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Highlights

Model is developed to simulate the kinetics of isothermal stress-assisted martensite nucleation
that couples the kinetic Monte Carlo method with the finite element method

Model is validated against austenite transformation data for a TADP steel alloy for the purpose
of studying isothermal nucleation kinetics in TRIP-assisted steels generally

The nucleation kinetics of martensite is shown to be affected by strain path, and the adjacency
of nucleation events (kinematic coupling)

The underlying phenomenon that governs differences of nucleation kinetics is discussed in the
context of the Magee effect, both generally and for TRIP-assisted steels

The plane strain is shown to be the most sensitive to kinematic coupling, while the uniaxial and
biaxial strain paths show little sensitivity to kinematic coupling
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Abstract

The properties of TRIP-assisted steels are influenced by the transformation of retained austenite into martensite during deformation
via the mechanically-induced martensite transformation. In the present work the effect of strain path on isothermal stress-assisted
martensite nucleation and variant selection are studied by the coupling of the kinetic Monte Carlo method with the finite element
method. This coupled model centers on a thermomechanical model of the martensitic transformation, and the model is tuned and
validated against transformation data gathered experimentally for a TRIP-assisted dual phase steel (Ennis et al., Int. J. Plast., 2017,
88, 126.). The effect of the proximity of adjacently transforming regions (kinematic coupling) is also studied as a function of
strain path. The model results demonstrate how the rate of martensite nucleation is affected by the strain path (uniaxial tension,
biaxial tension, and plane strain) and how the kinematic coupling between adjacent transforming regions is unique to each path.
These phenomena are discussed in the context of the Magee effect, which is the relationship between stress state and the suppres-
sion/assistance of the nucleation of specific variants of martensite. The implications of martensite nucleation’s sensitivity to strain

path and kinematic coupling are discussed for TRIP-assisted steels that transform by isothermal stress-assisted nucleation.

Keywords: Martensite; TRIP steel; Phase transformation; Kinetic Monte Carlo; Finite element method

1. Introduction

The martensite transformation is a well-studied crystallo-
graphic phenomenon in steels, and the thermomechanics and
crystallography of martensite have been well described in the
literature (Christian, 1975; Balluffi et al., 2005; Pereloma and
Edmonds, 2012). The theoretical body of work on marten-
site is referred to as the phenomenological theory of marten-
site crystallography (PTMC), and describes the crystallography
of the martensite transformation in detail (Bowles and Macken-
zie, 1954; Mackenzie and Bowles, 1954; Wechsler et al., 1953).
Many models utilizing the PTMC have been developed to ex-
plain, study, and simulate the nucleation and growth of marten-
site in various steels under varied processing schemes. Such
models have contributed to the development of new steels,
which continue to emerge with the goal of achieving improved
strength and formability (Matlock and Speer, 2009). One
such class of steel is the set of advanced high strength steels
(AHSS) that are assisted by the transformation-induced plas-
ticity (TRIP) phenomenon (Olson and Azrin, 1978; Olson and
Cohen, 1982b). These steels have small amounts of retained
austenite which transform into martensite upon loading. For
some alloys this transformation happens isothermally under
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the driving force of applied stress (stress-assisted). For oth-
ers, the transformation is triggered by plasticity within the re-
tained austenite (strain-induced). For both such modes of nucle-
ation, the martensite transformation contributes to plastic flow
when such materials are deformed, resulting in greater harden-
ing rates and improved ductility/formability (Olson and Cohen,
1982b; Seo et al., 2016; Cramer et al., 2018). Steels exhibit-
ing this behavior are identified as TRIP or TRIP-assisted steels,
and are of particular interest to the automotive industry (Mat-
lock and Speer, 2009).

Several studies on the sensitivity of material response to
strain path have emerged for TRIP and TRIP-assisted steels (Yu
et al., 2006; Perdahcioglu et al., 2008; Zecevic et al., 2019).
Recent studies on quenched and partitioned (Q&P) and TRIP
alloys have focused on how the transformation of austenite af-
fects the forming limit diagrams of these steels (Cramer et al.,
2018; Gibbs, 2019). Another study investigates the transforma-
tion behavior of a TRIP-assisted dual phase steel (TADP) as a
function of strain and contrasts the results with another automo-
tive dual phase steel (Ennis et al., 2017). The majority of these
works, however, focus on the strain path dependence of the
strain-induced nucleation of martensite within retained austen-
ite. The current work seeks to investigate the role of strain
path on the isothermal stress-assisted nucleation of martensite
in TRIP-assisted steels. The goal remains the same, however,
of improving the impact that the TRIP effect has on automotive
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materials by clarifying its dependence on strain path.

1.1. Kinetics of martensite nucleation in steels

Generally, the nucleation and growth of martensite in steel
has been described from both continuum-elastic and discrete-
dislocation points of view, as the crystallographic theory of
martensite has been sufficiently developed to provide insight
into the dislocation structures that form the austenite-martensite
boundary (Olson and Cohen, 1982a, 1986). The formation of
martensite is considered to be nucleation controlled; a nucle-
ation event is followed by an auto-catalytic growth stage where
the austenite-martensite boundary propagates at a high veloc-
ity determined by the rate at which the boundary dislocations
can move together as a glissile interface. While the growth of
martensite appears to be barrierless, the barrier to martensite
nucleation is far too great for martensite to nucleate homoge-
neously. It is understood that the nucleation of martensite is
primarily heterogeneous (Pati and Cohen, 1969; Olson and Co-
hen, 1975b), occurring at sites where dislocation structures or
grain boundaries provide sufficient free energy to overcome the
large barrier to nucleation.

The nucleation of martensite at viable heterogeneous sites
can occur through different means. The spontaneous nucleation
of martensite via rapid cooling is often referred to as “athermal”
martensite, and the temperature range of its formation is iden-
tified by the martensite start and finish temperatures, denoted
as M, and M/ respectively (Olson and Azrin, 1978; Pereloma
and Edmonds, 2012). For a given alloy held at a temperature
at which some volume fraction of austenite remains stable, the
martensite transformation can be triggered by the application of
either stress or deformation. These two modes are the so-called
stress-assisted and strain-induced modes of martensite nucle-
ation. Stress-assisted nucleation occurs isothermally as applied
stress fields provide elastic strain energy needed for existing nu-
cleation sites to overcome the barrier to nucleation (Pati and Co-
hen, 1969; Olson and Azrin, 1978; Olson and Cohen, 1982b).
Strain-induced nucleation occurs as plasticity in the retained
austenite creates new nucleation sites via the creation and inter-
section of e-martensite shear bands (Olson and Cohen, 1975b;
Olson and Azrin, 1978; Olson and Cohen, 1982a, 1986). These
two nucleation behaviors dominate distinct ranges between the
M, and My temperatures, with the boundary between nucle-
ation modes often denoted as M¢. At temperatures below MY,
the nucleation behaviors of retained austenite are assumed to
be stress-assisted (Olson and Azrin, 1978; Pereloma and Ed-
monds, 2012). The various TRIP-assisted steels can be catego-
rized by which of these two modes of nucleation occurs. Trans-
formation of austenite that occurs via either of these two nucle-
ation modes is referred to as a mechanically induced martensite
transformation (Marketz and Fischer, 1994; Pereloma and Ed-
monds, 2012; Haidemenopoulos et al., 2014).

The application of stress in the stress-assisted nucleation of
martensite at available heterogeneous sites plays a role in the
selection of which variants of martensite actually form (com-
monly referred to as variant selection) (Marketz and Fischer,
1994; Pereloma and Edmonds, 2012). The stress field that
arises from transformation interacts with the stress field caused

by applied loads in a way that may reduce or increase the
change in free energy caused by the martensite transformation.
If the shape change caused by transformation into a given vari-
ant of martensite results in a lower stress state, then that variant
is said to be assisted by the applied stress. This is known as
the Magee effect (Marketz and Fischer, 1994; Pereloma and
Edmonds, 2012). Similarly, if the applied stress facilitates
the activation of slip systems in the surrounding material so
that a transforming martensite particle may transform with less
resistance, that variant is said to have been assisted via the
Greenwood-Johnson effect (Marketz and Fischer, 1994; Taleb
and Sidoroff, 2003). Both of these mechanisms are means by
which the stress-assisted martensite transformation can result in
a form of variant selection.

