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Highlights
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• Model is developed to simulate the kinetics of isothermal stress-assisted martensite nucleation 
that couples the kinetic Monte Carlo method with the finite element method 

• Model is validated against austenite transformation data for a TADP steel alloy for the purpose 
of studying isothermal nucleation kinetics in TRIP-assisted steels generally 

• The nucleation kinetics of martensite is shown to be affected by strain path, and the adjacency 
of nucleation events (kinematic coupling) 

• The underlying phenomenon that governs differences of nucleation kinetics is discussed in the 
context of the Magee effect, both generally and for TRIP-assisted steels 

• The plane strain is shown to be the most sensitive to kinematic coupling, while the uniaxial and 
biaxial strain paths show little sensitivity to kinematic coupling 
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stract

e properties of TRIP-assisted steels are influenced by the transformation of retained austenite into martensite during deformatio
the mechanically-induced martensite transformation. In the present work the effect of strain path on isothermal stress-assiste

rtensite nucleation and variant selection are studied by the coupling of the kinetic Monte Carlo method with the finite eleme
thod. This coupled model centers on a thermomechanical model of the martensitic transformation, and the model is tuned an

lidated against transformation data gathered experimentally for a TRIP-assisted dual phase steel (Ennis et al., Int. J. Plast., 201
, 126.). The effect of the proximity of adjacently transforming regions (kinematic coupling) is also studied as a function o
ain path. The model results demonstrate how the rate of martensite nucleation is affected by the strain path (uniaxial tensio
xial tension, and plane strain) and how the kinematic coupling between adjacent transforming regions is unique to each pat
ese phenomena are discussed in the context of the Magee effect, which is the relationship between stress state and the suppre
n/assistance of the nucleation of specific variants of martensite. The implications of martensite nucleation’s sensitivity to stra
th and kinematic coupling are discussed for TRIP-assisted steels that transform by isothermal stress-assisted nucleation.

ywords: Martensite; TRIP steel; Phase transformation; Kinetic Monte Carlo; Finite element method

Introduction

The martensite transformation is a well-studied crystallo-
aphic phenomenon in steels, and the thermomechanics and
stallography of martensite have been well described in the

erature (Christian, 1975; Balluffi et al., 2005; Pereloma and
monds, 2012). The theoretical body of work on marten-
e is referred to as the phenomenological theory of marten-
e crystallography (PTMC), and describes the crystallography
the martensite transformation in detail (Bowles and Macken-
, 1954; Mackenzie and Bowles, 1954; Wechsler et al., 1953).

any models utilizing the PTMC have been developed to ex-
in, study, and simulate the nucleation and growth of marten-

e in various steels under varied processing schemes. Such
dels have contributed to the development of new steels,
ich continue to emerge with the goal of achieving improved
ength and formability (Matlock and Speer, 2009). One
ch class of steel is the set of advanced high strength steels
HSS) that are assisted by the transformation-induced plas-
ity (TRIP) phenomenon (Olson and Azrin, 1978; Olson and
hen, 1982b). These steels have small amounts of retained
stenite which transform into martensite upon loading. For
me alloys this transformation happens isothermally under

∗Corresponding author
Email address: eric.homer@byu.edu (Eric R. Homer)

the driving force of applied stress (stress-assisted). For oth
ers, the transformation is triggered by plasticity within the r
tained austenite (strain-induced). For both such modes of nucl
ation, the martensite transformation contributes to plastic flo
when such materials are deformed, resulting in greater harden
ing rates and improved ductility/formability (Olson and Cohe
1982b; Seo et al., 2016; Cramer et al., 2018). Steels exhibi
ing this behavior are identified as TRIP or TRIP-assisted steel
and are of particular interest to the automotive industry (Ma
lock and Speer, 2009).

Several studies on the sensitivity of material response
strain path have emerged for TRIP and TRIP-assisted steels (Y
et al., 2006; Perdahcıoğlu et al., 2008; Zecevic et al., 2019
Recent studies on quenched and partitioned (Q&P) and TRI
alloys have focused on how the transformation of austenite a
fects the forming limit diagrams of these steels (Cramer et a
2018; Gibbs, 2019). Another study investigates the transform
tion behavior of a TRIP-assisted dual phase steel (TADP) as
function of strain and contrasts the results with another automo
tive dual phase steel (Ennis et al., 2017). The majority of thes
works, however, focus on the strain path dependence of th
strain-induced nucleation of martensite within retained austen
ite. The current work seeks to investigate the role of stra
path on the isothermal stress-assisted nucleation of martensi
in TRIP-assisted steels. The goal remains the same, howeve
of improving the impact that the TRIP effect has on automotiv
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terials by clarifying its dependence on strain path.

. Kinetics of martensite nucleation in steels
Generally, the nucleation and growth of martensite in steel
s been described from both continuum-elastic and discrete-
location points of view, as the crystallographic theory of
rtensite has been sufficiently developed to provide insight
o the dislocation structures that form the austenite-martensite
undary (Olson and Cohen, 1982a, 1986). The formation of
rtensite is considered to be nucleation controlled; a nucle-
on event is followed by an auto-catalytic growth stage where

austenite-martensite boundary propagates at a high veloc-
determined by the rate at which the boundary dislocations

n move together as a glissile interface. While the growth of
rtensite appears to be barrierless, the barrier to martensite
cleation is far too great for martensite to nucleate homoge-
ously. It is understood that the nucleation of martensite is
imarily heterogeneous (Pati and Cohen, 1969; Olson and Co-
n, 1975b), occurring at sites where dislocation structures or
ain boundaries provide sufficient free energy to overcome the
ge barrier to nucleation.
The nucleation of martensite at viable heterogeneous sites
n occur through different means. The spontaneous nucleation
martensite via rapid cooling is often referred to as “athermal”
rtensite, and the temperature range of its formation is iden-
ed by the martensite start and finish temperatures, denoted
Ms and M f respectively (Olson and Azrin, 1978; Pereloma

