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Abstract—The selection of decoupling capacitors (decap) is a
critical but tedious process in power distribution network (PDN)
design. In this paper, an improved decap-selection algorithm
based on deep reinforcement learning (DRL), which seeks the
minimum number of decaps through a self-exploration training
to satisfy a given target impedance, is presented. Compared with
the previous relevant work: the calculation speed of PDN
impedance is significantly increased by adopting an impedance
matrix reduction method; also, the enhanced algorithm
performs a better convergence by utilizing the techniques of
double Q-learning and prioritized experience replay;
furthermore, a well-designed reward is proposed to facilitate
long-term convergence when more decaps are required. The
proposed algorithm demonstrates the feasibility of achieving
decent performance using DRL with pre-trained knowledge for
more complicated engineering tasks in the future.

Keywords—machine learning, decoupling capacitor (decap),
power distribution network, deep Q-learning, reward, prioritized
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I. INTRODUCTION

Placing decoupling capacitors (decap) is crucial to the
power distribution network (PDN) design to lower down the
impedance seen at IC ports and control the power supply
fluctuation caused by large switching currents [1]-[5].
Typically, searching for the minimum number of decaps to
satisfy a target impedance is desired in the industry to save
cost and layout space. However, this process is usually tedious
and time-consuming due to the tremendous search space
induced by considerable decap library sizes and possible
decap locations.
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Fig. 1. Decap selection and placement in PDN.

Innumerable researches have emerged focusing on
different approaches to decap optimization [6]-[8]. Some of
them propose physics-based procedures to determine decap
selections and locations [6], which are, however, too
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complicated to implement and duplicate in real applications.
The genetic algorithm has also been applied for decap
selection and placement [7][8], which seems an elegant
solution to this problem. Nevertheless, the issue with the
genetic algorithm is that it is nearly impossible to be reused,
meaning every time it needs to start searching from zero.

In recent years, the magnificent achievement of deep
learning and deep reinforcement learning (DRL) [9]-[11] is
drawing the attention of scientists from different areas
[12][13]. Since DRL has such an excellent performance to
deal with various sophisticated tasks, it could be a nice
solution for the decap placement problem. The biggest
advantage of the DRL is that it can acquire knowledge and
experience from training and exploration, which may make the
trained neural network reusable for the same type of problem.
Therefore, there have been some trials in this direction
[14][15]. Reinforcement learning has been applied to predict
both the decap locations and selection [14], but deep neural
network (DNN) is not used in their model, which is thus
difficult to handle more realistic and complicated scenarios.
To overcome this limitation, DRL with DNN has also been
implemented [15][16] to tackle larger search spaces with
higher capacity. However, their DRL model cannot ensure
optimum convergence, and the reward definition is too simple
to address more practical situations with more required decaps.

In this paper, the objective is to further improve the DRL
algorithm for decap selection mainly in three aspects to make
it more practically useful: improve the impedance calculation
speed, improve the convergence and stability, and improve the
reward definition to enhance long-term convergence.

II. BASIC ALGORITHM

To simplify the complexity, relieve some burden for the
DRL algorithm, and ensure easier convergence, the whole
challenge is divided into two parts: location prioritization and
decap selection. The priority of decap locations is related to
the inductance since better locations produce less inductance
when connecting with decaps. After prioritizing the locations,
then DRL can be applied to select the right decap to place on
the locations sequentially.
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A. Port Prioritization Method

A simple method to calculate the relative importance of
decap ports is proposed in [6], by comparing the inductance
values seen at the IC port. The concept is directly applied here
to figure out the priority of potential decap locations in a given
PDN board: the candidate decap ports are shorted to ground
respectively, and the best port is picked out when observing
the least self-inductance at the IC port; afterward, the
determined best port is shorted, and the remaining ports are
shorted again respectively to find the second-best port. Fig. 2
exemplifies this process using a simple case with only three
decap locations. This process considers not only the self-
inductances of the IC and decap ports but also the mutual
inductances between these ports.
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Fig. 2. Illustration of the port prioritization method based on inductance
calculation. (a) Assume there are three decap locations to be evaluated: #1,
#2, and #3. (b)(c)(d) Shorting port #1, #2, and #3 respectively, and compare
the self-inductance seen at the IC port. (e)(f) If port #1 is considered as the
best port with the least self-inductance at the IC port when being shorted,
then port #2 and #3 are shorted again respectively to find the second-best
port, and so on.

