq. (37), which relates the pressure gradient and
the tube’s radial deformation. Taking d∕dz̄ of Eq. (30), eliminating dp̄∕dz̄ using Eq. (37), substituting R̄ andc from Eqs. (33)
and (32), respectively, we obtain a single nonlinear fifth-order ODE in the deformation:

(

1 + �ūr̄
)3n+1

[

(

t
a

)2( a
l

)4 d5ūr̄
dz̄5

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
bending

+ 12
dūr̄
dz̄

⏟⏟⏟
stretching

]

= −24(1 − �2)2[(3 + 1∕n)]n
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

loading

. (45)
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The ODE (45) is subject to the following boundary conditions expressing clamping of the shell at the inlet and outlet planes
[Eqs. (46a) and (46b), respectively] and zero gauge pressure at the outlet [Eq. (46c)]:

ūr̄|z̄=0 =
dūr̄
dz̄

|

|

|

|

|z̄=0

= 0, (46a)

ūr̄|z̄=1 =
dūr̄
dz̄

|

|

|

|

|z̄=1

= 0, (46b)

d4ūr̄
dz̄4

|

|

|

|

|z̄=1

= 0. (46c)

Equations (45) and (46) represent a nonlinear two-point (TP) boundary value problem (BVP) [80], the solution of which fully
characterizes the physics of steady FSI in an elastic tube conveying a non-Newtonian fluid.
As alluded to in §4.2, for a slender (a ≪ l) and thin (t ≪ a) structure, Eq. (45) becomes an example of a singular perturbation

problem in the limit of vanishing t∕a and a∕l. Physically, “boundary layers” develop near the inlet and outlet of the tube, where
the bending due to clamping becomes significant, as opposed to the rest of the tube where stretching dominates. A similar story
unfolds for gravity-driven spreading of a viscous fluid under an elastic beam [77]: an elasto-gravity length scale divides the
domain into an inner region, in which pressure is hydrostatic and due to gravity, and a peripheral region, in which bending is
also important.
As a singular perturbation problem, Eq. (45) is now amenable to treatment via matched asymptotics [81, Ch. 2]. First, we

introduce a dimensionless small parameter � =
√

ta∕l2 ≪ 1, then Eq. (45) can be rewritten as:

(

1 + �ūr̄
)3n+1

(

�4
d5ūr̄
dz̄5

+ 12
dūr̄
dz̄

)

= −24(1 − �2)2[(3 + 1∕n)]n. (47)

As is standard, we first let � → 0+, thus singularly perturbing the ODE, and obtain the governing equation for the solution in
the outer region:

(

1 + �ūr̄
)3n+1 dūr̄

dz̄
= −2(1 − �2)2[(3 + 1∕n)]n. (48)

The outer solution must “respect” the first part of the clamping condition at z̄ = 1, i.e., ūr̄|z̄=1 = 0 from Eq. (46b). Then, the
solution to the ODE (48) is

ūr̄(z̄) =
1
�

(

{

1 + 2�(3n + 2)(1 − �2)2[(3 + 1∕n)]n(1 − z̄)
}1∕(3n+2)

− 1
)

. (49)

Note that Eq. (49) can also be obtained by combining Eqs. (34) and (40) from the membrane theory, showing the consistency
of our two structural mechanics models.
To satisfy the clamped boundary condition at z̄ = 0, i.e., Eq. (46a), we must introduce a boundary layer near z̄ = 0 wherein

the highest-order derivative in Eq. (47) is dominant and is retained. Then, an inner solution can be obtained. To this end, we
introduce a scaled spatial coordinate � such that for z̄ ≪ 1, � = (1). A straightforward balancing argument leads us to define
� = z̄∕�. Then, the nonlinear ODE (47) becomes

d5ūr̄
d�5

+ 12
dūr̄
d�

= −�

⎧

⎪

⎨

⎪

⎩

24(1 − �2)2[(3 + 1∕n)]n
(

1 + �ūr̄
)3n+1

⎫

⎪

⎬

⎪

⎭

. (50)

At the leading order in � ≪ 1, we have
d5ūr̄
d�5

+ 12
dūr̄
d�

= 0 (51)

subject to the following boundary conditions:

ūr̄|�=0 =
dūr̄
d�

|

|

|

|

|�=0

= 0, (52a)

ūr̄|�→∞ = ūouterr̄
|

|

|z̄=0
, (52b)

where ūouterr̄ denotes the outer solution from Eq. (49). Here, the first two boundary conditions (at � = 0) are due to clamping,
while the remaining boundary condition (as � →∞) is necessary to match the inner solution to the outer solution.
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The general solution to Eq. (51) that decays as � →∞ is

ūr̄(� ) = e−�
4√3

[

C̃2 sin
(

� 4
√

3
)

+ C̃4 cos
(

� 4
√

3
)

]

+ C0, (53)

Now, we apply the boundary condition ūr̄|�=0 = 0 to obtain C̃4 = −C0. Next, we use the boundary condition (dūr̄∕d� )|�=0 = 0
to find that C̃2 = C̃4. Finally, from the matching condition in Eq. (52b), we find

C̃4 =
1
�

(

1 −
{

1 + 2�(3n + 2)(1 − �2)2[(3 + 1∕n)]n
}1∕(3n+2)

)