d Edmonds, 2012). For a given alloy held at a temperature
which some volume fraction of austenite remains stable, the
rtensite transformation can be triggered by the application of
her stress or deformation. These two modes are the so-called
ess-assisted and strain-induced modes of martensite nucle-
on. Stress-assisted nucleation occurs isothermally as applied
ess fields provide elastic strain energy needed for existing nu-
ation sites to overcome the barrier to nucleation (Pati and Co-
n, 1969; Olson and Azrin, 1978; Olson and Cohen, 1982b).
rain-induced nucleation occurs as plasticity in the retained
stenite creates new nucleation sites via the creation and inter-
ction of ε-martensite shear bands (Olson and Cohen, 1975b;
son and Azrin, 1978; Olson and Cohen, 1982a, 1986). These
o nucleation behaviors dominate distinct ranges between the
s and M f temperatures, with the boundary between nucle-
on modes often denoted as Mσ

s . At temperatures below Mσ
s ,

nucleation behaviors of retained austenite are assumed to
stress-assisted (Olson and Azrin, 1978; Pereloma and Ed-
nds, 2012). The various TRIP-assisted steels can be catego-
ed by which of these two modes of nucleation occurs. Trans-
rmation of austenite that occurs via either of these two nucle-
on modes is referred to as a mechanically induced martensite
nsformation (Marketz and Fischer, 1994; Pereloma and Ed-
nds, 2012; Haidemenopoulos et al., 2014).

The application of stress in the stress-assisted nucleation of
rtensite at available heterogeneous sites plays a role in the

lection of which variants of martensite actually form (com-
nly referred to as variant selection) (Marketz and Fischer,

94; Pereloma and Edmonds, 2012). The stress field that
ses from transformation interacts with the stress field caused

by applied loads in a way that may reduce or increase th
change in free energy caused by the martensite transformatio
If the shape change caused by transformation into a given var
ant of martensite results in a lower stress state, then that varia
is said to be assisted by the applied stress. This is known a
the Magee effect (Marketz and Fischer, 1994; Pereloma an
Edmonds, 2012). Similarly, if the applied stress facilitate
the activation of slip systems in the surrounding material s
that a transforming martensite particle may transform with le
resistance, that variant is said to have been assisted via th
Greenwood-Johnson effect (Marketz and Fischer, 1994; Tale
and Sidoroff, 2003). Both of these mechanisms are means b
which the stress-assisted martensite transformation can result
a form of variant selection.

1.2. Models of TRIP steels

Built on early work of the thermomechanics of steel a
loys (Kaufman and Cohen, 1958; Pati and Cohen, 1969; O
son and Cohen, 1975b, 1982b), substantial work has soug
to model the kinetics of martensite nucleation as a functio
of mechanical deformation in TRIP and TRIP-assisted steel
Several such works describe the effect of strain-induced nucl
ation of martensite in TRIP steels (Olson and Cohen, 1975
Olson and Azrin, 1978; Olson and Cohen, 1982b; Stringfe
low et al., 1992), proposing that the nucleation of martensi
happens most readily at shear-band intersections where dislo
cation interactions create potent nucleation sites. Studies ut
lizing this Olson-type model have been extensively applied
various studies of TRIP and TRIP-assisted steels that underg
the strain-induced nucleation of martensite. A review of thes
works is too large to include in this work. Related studie
discuss the nature of the isothermal stress-assisted martensi
transformation in other TRIP steels, and describe the kinetics o
these transformations in detail (Olson and Cohen, 1982b; Bees
and Mohr, 2011; Pereloma and Edmonds, 2012; Mansourineja
and Ketabchi, 2017).

Other successful models have been developed for the simu
lation of the martensite transformation in TRIP steels that tak
a continuum-elastic approach to the martensite transformatio
and are applied in crystal plasticity codes (Marketz and Fi
cher, 1994; Turteltaub and Suiker, 2006; Tjahjanto et al., 2008
Some of these authors (Turteltaub and Suiker, 2006; Tjahjan
et al., 2008) have created a model that defines the driving forc
for the transformation of austenite through the use of a dissip
tion potential. The transformation rate and its conjugate drivin
force for a given variant are related through a pre-defined k
netic relationship, and the volume fractions of each variant at
material point are homogenized. In these models, the evolutio
of the volume fraction of martensite is most commonly modele
as a sigmoidal function of the macroscopic strain. Such empi
ical modeling is not sensitive to strain-path. To relax the issu
scalar variables like the stress triaxiality (Stringfellow et a
1992; Santacreu et al., 2006; Haidemenopoulos et al., 2014
or the stress triaxiality and the Lode angle parameter (Lebede
and Kosarchuk, 2000; Beese and Mohr, 2011; Mansourineja
and Ketabchi, 2017), have been introduced in other models fo
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nsformation. These models capture the role of microstruc-
al phenomena, such as texture evolution and anisotropy, us-
a crystal plasticity-based formulation (Zecevic et al., 2019),

ich is an extension of a previous elasto-plastic self-consistent
del (Zecevic et al., 2016).

The computational modeling of steel has grown to incor-
rate more known aspects of the thermomechanics of the
rtensite transformation as high performance computational
ources have become available. Monte Carlo methods have

rved as meso-scale modeling techniques to capture the effect
stochastic processes on bulk mechanical behaviors. This ap-

oach is well suited for the simulation of systems that evolve
ough kinetic processes, such as in the nucleation of marten-
e. Stochastic models have only recently been applied to
rtensite. Using the kinetic Monte Carlo (KMC) algorithm,
en and Schuh (Chen and Schuh, 2015) developed a thermo-
namic framework to simulate both the forward and reverse
rtensitic transformations in a single crystal shape-memory
oy. Presently, no such studies have utilized KMC to study
martensite transformation in TRIP-assisted steels.