B. Decap Selection using DRL

Once the port prioritization is decided, only the optimal
decap type needs to be determined to be placed on the
prioritized locations in order, which can be accomplished by
DRL according to [15]. A common algorithm of DRL—deep
Q-learning—is utilized, which takes the observed state as input
and outputs the Q-values for different possible actions [9]
through a deep Q-network (DQN). The DQN can train and
optimize itself through the reward of exploring different series
of actions.

Initial state
(all-zero decap matrix)

I

State Update

(current decap matrix)
[ [

Replay | Train Deep Q-Network
memory (DQN)
1
Action
(e-greedy selection)
[
Add decap on the
prioritized locations

[

Impedance calculation

Reward

[ N
Locations full or
satisfy target =? Y

Done [—

Fig. 3. Flow chart of the decap selection algorithm based on DRL.
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The algorithm process is described in Fig. 3, in which the
decap matrix is the input state, and the decap selection is the
output action. The dimension of the decap matrix corresponds
to the number of decap locations, while the dimension of the
decap selection is identical to the number of available decap
types. The usage of the € -greedy algorithm [9], which
provides high probabilities of taking random selections in the
beginning stage, is necessary to ensure enough exploration and
reach the global optimum solution. Besides, a replay memory
[9] stores an appropriate number of recent experiences that are
sampled randomly to train the DQN, to avoid falling into a
local minimum point but also ensure convergence.

III. ALGORITHM IMPROVEMENT

A. Impedance Calculation Speed

The calculation speed of every decap addition is important
to the speed of the whole process. To accelerate the impedance
calculation, the Z-parameter of the PDN board and the decaps
are obtained and used directly for impedance calculation by
adopting a segmentation method introduced in [17].
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Fig. 4. The concept of using the segmentation method [17] to calculate the
impedance matrix after connecting the PDN board with a decap. (a) Before
connecting the decap. (b) After connecting the decap.

Fig. 4 depicts the decap addition problem, where Fig. 4(a)
and (b) are the situations before and after connecting the
decap, respectively. Port p is the port to be connected with a
decap with port d, and port a (can be multiple ports) are the
remaining ports of the PDN board. (1) expresses the
relationship between the port voltages, port currents, and the
Z-parameter matrix of the PDN board and the decap:

[UH} [Zaa Zap} [IE}
o) \z 7|1 M)
U,=2,1,

To connect port p with port d, the voltage and current of
them must satisfy (2):

U,=U
P d
{, o @)

By organizing and simplifying (1) and (2), the relationship
between U, and I, can be derived as (3):

-1
U,=|2.-2,(2,+2.) 2,1, 3)
(3) expresses the relationship between the port voltages,

port currents, and the Z-parameter matrix of the new block
shown in Fig. 4(b). Namely, the Z-parameter of the new block

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 01,2021 at 01:05:57 UTC from IEEE Xplore. Restrictions apply.



with the connected decap is stated in (4), which is a simple
matrix calculation that can be completed within fractions of a
second.

Zuu, =Z, - Zﬂp (pr +Zy )_1 Zl"’ @

For instance, for a PDN board with about 40 decap ports
and 201 frequency points, converting Z-parameter to S-
parameter takes around 0.4 seconds, which is the most
dominant part; however, using Z-parameter directly, as shown
in (4), only needs 0.005 seconds for each impedance
calculation, which is a notable improvement on the speed of
the whole decap selection process.

B. Double Q-Learning

As mentioned earlier, deep Q-learning is a commonly used
DRL algorithm. The actor-critic algorithm is also a well-
accepted method in deep Q-learning [9], the basic flow chart
of which is shown in Fig. 5. There are two DQN with the same
architecture but different parameters: the actor DQN and the
critic DQN. The actor DQN is used to calculate the action by
taking the input state, while the critic DQN is to help the
training on the actor DQN.
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Tramn Replay
H memory
___________ .

Fig. 5. The basic algorithm of actor-critic deep Q-learning.

The training process of Q-learning can be summarized
using (5), where a is the learning rate, y is the discount rate,
R is the reward, s and a are the state and action, and s’ and a’
are the next state and the next action respectively. The
discount rate, a value between 0 and 1, tells how important
future rewards are to the current state.

Oun(5:0) (=0, (s.0)+a( R+ max Q5] (5)

In the actor-critic algorithm, the two DQN both are used
for the training. The loss function is expressed in (6):

H0.)= L5000 ) ®

i=1
y(i) is the target Q-value expressed in (7):

y(i) =R+ Y -max Q(S'(i)aalﬁgmn'c) @

where m is the size of the sampled batch; s® q® RO and
s'® are the state, action, reward, and the next state of the it"
sampled memory; Oyt and B,.40r are the critic and the
actor’s parameters; Q(s’(i), @', 0crizic) is the critic DQN’s
prediction of the Q-value expected from the next state s'@ if
action a’ is chosen; Q(s(i),a(i), Qactor) is the actor DQN’s
prediction of the Q-value for state s and action a®.