. (54)

Thus, the final expression for the inner solution in the boundary layer near z̄ = 0, to the leading order in �, is

ūr̄(� ) ∼ C̃4

{

e−�
4√3

[

sin
(

� 4
√

3
)

+ cos
(

� 4
√

3
)

]

− 1

}

. (55)

Next, another boundary layer must exist near the outlet at z̄ = 1 because, although ūouterr̄ → 0 as z̄ → 1, dūouterr̄ ∕dz̄ ̸→ 0 as
z̄ → 1, i.e., the clamping boundary condition is not fully satisfied. Thus, we expect both the dependent (deformation) and the
independent (axial position) variables to be small in this layer. That is, we conjecture that the boundary layer at z̄ = 1 is actually
a corner layer [81, §2.6] (sometimes termed a derivative layer [see 82, pp. 85–93]). Indeed, [21] also observed boundary and
corner layers in the related problem of gravity-driven spreading of a viscous fluid under an elastic beam. The boundary layers
in their study were the result of the need for “regularization” of the contact line at the advancing fluid front, accomplished by
introducing a pre-wetting film. Unlike the present model, however, the differential equation in the inner and outer regions, along
with the pertinent matching conditions, had to be solved numerically by [21], due to their complexity.
Now, introducing the rescalings � = (1 − z̄)∕��1 and û(� ) = ūr̄(z̄)∕��2 into Eq. (47), we can balance all three terms if and

only if �1 = �2 = 1. The first and last terms can be balanced for any 4 − 5�1 + �2 = 0 as long as �1 < �2 but then there is a
non-uniqueness of the boundary layer thickness, so we discard this possibility. Thus, the nonlinear ODE (47) becomes

d5û
d�5

+ 12dû
d�

=
24(1 − �2)2[(3 + 1∕n)]n

(

1 + ��û
)3n+1

. (56)

Expanding in � ≪ 1, we have, at the leading order,

d5û
d�5

+ 12dû
d�

= 12, (57)

where for convenience we have defined  ∶= 2(1 − �2)2[(3 + 1∕n)]n. The ODE (57) must satisfy the remaining boundary
conditions at z̄ = 1, from Eqs. (46b) and (46c), that are not satisfied by the outer solution, namely

dû
d�

|

|

|

|

|�=0

= d4û
d�4

|

|

|

|

|�=0

= 0, (58a)

û|�→∞ = ūouterr̄
|

|

|z̄=1
. (58b)

The general solution to Eq. (57) that decays as � →∞ is

û(� ) = e−�
4√3

[

C̃2 sin
(

� 4
√

3
)

+ C̃4 cos
(

� 4
√

3
)

]

+ C0 +�. (59)

Now, we impose the boundary condition (dû∕d� )|�=0 = 0 to find that C̃2 = C̃4 − ∕ 4
√

3. Finally, the boundary condition
(d4û∕d�4)|�=0 = 0 requires that C̃4 = 0. Thus, we have obtained a fully-specified corner layer (inner) solution:

û(� ) ∼ 

[

� − e
−� 4√3

4
√

3
sin

(

� 4
√

3
)

]

+ C0. (60)

The inner solution in Eq. (60) must still be matched to the outer solution in Eq. (49), which goes to zero as z̄ → 1. Thus, we
immediately conclude that C0 = 0, and the common part of the inner and outer solutions is� [as can be confirmed by a Taylor
series expansion of Eq. (49) for z̄ ≈ 1]. This argument can be made even more rigorous using an intermediate variable matching
procedure as in [81, §2.6].
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Finally, adding together Eqs. (49), (55) and (60) (expressed in the original variables) and subtracting their mutual common
parts, we obtain a composite solution uniformly valid on z̄ ∈ [0, 1], to the leading order in �:

ūr̄(z̄) ∼
1
�

(

{

1 + 2�(3n + 2)(1 − �2)2[(3 + 1∕n)]n(1 − z̄)
}1∕(3n+2)

− 1
)

+ C̃4e−
4√3z̄∕�

[

sin
(

4
√

3 z̄
�

)

+ cos
(

4
√

3 z̄
�

)

]

− �
2(1 − �2)2[(3 + 1∕n)]n

4
√

3
e−

4√3(1−z̄)∕� sin
(

4
√

3
(1 − z̄)
�

)

, (61)

where the constant C̃4 is given in Eq. (54).

Remark 7. Čanic and Mikelić [37] discussed the formation of deformation “boundary layers” in the context of viscous incom-
pressible flow through a long elastic tube, as the aspect ratio a∕l → 0+. Their approach was based on a priori estimates of the
coupled PDEs. Here, we have actually constructed the boundary (and corner) layers explicitly through a matched asymptotic
expansion, further showing that the relevant small parameter also involves the tube’s thickness: � =

√

ta∕l2. Our result, then,
is closer to some of the discussion in textbooks on shell theory, wherein the (dimensional) thickness of boundary layers (near
the clamped ends of a Donnell shell subject to uniform internal pressure) is estimated to be (

√

ta) [see 72, Ch. V].