. Overview
The current work uses the KMC method to simulate the
ess-assisted isothermal nucleation of martensite in TRIP-
sisted steels generally. The effect that different mechanical
tes have on nucleation behaviors will be examined. Primary
ention is given to the effect of strain/load path on nucleation,
erentiating nucleation behaviors observed in uniaxial, biax-

, and plane strain conditions. These particular strain/load
ths are selected because they are the primary ones used to
tain a forming limit curve, which defines a locus of strain
ios above which necking is likely to occur (Keeler and Back-
fen, 1964; Goodwin, 1968; Paul, 2013). This approach is
particular interest to the authors, as it applies to the forma-
ity of sheet metal, which is a topic of great interest in the
rrent automotive light-weighting effort where advanced high
ength steel, including TRIP-assisted steels, is playing an im-
rtant role. We study the effect that prior transformations have
subsequent transformation as local stress fields develop, re-
red to in this work as kinematic coupling. To perform this
dy, aspects of the microstructures of TRIP-assisted steels
ll be incorporated into a model that couples the KMC method
th an FEA solver to deform a theoretical region of a TRIP-
sisted steel and simulate the martensite transformation and
accompanying change in shape. For validation and compari-

n, recent studies that examine the transformation of austenite
TRIP-assisted steels are of particular interest.
One such study is the aforementioned paper by Ennis et al.
017), which observes the transformation of martensite by
situ X-ray diffraction during the uniaxial deformation of a
DP steel. The TADP microstructure presented by Ennis con-
ts of retained austenite having a “blocky” morphology, dis-
rsed alongside martensite and bainite within a matrix of fer-
e. In this steel the stabilization of retained austenite occurs in
rt during the formation of bainite, in which carbon is rejected
m the newly formed bainite into surrounding austenite. En-
’ conclusions regarding this steel include the observation that

no yielding occurs in the retained austenite, or the subseque
mechanically induced martensite, until the transformation of a
retained austenite is complete (Ennis et al., 2017). This form
the basis for the subsequent conclusion that the transformatio
of retained austenite in this steel occurs by the stress-assiste
isothermal nucleation of martensite. Ennis provides transfo
mation data that is valuable for the validation of the model pr
sented here.

Also of interest are recent studies on Q&P alloys (Seo et a
2016; Cramer et al., 2018). Cramer et al. (2018) performe
an experimental study in which the transformation of retaine
austenite to martensite in a Q&P 1180 alloy is specifical
expressed as a function of strain path. Cramer et al. gen
erated this data via ex-situ straining through different stra
paths (uniaxial, biaxial, and plane strain) and by measurin
the fraction of retained austenite transformed through EBS
imaging. This data is used as a comparison to the output o
the current work’s model, and discussed in later sections. Fo
another Q&P alloy, the study presented by Seo et al. (2016
goes into more detail on the mechanical behavior of the diffe
ent phases present during deformation. Seo et al. determin
that the matrix phase of primary martensite has a lower yie
strength than both the retained austenite and mechanically in
duced martensite. Though Q&P alloys are considered to un
dergo the strain-induced martensite transformation upon load
ing (De Moor et al., 2008; Wang and Speer, 2013; Seo et a
2016), the Q&P materials presented in these studies have va
ious microstructural features in common with the TADP ste
studied by Ennis et al. One such similarity is the morphology o
the retained austenite, which can also be described as “blocky

Crystallographic, kinetic, and thermodynamic aspects of th
martensite transformation are considered and included as a
pects of the current model. The effect of load path is first stud
ied through a so-called virtual transformation model that ut
lizes the KMC method to study the effects of bulk stress sta
on martensite nucleation. The influence of kinematic couplin
on model behavior is achieved by the full coupling of the KM
algorithm with an FEA solver to observe how interacting stre
fields of adjacent transformed regions influence martensite nu
cleation. The current work shows how a KMC-FEA couple
model that simulates martensite nucleation can reveal aspec
of the relationship between the mechanical state of a TRIP
assisted steel and rates at which its retained austenite tran
forms.

2. Methods

2.1. Model

The current work seeks to simulate aspects of the marten
site transformation in TRIP-assisted steels. Some aspects o
TADP and Q&P microstructure are used to inform choices o
phase morphology and constitutive behavior within the mode
and provide context for results. These materials also inform th
choice of several assumptions made in determining the nucl
ation behaviors and crystallography of the martensite transfo
mation.
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First, by the results of Ennis et al. (2017) for the TADP steel
died, we assume in the current model the isothermal stress-

sisted nucleation of martensite. The current model also as-
mes that no yielding occurs within the retained austenite until
austenite is transformed, following Ennis’ results. Second,
morphology of the retained austenite is assumed to be gran-
r, and the morphology of mechanically induced martensite

assumed to be lath martensite. Third, as martensitic transfor-
tions occur quickly once they have nucleated, we model only
ir nucleation, and once this occurs, the entire surrounding

stenite region accompanying the nucleus is all considered to
ve transformed. From these points we (i) assume isothermal
rtensite nucleation, (ii) treat the martensite nucleation as pri-
rily assisted by elastic stresses according to the Magee effect,

i) model the microstructure with a discrete number of poten-
l nucleation sites, and (iv) neglect the creation of new sites
t might otherwise appear in strain-induced martensite trans-

rmation models. We also neglect the Greenwood-Johnson ef-
t, both for simplicity and speed of model operation.
These assumptions provide the framework necessary to for-
lly define the martensite transformation from thermome-

anical and crystallographic points of view. The following
ctions detail these aspects of the theory underlying the model.
llowing these, the details of the KMC algorithm are de-
ribed.