1.2. Models of TRIP steels

Built on early work of the thermomechanics of steel al-
loys (Kaufman and Cohen, 1958; Pati and Cohen, 1969; Ol-
son and Cohen, 1975b, 1982b), substantial work has sought
to model the kinetics of martensite nucleation as a function
of mechanical deformation in TRIP and TRIP-assisted steels.
Several such works describe the effect of strain-induced nucle-
ation of martensite in TRIP steels (Olson and Cohen, 1975b;
Olson and Azrin, 1978; Olson and Cohen, 1982b; Stringfel-
low et al., 1992), proposing that the nucleation of martensite
happens most readily at shear-band intersections where dislo-
cation interactions create potent nucleation sites. Studies uti-
lizing this Olson-type model have been extensively applied to
various studies of TRIP and TRIP-assisted steels that undergo
the strain-induced nucleation of martensite. A review of these
works is too large to include in this work. Related studies
discuss the nature of the isothermal stress-assisted martensite
transformation in other TRIP steels, and describe the kinetics of
these transformations in detail (Olson and Cohen, 1982b; Beese
and Mohr, 2011; Pereloma and Edmonds, 2012; Mansourinejad
and Ketabchi, 2017).

Other successful models have been developed for the simu-
lation of the martensite transformation in TRIP steels that take
a continuum-elastic approach to the martensite transformation
and are applied in crystal plasticity codes (Marketz and Fis-
cher, 1994; Turteltaub and Suiker, 2006; Tjahjanto et al., 2008).
Some of these authors (Turteltaub and Suiker, 2006; Tjahjanto
et al., 2008) have created a model that defines the driving force
for the transformation of austenite through the use of a dissipa-
tion potential. The transformation rate and its conjugate driving
force for a given variant are related through a pre-defined ki-
netic relationship, and the volume fractions of each variant at a
material point are homogenized. In these models, the evolution
of the volume fraction of martensite is most commonly modeled
as a sigmoidal function of the macroscopic strain. Such empir-
ical modeling is not sensitive to strain-path. To relax the issue,
scalar variables like the stress triaxiality (Stringfellow et al.,
1992; Santacreu et al., 2006; Haidemenopoulos et al., 2014),
or the stress triaxiality and the Lode angle parameter (Lebedev
and Kosarchuk, 2000; Beese and Mohr, 2011; Mansourinejad
and Ketabchi, 2017), have been introduced in other models for



transformation. These models capture the role of microstruc-
tural phenomena, such as texture evolution and anisotropy, us-
ing a crystal plasticity-based formulation (Zecevic et al., 2019),
which is an extension of a previous elasto-plastic self-consistent
model (Zecevic et al., 2016).

The computational modeling of steel has grown to incor-
porate more known aspects of the thermomechanics of the
martensite transformation as high performance computational
resources have become available. Monte Carlo methods have
served as meso-scale modeling techniques to capture the effect
of stochastic processes on bulk mechanical behaviors. This ap-
proach is well suited for the simulation of systems that evolve
through kinetic processes, such as in the nucleation of marten-
site. Stochastic models have only recently been applied to
martensite. Using the kinetic Monte Carlo (KMC) algorithm,
Chen and Schuh (Chen and Schuh, 2015) developed a thermo-
dynamic framework to simulate both the forward and reverse
martensitic transformations in a single crystal shape-memory
alloy. Presently, no such studies have utilized KMC to study
the martensite transformation in TRIP-assisted steels.

1.3. Overview

The current work uses the KMC method to simulate the
stress-assisted isothermal nucleation of martensite in TRIP-
assisted steels generally. The effect that different mechanical
states have on nucleation behaviors will be examined. Primary
attention is given to the effect of strain/load path on nucleation,
differentiating nucleation behaviors observed in uniaxial, biax-
ial, and plane strain conditions. These particular strain/load
paths are selected because they are the primary ones used to
obtain a forming limit curve, which defines a locus of strain
ratios above which necking is likely to occur (Keeler and Back-
hofen, 1964; Goodwin, 1968; Paul, 2013). This approach is
of particular interest to the authors, as it applies to the forma-
bility of sheet metal, which is a topic of great interest in the
current automotive light-weighting effort where advanced high
strength steel, including TRIP-assisted steels, is playing an im-
portant role. We study the effect that prior transformations have
on subsequent transformation as local stress fields develop, re-
ferred to in this work as kinematic coupling. To perform this
study, aspects of the microstructures of TRIP-assisted steels
will be incorporated into a model that couples the KMC method
with an FEA solver to deform a theoretical region of a TRIP-
assisted steel and simulate the martensite transformation and
its accompanying change in shape. For validation and compari-
son, recent studies that examine the transformation of austenite
in TRIP-assisted steels are of particular interest.

One such study is the aforementioned paper by Ennis et al.
(2017), which observes the transformation of martensite by
in-situ X-ray diffraction during the uniaxial deformation of a
TADP steel. The TADP microstructure presented by Ennis con-
sists of retained austenite having a “blocky” morphology, dis-
persed alongside martensite and bainite within a matrix of fer-
rite. In this steel the stabilization of retained austenite occurs in
part during the formation of bainite, in which carbon is rejected
from the newly formed bainite into surrounding austenite. En-
nis’ conclusions regarding this steel include the observation that

no yielding occurs in the retained austenite, or the subsequent
mechanically induced martensite, until the transformation of all
retained austenite is complete (Ennis et al., 2017). This forms
the basis for the subsequent conclusion that the transformation
of retained austenite in this steel occurs by the stress-assisted
isothermal nucleation of martensite. Ennis provides transfor-
mation data that is valuable for the validation of the model pre-
sented here.

Also of interest are recent studies on Q&P alloys (Seo et al.,
2016; Cramer et al., 2018). Cramer et al. (2018) performed
an experimental study in which the transformation of retained
austenite to martensite in a Q&P 1180 alloy is specifically
expressed as a function of strain path. Cramer et al. gen-
erated this data via ex-situ straining through different strain
paths (uniaxial, biaxial, and plane strain) and by measuring
the fraction of retained austenite transformed through EBSD
imaging. This data is used as a comparison to the output of
the current work’s model, and discussed in later sections. For
another Q&P alloy, the study presented by Seo et al. (2016)
goes into more detail on the mechanical behavior of the differ-
ent phases present during deformation. Seo et al. determine
that the matrix phase of primary martensite has a lower yield
strength than both the retained austenite and mechanically in-
duced martensite. Though Q&P alloys are considered to un-
dergo the strain-induced martensite transformation upon load-
ing (De Moor et al., 2008; Wang and Speer, 2013; Seo et al.,
2016), the Q&P materials presented in these studies have var-
ious microstructural features in common with the TADP steel
studied by Ennis et al. One such similarity is the morphology of
the retained austenite, which can also be described as “blocky”.

Crystallographic, kinetic, and thermodynamic aspects of the
martensite transformation are considered and included as as-
pects of the current model. The effect of load path is first stud-
ied through a so-called virtual transformation model that uti-
lizes the KMC method to study the effects of bulk stress state
on martensite nucleation. The influence of kinematic coupling
on model behavior is achieved by the full coupling of the KMC
algorithm with an FEA solver to observe how interacting stress
fields of adjacent transformed regions influence martensite nu-
cleation. The current work shows how a KMC-FEA coupled
model that simulates martensite nucleation can reveal aspects
of the relationship between the mechanical state of a TRIP-
assisted steel and rates at which its retained austenite trans-
forms.

2. Methods

2.1. Model

The current work seeks to simulate aspects of the marten-
site transformation in TRIP-assisted steels. Some aspects of
TADP and Q&P microstructure are used to inform choices of
phase morphology and constitutive behavior within the model,
and provide context for results. These materials also inform the
choice of several assumptions made in determining the nucle-
ation behaviors and crystallography of the martensite transfor-
mation.



First, by the results of Ennis et al. (2017) for the TADP steel
studied, we assume in the current model the isothermal stress-
assisted nucleation of martensite. The current model also as-
sumes that no yielding occurs within the retained austenite until
all austenite is transformed, following Ennis’ results. Second,
the morphology of the retained austenite is assumed to be gran-
ular, and the morphology of mechanically induced martensite
is assumed to be lath martensite. Third, as martensitic transfor-
mations occur quickly once they have nucleated, we model only
their nucleation, and once this occurs, the entire surrounding
austenite region accompanying the nucleus is all considered to
have transformed. From these points we (i) assume isothermal
martensite nucleation, (ii) treat the martensite nucleation as pri-
marily assisted by elastic stresses according to the Magee effect,
(iii) model the microstructure with a discrete number of poten-
tial nucleation sites, and (iv) neglect the creation of new sites
that might otherwise appear in strain-induced martensite trans-
formation models. We also neglect the Greenwood-Johnson ef-
fect, both for simplicity and speed of model operation.

