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Abstract — Emission source microscopy (ESM) technique
can be utilized for localization of electromagnetic
interference sources in complex and large systems. In this
work a Gaussian process regression (GPR) method is applied
in real-time to select sampling points for the sparse ESM
imaging using a motorized scanner. The Gaussian process
regression is used to estimate the complex amplitude of the
scanned field and its uncertainty allowing to select the most
relevant areas for scanning. Compared with the randomly
selected samples the proposed method allows to reduce the
number of samples needed to achieve a certain dynamic
range of the image, reducing the overall scanning time.
Results for simulated and measured 1D scans are presented.
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I. INTRODUCTION

Emission source microscopy (ESM) is a technique that can
localize and characterize radiation sources in complex systems
by measuring the electromagnetic field magnitude and phase
over the planar surface at a typical distance of several
wavelengths away from the DUT [1].

Uniform ESM imaging provides the best results in terms of
the image quality [2], but leads to a long scanning time needed to
sample the fields on the plane with sub-wavelength step required
to satisfy the Nyquist criterion [3]. To overcome the problem a
sparse scanning strategy was proposed [4]. As [5] demonstrates,
with the random selections of the sampling locations, the
dynamic range of the image (related to the amount of noise added
due to space sampling) is equal to the number of samples. And
while sparse random sampling often produces satisfactory
results, it still can lead to prohibitively long scanning times
needed to achieve a desirable image quality. An alternative to
random sampling is manual sampling [4], [6] which usually
provides fast scanning but requires a human operation, and the
scanning process is affected by operator’s subjective decisions
and perceptions. This paper proposes an automated method to
select the sampling points based on the Gaussian process
regression, eliminating a need of human intervention into the
ESM process.

Gaussian process regression (GPR) can predict the field
distribution based on randomly and sparsely measured samples.
In this study, the Gaussian process regression is applied to select
the next scanning location based on the previous ones. The
automatic GPR ESM method can intelligently and automatically
control the scanning process, reducing the number of

measurement points with less image quality degradation
compared to the random ESM scanning.

The paper is organized as follows. Section II introduces the
sparse ESM technique and Gaussian process regression. In
Section III the system setup of sparse ESM using Gaussian
process regression is illustrated, and the simulation and
measurement results are demonstrated. Finally the summary is
given.

II. INTRODUCTION OF SPARSE ESM AND GAUSSIAN PROCESS
REGRESSION

A. Overview of Sparse ESM Technique.

The ESM algorithm is based on the synthetic aperture radar
technique, which uses the two-dimensional (2-D) Fourier
transformation. The field (image) on the DUT plane after back-
propagation can be expressed as follows:

E{(x,y,0) = FHF[E.(x,y,20)] - e/}, €Y

where

k, = sz —kZ—k2, ifkZ+kZ<k?
k, =—j ’kz — k% — k2, otherwise.

In (2) k is the wave number, and k,, k., k, are the components
of the propagation vector (or the spatial frequencies in x-, y-, and
z- directions). E, (X, y, zy) is the tangential fields on the scanning
planar surface (x,y) at the elevation z; above the image plane
(see. Fig. 1).

@)

/Il Imaging plane

Fig. 1. 2-D ESM scanning arrangement.

Since the sparse ESM is carried out with non-uniform
scanning points, a predefined grid of zero values is created before
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the scanning and filled-in during the scanning process [2], [5].
The zero-valued grid should be defined with a step size much
smaller than the wavelength to minimize the phase errors in the
field caused by the difference of the actual and discretized
locations of the probe. For example, when working at 3 GHz, the
reasonable choice of the step could be 2 mm (12.5 points per
wavelength), which could cause a relatively small phase as well
as localization errors. At the same time the zeros in the scanned
field distribution lead to noise in the image. The signal-to-noise
ratio of the acquired image is approximately equal to the number
of the sparse samples and does not depend on the density of the
grid [5].

B. Introduction of Gaussian Process Regression.

A Gaussian process is a collection of random variables, any
finite number of which have a joint Gaussian distribution [7]. A
Gaussian process is completely specified by its mean value

uw) = E[(w)], 3

where w is the input vector (sampled function) and E is the
expected value operator, and a covariance function

k(w,w") = E[(fW) —uW))(fW) —uw")]. @

Thus the Gaussian process can be written as

f(W) ~ GP(,L[(W),k(W,W')), (5)

where f(w) is the estimated probability density of the process
w, characterized by its mean value and covariance, and GP is the
Gaussian process distribution.

Application of the GPR approximation is illustrated in Fig. 2.
A certain function (the curve “Actual” in the figure) is sampled
at several locations (marked by crosses). Application of the GPR
allows to estimate the mean value of the function (“u”) and its
uncertainty (or the confidence interval “u + ¢” and “u — @”).