.1. Thermomechanics of the martensite transformation
The nucleation behavior of martensite is a function of both
rmal and mechanical variables. As this model seeks to cou-
nucleation behaviors with the material’s mechanical state,
free energy change ∆G of the transformation from austenite

martensite must be defined by a suitable thermodynamic po-
tial. This is done using the Gibbs free energy as a measure
the model’s energy state.
A general expression for the Gibbs free energy change of a
cleating martensite particle in the shape of an oblate spheroid
given by Kaufman and Cohen (1958), and is later restated by
son and Cohen (1975a); Pereloma and Edmonds (2012) in
following form

∆G(r, c) =
4
3
πr2c(∆gch + ∆gstr + gstrp ) + 2πr2γ. (1)

e quantities ∆gch and ∆gstr denote the chemical and strain-
ergy changes per unit volume, respectively. The value γ de-
tes the specific interfacial energy of the particle. Together
se values are used to define the total free energy change of a
nsforming martensite particle, where the volume of the par-
le is expressed in terms of the radius and oblate axis length,
nd c. The term gstrp is used to denote an additional strain-

ergy component accounting for the short range misfit stresses
the austenite-martensite boundary. The values of ∆gch and
str are themselves functions of the chemistry and morphol-
y of the martensite being considered. As such, this potential
st be specifically defined.

In the current work, the interfacial energy and the boundary
sfit strain energy are neglected for simplicity. The strain en-
y component ∆gstr must be defined as a function of current

stress state for there to be any coupling between the KMC a
gorithm and the FEA solution for the stress. This is done usin
Eshelby’s inclusion formulation (Christian, 1975; Pereloma an
Edmonds, 2012). For an ellipsoidal region of linear-elastic m
terial undergoing a known internal shape change, the Eshelb
formulation provides a closed-form solution for the change
strain energy that occurs. The strain energy change per un
volume is thus given by

∆gstr = −1
2
σI
i jε

t
i j − σA

i jε
t
i j. (2

The variable ε ti j represents the transformation strain tenso
The stress within the transforming inclusion σI

i j is obtaine
from the Eshelby formulation as σI

i j = Ci jkl(εckl − ε tkl), whe
the constrained strain of transformation εc is determined as th
product of Eshelby’s tensor S and the transformation strai
εci j = S i jklε

t
kl. The first term in equation 2 represents the chang

in strain energy from the transformation strain. The secon
term of equation 2 is the work performed by the applied stre
σA
i j at that material point. It is through this term that the Mage

effect is incorporated into the model—for a given transform
tion strain ε ti j the current stress state at that material point ma
add or remove energy from the system.

Incorporating the result from the Eshelby formulation, drop
ping surface and boundary misfit strain energy terms, and ex
pressing the potential as a function of volume, equation 1 ca
be rewritten as

∆G(V) = V∆gch − V(
1
2
σI
i jε

t
i j + σA

i jε
t
i j). (3

Due to the use of the Eshelby solution, it is important to no
that the current model assumes that nuclei geometries are ellip
soidal (though we assume spheroidal inclusions in this work
and that the initial shape change of the new martensite part
cle happens in a linear-elastic environment (or that the linea
elastic assumption provides a good approximation of the stra
energy change for a transforming martensitic particle). Rece
work by Vasoya et al. (2019) on the energy dissipation rate o
Eshelby inclusions may have implications for the linear-elast
assumptions used here. Finally, the value of ∆gch is taken d
rectly from Kaufman and Cohen’s work (Kaufman and Cohe
1958), and the value is chosen for pure iron at a temperatu
of 300 K. The value of ∆gch for pure iron is chosen here bo
for simplicity and on the basis that the values of ∆gch reporte
by Kaufman and Cohen (1958) for simple carbon steels do n
differ greatly from those of pure iron for the concentrations o
carbon found in most TRIP steels.

As a kinetic event, the nucleation of martensite within met
stable austenite requires a certain activation energy to occu
Described in terms of the energy state of a nucleation sy
tem, the transformation from the current meta-stable state
the transformed state requires that the system first pass throug
an intermediate state referred to as the activated, or transitio
state. The activation energy is the required energy to get to th
intermediate state. Figure 1 depicts a schematic of this proces
denoting the meta-stable state as state A, the activated state a
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Journal Pre-proof
te B, and the final transformed state as state C. The activa-
n energy, or the barrier to transformation, is expressed as the
antity ∆EAB.

ure 1: A schematic representing a thermally activated event. As the system
lves from state A to state C, the system must first pass through the activated

te B. The barrier height ∆EAB is a function of ∆G (the overall change in free
rgy between states A and C) and the intrinsic energy barrier H.

In this work the barrier height ∆EAB for a given martensite
cleation event is chosen to be a simple function of the overall
ange in Gibbs free energy ∆G that accompanies that particu-
event. This function defines the barrier height as the value
V) added to a half of the change in Gibbs energy

∆EAB =
∆G(V)

2
+ H(V) (4)

e function H(V) = hV is considered to be an intrinsic energy
rrier that must be overcome for transformation and has signif-
nt effect on the behavior of the model. The per-volume quan-

y h is chosen as a tuning parameter of the model to fit exper-
ental data. As this is a new model and we seek to focus first
understanding the role of the terms discussed previously, we
ct to use fixed values for both h and V , which are defined in a

bsequent section. This assumes that the phase transformation
r each region must overcome the same barrier, h, although it
es account for the bias of the local stress for each of these
ents in the quantity ∆EAB. This is consistent with other KMC
dels that use fixed barrier heights to consider martensitic
nsformations (Chen and Schuh, 2015), lattice-based models
ere an event barrier is the same for each event (Voter, 2007),

d other shear-based deformations (Homer and Schuh, 2009).
t it should be noted that H(V) can be defined to incorporate
y number of relevant state variables as a model seeks to in-
rporate greater complexity (Caspersen and Carter, 2005; Hsu
u Zuyao), 2006).