These assumptions provide the framework necessary to for-
mally define the martensite transformation from thermome-
chanical and crystallographic points of view. The following
sections detail these aspects of the theory underlying the model.
Following these, the details of the KMC algorithm are de-
scribed.

2.1.1. Thermomechanics of the martensite transformation

The nucleation behavior of martensite is a function of both
thermal and mechanical variables. As this model seeks to cou-
ple nucleation behaviors with the material’s mechanical state,
the free energy change AG of the transformation from austenite
to martensite must be defined by a suitable thermodynamic po-
tential. This is done using the Gibbs free energy as a measure
of the model’s energy state.

A general expression for the Gibbs free energy change of a
nucleating martensite particle in the shape of an oblate spheroid
is given by Kaufman and Cohen (1958), and is later restated by
Olson and Cohen (1975a); Pereloma and Edmonds (2012) in
the following form

4 . ; -
AG(r,c) = gm’zc(Ag‘h +Ag" +g)" )+ 271r%y. (1)

The quantities Ag" and Ag*” denote the chemical and strain-
energy changes per unit volume, respectively. The value y de-
notes the specific interfacial energy of the particle. Together
these values are used to define the total free energy change of a
transforming martensite particle, where the volume of the par-
ticle is expressed in terms of the radius and oblate axis length,
r and ¢. The term g;',” is used to denote an additional strain-
energy component accounting for the short range misfit stresses
at the austenite-martensite boundary. The values of Ag®" and
Ag*" are themselves functions of the chemistry and morphol-
ogy of the martensite being considered. As such, this potential
must be specifically defined.

In the current work, the interfacial energy and the boundary
misfit strain energy are neglected for simplicity. The strain en-
ergy component Ag*" must be defined as a function of current

stress state for there to be any coupling between the KMC al-
gorithm and the FEA solution for the stress. This is done using
Eshelby’s inclusion formulation (Christian, 1975; Pereloma and
Edmonds, 2012). For an ellipsoidal region of linear-elastic ma-
terial undergoing a known internal shape change, the Eshelby
formulation provides a closed-form solution for the change in
strain energy that occurs. The strain energy change per unit
volume is thus given by

1

1
It A
—50€; — Oj€ij- 2)

g™ = =5 0lie)

The variable € ; Tepresents the transformation strain tensor.
The stress within the transforming inclusion o/ ; 1s obtained
from the Eshelby formulation as o-fj = Cijule, - e,il), where
the constrained strain of transformation € is determined as the
product of Eshelby’s tensor S and the transformation strain:
el‘J = Sijue,. The first term in equation 2 represents the change
in strain energy from the transformation strain. The second
term of equation 2 is the work performed by the applied stress
(T;‘j at that material point. It is through this term that the Magee
effect is incorporated into the model—for a given transforma-
tion strain efi the current stress state at that material point may
add or remove energy from the system.

Incorporating the result from the Eshelby formulation, drop-
ping surface and boundary misfit strain energy terms, and ex-
pressing the potential as a function of volume, equation 1 can
be rewritten as

. 1 —
AG(V) = VAg®" — V(zo'{jefj + o). 3)

Due to the use of the Eshelby solution, it is important to note
that the current model assumes that nuclei geometries are ellip-
soidal (though we assume spheroidal inclusions in this work),
and that the initial shape change of the new martensite parti-
cle happens in a linear-elastic environment (or that the linear-
elastic assumption provides a good approximation of the strain
energy change for a transforming martensitic particle). Recent
work by Vasoya et al. (2019) on the energy dissipation rate of
Eshelby inclusions may have implications for the linear-elastic
assumptions used here. Finally, the value of Ag®” is taken di-
rectly from Kaufman and Cohen’s work (Kaufman and Cohen,
1958), and the value is chosen for pure iron at a temperature
of 300 K. The value of Ag®" for pure iron is chosen here both
for simplicity and on the basis that the values of Ag®" reported
by Kaufman and Cohen (1958) for simple carbon steels do not
differ greatly from those of pure iron for the concentrations of
carbon found in most TRIP steels.

As a kinetic event, the nucleation of martensite within meta-
stable austenite requires a certain activation energy to occur.
Described in terms of the energy state of a nucleation sys-
tem, the transformation from the current meta-stable state to
the transformed state requires that the system first pass through
an intermediate state referred to as the activated, or transition,
state. The activation energy is the required energy to get to this
intermediate state. Figure 1 depicts a schematic of this process,
denoting the meta-stable state as state A, the activated state as



state B, and the final transformed state as state C. The activa-
tion energy, or the barrier to transformation, is expressed as the
quantity AE4p.

Gibbs
Energy

System configuration

Figure 1: A schematic representing a thermally activated event. As the system
evolves from state A to state C, the system must first pass through the activated
state B. The barrier height AE4p is a function of AG (the overall change in free
energy between states A and C) and the intrinsic energy barrier H.

In this work the barrier height AE,p for a given martensite
nucleation event is chosen to be a simple function of the overall
change in Gibbs free energy AG that accompanies that particu-
lar event. This function defines the barrier height as the value
H(V) added to a half of the change in Gibbs energy

AG(V
AE,p = % +H(V) (@)

The function H(V) = hV is considered to be an intrinsic energy
barrier that must be overcome for transformation and has signif-
icant effect on the behavior of the model. The per-volume quan-
tity 4 is chosen as a tuning parameter of the model to fit exper-
imental data. As this is a new model and we seek to focus first
on understanding the role of the terms discussed previously, we
elect to use fixed values for both / and V, which are defined in a
subsequent section. This assumes that the phase transformation
for each region must overcome the same barrier, /, although it
does account for the bias of the local stress for each of these
events in the quantity AEp. This is consistent with other KMC
models that use fixed barrier heights to consider martensitic
transformations (Chen and Schuh, 2015), lattice-based models
where an event barrier is the same for each event (Voter, 2007),
and other shear-based deformations (Homer and Schuh, 2009).
But it should be noted that (V) can be defined to incorporate
any number of relevant state variables as a model seeks to in-
corporate greater complexity (Caspersen and Carter, 2005; Hsu
(Xu Zuyao), 2006).

2.1.2. Crystallographic model of the martensite transformation
The martensite transformation is defined in the PTMC as an
invariant-plane deformation, consisting of a shear parallel to,

and a dilatation normal to, the habit plane (Wechsler et al.,
1953; Bowles and Mackenzie, 1954). This can be expressed
mathematically to define the transformation deformation gradi-
ent

F =B8bem+], 5)

which is a function of the shape strain unit vector b, the shape
strain magnitude Br, the habit plane unit normal rh, and the
identity matrix I (Turteltaub and Suiker, 2006; Tjahjanto et al.,
2008).

The morphology of martensite that is assumed to form here
is lath martensite, typically having a habit plane close to (5 5 7)
(Sandvik and Wayman, 1983a; Morito et al., 2006; Kelly,
2006). Several past works (Sandvik and Wayman, 1983a,b,c;
Kelly, 1992, 2006: Morito et al., 2003, 2006) have studied lath
martensite, describing the internal shape change that this mor-
phology of martensite undergoes. Morito et al. (Morito et al.,
2003) express the habit plane normals m and the shape strain
vectors b for a lath martensite as a function of the lattice pa-
rameters for austenite/martensite in pure iron, as well as two
slip systems that must activate within the transforming particle
to accommodate the deformation. These results are tabulated,
and the transformation system Morito reports is given by

th = (049714 071113 0.49714),
b =[-0.20113 0.70712 —0.67789], ()
B = 024223

By cubic symmetry, the values for h, b, and B, in equation 6
result in N=24 variants of martensite having an orientation rela-
tionship with its parent austenite that is close to the Kurdjumov-
Sachs orientation relationship. The deformation gradients for
each of these 24 variants are defined by these vectors via equa-
tion 5, which in turn defines 24 different transformation strains
ei’j. As these strains represent different changes in shape, the
varying values of AG and AE4p for each variant give rise to
the Magee effect. For more detailed information on the general
crystallography of martensite in steel, as well as the crystallog-
raphy of lath martensite, see Appendix A.l.