6 RESULTS AND DISCUSSION

6.1 Deviations from the Hagen–Poiseuille law due to FSI
Our objective is to quantify the deviation from the Hagen–Poiseuille law caused by FSI in a tube. To this end, we plot the
dimensionless pressure p̄(z̄) across the tube for different values of the FSI parameter � in Fig. 2(a) for Newtonian fluid and in
Fig. 2(b) for a shear-thinning fluid. Clearly, “stronger” FSI (increasing values of �) leads to a decrease in the pressure everywhere,
but especially near the inlet (z̄ = 0). The decrease in pressure is due to the increase in the flow area, which reduces the resistance
to flow.
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β=0

(a) Newtonian fluid.
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β=0

(b) Shear-thinning fluid.

FIGURE 2 The dimensionless hydrodynamic pressure p̄ in a elastic tube as a function of the dimensionless axial coordinate z̄
for different values of the FSI parameter � for (a) Newtonian fluid (n = 1) and (b) shear-thinning fluid (n = 0.7). Both plots
have been produced using Eq. (40) for an incompressible solid (� = 1∕2). Note the different scales on the vertical axes for both
the plots. Compliance of the tube reduces the pressure required to maintain steady flow.

6.2 Comparison between the analytical and numerical solutions for the flow-induced deformation
Our results in §5, suggest the following possible ways for solving the coupled problem of flow and deformation in an elastic tube:
(i) using leading-order-in-thickness membrane theory (§5.2), (ii) using a matched asymptotic expansion for beyond-leading-
order-in-thickness (i.e., Donnell shell) theory to capture bending and clamping (§5.3), and (iii) by numerical integration of the
nonlinear TPBVP for the displacement given by Eqs. (45) and (46). We may conceptualize these approaches as a hierarchy:



14

0.0 0.2 0.4 0.6 0.8 1.0
̄z

0.5

1.0

1.5

2.0

̄u
̄ r̄
̄z)

ε=0.025
ε=0.1
ε=0.25

(a)

0.00 0.01 0.02 0.03 0.04 0.05
̄z

1

2

̄u
̄ r̄
̄z)

0.90 0.92 0.94 0.96 0.98 1.00
̄z

0.0

0.2

0.4

̄u
̄ r̄
̄z)

(b)

FIGURE 3 The dimensionless radial displacement ūr̄(z̄) as a function of the dimensionless axial position z̄ in the elastic micro
for � = 0.11, n = 0.7, and � = 1∕2. The solid curves are the numerical solution of TPBVP given by Eqs. (45) and (46), while
dashed curves are the matched asymptotic solution from Eq. (61). Panel (a) shows the displacement over the whole tube, while
panels (b) and (c) show zoom-ins near the clamped ends. The matched asymptotic solution is highly accurate, capturing the
displacement overshoot near the inlet as � → 0+.

the leading-order perturbative solution is a less accurate version of the solution obtained by the matched asymptotic expansion,
which in itself is a less accurate version of the solution found by solving the TPBVP numerically.
Let us now compare the deformation profile obtained via matched asymptotic expansion, i.e., Eq. (61) to the numerical

solution of the original nonlinear TPBVP. The latter profile is obtained using the solve_bvp method in Python’s SciPy module
[83] to solve the TPBVP numerically. Figure 3 shows the results of such a comparison for different values of the small parameter
� =

√

ta∕l2 but fixed �, n, and �. There is very good agreement between the composite solution obtained via a matched
asymptotic expansion and the numerical solution of the nonlinear TPBVP. As expected, the error in the composite solution
increases with �, especially in the corner layer at z̄ = 1. Nevertheless, the asymptotic expression is clearly very accurate.
In addition, observe that the radial displacement profile exhibits an overshoot near the inlet due to clamping. A similar profile

has also been reported by Heil and Pedley [84] in their numerical study of large-deformation, small-strain FSI in a collapsible
tube, which they modeled using Poiseuille’s law and geometrically nonlinear shell theory (accounting for axial pre-stretch).
However, since Heil and Pedley [84] modelled buckling of collapsible tubes, as opposed to the inflated tubes studied herein, the
deformation profile actually exhibits an undershoot (compare [84, Fig. 6] with Fig. 3 above). Perhaps more importantly, even
though Heil and Pedley [84] accounted for bending stiffness of the tube, their analysis does not yield an analytical solution to
the deformation profile, i.e., a counterpart to Eq. (61) derived above. We also observe that the deformation profile of a beam
due to quasi-static gravity-driven spreading of a viscous fluid underneath it exhibits this overshoot near the edge [see the inset
of [77, Fig. 2(a)(ii)]], as should be expected from the structure of solutions to Eq. (28).

6.3 Comparison between theory and direct numerical simulations: Flow and deformation
To ascertain the validity of the theory developed in this paper, we now compare our theoretical results against 3D direct numerical
simulations (DNS) of coupled flow and deformation in an elastic tube. To this end, we choose an illustrative set of physical and
geometric parameters, given in Table 1. The tube is assumed to be made of elastin, which is a highly elastic protein found in all
vertebrates and is major constituent of arteries [18]. Here, along the lines of the work in [18, 85, 86], elastin is modeled as an
isotropic linearly elastic solid with a constant Young’s modulus of E = 0.5MPa and a Poisson ratio of � = 0.499 (i.e., a nearly
incompressible material). The dimensions have been chosen to ensure that the assumptions of shallowness and slenderness are
satisfied. Specifically, the thickness-to-radius ratio of the tube is fixed at t∕a = 0.1, consistent with the hemodynamics literature
[62, p. 60]. The radius-to-length ratio is chosen to be sufficiently smaller, a∕l = 0.025 ≪ t∕a, and the length l = 3.2 mm is
chosen to be similar to microchannel studies [see, e.g., 78], from which the values of a and t in Table 1 follow.
The generalized Newtonian fluid inside the tube is assumed to be human blood. Blood rheology is a topic of active research,