.2. Crystallographic model of the martensite transformation
The martensite transformation is defined in the PTMC as an
ariant-plane deformation, consisting of a shear parallel to,

and a dilatation normal to, the habit plane (Wechsler et a
1953; Bowles and Mackenzie, 1954). This can be expresse
mathematically to define the transformation deformation grad
ent

Ft = βtb̂ ⊗ m̂ + I, (5

which is a function of the shape strain unit vector b̂, the shap
strain magnitude βT , the habit plane unit normal m̂, and th
identity matrix I (Turteltaub and Suiker, 2006; Tjahjanto et a
2008).

The morphology of martensite that is assumed to form he
is lath martensite, typically having a habit plane close to (5 5 7
(Sandvik and Wayman, 1983a; Morito et al., 2006; Kell
2006). Several past works (Sandvik and Wayman, 1983a,b,
Kelly, 1992, 2006; Morito et al., 2003, 2006) have studied la
martensite, describing the internal shape change that this mo
phology of martensite undergoes. Morito et al. (Morito et a
2003) express the habit plane normals m̂ and the shape stra
vectors b̂ for a lath martensite as a function of the lattice p
rameters for austenite/martensite in pure iron, as well as tw
slip systems that must activate within the transforming partic
to accommodate the deformation. These results are tabulate
and the transformation system Morito reports is given by

m̂ = (0.49714 0.71113 0.49714)γ

b̂ = [−0.20113 0.70712 − 0.67789]γ
βt = 0.24223

(6

By cubic symmetry, the values for m̂, b̂, and βt in equation
result in N=24 variants of martensite having an orientation rel
tionship with its parent austenite that is close to the Kurdjumov
Sachs orientation relationship. The deformation gradients fo
each of these 24 variants are defined by these vectors via equ
tion 5, which in turn defines 24 different transformation strain
ε ti j. As these strains represent different changes in shape, th
varying values of ∆G and ∆EAB for each variant give rise
the Magee effect. For more detailed information on the gener
crystallography of martensite in steel, as well as the crystallog
raphy of lath martensite, see Appendix A.1.

2.1.3. The kinetic Monte Carlo algorithm
The kinetic Monte Carlo algorithm serves as the core of th

current model, controlling when potential martensite nuclei a
tivate and which martensite variant forms. The KMC algorith
lists all possible nucleation events for the model in its curre
state and then selects a single nucleation event for activation u
ing the values ∆G and ∆EAB calculated by equations 3 and
The KMC algorithm also determines how far the model steps
time with each iteration. The details of the algorithm are pr
sented here. A thorough presentation of the algorithm is give
by Voter (2007).

The rate for a single kinetic event is given by

kAC = ϑ exp (
−∆EAB

kBT
). (7
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e value kAC is the rate at which the model can be expected
transition from state A to state C (see figure 1). The attempt
quency ϑ is usually taken as the Debye frequency for atomic

ocesses in a lattice. The value of ∆EAB is expected to be
ositive value (calculating a rate for a barrierless process is
aningless); the value of the exponential is a probability, and

so capped at 1. As such, the maximum rate at which a process
n occur is the attempt frequency. The values kB and T are the
ltzmann constant and temperature in Kelvin.

For n possible events, the KMC algorithm calculates their
es and subsequently chooses one event to occur. The rates
r all n events, listed by kn, can be used to create an array of
rmalized partial sums

s( j) =
1
ktot

j∑

q=1

kq for j = 1...n, (8)

ere ktot is the total sum of all rates
∑n

q=1 kq. The result is
list of values ranging from 0 to 1 in increasing order. The
lues in this array are used to select which event occurs for the
xt step of the model’s evolution. The magnitude difference
tween elements s( j − 1) and s( j) is proportional to the rate
lculated for event j. An event is selected by generating a
dom number ξ1 from a uniform distribution and determining
ere in the array s( j) that number falls. If ξ1 falls within the
ge set by elements s( j − 1) and s( j) then event j is selected

occur. Using this method, events with the larger kinetic rates
ve a higher probability of being selected to occur.

The model also advances in time according to the kinetic
es calculated for all possible events. The sum of all rates ktot
d another random number ξ2 (from a uniform distribution)

used to generate an exponentially distributed random num-
r ∆t, the time increment stepped forward by the model. This
calculated as ∆t = − ln ξ2/ktot. The model is then stepped
rward in time, the chosen event occurs, the system’s energy
te is changed accordingly, and the process is repeated with
next set of possible events.

The KMC method typically allows transformations to reverse
mselves, as a model may select to return to its previous state.
is typically occurs when an energetically unfavorable event
s selected at low probability, resulting in the reverse trans-

rmation having a high rate of occurrence in the next step. A
dified KMC approach is taken here, however, where events
prohibited from being chosen if there are no events present

t have kinetic rates over some chosen threshold value. This
a useful approach when the total sum of all possible transfor-
tion rates is close to zero, resulting in an unrealistically large
e step and dramatic model behaviors. This is done either by

tting a minimum total rate ktot, or by setting a maximum time
p ∆t; if either condition is not met, no transformations are

lected and the model steps forward in time by the maximum
owed step. This allows the model to evolve according to ex-
nal constraints, changing the energy state of the model and
ving toward a set of more acceptable transformation events.

2.2. Model implementation

In the present manuscript we examine two different KM
model implementations to observe the effects of load path an
the kinematic coupling between austenite regions on the nucl
ation behavior of martensite. The core of the nucleation mod
consists of the KMC algorithm’s calculation of kinetic rates
potential martensite nucleation events given the equations d
scribed in sections 2.1.3 and 2.1.1. Finite element analysis wi
appropriate boundary conditions allows the simulation of diffe
ent load paths that can be used to examine the influence of ap
plied stresses on nucleation kinetics. The two implementation
of the model differ in how kinematic coupling affects the k
netics of martensite nucleation, contrasting the roles played b
both kinematic coupling and load path. One model is referre
to as the “virtual” model, and the other as the “fully-coupled
or “KMC-FEA” model.