2.1.3. The kinetic Monte Carlo algorithm

The kinetic Monte Carlo algorithm serves as the core of the
current model, controlling when potential martensite nuclei ac-
tivate and which martensite variant forms. The KMC algorithm
lists all possible nucleation events for the model in its current
state and then selects a single nucleation event for activation us-
ing the values AG and AE,p calculated by equations 3 and 4.
The KMC algorithm also determines how far the model steps in
time with each iteration. The details of the algorithm are pre-
sented here. A thorough presentation of the algorithm is given
by Voter (2007).

The rate for a single kinetic event is given by

kac = exp(

—AE\p
T ). @



The value k4 is the rate at which the model can be expected
to transition from state A to state C (see figure 1). The attempt
frequency ¥ is usually taken as the Debye frequency for atomic
processes in a lattice. The value of AE,p is expected to be
a positive value (calculating a rate for a barrierless process is
meaningless); the value of the exponential is a probability, and
is so capped at 1. As such, the maximum rate at which a process
can occur is the attempt frequency. The values kp and T are the
Boltzmann constant and temperature in Kelvin.

For n possible events, the KMC algorithm calculates their
rates and subsequently chooses one event to occur. The rates
for all n events, listed by k,, can be used to create an array of
normalized partial sums

| d
s(j) = — k, for j=1..n, 8
1) k; g for j ®)

where k;,; is the total sum of all rates ZZ: 1 kg. The result is
a list of values ranging from O to 1 in increasing order. The
values in this array are used to select which event occurs for the
next step of the model’s evolution. The magnitude difference
between elements s(j — 1) and s(j) is proportional to the rate
calculated for event j. An event is selected by generating a
random number ¢; from a uniform distribution and determining
where in the array s(j) that number falls. If & falls within the
range set by elements s(j — 1) and s(j) then event j is selected
to occur. Using this method, events with the larger kinetic rates
have a higher probability of being selected to occur.

The model also advances in time according to the kinetic
rates calculated for all possible events. The sum of all rates k;,,
and another random number & (from a uniform distribution)
are used to generate an exponentially distributed random num-
ber At, the time increment stepped forward by the model. This
is calculated as At = —1Iné&;/k;;. The model is then stepped
forward in time, the chosen event occurs, the system’s energy
state is changed accordingly, and the process is repeated with
the next set of possible events.

The KMC method typically allows transformations to reverse
themselves, as a model may select to return to its previous state.
This typically occurs when an energetically unfavorable event
was selected at low probability, resulting in the reverse trans-
formation having a high rate of occurrence in the next step. A
modified KMC approach is taken here, however, where events
are prohibited from being chosen if there are no events present
that have kinetic rates over some chosen threshold value. This
is a useful approach when the total sum of all possible transfor-
mation rates is close to zero, resulting in an unrealistically large
time step and dramatic model behaviors. This is done either by
setting a minimum total rate k,,,, or by setting a maximum time
step At; if either condition is not met, no transformations are
selected and the model steps forward in time by the maximum
allowed step. This allows the model to evolve according to ex-
ternal constraints, changing the energy state of the model and
moving toward a set of more acceptable transformation events.

2.2. Model implementation

In the present manuscript we examine two different KMC
model implementations to observe the effects of load path and
the kinematic coupling between austenite regions on the nucle-
ation behavior of martensite. The core of the nucleation model
consists of the KMC algorithm’s calculation of kinetic rates in
potential martensite nucleation events given the equations de-
scribed in sections 2.1.3 and 2.1.1. Finite element analysis with
appropriate boundary conditions allows the simulation of differ-
ent load paths that can be used to examine the influence of ap-
plied stresses on nucleation kinetics. The two implementations
of the model differ in how kinematic coupling affects the ki-
netics of martensite nucleation, contrasting the roles played by
both kinematic coupling and load path. One model is referred
to as the “virtual” model, and the other as the “fully-coupled”
or “KMC-FEA” model.

Both implementations of the model track the transformation
of 20 nuclei, representing preexisting sites for the heteroge-
neous nucleation of martensite. Each nucleus is assigned an
austenite orientation taken from a random distribution, and the
appropriate rotations are applied to the transformation strains
defined by equations 5 and 6 for the different variants of marten-
site that can form there. The same set of 20 orientations is used
across all implementations and runs of the KMC algorithm to
remove the effect of changing texture on the model and isolate
the effects of load path and kinematic coupling. As each imple-
mentation of the model progresses, the KMC algorithm chooses
which nucleus transforms, and to what variant. Both implemen-
tations of the model require the solution of an FEA model for
the defining of stresses as the model progresses. Since the two
model implementations have common elements, we begin by
first describing the FEA constitutive behaviors and boundary
conditions that were used. This is followed by a description of
each model implementation.

2.2.1. FEA constitutive behavior and boundary conditions
The effects of load path on nucleation are achieved through
the boundary conditions applied to various FEA meshes. Each
implementation of the model utilizes an FEA mesh that sim-
ulates a cubic region of matrix material initially containing
spheres of retained austenite. For each meshed cubic vol-
ume, three sets of displacement boundary conditions (DBC)
and fixed boundary conditions (FBC) are placed on the model.
Uniaxial loading is achieved by a DBC on the positive x face of
the simulation cube, with FBCs placed on the negative x, y, and
z faces. Biaxial loading is achieved by DBCs on the positive x
and y faces, again with FBCs placed on the negative x, y, and z
faces. Finally, plane strain loading is achieved by a DBC on the
positive x face, with FBCs placed on both y faces as well as the
negative x and z faces. Each displacement boundary condition
progresses at the set strain rate of ¢ = 0.001 s~! and continues
until all 20 austenite regions have transformed. The equivalent
strain is used to represent the bulk strain state of the simulation
region during deformation, and serves as a basis of comparison
across the different load paths. The equivalent strain is defined



as
€= gedev : Edev’ (9)

V3
where €9¢" is the deviatoric strain defined by €9 = € — %tr(e)l.

The material constitutive behaviors used in the FEA analy-
sis follow the assumptions outlined in section 2.1. Plasticity in
the austenite is neglected and the plasticity in the transformed
martensite is included only as a portion of the deformation gra-
dient Fy as defined by Morito et al. (2003). The matrix mate-
rial is allowed to plastically deform via Mises plasticity. For
speed and simplicity perfect plasticity is assumed, with a yield
strength of 1180 MPa. The FEA constitutive model for both
austenite and mechanically induced martensite is isotropic lin-
ear elasticity, with Green strain and the 21 pigla Kirchoff stress
as energetic conjugates. For transforming martensite, the stress
is calculated as a function of the end-of-increment deformation
gradient F,, 5., where 7 is the simulation time at the beginning
of the increment. A multiplicative decomposition of the end-
of-increment deformation is assumed to consist of elastic and
transformative parts. This decomposition is given as

Friar = FeFy, (10)
where Fy is the transformation defined for a given variant of
martensite. The Green strain at the end of the increment is given
by

e
E=§(FeFe—I)~ (11)

The 2" Piola Kirchoff stress is given as

o' = CE (12)

The stiffness tensor C is isotropic, defined by a Young’s modu-
lus of E=200 GPa and a Poisson’s ratio of v=0.3 (Cantara et al.,
2019). The Cauchy stress is subsequently defined as

1

o= det(Fe)(Feo-PKFZ) (13)
The model is solved implicitly, requiring a Jacobian matrix to
bring the solution into convergence. The Jacobian used here
follows the perturbed Jacobian method used by Kalidindi et al.
(1992). The KMC-FEA model runs in ABAQUS/standard ver-
sion 6.11 with the implicit FEA solver. The type of element
used in all cases is C3D10 (quadratic tetrahedral elements). The
mesh, material constitutive behavior, KMC algorithm, and post
processing of results are all managed via the use of user sub-
routines UMAT and UEXTERNALDB, as well as ABAQUS
scripting tools.

As noted earlier, we choose to implement two different ver-
sions of the model to study the effects of load path and kine-
matic coupling in different ways. These two implementations
utilize different FEA models and execute the calculations of the
KMC algorithm differently. The virtual model isolates the ef-
fect of load path by pre-solving an FEA model containing a sin-
gle austenite sphere to tabulate the stresses caused by each load
path that are used in the KMC algorithm. These pre-tabulated

stresses for different load paths are then used to track martensite
transformation at the 20 nucleation sites in isolation (i.e. with
no kinematic coupling between nuclei), using the same calcu-
lated stresses for each nucleus. The KMC-FEA model solves
an FEA model with each of the 20 nucleation sites contained in
a single volume. This allows the effects of each transformation
to propagate through the model’s evolution via the KMC algo-
rithm and captures the effects of both load path and kinematic
coupling.