To train the parameters of the actor DQN, the typical

gradient descent method can be used as shown in (8), where 1
is the learning rate for training.
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(7) can be understood as estimating the Q-value by taking
the maximum value of the critic DQN’s prediction of the Q-
value expected from the next state. However, at the beginning
of the training, the critic DQN is not trained and thus can
output very abnormally large Q-values due to random initial
parameters, which may cause severe instability in the training
process [18].

To stabilize the training process, a double Q-learning
method is proposed in [18]. Instead of directly using the
maximum value of the critic DQN’s estimation from the next
state to obtain the target Q-value, the action causing the actor
DQN’s maximum Q-value from the next state is selected first,
and then the selected action is used to obtain the critic DQN’s
Q-value from the next state. Through this indirect way of
calculating the target Q-value, the Q-value overestimation
issue can be greatly mitigated. The process of acquiring the
target Q-value in this double Q-learning method is
summarized in (9):

W =R 4y Q[s'“),argmaxQ(s'“’,azem,,(,,),a,,i,,a} ©9)

Fig. 6 shows the comparison of the loss convergence
between the double Q-learning and the original deep Q-
learning algorithm when the discount rate y is equal to 0.95.
Apparently, double Q-learning shows a more stable and faster
convergence.
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Fig. 6. The loss convergence comparison between deep Q-learning and
double Q-learning.

C. Prioritized Experience Replay

In deep Q-learning, as introduced earlier, a replay memory
is used to store a certain number of experiences. The size of
the replay memory can not be too large or too small. The
replay memory is sampled randomly in batches to train the
DQN. The problem is that good experiences can be easily
forgotten once they are thrown into the replay memory, due to
the random sampling. To tackle this problem, a prioritized-
experience-replay method is proposed [19]. In this method,
better experiences have high probabilities of being sampled,
which performs faster convergence than the traditional
random sampling strategy.

In this paper, a similar idea with the prioritized experience
replay is presented — a second separate memory, with a much
smaller size than the replay memory, is constructed to store
the good experiences, which are merged with the randomly-
sampled experiences from the replay memory and used for
training every time, as illustrated in Fig. 7. In this way, the
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good experiences will not be forgotten easily, and the
convergence can be enhanced.

Reward

Environment

Action

Actor DQN

Train | Replay Good

memory experiences

Critic DQN

Fig. 7. Prioritized experience replay of deep Q-learning.

Fig. 8(a)(b) compares the convergence of decap number
without and with using the prioritized experience replay when
a PDN board with 26 decap ports is tested. Using the previous
method of sampling training batches randomly from the replay
memory, the algorithm shows a poorer convergence compared
with the strategy of using a second memory to store the good
experiences, which can steadily converge to the optimal
solution of 13 decaps.
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Fig. 8. (a) Change of decap number in one training without using the
prioritized experience replay, which has a poor convergence. (b) Change of
decap number in one training after using the prioritized experience replay,
which can converge to a 13 decap solution.

D. Reward definition

The reward definition is critical to the long-term
performance of the DRL algorithm, which provides the
direction to optimize the DQN parameters. In the previous
work [15], the reward is given at the last step if the target
impedance is satisfied. This reward definition has been shown
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effective in finding the best solution with 5 decaps from a
decap library of 10 different decap types. Namely, the total
number of possible cases is roughly 105, which is still
manageable through many times of trial and error. However,
when the number of decaps becomes large such as 10, this
strategy is infeasible, because the number of possible cases has
now become approximately 10!°. The total number of
possible combinations grows exponentially with the number
of decap locations and the decap library size. Due to the
enormous search space in real scenarios, finding the optimal
solution is nearly impossible through full search. Therefore,
the reward function needs to be improved. In other words,
some reward needs to be assigned in the intermediate steps to
enhance the convergence under a long series of actions.

The first strategy in the reward definition is to divide the
whole frequency range into multiple regions and assign a
corresponding reward if a new region meets the target
impedance. Fig. 9 demonstrates an example of dividing the
whole frequency range into four regions and giving a reward
corresponding to region 2 since region 2 is the new region
from Fig. 9(a) to Fig. 9(b) to meet the target impedance. In this
manner, the reward is easier to be obtained in the middle steps
instead of the final step only, which solves the difficulty of
handling a large search space using the previous reward
definition. Also, this rewarding strategy mimics the way how
engineers place different decaps to suppress corresponding
frequency regions.