GPR

Fig. 2. An example of a 1D GPR estimation

The results of the GPR can be regarded as the fit of the
function f(x) with the provided fit uncertainty. As can be seen
from the example, the function f(x) is well fitted at the interval
from approximately -0.5 to 0.5 (this interval is characterized by
small predicted uncertainty), and it is reasonable to add the
consecutive sampling points outside this interval where the
predicted uncertainty is large.

To perform the GPR fit the Matlab implementation of the
Gaussian process regression is used throughout the rest of the
paper. The main parameter needed to perform the GPR is the
minimum value of the standard deviation 6,,;,. This value is
important because it allows to set the “size” of the features that
are supposed to be fitted by the GPR. If the minimum sigma

value is too large, the function could be approximated by a
constant (the variations of the function would be within the
+0,,in band relative to the constant). If the minimum value is too
small, the GPR would try to fit measurement errors (such as
additive noise), which is undesirable. The choice of the
minimum value of sigma is an important problem, which requires
additional investigation. In the presented implementation the
minimum value of sigma was selected empirically.

C. Sparse ESM system using GPR

The GPR is performed separately for real and imaginary parts
of the measured field distribution. As the result of the GPR, the
mean values fyeq and Uimqg as well as the standard deviations
Oreqr and Oppqg are estimated (all of these quantities are
functions of the spatial coordinates on the sampling plane or
line). The total field power and its uncertainty are then calculated
as

P = #zeal + #izmag ' (6)

a= ,O_f‘eal + O_gmag . (7)

Obviously the regions with the largest power on the scan
plane contribute the most to the ESM image. At the same time
the large uncertainty in estimated field distribution leads to the
large uncertainty in the image. So it is reasonable to scan
primarily at the regions with high estimated power and high
uncertainty. To satisfy these two requirement and empirical
criterion was developed. According to it the next measurement is
performed at the location x,., (n being the number of
previously acquired samples) with the maximum product of the
predicted power and uncertainty. At the same time, the next
measurement point should not be closer than a certain distance &
(typically a fraction of a wavelength) to already sampled ones X;
to avoid undesirable clustering effect (see [2] for details):

Xpt1 = x|max[o - P],
Vie[l,n], X —xl 2 e ®)

The GPR fit can be performed if at least two samples are
available. In the proposed implementation the first two initial
samples are taken at random locations. The complete flow
diagram of the process is shown in Fig. 3.

| Start with two random points

|

| Fit the field with Gaussian Regression }

|

Determine the next point with max
power and uncertainty (criterion)

!

| Sample at new location |

!

Focus the field to the imagine
axis with ESM

| Stop |

Is it possible to add
sampling points ?

N

Fig. 3. Flow diagram of real-time automatic ESM using GPR
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Because of the constrain in (8), the distance between the
sampling points cannot be smaller than &, which allows to have
only a limited number of samples in the scanning area. This leads
to the natural stop of the algorithm when no more sampling
points can be added.

The ESM imaging can be performed periodically during the
scan to observe image evolution in real time, or after the stop of
the algorithm.

I11. SIMULATION AND MEASURMENT REULTS

A. Simulation Result (1D).

In the simulation of the automatic sparse ESM using
Gaussian process regression, three horizontally oriented dipoles
are put on the image line at different positions. The working
frequency is 10 GHz, with the wavelength 2=0.03 m, and the
length of the scanning and image lines is 20 A (0.6 m). The E,
(tangential) component of the field due to the dipoles was
calculated on the scan line using analytical formulas for an
infinitesimal dipole [8]. The parameters of the dipoles are listed
in Table 1.

Table I ~ Parameters of radiation sources used in simulation.
Source Dipole 1 Dipole 2 Dipole 3
Position -8 1 5
LY
Dipole moment | 0.01 1 1
[A-m]

To verify the performance of the GPR method, the random
sampling method is simulated as a comparison. The images
obtained as the result of the ESM process are normalized to their
corresponding maxima to facilitate their comparison (the
absolute values of the images depend on the number of samples
and the sampling step). Estimation of the absolute value of the
image can be performed using interpolation of the scanned field
as described in [4]. Accuracy of this process with respect to the
GPR imaging requires additional investigation.

To quantify the error of the obtained image the mean squared
difference between the normalized images is calculated:

m . .
— zlz B B *
E%m max|E;| max|Ey|/ ’

i=1

©

where Ej is the image obtained by using the GPR or the random
sampling method, E, is the actual image (complete uniform
scan), and m is the number of the samples in the image (i.e. the
on the samples in the predefined grid).