All model inputs required by the KMC algorithm are sum-
marized and listed in table 1.More specific details of each im-
plementation are presented in the following sections.

2.2.2. The virtual transformation model

The virtual model simulates the transformation of 20 marten-
site nuclei by executing the KMC algorithm within the MAT-
LAB environment. The KMC algorithm controls the evolution
of the model following the steps outlined in section 2.1.3, and
given in algorithm 1. Since this model is carried out in MAT-
LAB instead of in an FEA environment, the stresses for each
load path are pre-tabulated. These stresses are referenced by
the KMC algorithm as it steps forward in time to calculate the
relevant kinetic rates for each possible nucleation event. As a
nucleus is selected to transform to one of the 24 variants of
martensite, the conditions of its transformation are recorded
and it is removed from the list. This also means that there is
no physical effect on the model once each nucleus transforms.
These “virtual” transformations are counted until all 20 nuclei
have been selected to transform. The model output of interest is
the equivalent strain at which each of the 20 nuclei transform.

To obtain the pre-tabulated stresses, an FEA model consist-
ing of a single linear-elastic austenite sphere embedded in a
plastic matrix is subjected to uniaxial, biaxial, and plane strain
loading conditions. The stresses inside the nucleus are tabulated
as a function of equivalent strain for each loading path. The ma-
terial constitutive behaviors and boundary conditions follow the
descriptions in section 2.2.1.

The virtual model serves several functions in the study of
martensite nucleation. First, the model runs quickly and can
therefore provide a statistical understanding of how load path
affects martensite nucleation through observation of results for
many runs. In comparison, the KMC-FEA model cannot pro-
vide the same statistical insight because it requires an FEA so-
lution with every time step.

Second, the stochastic nature of the KMC algorithm provides
insight into the probabilities of a system evolving in different
ways; each run yields a unique result, and lots of runs provide
insight into the variation of the output where a deterministic
model would yield the same output each time. This can be used
to study how sensitive certain outcomes are to initial conditions.

Third, the virtual model isolates the effect of load path. Since
the transformation of each nucleus is not explicitly modeled, the
only effect of stress on transformation is from stresses caused
by the boundary conditions on the pre-solved FEA model. The
virtual model provides an important point of comparison with
the KMC-FEA model, as it removes any effect of kinematic
coupling.



Table 1: KMC Parameters

Property Symbol  Value Ref.
Number of Variants N 24
Habit Normal m (0.49714 0.71113 0.49714), (Morito et al., 2003)
Shape Strain Vector b [-0.20113 0.70712 - 0.67789], (Morito et al., 2003)
Shape Strain Magnitude B 0.24223 (Morito et al., 2003)
Elastic Modulus E 200 GPa
Poisson’s Ratio v 0.3
Strain Rate € 0.001
Nucleate Volume Vv 1.2x107* ym?
Maximum KMC Time Step Atyax 1 sec
MIMT Chemical Free Energy Change ~ Ag®" -5.629 x 107* /% (Kaufman and Cohen, 1958)
Intrinsic Energy Barrier h 1.0x 1073 /%
Nucleation Attempt Frequency 9 1.59666 x 10'* Hz
Temperature T 300 K
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Figure 2: A contoured representation of the dependency of R? (the fit of the
average output of the virtual model to data provided by Ennis et al. (2017)) on
the values / and V for the uniaxial load path.

Finally, the virtual model is used to choose the values of nu-
cleus volume V and the barrier height term / required by the
KMC algorithm. This is done by fitting the averaged output of
the virtual model to experimental data provided by Ennis et al.
(2017). For the uniaxial load path, the virtual model is run 20
times and the results averaged. The averaged results are com-
pared to the experimental data for that load path and the R®
value is calculated as the measure of fit quality. To obtain the
V and h values used in this work, the value for V was initially
chosen and the value for 4 was chosen to produce an H in the
same order of magnitude of the value for AG for such a nucleus
transforming at zero applied stress (where all variants will have
the same value of AG). This resulted in the following values,
V=12x10"* um’and h = 1.0 x 1073 N/um?.

A subsequent search around the neighborhood of this initial
choice shows a particular relationship between values of 7 and
V that provide good fits to experimental data. Figure 2 depicts
this neighborhood of / and V, showing the R? values that result

from fitting the output of the virtual model to the data provided
by Ennis et al. (2017), using each combination of 4 and V. Each
data point in figure 2 represents the comparison of Ennis’ data
to the average of 20 runs of the virtual model under uniaxial
loading. This figure shows that the choice of intrinsic barrier
height & is still sensitive to the choice of V, showing that the
nucleation kinetics are not dominated by the choice of V alone.
For this reason, the first manually-determined estimate of the
parameters i and V are kept as the final values. The compar-
ison of these fit curves to the experimental data are given and
examined in the results section.

2.2.3. KMC-FEA coupled model

In contrast to the virtual model where the stresses are pre-
tabulated, the KMC-FEA model involves a full solution of
the stress field in every step as boundary conditions progress
through each load path. Furthermore, whereas the virtual model
has a list of 20 austenite regions, the KMC-FEA model geom-
etry contains all 20 regions of austenite phase embedded in the
matrix material. Each of the 20 austenite regions is represented
as an idealistic sphere with a set volume of 0.04 um?. Each
sphere contains one of the 20 nucleation sites which is assumed
to produce a nucleus having a volume of V as determined using
the virtual model. When a given nucleation site is selected by
the KMC algorithm to transform, the entire spherical austen-
ite grain that contains it undergoes the corresponding change
in shape. The crystallographic orientations of these spherical
austenite grains correspond with the orientations assigned to
their respective nuclei. The FEA geometry for the model is
depicted in figure 3. These material constitutive models follow
the behaviors outlined in section 2.2.1 for the respective phases.
A detailed description of the KMC-FEA model is given in al-
gorithm 2.

This KMC-FEA model implementation is used to study the
effect of kinematic coupling, or interaction between martensite
transformations, by varying the volume of the cube that con-
tains the austenite grains. Three different cube volumes are used
(10, 20, and 40 ,um3), with extra padding to distance the austen-
ite regions from the boundary conditions. The spheres repre-



Algorithm 1 Virtual Transformation Model

1: Run FEA model containing single austenite sphere for the
given strain path and tabulate o4(¢) and &(r).
. Set the orientations of 20 nuclei
t=0, Ny =20
: while N, >0 do
Interpolate € from &(r)
Interpolate o4 from o4 (t)
for each nucleus do
for each martensite variant do
Calculate k (eqns. 3, 4, and 7)
Add k to list &,
end for
end for
13: Calculate k;,, = Xk,
14: Generate random numbers & and &
15: Calculate At = —Iné&; [k
16: if At > At,,4, then

R A o

17: t=1t+ Aty

18: else

19: Calculate array of partial sums s(j) (eqn. 8)
20: Choose event j such that & € [s(j — 1), s(j)]
21: Remove nucleus from list of possible nuclei
22: Nuue = Npue = 1

23: t=t+At

24: end if

25: end while

senting austenite are randomly placed throughout the cube. As
the same 20 austenite grains are used in each case, the relative
differences in spacing affect the influence previous transforma-
tions have on future martensite nucleation, as communicated
through the evolving stress fields.

3. Results

The results of both the virtual and fully coupled models are
outlined here in their respective sections. The virtual model
shows a difference in how the bulk stress states caused by each
load path (uniaxial, biaxial, and plane strain) affect the nucle-
ation of martensite differently. The virtual model does not in-
clude any notion of kinematic coupling, and so isolates the ef-
fect of load path on martensite nucleation. The fully coupled
KMC-FEA model includes both the effects of load path and
kinematic coupling of adjacent austenite regions. The effect of
kinematic coupling is shown by applying the KMC-FEA model
to simulated materials that contain austenite regions dispersed
at different spacings, resulting in different transformation rates.
Here, the term “transformation rate” denotes the rate at which
austenite regions transform with respect to equivalent strain.
This is to distinguish this term from the “kinetic rate”, which
is a temporal rate as calculated by the KMC algorithm.