as the rheological properties of blood depend on various factors such as a patient’s age, health, concentration of plasma, etc. [39,
87]. Here, for the sake of simplicity, without sacrificing any physics, and to validate our theory for both Newtonian and non-
Newtonian rheology, blood plasma is chosen as our example of a Newtonian fluid with constant shear viscosity of � = 0.0012
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a (mm) l (mm) a∕l (–) t (mm) t∕a (–) E (MPa) � (–) � (Pa⋅s) n (–) m (Pa⋅sn) % (kg/m3)

0.08 3.2 0.025 0.008 0.1 0.5 0.499 0.0012 0.7 0.0185 1 060

TABLE 1 Geometric and material properties for a sample tube FSI problem.

Pa⋅s (i.e., m = � and n = 1) [63], while whole blood is chosen as our example of a shear-thinning fluid with a power-law index
of n = 0.7 and a consistency index of m = 0.0185 Pa⋅sn [87]. In both cases, a density of � = 1060 kg/m3 is used, which is
within the range for both blood plasma and whole blood [see, e.g., 88, Table 2.1.1]. Simulations were carried out for flow rates
up to q = 2.00 mL/min, which corresponds to a maximum Re ≈ 150 [⇒ �Re ≈ 3.75, which is reasonably small within the
lubrication approximation and well below the onset of unsteady effects closer to Re ≈ 300 [34]] and a maximum FSI parameter
value of � ≈ 0.12≪ 1.
For our computational approach, we employ a segregated solution strategy, as opposed to a monolithic one [see, e.g., 89]. That

is, the solid (resp. fluid) problem is solved independently of the fluid (resp. solid) problem, each on its own computational domain.
The displacements (resp. forces) from the solid (resp. fluid) domain are then transferred to the fluid (resp. solid) domain via a
surface traction boundary condition. Based on previous successful computational microscale FSI studies [45, 78, 90], we have
used the commercial computer-aided engineering (CAE) software fromANSYS [91] to perform such two-way coupled FSI DNS
via a segregated approach. The domain geometry was created in ANSYS SpaceClaim, and the computational grid was generated
in ANSYS ICEM CFD. The steady incompressible mass and momentum equations for the power-law fluid were solved using
ANSYS Fluent as the computational fluid dynamics (CFD) solver based on the finite volume method. The structural mechanics
solver, based on the finite element method (FEM), under ANSYS Mechanical was employed for the structural problem, which
solved the static force-equilibrium equations for a linearly elastic isotropic solid with geometrically nonlinear strains. In the
static structural module, the option of “large deformations” had been turned on. This feature allows the distinction between the
deformed and undeformed coordinates to be retained. Additionally, this feature means that that the Henky strain and Cauchy
stress are used as the strain and stress measures, respectively. Consequently, the stiffness matrix in the resultant finite element
method (FEM) formulation is not constant, and it is a function of displacements, leading to a nonlinear algebraic problem.
However, there is no material nonlinearity in this problem, and the relationship between the stress and strain tensors is described
by linear elasticity with two material parameters (E and �). The exchange of forces and displacements along the inner surface
of the tube was achieved by declaring the surface as an “FSI interface.” A nonlinear iterative procedure transfers the loads and
displacements incrementally until convergence is reached, ensuring two-way coupling. Most importantly, beyond assuming a
steady state, this DNS approach does not make any of the approximations that the theory does, e.g., lubrication, Donnell shell,
and the various smallness assumptions.

6.3.1 Fluid mechanics benchmark
First, we benchmark the q–Δp relationships predicted by our mathematical models: the leading-order FSI from the membrane
theory [Eq. (41)] and the Donnell shell FSI [Eqs. (45) and (46)]. The dimensional full pressure drop Δp as a function of the
dimensional flow rate q is shown in Fig. 4 for (a) a Newtonian fluid (blood plasma) and (b) a shear-thinning fluid (whole blood).
There is good agreement between theory and simulation, particularly for the smaller flow rates. The maximum relative error,
over the shown range of q, is ≈ 10% for the Newtonian fluid and ≈ 5% for the shear-thinning fluid. The higher relative error
for the same flow rate for Newtonian fluid flow is attributed to the larger pressure (note the different vertical axis scales in the
two plots). At larger q, small but systematic differences emerge between theory and simulation because, at these flow rates,
the deformation of the tube starts to exhibit significant strains, which are beyond the applicability of the linear shell theory
employed herein. We also observe that there is hardly any perceptible difference in Δp predicted by the membrane and Donnell
shell theories, which shows that, indeed, bending has a negligible effect on the total pressure drop.
To justify the use of the power-law rheological model in the fluid mechanics problem, we post-processed our simulation

results, and we verified that the maximum shear stress in the flow is much larger than the yield stress of the Casson model for
blood. For example, for the flow rate of 1 mL/min, the maximum wall shear stress on the tube was found to be 35.14 Pa, which
is two orders of magnitude higher than the 0.05 Pa yield stress of the Casson model for blood [92].
Next, it is important to evaluate the theory developed herein in the context of the classical results, namely the law of Laplace