Both implementations of the model track the transformatio
of 20 nuclei, representing preexisting sites for the heterog
neous nucleation of martensite. Each nucleus is assigned a
austenite orientation taken from a random distribution, and th
appropriate rotations are applied to the transformation strain
defined by equations 5 and 6 for the different variants of marten
site that can form there. The same set of 20 orientations is use
across all implementations and runs of the KMC algorithm
remove the effect of changing texture on the model and isola
the effects of load path and kinematic coupling. As each impl
mentation of the model progresses, the KMC algorithm choose
which nucleus transforms, and to what variant. Both implemen
tations of the model require the solution of an FEA model fo
the defining of stresses as the model progresses. Since the tw
model implementations have common elements, we begin b
first describing the FEA constitutive behaviors and boundar
conditions that were used. This is followed by a description o
each model implementation.

2.2.1. FEA constitutive behavior and boundary conditions
The effects of load path on nucleation are achieved throug

the boundary conditions applied to various FEA meshes. Eac
implementation of the model utilizes an FEA mesh that sim
ulates a cubic region of matrix material initially containin
spheres of retained austenite. For each meshed cubic vo
ume, three sets of displacement boundary conditions (DBC
and fixed boundary conditions (FBC) are placed on the mode
Uniaxial loading is achieved by a DBC on the positive x face o
the simulation cube, with FBCs placed on the negative x, y, an
z faces. Biaxial loading is achieved by DBCs on the positive
and y faces, again with FBCs placed on the negative x, y, and
faces. Finally, plane strain loading is achieved by a DBC on th
positive x face, with FBCs placed on both y faces as well as th
negative x and z faces. Each displacement boundary conditio
progresses at the set strain rate of ε̇ = 0.001 s−1 and continue
until all 20 austenite regions have transformed. The equivale
strain is used to represent the bulk strain state of the simulatio
region during deformation, and serves as a basis of compariso
across the different load paths. The equivalent strain is define
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ε̄ =

√
2
3
εdev : εdev, (9)

ere εdev is the deviatoric strain defined by εdev = ε − 1
3 tr(ε)I.

The material constitutive behaviors used in the FEA analy-
follow the assumptions outlined in section 2.1. Plasticity in
austenite is neglected and the plasticity in the transformed

rtensite is included only as a portion of the deformation gra-
nt Ft as defined by Morito et al. (2003). The matrix mate-
l is allowed to plastically deform via Mises plasticity. For
eed and simplicity perfect plasticity is assumed, with a yield
ength of 1180 MPa. The FEA constitutive model for both
stenite and mechanically induced martensite is isotropic lin-
r elasticity, with Green strain and the 2nd Piola Kirchoff stress
energetic conjugates. For transforming martensite, the stress
calculated as a function of the end-of-increment deformation
adient Fτ+∆τ, where τ is the simulation time at the beginning
the increment. A multiplicative decomposition of the end-

-increment deformation is assumed to consist of elastic and
nsformative parts. This decomposition is given as

Fτ+∆τ = FeFt, (10)

ere Ft is the transformation defined for a given variant of
rtensite. The Green strain at the end of the increment is given

E =
1
2

(FT
e Fe − I). (11)

e 2nd Piola Kirchoff stress is given as

σPK = CE (12)

e stiffness tensor C is isotropic, defined by a Young’s modu-
of E=200 GPa and a Poisson’s ratio of v=0.3 (Cantara et al.,

19). The Cauchy stress is subsequently defined as

σ =
1

det(Fe)
(Feσ

PKFT
e ) (13)

e model is solved implicitly, requiring a Jacobian matrix to
ing the solution into convergence. The Jacobian used here
llows the perturbed Jacobian method used by Kalidindi et al.
992). The KMC-FEA model runs in ABAQUS/standard ver-
n 6.11 with the implicit FEA solver. The type of element

ed in all cases is C3D10 (quadratic tetrahedral elements). The
sh, material constitutive behavior, KMC algorithm, and post

ocessing of results are all managed via the use of user sub-
utines UMAT and UEXTERNALDB, as well as ABAQUS
ripting tools.
As noted earlier, we choose to implement two different ver-
ns of the model to study the effects of load path and kine-
tic coupling in different ways. These two implementations
lize different FEA models and execute the calculations of the

C algorithm differently. The virtual model isolates the ef-
t of load path by pre-solving an FEA model containing a sin-
austenite sphere to tabulate the stresses caused by each load

th that are used in the KMC algorithm. These pre-tabulated

stresses for different load paths are then used to track martensi
transformation at the 20 nucleation sites in isolation (i.e. wi
no kinematic coupling between nuclei), using the same calcu
lated stresses for each nucleus. The KMC-FEA model solve
an FEA model with each of the 20 nucleation sites contained
a single volume. This allows the effects of each transformatio
to propagate through the model’s evolution via the KMC algo
rithm and captures the effects of both load path and kinemat
coupling.

All model inputs required by the KMC algorithm are sum
marized and listed in table 1.More specific details of each im
plementation are presented in the following sections.

2.2.2. The virtual transformation model
The virtual model simulates the transformation of 20 marten

site nuclei by executing the KMC algorithm within the MAT
LAB environment. The KMC algorithm controls the evolutio
of the model following the steps outlined in section 2.1.3, an
given in algorithm 1. Since this model is carried out in MAT
LAB instead of in an FEA environment, the stresses for eac
load path are pre-tabulated. These stresses are referenced b
the KMC algorithm as it steps forward in time to calculate th
relevant kinetic rates for each possible nucleation event. As
nucleus is selected to transform to one of the 24 variants o
martensite, the conditions of its transformation are recorde
and it is removed from the list. This also means that there
no physical effect on the model once each nucleus transform
These “virtual” transformations are counted until all 20 nucl
have been selected to transform. The model output of interest
the equivalent strain at which each of the 20 nuclei transform

To obtain the pre-tabulated stresses, an FEA model consis
ing of a single linear-elastic austenite sphere embedded in
plastic matrix is subjected to uniaxial, biaxial, and plane stra
loading conditions. The stresses inside the nucleus are tabulate
as a function of equivalent strain for each loading path. The m
terial constitutive behaviors and boundary conditions follow th
descriptions in section 2.2.1.