3.1. Virtual transformation model
The virtual transformation model was used to simulate the
transformation of 20 virtual nuclei at sites having pre-selected
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Figure 3: A simulation cell of 10 wm® containing twenty 0.04 um> austenite
regions represented by randomly placed idealistic spheres. This volume is con-
tained within a region of surrounding material, providing a buffer from applied
boundary conditions. Grain orientations are assigned to each austenite region
from a set of orientations previously generated from a random distribution.

orientations. Here, the virtual model was run 20 times for each
load path. The results of the virtual model are plotted in figure
4 along with the experimental data for austenite transformation
provided by both Ennis et al. (2017) and Cramer et al. (2018).
The curves representing the fraction of remaining austenite are
the averages of the 20 runs for each load path. The relative com-
parison of the shapes of these curves is given in the final panel
of figure 4. The uniaxial and biaxial load cases are separated
from each other, with uniaxial loading causing transformation
of austenite faster with respect to equivalent strain. The plane
strain load case aligns with the uniaxial load case for a short
period (approx. 2% strain) before separating to run nearly par-
allel to the biaxial load case. The uniaxial case has the most
dramatic change from a high transformation rate to a low one—
evidenced by the severity of the “elbow” in the transformation
curve. The plane strain case has the least severe elbow. These
elbows signify that one or more austenite regions do not trans-
form as readily as the others, slowing the rate of austenite trans-
formation.

Figure 4 also displays the 1 standard deviation range for the
20 runs of the virtual model for each load path. Since each
run uses the same 20 austenite orientations, the statistical vari-
ance of the results for a given load path is purely a function
of the stochasticity of the KMC algorithm, demonstrating the
considerable variation of possible results from the same initial
microstructure.

As noted, figure 4 also compares the results of the virtual
model to experimental data. Since the virtual model tracks the
transformation of a discrete number of nuclei, the transforma-
tion of austenite is compared with experimental data via the
fraction of austenite remaining. As the data provided by Ennis
et al. (2017) was used to validate the virtual model, the aver-
age of the uniaxial runs of the virtual model fits well, having
an R? of 0.984. The plane strain and biaxial cases fit the ex-
perimental data provided by Cramer et al. well, with R? values
of 0.988 and 0.976, respectively. The uniaxial case deviates
very quickly from a good fit to Cramer’s data, however, with an
R? value of 0.652. It is likely that some of the RA levels seen
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Figure 4: Results of the virtual model, each curve representing the average of 20 runs of the virtual model and tracking the transformation of 20 austenite nuclei.

in Figure 4 are not accurate for uniaxial tension; the authors
Cramer et al. (2018) have seen a smoother transformation rate
for uniaxial tension in subsequent in-situ experiments for Q&P
1180 (Miles, 2019).

3.2. KMC-FEA coupled model

The results of the fully coupled KMC-FEA model are shown
in figure 5, which depicts the number of remaining marten-
site nucleation sites as a function of equivalent strain. Re-
sults are grouped by the average nearest-neighbor distance be-
tween austenite regions, corresponding with simulation cells
having volumes equal to 10, 20, and 40 um?. Resulting av-
erage nearest neighbor distances between the austenite regions
are NN = 0.555, 0.751, and 0.908 um respectively, the space
between austenite regions increasing as they are distributed
through larger volumes. Each curve represents the average of
two KMC-FEA model runs. Additionally, each data set is fit
by a sigmoid curve having the form of —atanh(bx) + ¢: each
respective R? value is listed. The relationship between the uni-
axial and biaxial load paths seems to be fairly consistent with
changing value of NN;; the uniaxial case shows faster transfor-
mation with respect to equivalent strain when compared with
the biaxial load path in all cases. The relationship between uni-
axial and plane strain load paths is more varied, however. An
example of this can be seen in observing points at which the
plane strain curve crosses the uniaxial curve for each case in
figure 5—as NN increases, the first crossing point happens at
earlier and earlier equivalent strains.

The transformation rates, or rate of change of the retained
austenite fraction as a function of equivalent strain, are calcu-
lated from the slopes of the sigmoid curves used to fit the data
in figure 5. These slopes. or transformation rates, are plotted as
a function of the equivalent strain in figure 6. The effect of NN
on transformation rate is shown for each load path. For com-
parison, the transformation rates observed in the virtual model
are also included in figure 6.

For the plane strain load path, the transformation rates shown
in figure 6 exhibit a trend in which the fully coupled model
behaves more and more like the virtual model under plane strain
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loading with increasing NN. In other words, with increasing
space between austenite regions the initial nucleation rate under
plane strain loading decreases in magnitude to behave more like
the virtual model, which has no kinematic coupling.

Under biaxial loading, the magnitude of the transformation
rates seem to be minimally affected by an increase in NN, with
transformation rate curves close to that of the virtual model.
The results for biaxial loading do show the same trend, how-
ever, of the initial rates of nucleation converging toward the be-
havior of the virtual model with increasing NN.

The uniaxial case shows greater sensitivity to a change in NN
than the biaxial case, though no ordering of the results with re-
spect to NN is observed. This lack of convergence towards the
virtual model with increasing NN indicates greater randomness
to the transformation rates under uniaxial loading.

4. Discussion

The results of both the virtual model and the KMC-FEA cou-
pled model show the effect of load path and kinematic coupling
on the transformation rates of martensite. The virtual model,
used to validate the KMC parameters by comparison to ex-
perimental data, shows how the effect of load path on nucle-
ation originates from the Magee effect—different stress states
imposed by different boundary conditions encourage/suppress
each of the 24 martensite variants differently. The fully coupled
model shows how kinematic coupling, or changes in NN, affect
transformation rate differently for each load path. In short, the
Magee effect sets each load path apart from each other, which
results in different sensitivities to kinematic coupling. The com-
parison of the virtual model results to experimental data is dis-
cussed first. The role of the Magee effect is then discussed,
followed by the role of kinematic coupling in each load path.

4.1. Comparison to experimental data

The data provided by Ennis et al. (2017) and Cramer et al.
(2018) provide important context for present results. The model
was primarily validated by Ennis’ experimental data, and only
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Figure 5: Results of the FEA-KMC coupled model for simulation cells of different volumes, with the same volume of austenite distributed throughout.
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Figure 6: Transformation rates for the fully coupled FEA-KMC and virtual models. Results are grouped by load path, demonstrating the effect of austenite spacing

on the transformation rate for each case.

compared to the data presented by Cramer. Aspects of both
materials were used as a basis for model constitutive behaviors,
with the bulk of assumptions being derived from Ennis’ con-
clusions; the primary assumption being the isothermal stress-
assisted nucleation of martensite. Ennis presents data for the
case of uniaxial deformation of TADP steel, concluding that
this material undergoes the isothermal stress-assisted nucle-
ation of martensite. For this reason Ennis’ data is presented
primarily as validation of the current model. The uniaxial data
provided by Ennis represents measurement of austenite volume
fractions as measured by X-ray diffraction, and so provides a
statistically significant volume of data well suited for validation
of the input parameters of the models presented here.

The comparison of present results to the data provided by
Cramer et al. has implications regarding possible relation-
ships between stress-assisted and strain-induced martensite nu-
cleation. Q&P steels are generally assumed to undergo the
strain-induced martensite transformation, as their M{ is usu-
ally reported to be well below room temperature (De Moor
et al., 2008; Wang and Speer, 2013). The excellent fit of the
virtual model to Cramer’s data in the plane strain and biaxial
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cases may suggest a greater role of stress-assisted nucleation
kinetics in Q&P. Both modes of nucleation may happen in any
material, and the primary task in defining M7 is one of deter-
mining which nucleation mode is most dominant for a given
temperature range. Other microstructural features may affect
how and when retained austenite deforms, and so stress-assisted
nucleation of martensite may be happening within the material
studied by Cramer. Additional confirmation of the mode of nu-
cleation within the alloy studied by Cramer may be achieved
through the observation of e-martensite shear bands directly.
The comparison of present results to the uniaxial data provided
by Cramer are suspect, primarily due to concerns about how
that data was gathered (Miles, 2019).

In any case, while the model is derived from characteristics
of these materials, it is a model and is internally self consistent.
Regardless of any implications that arise from comparison to
these data, the results represent how both the Magee effect and
kinematic coupling affect nucleation kinetics within the virtual
and KMC-FEA models.
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Figure 7: The rates of transformation for each of the 24 variants of martensite for a single nucleation site under each load path. The grain orientation of the austenite
nucleation site is unrotated from the reference frame. Numbers depict how the 24 variants are grouped within each cluster of curves.