[68, 93] and themodel proposed by Fung in hisBiomechanics textbook [63, §3.4], which is often quoted in newer texts on biofluid
mechanics [94, pp. e25–e27]. Fung’s model and that of Laplace take a large-deformation approach, writing the stress equilibrium
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FIGURE 4 Full pressure drop Δp = p(0) vs. flow rate q in a deformable tube. Fluid–structure interaction causes the pressure
drop to decrease in the deformable tube compared to the rigid one. The perturbative analysis developed herein, culminating
in Eqs. (40) [power-law, (b)] and (44) [Newtonian, (a)] captures the latter effect quite accurately, when compared to 3D direct
numerical simulations. Note the different scales on the vertical axes for both the plots.

equations in the deformed configuration of the tube, which requires reconsidering the structural mechanics calculation from
§4.1. In order not to belabor the discussion in this section, we have relegated the large-deformation re-derivation of our main
mathematical result [i.e., Eq. (40)] to Appendix B.

6.3.2 Structural mechanics benchmark
Having compared and validated the theoretical prediction for the hydrodynamics portion of the FSI problem, we now shift our
focus to the solid domain. In Fig. 5, we plot the ratio of dimensionless radial tube deformation, R̄(z̄) − 1, to the dimensionless
pressure p̄(z̄) along the tube’s length. Again, the results have been shown for both our chosen (a) Newtonian and (b) shear-
thinning fluid. Equations (33) and (34) predict this ratio to be [R̄(z̄)−1]∕p̄(z̄) = �(1− �2) (interestingly, a constant independent
of z̄), to the leading order in � =

√

ta∕l2. For the beyond-leading-order analysis, we integrated the fifth-order nonlinear BVP
from Donnell’s shell theory, i.e., Eq. (45) subject to Eqs. (46), using the TPBVP solver method in Python’s SciPy module [83].
(We could have also plotted the matched asymptotic solution to Eq. (45), i.e., Eq. (61), but it would be indistinguishable for this
value of � = 6.25 × 10−5 based on Table 1.)
Figure 5 shows good agreement between the results of DNS and the two proposed mathematical models (i.e., leading-order

FSI and the Donnell shell FSI). As predicted in §5.3 there are extremely narrow regions (boundary layers) near the inlet (z̄ = 0)
and outlet (z̄ = 1) planes in which the full ODE solution deviates from the leading-order perturbative solution. The thinness of
these boundary layers, in comparison with the tube’s length, leads us to conclude that almost the entire tube, except a sliver near
each end, is in a membrane state with negligible bending.
To verify our assumption about negligible (no) axial displacement, which was used to arrive at Eq. (21), we post-processed

the axial �zz and hoop ��� stresses from our ANSYS simulations. For a Newtonian fluid, the ratio of the hoop stress to the
axial stress at the middle of the tube, where the effect of clamping at the edges and the resultant bending is negligible, is
(���∕�zz)|z̄=0.5 ≈ 2.20 for q = 0.5mL/min and (���∕�zz)|z̄=0.5 ≈ 2.45 for q = 2mL/min. These two values, for the smallest and
largest flow rates considered, can be compared to the theoretical value of 1∕� = 2 [from Eq. (21)], leading to a relative error
of 10% for q = 0.5 mL/min and 22% for q = 0.5 mL/min. Similarly, the ratio of axial deformation to radial deformation at the
middle of the tube is ≈ 0.004 for q = 0.5 mL/min and ≈ 0.2 for q = 2 mL/min. While nonzero, these errors are small enough
to justify having employed Eq. (21) in the mathematical analysis above.
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FIGURE 5 Ratio of the dimensionless radial deformation R̄ − 1 to the hydrodynamic pressure p̄, as a function of the axial
position z̄ in the tube. The leading-order FSI theory is given by Eq. (34) (solid), the Donnell shell FSI theory is the numerical
solution of the TPBVP given by Eqs. (45) and (46) (dashed), the simulation results are fromANSYS (symbols). Note the different
vertical scale of these plots. For both the plots, the results of the simulations correspond to a flow rate of q = 1 mL/min.

6.4 Region of validity in the parameter space
The proposed theory of steady non-Newtonian FSI in slender elastic tubes hinges upon on a set of intertwined assumptions:

1. t∕a ≪ 1: This requirement allows us to use thin-shell theory.

2. c∕a ≪ 1: This requirement represents the small-strain assumption of the shell theory.

3. a∕l ≪ 1: This slender-geometry requirement allows us to simplify both the fluid mechanics and the structural mechanics
problems. This requirement also ensures the rotation of a shell element is negligible.

4. c∕t ≪ 1: This requirement allows us to refer the analysis to the undeformed (Eulerian) coordinates and also restricts the
theory to small deformations.

A natural ordering of the length scales associated with FSI in a tube thus follows:

c ≪ t ≪ a ≪ l, (62)

which must hold for the present linear, small-deformation FSI theory to apply. Importantly, our DNS results form §6.2 show
that this regime is accessible under realistic flow conditions.