The images obtained by taking 120 samples randomly or by
the GPR selection with comparison to the actual image are show
in Fig. 4 (a). As can be seen, even with this relatively low number
of points the GPR sampling allows to resolve the weak source
(dipole 1), while in the image obtained by the random sampling,
the weak source cannot be identified because of high level of
noise. The evolution of the mean squared error in the scanning
process is illustrated by Fig. 4(b). As can be seen, the accuracy
of the GPR imaging (characterized by the corresponding MSE
value) is consistently better than that of the random sampling
starting from approximately 70 acquired samples and after 120

iterations the error in the GPR imaging error is approximately 10
times lower than that of the random scanning process. Both plots
in Fig. 4 demonstrate the advantage of the GPR imaging over
random sampling in terms of the scanning time — i.e. the ability
to obtain the image of better quality for the same number of
acquired samples, or to reduce the number of samples needed to
obtain an image of a certain quality.
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Fig. 4. Images obtained by GPR and random sampling:
ESM image with 120 measured samples (a), the MSE; as a function of the
number of sampling points (b)

B. Measurement results (1D).

The scanning system setup is illustrated in Fig. 5. The
scanning probe is attached to the carriage that can move on a
frame. The carriage is moved by two stepper motors with two
timing belts. The Microcontroller Unit (MCU) receives
commands from the PC and controls the stepper motors.

The DUT on the image plane and the probe on the scanning
plane are both log-periodic antennas with the working frequency
range of 850-6500MHz. The antennas are connected to the VNA
ports. By measuring the transmission coefficient (S,;) between
the antennas it is possible to measure the complex values of the
field amplitude at the scanning antenna location (scaled by the
unknown, but irrelevant in this case, antenna and cable factors).
The measured component is determined by the orientation of the
scanning log-periodic antennas (x or y).
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Fig. 5. Automatic sparse ESM system setup

The scanner allows to perform 2D scans, but only 1D scan
results are reported in this paper. Implementation of the 2D
scanning with the GPR is subject of the ongoing work.

In the 1D scans only one motor of the scanner is engaged and
the scanning is performed along the line over the DUT (Fig. 6).
In the scanning process the predefined zero-valued array is filled
with the sampled field values. The extent of the scan range is 0.6
m with 6001 pre-defined sampling locations, resulting in the
sampling step of 0.1 mm. The measurements are performed at 3
GHz.

Z[m]
Probe antenna
1 ,[ ? Sc ing axis
Zo
1 Source 1 Source 2
0.6 S A Focus axis
03 -02 0 o0l 03  X[m]

Probe antenna
-

Fig. 6. Measurement setup geometry and photo.

Fig. 6 illustrates the source arrangement. Two antennas are
placed on the focus line at locations -0.2 m and 0.1 m (0
corresponds to the center of the scan line); the distance between
the focus line and the scanning axis is 0.4 m. The two source
antennas are connected to the VNA through a splitter, providing
roughly equal excitation. By measuring the S,; between the
VNA ports, the field on the scanning axis is obtained. Similar to
the simulated results presented in the previous section, uniform,
random, and GPR sampling measurement were performed. The
total number of sampling points of the uniform sampling
measurement was 241 (sampling step was 2.5 mm corresponding
to 40 samples per wavelength.

Next two figures illustrate the convergence process during
the GPR scan. Fig. 7 (a), (b) show the fit of the real and imaginary

parts of the field after 10 acquired samples. As can be seen, the
GPR instructed the scanner to scan primarily over source 2,
where the field is already collected with relatively high density
and accuracy. Fig. 7 (c) shows the curves related to the criterion
(8), and Fig. 7 (d) demonstrated the image obtained after
collecting 10 samples in comparison to the reference (result of
the uniform scan). After 10 samples the images already start to
reveal two peaks corresponding to two sources, and while the
image quality is low in both GPR and random cases, the GPR
image is already closer to the reference (uniform scan) than the
random scan image.

Fig. 8 demonstrates the results at 100" iteration (close to the
end of the GPR scan process), showing convergence of the GPR
and the random sampling images to the reference. As can be seen,
the GPR sampling points cover the scan line almost uniformly;
however, the samples are not collected around points x = —0.03
m, x = —0.18 m, and x = 0.13 m which correspond to the nulls
of'the field power, demonstrating intelligent scan point selection.
After 100 sampling the image obtained by the GPR scanning is
significantly better than that obtained by the random scan (Fig. 8
(@).
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Fig. 7. GPR ESM scanned field and ESM image obtained after 10 samples :

predicted real part (a), predicted imaginary part (b), predicted power and
uncertainty (c¢), ESM images for GPR,uniform, and random scanning (d)
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Fig. 8. GPR ESM scanned field and ESM image obtained after 100 samples:
predicted real part (a), predicted imaginary part (b), predicted power and
uncertainty (¢), ESM images for GPR, uniform, and random scanning (d)

V. SUMMARY

An automatic sparse ESM using Gaussian process regression
method has been developed. Using the proposed method, the
quality of the ESM imaging can be improved compared to the
random scan without using operator-controlled setup. The
number of the scan points can be potentially reduced compared
to uniform and random scan due to intelligent selection of scan
areas relevant for the image.
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