4.2. Role of the Magee effect

The Magee effect underlies the differences in transformation
rates between all 24 variants via the interaction of the applied
stress field with the stress field that results from the martensite
transformation. Due to the strain energy dominated nature of
martensite nucleation kinetics, the transformation rates are sen-
sitive to the stress state caused by imposed boundary conditions
as well as more local stresses caused by adjacent transforma-
tions. As such, the Magee effect provides a useful framework
for the description of present results. The calculations within
the KMC algorithm further add useful means of quantifying the
Magee effect, through the calculation of kinetic rates.

Figure 7 depicts the kinetic rates of transformation for all 24
variants of martensite for a single potential nucleus. Each load
path, with their respective differences in imposed stress state,
result in different “spectra” of kinetic rates. These spectra lead
to different groupings of the variants, as well as their corre-
sponding magnitudes of kinetic rates, as a function of equiva-
lent strain. The plane strain spectrum shows 6 groups of 4 vari-
ants each, distributed over a smaller range of kinetic rates when
compared to biaxial and uniaxial load cases. Three of these
groups experience a positive energetic bias (are assisted) while
the other three experience a negative energetic bias (are sup-
pressed). The biaxial case shows 3 groups of 8 variants each,
of which only one group is suppressed. The uniaxial case also
shows 3 groups of 8, but two of the three groups are suppressed.

It is important to note that these spectra are a function of the
orientation of the austenite crystal where the potential nucleus
is located, and spectra for only one orientation are shown here.
As this orientation is changed, the curves in each spectrum “ro-
tate” between states of being suppressed and assisted in various
magnitudes. The grouping of variants into concentrated bands
within the spectrum is also a function of the orientation of the
nucleus. This suggests that a mapping between the space of
nucleus orientations and the space of resulting spectra can be
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created—such a mapping could be used to study or even con-
trol how retained austenite texture affects the kinetics of the
stress-assisted nucleation of martensite.
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Figure 8: Representation of the total kinetic rate k, as a function of equivalent
strain for each load path, as calculated in the virtual model. The magnitude
of the total rate at a given equivalent strain corresponds with the rate of any
austenite transformation event occurring.

The overall effect that these differing variant spectra have on
the nucleation behavior of martensite can be demonstrated by
considering the total kinetic rate k;,,, or sum of all the individ-
ual rates in the spectra as calculated by the KMC algorithm.
Figure 8 plots the total kinetic rate as a function of equivalent
strain for each load path, as calculated for the virtual model.
As such, it includes not only the effects of the different spectra,
but the case where a range of orientations can uniquely con-
tribute to the rates. The shape of the curves gives insight into
the different stages of martensite nucleation behaviors that are



Algorithm 2 KMC-FEA Model

1: Load FEA mesh containing 20 austenite spheres in a cube
of matrix material

2: 1 =0, Nyye =20

3: while N, > 0 do

4: for each nucleus do

5 for each martensite variant do
6: Calculate k (eqns. 3, 4, and 7)
7: Add k to list &,
8 end for
9: end for
10: Calculate k;,, = Xk,
11: Generate random numbers & and &
12: Calculate At = —Iné&; [k
13: if At > At,,q, then
14: t =1+ Aty
15: Step DBCs forward at € = 0.001
16: Solve FEA time step for stresses in cube
17: else
18: Calculate array of partial sums s(j) (eqn. 8)
19: Choose event j such that &; € [s(j — 1), s(j)]
20: Remove nucleus from list of possible nuclei
21: Nuue = Npue = 1
22: t=t+At
23: Step DBCs forward at ¢ = 0.001s!
24: Set ¢ for elements of sphere containing nucleus
25: Solve FEA time step for stresses in cube
26: end if

27: end while

governed by competing factors. The first stage is an increase in
total kinetic rate as stress increases during initial linear elastic
loading, the beginnings of plasticity, and the initial transforma-
tion of austenite regions. During this early loading, each load
path shows a similar trajectory at early strains, overlapping until
approximately 2% equivalent strain. Each load path eventually
comes to a peak where the nucleation of assisted variants out-
paces the overall increase in kinetic rate as potential nuclei are
taken out of the pool of events contributing to the total. The
following stage, representing a decay of the total rate as vari-
ants nucleate, demonstrates the effect of the differing spectra
for each load path: The plane strain case having the most grad-
ual decay as a result of the greatest number of variants in the
spectra that are assisted by the stress state. Because the uni-
axial load path assists only a few variants, the total kinetic rate
decays much faster as the assisted variants are selected to nucle-
ate. The biaxial case represents a more balanced combination
of assisted variants at a high rate, thus having the highest peak
and a rate of decay intermediate to that of the uniaxial and plane
strain cases. In short, the biaxial load case tends to be the upper
bound of the curves plotted in figure 5 due to this balance. The
strong preference of a few variants in the uniaxial case is what
causes the uniaxial curves in figure 5 to be consistently below
the biaxial curves.

4.3. Role of kinematic coupling

The adjacency of austenite regions has a direct impact on the
extent to which transformation stress fields interact with each
other. This difference can be seen in the different transforma-
tion rates for different values of NN, as shown in figure 6. This
suggests a difference in sensitivity to kinematic coupling across
the different load paths. The inclusion of the transformation
rates of the virtual model in figure 6 provide an important point
of comparison, because the virtual model’s behavior represents
an absence of any kinematic coupling or NN = co. This com-
parison elucidates the different roles that kinematic coupling
plays in the different load paths.

For the plane strain load case, these plots show different ini-
tial nucleation rates with respect to NN—suggesting that greater
kinematic coupling is responsible for increasing the transforma-
tion rate of martensite while under a plane strain load. In other
words, with increasing NN the magnitude of the initial nucle-
ation rate decreases, and the results of the fully coupled model
converge toward the virtual model’s behavior. The spread of
initial nucleation rates for plane strain is greater than the other
load paths, suggesting that martensite nucleation is more sensi-
tive to kinematic coupling under plane strain loading than both
uniaxial and biaxial conditions.

The biaxial load path seems to converge to the virtual
model’s behavior similarly, but over such a narrow range of nu-
cleation rates as to suggest a relative insensitivity to kinematic
coupling in comparison with the plane strain load path. The
uniaxial load path does not exhibit the same ordering of model
behaviors as average nearest neighbor distance changes; the av-
erage behavior of the model under plane strain loading across
all average nearest neighbor distances is close to the behavior
of the virtual model.

In summary, the plane strain load path exhibits sensitivity
to the kinematic coupling of adjacent regions (i.e. austenite re-
gions are more likely to transform the closer they are to adjacent
transforming austenite regions) while the biaxial and uniaxial
load paths remain relatively unaffected by changes in average
nearest neighbor distance.

4.4. Application to TRIP-assisted steels

As the strength and ductility exhibited by TRIP-assisted
steels are dependent upon the martensitic transformation, we
examine how the conclusions of this work might influence the
design or expected behaviors of TRIP-assisted steels that ex-
hibit the stress-assisted nucleation of martensite. For such
steels under uniaxial or biaxial loading, the general proximity
of austenite regions does not appear to accelerate or retard the
transformation behavior. As nucleation behaviors appear un-
affected by the proximity of retained austenite regions, an in-
crease in volume fraction (and thus a decrease in average dis-
tance between austenite regions) may not reduce the range of
equivalent strains in which austenite transforms. Because of
this, it may be easier to affect the hardening behavior of these
steels over large ranges of strain in the case of uniaxial or bi-
axial loading simply by increasing the initial volume fraction
of austenite. On the other hand, Because the plane strain case



exhibits faster nucleation behaviors when austenite regions are
close to each other, increasing the volume fraction of austen-
ite may have undesirable effects if the intention is to pace the
transformation of austenite over a larger range of plastic strains.

These expected behaviors are, of course, a function not only
of the initial volume fraction of austenite but also of other mi-
crostructural characteristics that effect the dispersion of austen-
ite: volume of individual austenite regions, austenite grain mor-
phology, etc. Both the virtual model and the KMC-FEA cou-
pled model would provide a good field for the study of texture
on the transformation of austenite. Future applications of the
model may also study the effects of retained austenite morphol-
ogy or composite load paths. Additionally, the incorporation of
a crystal plasticity method into the model would allow for the
Greenwood-Johnson effect to play a role in the model’s behav-
ior. More work is required to provide the necessary insight to
understand the influence of these other factors.