Impedance

— DN anpedance

Target impedance

Ohm

Impodance

Freguency (117)

()

Fig. 9. The reward definition by dividing the whole frequency range into
multiple regions and giving a reward once there is a new region satisfying
the target impedance.

To ensure that under the circumstances where there is no
solution to the target impedance, the algorithm can still
converge to a solution as close to the target impedance as
possible, an additional penalty is imposed to the model if all
the decap locations are full and the target impedance is still not
satisfied, as shown in Fig. 10, according to the area of the
portion exceeding the target impedance. The penalty is namely
a negative reward, which is another reinforcement to
strengthen the learning process, considering that in real
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applications, a solution approaching the target impedance to
the greatest extent is desired even if no solution exists.

Impedance {Ohm)

P B — PDN umpedunce

=== Targel impadunce

0 J
Frequency {1z}

Fig. 10. A penalty, namely a negative reward, is imposed according to the
area of the portion exceeding the target impedance marked as the shaded
region if all locations are full and the target impedance is still violated.

Through the combination of the above two reward terms,
the algorithm shows excellent performance, compared with
the previous reward design. Fig. 11 compares the training
score of the two different reward functions tested on a PDN
board with 14 decap ports and a library of 10 decap types.
Using the previous reward, the score is always zero even after
a long time searching, since a solution with 14 decaps is nearly
impossible to find through purely random search. However,
by utilizing the new reward proposed in this paper, the
algorithm can gradually get some score and eventually
converge to the solution with the highest score, which is a
substantial breakthrough.
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Fig. 11. Comparison of training score using two reward definition: the
previous reward defined in [15] and the new reward proposed in this paper.

IV. VERIFICATION OF THE ALGORITHM

A. Test Example

To test the performance of the enhanced DRL algorithm,
the S-parameter of a PDN board with 1 IC port and 14 decap
ports is input to the algorithm. There are 10 different decap
types in the decap library, and their capacitance values are
0.1uF, 0.47uF, 1uF, 2.2uF, 4.7uF, 10uF, 22uF, 47uF, 220uF,
and 330uF, respectively. Each of these capacitors has different
equivalent series resistance (ESR) and equivalent series
inductance (ESL) values. The target impedance is 0.0125€,
and the frequency of interest is from 10kHz to 20MHz. The
neural network structure in the actor DQN and the critic DQN
is the same with the structure used in [15].

B. Verification Result

After applying the new techniques discussed above, the
convergence of the loss, the score, and the decap number
during the training are shown in Fig. 12. The loss converges
steadily and the decap number also successfully converges to
a 13 decap solution. The PDN impedance of the solution is
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plotted in Fig. 13. The entire training process only takes about
10 minutes. Moreover, no better solutions could be found
through other methods such as commercial tools and the
genetic algorithm. Using the DRL algorithm proposed in [15],
even no solution can be found at all. This strongly corroborates
the effectiveness of the improved DRL algorithm in handling
more realistic scenarios.
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Fig. 12. (a) Change of the loss during training. (b) Change of the score during
training. (c¢) Change of the decap number during training.
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Fig. 13. PDN impedance of the 13-decap solution found by DRL with a target
impedance of 0.0125Q.
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V. CONCLUSION

In this paper, a more sophisticated deep reinforcement
learning (DRL) algorithm for decoupling capacitor (decap)
selection in power distribution network (PDN) is developed to
deal with more practical situations with more required decaps.
The DRL algorithm can learn to select the optimum decaps to
satisfy a given target impedance with as few decaps as
possible, through the reward from an exploration and training
process. Compared with the previous DRL algorithm for
decap selection, the enhanced algorithm mainly improves
three aspects: an impedance matrix reduction method is
utilized to significantly increase the impedance calculation
speed; the double Q-learning and prioritized-experience-
replay techniques enhance and stabilize the convergence;
furthermore, a new reward function is well designed to
empower the algorithm to find the optimum solution even
when tens of decaps are required. The algorithm is validated
on a PDN board with 14 decap ports and successfully
converges to a 13 decap solution in just about 10 minutes,
which can not be achieved using the previous DRL algorithm.

The decent performance of the improved algorithm
demonstrates the great capability of DRL, but it is limited to
one single PDN board. In future work, more PDN boards will
be used to train one neural network that can place decaps for a
new board without being trained again. Furthermore, DRL can
be considered to achieve professional levels in more
complicated engineering tasks.
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