7 CONCLUSIONS AND OUTLOOK

In this paper, we formulated a theory of the low Reynolds number axisymmetric fluid–structure interaction (FSI) between a
generalized Newtonian fluid and an elastic tube enclosing the flow. Specifically, we derived an analytical relation between the
pressure drop across the tube and the imposed steady flow rate through it, taking into account both the fluid’s shear-dependent
viscosity (such as, e.g., whole blood) and the compliance of the conduit (such as, e.g., a blood vessel). Although physiological
flows occur across a range of flow regimes (Reynolds numbers) [27–30], previous research has focused on moderate-to-high
Reynolds number phenomena, including collapse of the vessel, unlike the present context. The proposed theory is also applicable
to problems in microfluidics, wherein soft (e.g., PDMS-based) microchannels of circular cross-section and microtubes are now
manufactured and FSI becomes relevant [44, 46].
Under the lubrication approximation for low Reynolds number flow, we showed how to analytically couple a unidirectional

flow field to an appropriate linear shell theory. This led us to a fifth-order nonlinear ordinary differential equation (ODE), namely
Eq. (45) for the radial displacement, which fully describes the FSI. In a perturbative sense, we showed that, at the leading order
in slenderness and shallowness of the tube, the shell theory reduces to membrane theory and a linear relationship, given by
Eq. (34), emerges between the local radial deformation and the local hydrodynamic pressure at a given cross-section. Then,
a dimensionless “generalized Poiseuille law” was obtained in Eq. (41), which explicitly gives the pressure drop in terms of
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the solid and fluid properties. This relationship rationalizes and updates certain arguments found in textbook discussions of
physiological flow [63, 94]. Specifically, Eq. (41) can be put into dimensional form to yield the total pressure drop Δp due to
flow of a generalized Newtonian (power-law) fluid in a slender deformable tube:

Δp = Et
(1 − �2)a

⎧

⎪

⎨

⎪

⎩

[

1 + 2(3 + 1∕n)n(3n + 2)(1 − �2)
(

ml
Et

)(

q
�a3

)n
]1∕(3n+2)

− 1

⎫

⎪

⎬

⎪

⎭

. (63)

The most important observation is that, due to FSI, Eq. (63) is nonlinear in q, even for a Newtonian fluid (n = 1), in contrast to
the Hagen–Poiseuille law.
Furthermore, we showed that a boundary layer (at the inlet) and a corner layer (at the outlet) of the tube are required to enforce

the clamping conditions on the structure. Using the method of matched asymptotics, we obtained a uniformly valid (closed-form)
expression, given by Eq. (61), for the deformation profile. The ability to solve for the tube’s deformation as a function of the axial
coordinate via a matched-asymptotics calculation is in contrast with the case of low Reynolds number FSI in a microchannel of
rectangular cross-section [45, 71] (see also §7.1), but similar to planar low Reynolds number flow under an elastic beam [21].
To ascertain the validity of our mathematical results, we carried out two-way-coupled 3D simulations using the commercial

computer-aided engineering suite by ANSYS [91]. We showed that good agreement can be obtained between predictions from
the theory (for both the pressure drop and the radial deformation) and the corresponding direct numerical simulations. Then, we
specified, through Eq. (62), the region in the physical and geometric parameter space in which our FSI theory applies.
In future work, the FSI theory developed herein can be extended to incorporate further physical effects that arise in microscale

fluid mechanics. For example, the material composing the tube may not be only elastic but also porous (i.e., poroelastic) [95].
It may also be worthwhile to consider microflows of gases in elastic tubes, which necessitates accounting for compressibility of
the fluid [96, 97] and, possibly, wall slip [98, 99]. Another potential avenue for future research stems from the fact that many soft
biological tissues are hyperelastic. In this case, the stress–strain relationship is obtained from extremizing a prescribed strain-
energy functional (see, e.g., [41, Ch. 8 and 9]). With such an elastic response in hand, the tube FSI problem considered herein
can be generalized, along the lines of [100], wherein the leading-order (in the present terminology) hyperelastic FSI was studied.

p(z) ~ ∂4u
y 
/∂x4

p(z) ~ u
r
(z)

(b)(a)

x

yz

r

z

FIGURE 6 Shells versus plates in viscous FSI. (a) A slice of a soft microtube represented as a Hookean spring. (b) A slice of
a microchannel’s soft top wall represented as an Euler beam. Under the perturbation theory, each slice is uniformly loaded by
the hydrodynamic pressure p at flow-wise cross-section z.

7.1 Comparison between viscous FSI in a rectangular microchannel and an axisymmetric
microtube
Asmentioned previously, the deformation of any infinitesimal transverse slice in the streamwise direction of the elastic tube con-
sidered herein is akin to a Hookean spring because of the direct linear proportionality between the deformation and the pressure
expressed by Eq. (34). This deformation is independent of neighboring slices, just as for a slender microchannel with a soft top
wall [45, 71, 78]. The mathematical reason for this decoupling is the same for both geometries: the streamwise length scale of
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the microtube/channel is much larger than its cross-sectional dimension. However, the two cases should also be contrasted: for a
long and shallow microchannel, each slice of the top wall acts like an Euler beam in the cross-sectional direction (due to clamp-
ing at the sidewalls); while, for a slender microtube, each slice acts as a Hookean spring (due to axisymmetric deformation), as
illustrated schematically in Fig. 6. The maximum cross-sectional deformation of the microtube, from the dimensional versions
of Eqs. (33) and (34), is umax(z) = (1− �2)a2p(z)∕(Et), while it is umax(z) = (1∕2)(1− �2)a4p(z)∕(Et3) for a microchannel with
equivalent width w = 2a [71]. Consequently, a microtube is more compliant (and thus deforms more than a similar microchan-
nel), with all other conditions being the same, if t < a∕