The virtual model serves several functions in the study o
martensite nucleation. First, the model runs quickly and ca
therefore provide a statistical understanding of how load pa
affects martensite nucleation through observation of results fo
many runs. In comparison, the KMC-FEA model cannot pro
vide the same statistical insight because it requires an FEA so
lution with every time step.

Second, the stochastic nature of the KMC algorithm provide
insight into the probabilities of a system evolving in differe
ways; each run yields a unique result, and lots of runs provid
insight into the variation of the output where a determinist
model would yield the same output each time. This can be use
to study how sensitive certain outcomes are to initial condition

Third, the virtual model isolates the effect of load path. Sinc
the transformation of each nucleus is not explicitly modeled, th
only effect of stress on transformation is from stresses cause
by the boundary conditions on the pre-solved FEA model. Th
virtual model provides an important point of comparison wi
the KMC-FEA model, as it removes any effect of kinemat
coupling.
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Table 1: KMC Parameters

Property Symbol Value Ref.
Number of Variants N 24
Habit Normal m̂ (0.49714 0.71113 0.49714)γ (Morito et al., 2003)
Shape Strain Vector b̂ [−0.20113 0.70712 − 0.67789]γ (Morito et al., 2003)
Shape Strain Magnitude βt 0.24223 (Morito et al., 2003)
Elastic Modulus E 200 GPa
Poisson’s Ratio v 0.3
Strain Rate ε̇ 0.001
Nucleate Volume V 1.2 × 10−4 µm3

Maximum KMC Time Step ∆tmax 1 sec
MIMT Chemical Free Energy Change ∆gch −5.629 × 10−4 N

µm2 (Kaufman and Cohen, 1958)
Intrinsic Energy Barrier h 1.0 × 10−3 N

µm2

Nucleation Attempt Frequency ϑ 1.59666 × 1013 Hz
Temperature T 300 K

ure 2: A contoured representation of the dependency of R2 (the fit of the
rage output of the virtual model to data provided by Ennis et al. (2017)) on
values h and V for the uniaxial load path.

Finally, the virtual model is used to choose the values of nu-
us volume V and the barrier height term h required by the
C algorithm. This is done by fitting the averaged output of
virtual model to experimental data provided by Ennis et al.

017). For the uniaxial load path, the virtual model is run 20
es and the results averaged. The averaged results are com-

red to the experimental data for that load path and the R2

lue is calculated as the measure of fit quality. To obtain the
and h values used in this work, the value for V was initially
osen and the value for h was chosen to produce an H in the
me order of magnitude of the value for ∆G for such a nucleus
nsforming at zero applied stress (where all variants will have
same value of ∆G). This resulted in the following values,

= 1.2 × 10−4 µm3 and h = 1.0 × 10−3 N/µm2.
A subsequent search around the neighborhood of this initial
oice shows a particular relationship between values of h and
that provide good fits to experimental data. Figure 2 depicts
s neighborhood of h and V , showing the R2 values that result

from fitting the output of the virtual model to the data provide
by Ennis et al. (2017), using each combination of h and V . Eac
data point in figure 2 represents the comparison of Ennis’ da
to the average of 20 runs of the virtual model under uniaxi
loading. This figure shows that the choice of intrinsic barri
height h is still sensitive to the choice of V , showing that th
nucleation kinetics are not dominated by the choice of V alon
For this reason, the first manually-determined estimate of th
parameters h and V are kept as the final values. The compa
ison of these fit curves to the experimental data are given an
examined in the results section.

2.2.3. KMC-FEA coupled model
In contrast to the virtual model where the stresses are pr

tabulated, the KMC-FEA model involves a full solution o
the stress field in every step as boundary conditions progre
through each load path. Furthermore, whereas the virtual mod
has a list of 20 austenite regions, the KMC-FEA model geom
etry contains all 20 regions of austenite phase embedded in th
matrix material. Each of the 20 austenite regions is represente
as an idealistic sphere with a set volume of 0.04 µm3. Eac
sphere contains one of the 20 nucleation sites which is assume
to produce a nucleus having a volume of V as determined usin
the virtual model. When a given nucleation site is selected b
the KMC algorithm to transform, the entire spherical austen
ite grain that contains it undergoes the corresponding chang
in shape. The crystallographic orientations of these spheric
austenite grains correspond with the orientations assigned
their respective nuclei. The FEA geometry for the model
depicted in figure 3. These material constitutive models follo
the behaviors outlined in section 2.2.1 for the respective phase
A detailed description of the KMC-FEA model is given in a
gorithm 2.

This KMC-FEA model implementation is used to study th
effect of kinematic coupling, or interaction between martensi
transformations, by varying the volume of the cube that con
tains the austenite grains. Three different cube volumes are use
(10, 20, and 40 µm3), with extra padding to distance the austen
ite regions from the boundary conditions. The spheres repr
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gorithm 1 Virtual Transformation Model

: Run FEA model containing single austenite sphere for the
given strain path and tabulate σA(t) and ε̄(t).

: Set the orientations of 20 nuclei
: t = 0, Nnuc = 20
: while Nnuc > 0 do
: Interpolate ε̄ from ε̄(t)
: Interpolate σA from σA(t)
: for each nucleus do
: for each martensite variant do
: Calculate k (eqns. 3, 4, and 7)
: Add k to list kn
: end for
: end for
: Calculate ktot = Σkn
: Generate random numbers ξ1 and ξ2
: Calculate ∆t = − ln ξ2/ktot
: if ∆t ≥ ∆tmax then
: t = t + ∆tmax
: else
: Calculate array of partial sums s( j) (eqn. 8)
: Choose event j such that ξ1 ∈ [s( j − 1), s( j)]
: Remove nucleus from list of possible nuclei
: Nnuc = Nnuc − 1
: t = t + ∆t
: end if
: end while

nting austenite are randomly placed throughout the cube. As
same 20 austenite grains are used in each case, the relative
erences in spacing affect the influence previous transforma-

ns have on future martensite nucleation, as communicated
ough the evolving stress fields.