5. Summary and Conclusions

A KMC based model is employed to study the interrelation-
ship between the kinetics of isothermal stress-assisted marten-
site nucleation, kinematic coupling of adjacent austenite re-
gions, and deformation through different load paths (plane
strain, biaxial, and uniaxial). Two different KMC models are
used to explore the effects of both kinematic coupling and load
path by comparing their results. In a virtual model, indepen-
dent transformation events are simply counted as the KMC al-
gorithm progresses using pre-tabulated stresses. The full KMC-
FEA coupled model solves for stresses between each iteration
of the KMC algorithm, incorporating the effects of both load
path and kinematic coupling. The role of kinematic coupling in
the fully coupled model is demonstrated by controlling the av-
erage nearest neighbor distance NN between austenite regions.
One can then quantify how the transformation rate differs with
applied strain for the different spacing between austenite re-
gions and for the different load paths.

The differences in transformation rate compared across the
different load paths can be attributed the Magee effect, where
different groups of variants are suppressed/assisted based on the
strain path. This suppression/assistance is illustrated by the dif-
ferent “spectra” of nucleation rates for each strain path, which
depict how individual variants are affected by the applied stress
state. Given these spectra, the isothermal nucleation kinetics
of stress-assisted martensite may be a function of the texture of
retained austenite.

The results of the fully-coupled KMC-FEA model depict dif-
ferent outcomes for the different load paths as a function of the
average nearest neighbor distance NN between adjacent austen-
ite regions. The plane strain load path is unique, in that the rate
of austenite transformation appears to be more sensitive to the
kinematic coupling between adjacent austenite regions as com-
pared with biaxial and uniaxial load paths. The overall trends
appear to be consistent with the virtual model, in which the
austenite regions are not kinematically coupled.

The design of the model incorporates some aspects of the
microstructures of TRIP-assisted steels, namely the amount
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of austenite present, the crystallographic parameters of the
martensite transformation, and KMC input parameters that
were chosen by fitting to experimental data. With respect to
TRIP-assisted steels that undergo the stress-assisted martensite
transformation, several implications of this model’s results in-
clude:

o The fraction of austenite transtormed during deformation
depends on load path, and so hardening behavior under
different load paths may vary.

o The kinetics of stress-assisted martensite nucleation differ
by load path through the Magee effect, which provides a
means of mapping the relationship between nucleation ki-
netics and applied stress states.

o The rates of transformation of retained austenite in TRIP-
assisted steels undergoing the stress-assisted martensite
transformation can be expressed as a function of the prox-
imity of austenite regions when under plane strain load-
ing, and so hardening behavior under this load path may
be possible to influence by controlling kinematic coupling
of adjacent austenite regions.

e The biaxial load path is relatively unaffected by the kine-
matic coupling of adjacent austenite regions, and so may
be insensitive to many aspects of microstructure, such as
the relative proximity of austenite regions.
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Appendix A. Phenomenological theory of martensite crys-
tallography

Appendix A.l. General crystallography

The various morphologies of martensite can be distinguished
by their respective habit planes, and mode of accommodating
the deformation that accompanies their change in shape (Chris-
tian, 1975; Pereloma and Edmonds, 2012). Thin-plate marten-
sites, comprised of small alternating layers of twinned marten-
site variants, are often observed to have habit planes close to
(3 10 15) in the austenite phase (Turteltaub and Suiker, 2006;
Tjahjanto et al., 2008; Pereloma and Edmonds, 2012). This
morphology often exhibits the Greninger-Troiano orientation
relationship. In contrast is lath martensite, where the habit
planes are close to (5 5 7) and the orientation relationship tends
towards Kurdjumov-Sachs (Kelly, 1992; Morito et al., 2003,
2006; Pereloma and Edmonds, 2012). During the martensite
transformation, significant changes in shape give rise to a need
for an internal mechanism for accommodating deformation. In
the case of plate martensite, where the final martensite may
have a higher degree of tetragonality, that accommodation hap-
pens via internal twinning. Again, this is contrasted by lath



martensite, where the internal mode of deformation accommo-
dation is slip (Pereloma and Edmonds, 2012). In both cases,
these deformation modes are required to achieve the observed
changes in both shape and orientation.

The first formal descriptions of the martensite transforma-
tion were given simultaneously by Wechsler et al. (1953) and
Bowles and Mackenzie (1954). Both works describe the geo-
metric constraints on the martensite transformation, and show
how those constraints can be used to determine a unique so-
lution for the habit plane and orientation relationship for plate
martensite. Their work forms the foundation of the PTMC. The
PTMC describes the martensite transformation as an invariant-
plane deformation; this must be the case for the habit plane,
where the austenite-martensite interface is observed to be in-
variant at length scales much larger than the austenite unit cell
parameter. At shorter length scales, the habit plane can be de-
scribed as an array of coherency dislocations forming a glissile
interface that moves as a martensite particle grows (Christian,
1975; Pereloma and Edmonds, 2012). In addition to leaving
the habit plane undistorted and unrotated, the deformation must
correctly change an FCC lattice to a BCC or BCT lattice. These
requirements are met by coupling the Bain strain B with a rigid-
body rotation R and a lattice-invariant deformation L to give the
deformation gradient

F = RBL, (A.1)
where the Bain strain is defined as
m 0 O \V2aM M
B=|10 m O m=-—72—Mm=—7-. (A2)
0 0 a a
2

The Bain strain contains the principal stretches 17; and 77, that
must occur for an FCC lattice to form a BCC or BCT lattice
(permute the positions of 77; and 7, for a total of 3 Bain vari-
ants). These stretches are functions of a”, and both ¢, and
M, the lattice parameters of austenite and martensite, respec-
tively. The Bain strain describes the transformation from one
lattice to the other by a contraction along one axis of the FCC
unit cell, and a uniform expansion in the other two axes. The
Bain strain alone, however, will not produce the orientation re-
lationships observed for martensite in steel, nor does it leave
any plane undistorted and unrotated. As noted above, the Bain
strain must be coupled with both a lattice-invariant deformation
L and a rigid-body rotation R. The lattice-invariant deforma-
tion (either slip or internal twinning) allows for the martensite
particle to change shape without changing the base lattice. This
coupling is sufficient to define a habit plane that is undistorted,
but rotated from its original position. The inclusion of the rigid-
body rotation brings the habit plane back into its original orien-
tation, now undeformed. The deformation tensor can then take
the form given in equation A.1, and is equivalent to the dyadic
form given in equation 5.

Appendix A.2. Lath martensite

While the PTMC is well suited to the description of the de-
formation required for plate martensite, lath martensite presents
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several challenges. Because slip is the internal mechanism by
which lath martensite accommodates its own shape change, the
lattice-invariant deformation L of equation A.l must be ex-
pressed as a the activation of slip on a combination of ratio-
nal slip systems at smaller length scales. Early attempts to
determine a single slip system that would serve as a suitable
lattice-invariant deformation failed to provide satisfactory solu-
tions (Kelly, 1992; Pereloma and Edmonds, 2012). More recent
studies on the crystallography of lath martensite included a sec-
ond slip system, providing additional degrees of freedom for
the lattice-invariant strain and allowing for a solution that pre-
dicts habit plane orientations closer to what is actually observed
(Sandvik and Wayman, 1983a,b,c; Kelly, 1992, 2006; Morito
et al., 2003, 2006). This double-shear form of the deformation
tensor takes the form of equation A.3, with S; and S, represent-
ing the shear deformation caused by slip on two different slip
systems. The deformation gradient can then be defined as

F = RBS;S;. (A.3)

Various studies (Sandvik and Wayman, 1983c; Kelly, 1992)
examine the possible choices of shear systems Sy and S,. Mul-
tiple authors (Kelly, 1992; Morito et al., 2003) tabulate the
shape deformations for each variant of martensite using lat-
tice parameters that correspond to pure iron. These shape de-
formations agree with observed habit planes formed by lath
martensite, as well as observed orientation relationships. These
lattice parameters are a® = 0.36313 nm for austenite and
aM = 0.28974 nm for BCC martensite. These define the choice
of B described by equation A.2. The shear systems S; and
S, and their respective magnitudes of shear, g, and g,, are:
Si=10D[-101]y or (112)[-1-11]a’ withg; = 0.26488
and S, = (100)[01 —1]y or (110)-11 —1]e with
g2 = 0.09122. Ultimately, the double-shear system for the crys-
tallography of lath martensite provides satisfactory predictions
of habit plane orientations and orientation relationships.
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