√

2. This condition is satisfied in the distinguished limit considered
herein: t∕a ≪ 1.
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APPENDIX

A GRID-INDEPENDENCE STUDY

To ensure that the numerical solutions computed are independent of the grid choice, we performed a grid-independence (conver-
gence) study. Two grids each were defined for the fluid and the solid solvers, thus bringing the total number of grid arrangements
to four. The details of the grids are shown in Table A1. For the fluid grid, grid 2 was generated by scaling the number of edge
divisions across the model in grid 1 by a factor of 2. Similarly, grid 2 for the FEM grid was generated by increasing the number
of divisions on the lateral surfaces from 500 to 800. The simulations were performed for the fluid and solid models on all four
grids described above, under the conditions in Table 1. However, for the grid refinement study, the simulations were carried out
only for a single flow rate of q = 1 mL/min.

fluid grid 1 fluid grid 2 solid grid 1 solid grid 2

Number of nodes 1 348 768 10 626 967 1 090 584 1 743 984
Number of elements 1 387 365 10 467 576 198 000 316 800

TABLE A1 Details for the four grids used for the grid-convergence study.

The results of the grid convergence study are shown in Table A2 for the displacement at the midsection of the tube (averaged
over the circumference) and the pressure drop over the length of the microtube. The insignificant variation of these values across
grid combinations shows that our simulation results, which were computed on the combination fluid grid 1 and solid grid 1, are
indeed grid independent and accurate.

fluid grid/solid grid 1/1 2/1 1/2 2/2

⟨ur⟩ % difference 0.2 −0.4 −0.6 –
Δp % difference −0.08 0.08 0.04 –

TABLEA2Grid-independence (convergence) study for the ANSYS simulations, using the circumferentially averaged displace-
ment ⟨ur⟩ at the tube wall’s midsection and the full pressure drop Δp as the metrics. The percent difference is computed with
respect to the reference values from the simulation on the combination of fluid grid 2 and solid grid 2.
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B LARGE-DEFORMATION FORMULATION AND CONNECTIONS TO THE LAW OF
LAPLACE AND FUNG’S MODEL

In §4, we termed the proposed FSI theory as small deformation due to our assumptions on the structural mechanics aspect
of the FSI. We used small-deformation classical shell theories, which assume that the (radial) deformation is considerably
smaller than the (smallest) characteristic dimension of the tube, i.e., c∕t ≪ 1. This assumption ensures the equivalence
between the deformed and undeformed coordinates (i.e., between the Langrangian and Eulerian frames). Then, the equations
of static equilibrium, which are strictly valid only when written in terms of deformed coordinates, can be written in terms of
the undeformed coordinates, as done above and in classical shell theory. However, some prior work in the literature has used
a mixture of frames of references by posing the equilibrium equations of a small-deformation shell theory in the deformed
configuration, while using the undeformed coordinates in the subsequent calculation of deformations from strains. Thus, in this
appendix, we offer a critical discussion of this issue. The resulting theory may be termed “large-deformation” theory.
The membrane theory of §4.1, when referred to the tube’s deformed coordinates, leads us to reformulate Eqs. (22) and (23) as

N� = R(z)p(z) ⇒ ��� =
R(z)
t
p(z). (B1)

The assumption of no axial displacement leads to Eq. (21), which still applies and whence the hoop strain (from the linear elastic
law) is "�� = (1 − �2)���∕E. Then, the radial deformation, under the assumption of axisymmetry, is

ur(z) = "��a = (1 − �2)
R(z)a
Et

p(z). (B2)

Equation (B2) is the so-called law of Laplace, which relates the pressure at a given cross-section to its radius in the deformed
state [68, 93]. This result, in mixing frames of reference without rigorous motivation for doing so, is not without criticism in the
biomechanics literature [101]. Furthermore, observe that ur appears on both sides of Eq. (B2) because R(z) = a + ur(z).
Using the dimensionless variables from Eq. (29), Eq. (B2) becomes

c ūr̄(z̄) = (1 − �2)
(a +c ūr̄)a

Et
c p̄(z̄). (B3)

Now, for large deformations, the appropriate scale is c = t, which ensures consistency with the results above by keeping the
FSI parameter defined as � = ac∕(Et). Thus, solving for ūr̄ from Eq. (B3), we obtain the pressure–deformation relationship:

ūr̄(z̄) =
(

a
t

)

[

(1 − �2)�p̄(z̄)
1 − (1 − �2)�p̄(z̄)

]

. (B4)

Note that, unlike the case of small-deformation theory leading to Eq. (34), this last relationship between deformation and pressure
is not linear in p(z). Next, substituting R̄(z̄) = 1 +

(

t∕a
)

ūr̄(z̄) and Eq. (B4) into Eq. (37) yields an ODE for the pressure p̄(z̄).
Solving this ODE subject to p̄(1) = 0, we obtain

p̄(z̄) = 1
(1 − �2)�

(

1 −
{

1 + 6n(1 − �2)�[(3 + 1∕n)]n(1 − z̄)
}−1∕3n

)

. (B5)

Next, we evaluate the full pressure dropΔp̄ = p̄(0) from Eq. (B5) and perform a Taylor series expansion for � ≪ 1, to obtain:

Δp̄ =

{

2
(

3 + 1∕n
)n−

(1 + 3n)
2

[(1−�2)�]
[

2
(

3 + 1∕n
)n
]2
−
(1 + 3n)(1 + 6n)

6
[(1−�2)�]2

[

2
(

3 + 1∕n
)n
]3
+(�3)

}

. (B6)

On the other hand, a Taylor series expansion of Eq. (41) leads to

Δp̄ =

{

2
(

3 + 1∕n
)n−

(1 + 3n)
2

[(1−�2)�]
[

2
(

3 + 1∕n
)n
]2
−
(1 + 3n)(3 + 6n)

6
[(1−�2)�]2

[

2
(

3 + 1∕n
)n
]3
+(�3)

}

. (B7)

Equations (B6) and (B7) agree to two terms, with the first discrepancy being the relatively minor change of 1 + 6n becoming
3 + 6n in the coefficient of �2. This shows that the pressure drop predicted by the law of Laplace is almost indistinguishable
from the corresponding one obtained from small-deformation theory given by Eq. (41).
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FIGURE B1 Flow rate–pressure drop relation for FSI in an elastic tube. The difference between the results from the law of
Laplace [large-deformation theory, Eq. (B5)] and the leading-order FSI theory [small-deformation theory, Eq. (40)] is minute.
Meanwhile, the results from Fung’s relation given by Eq. (B9) deviate significantly from the results of other theories. Note the
different the vertical scales in the plots.

Now, writing the pressure drop computed from Eq. (B5) in dimensional variables and specializing it to a Newtonian fluid
(n = 1, m = �), we obtain

Δp = Et
(1 − �2)a

⎧

⎪

⎨

⎪

⎩

1 −

[

1 +
24�ql(1 − �2)

�a3Et

]−1∕3⎫
⎪

⎬

⎪

⎭

. (B8)

Equation (B8) can be compared to the corresponding flow rate–pressure drop relation from Fung’s textbook [63, §3.4, Eq. (8)]:

Δp = Et
a

{

1 −
[

1 +
24�ql
�a3Et

]−1∕3
}

. (B9)

Clearly, Eqs. (B8) and (B9) are quite similar with Eq. (B9) simply being the case of � = 0 of Eq. (B8). The physical reason for
this mathematical fact is that, in Fung’s analysis, the cylinder’s axial stresses and deformation are neglected (yielding a state of
uniaxial stress), which means that Fung’s result is a so-called independent-ring model. This approximation is distinct from the
shell models considered herein, in which both ��� and �zz are taken into account. Therefore, Fung’s result, being independent of
the Poisson ratio, is strictly applicable only to highly compressible solids such as cork, rather than rubber-like elastomers such
as PDMS microtubes or blood vessels.
In Fig. B1, we compare the results of Fung’s model and the law of Laplace, alongside those of our leading-order (membrane)

and Donnell-shell FSI theories. The full dimensional pressure dropsΔp predicted by the different mathematical theories consid-
ered are quite close. While Fung’s model first overpredicts then underpredicts the pressure drop, the other theories over-predict
the pressure drop with increasing error as q increases, consistent with the perturbation approach under which they were derived.
As expected, given the small deformation of the tube, the use of a large-deformation membrane theory does not influence the
predicted pressure drop. Therefore, we conclude that the assumptions about the deformation and the stress made in Fung’s clas-
sic treatment of the problem coincidentally yield good agreement at large q, while Fung’s model reduces to the theory derived
herein for small q.
We also carry out a comparison of the structural mechanics prediction, in Fig. B2, by comparing the ratio [R̄(z̄) − 1]∕p̄(z̄) of

dimensionless deformation and pressure obtained across the models. Here, the conflicting assumptions used to obtain the law
of Laplace and Fung’s model are quite apparent in this comparison. For both Newtonian and power-law fluids, Fung’s model
overpredicts [R̄(z̄) − 1]∕p̄(z̄). As explained above, Fung’s model is an “independent ring” model that neglects the stress and
strains in the streamwise direction. These assumptions, in conjunction with those of large-deformation FSI, lead both Fung’s
model and the law of Laplace to predict an incorrect displacement profile for which [R̄(z̄)−1]∕p̄(z̄) slowly varies with z (outside
the boundary and corner layers).
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(b) Shear-thinning fluid.

FIGURE B2 Ratio of the dimensionless radial deformation R̄− 1 to the dimensionless hydrodynamic pressure p̄, as a function
of the dimensionless axial position z̄ in the elastic tube for q = 1 mL/min. The leading-order FSI theory is given by Eq. (34),
the Donnell shell FSI theory is the numerical solution of the TPBVP given by Eqs. (45) and (46), the law of Laplace is given by
Eq. (B4), Fung’s result is given by Eq. (B4) with � = 0, and the simulation results are from ANSYS. Note the different vertical
scales in the plots.
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