Results

The results of both the virtual and fully coupled models are
tlined here in their respective sections. The virtual model
ows a difference in how the bulk stress states caused by each
d path (uniaxial, biaxial, and plane strain) affect the nucle-
on of martensite differently. The virtual model does not in-
de any notion of kinematic coupling, and so isolates the ef-
t of load path on martensite nucleation. The fully coupled
C-FEA model includes both the effects of load path and

ematic coupling of adjacent austenite regions. The effect of
ematic coupling is shown by applying the KMC-FEA model
simulated materials that contain austenite regions dispersed
different spacings, resulting in different transformation rates.
re, the term ”transformation rate” denotes the rate at which
stenite regions transform with respect to equivalent strain.
is is to distinguish this term from the ”kinetic rate”, which
a temporal rate as calculated by the KMC algorithm.

. Virtual transformation model
The virtual transformation model was used to simulate the
nsformation of 20 virtual nuclei at sites having pre-selected

Figure 3: A simulation cell of 10 µm3 containing twenty 0.04 µm3 austen
regions represented by randomly placed idealistic spheres. This volume is co
tained within a region of surrounding material, providing a buffer from appli
boundary conditions. Grain orientations are assigned to each austenite regi
from a set of orientations previously generated from a random distribution.

orientations. Here, the virtual model was run 20 times for eac
load path. The results of the virtual model are plotted in figu
4 along with the experimental data for austenite transformatio
provided by both Ennis et al. (2017) and Cramer et al. (2018
The curves representing the fraction of remaining austenite a
the averages of the 20 runs for each load path. The relative com
parison of the shapes of these curves is given in the final pan
of figure 4. The uniaxial and biaxial load cases are separate
from each other, with uniaxial loading causing transformatio
of austenite faster with respect to equivalent strain. The plan
strain load case aligns with the uniaxial load case for a sho
period (approx. 2% strain) before separating to run nearly pa
allel to the biaxial load case. The uniaxial case has the mo
dramatic change from a high transformation rate to a low one
evidenced by the severity of the ”elbow” in the transformatio
curve. The plane strain case has the least severe elbow. Thes
elbows signify that one or more austenite regions do not tran
form as readily as the others, slowing the rate of austenite tran
formation.

Figure 4 also displays the 1 standard deviation range for th
20 runs of the virtual model for each load path. Since eac
run uses the same 20 austenite orientations, the statistical var
ance of the results for a given load path is purely a functio
of the stochasticity of the KMC algorithm, demonstrating th
considerable variation of possible results from the same initi
microstructure.

As noted, figure 4 also compares the results of the virtu
model to experimental data. Since the virtual model tracks th
transformation of a discrete number of nuclei, the transform
tion of austenite is compared with experimental data via th
fraction of austenite remaining. As the data provided by Enn
et al. (2017) was used to validate the virtual model, the ave
age of the uniaxial runs of the virtual model fits well, havin
an R2 of 0.984. The plane strain and biaxial cases fit the ex
perimental data provided by Cramer et al. well, with R2 value
of 0.988 and 0.976, respectively. The uniaxial case deviate
very quickly from a good fit to Cramer’s data, however, with a
R2 value of 0.652. It is likely that some of the RA levels see
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igure 4: Results of the virtual model, each curve representing the average of 20 runs of the virtual model and tracking the transformation of 20 austenite nuclei

Figure 4 are not accurate for uniaxial tension; the authors
amer et al. (2018) have seen a smoother transformation rate
r uniaxial tension in subsequent in-situ experiments for Q&P
80 (Miles, 2019).

. KMC-FEA coupled model
The results of the fully coupled KMC-FEA model are shown
figure 5, which depicts the number of remaining marten-
e nucleation sites as a function of equivalent strain. Re-
lts are grouped by the average nearest-neighbor distance be-
een austenite regions, corresponding with simulation cells
ving volumes equal to 10, 20, and 40 µm3. Resulting av-
ge nearest neighbor distances between the austenite regions
NN = 0.555, 0.751, and 0.908 µm respectively, the space

tween austenite regions increasing as they are distributed
ough larger volumes. Each curve represents the average of
o KMC-FEA model runs. Additionally, each data set is fit
a sigmoid curve having the form of −a tanh(bx) + c; each
pective R2 value is listed. The relationship between the uni-
ial and biaxial load paths seems to be fairly consistent with
anging value of NN; the uniaxial case shows faster transfor-
tion with respect to equivalent strain when compared with
biaxial load path in all cases. The relationship between uni-

ial and plane strain load paths is more varied, however. An
ample of this can be seen in observing points at which the
ne strain curve crosses the uniaxial curve for each case in
ure 5—as NN increases, the first crossing point happens at
rlier and earlier equivalent strains.
The transformation rates, or rate of change of the retained
stenite fraction as a function of equivalent strain, are calcu-
ed from the slopes of the sigmoid curves used to fit the data
figure 5. These slopes, or transformation rates, are plotted as
unction of the equivalent strain in figure 6. The effect of NN
transformation rate is shown for each load path. For com-

rison, the transformation rates observed in the virtual model
also included in figure 6.

For the plane strain load path, the transformation rates shown
figure 6 exhibit a trend in which the fully coupled model
haves more and more like the virtual model under plane strain

loading with increasing NN. In other words, with increasin
space between austenite regions the initial nucleation rate und
plane strain loading decreases in magnitude to behave more lik
the virtual model, which has no kinematic coupling.

Under biaxial loading, the magnitude of the transformatio
rates seem to be minimally affected by an increase in NN, wi
transformation rate curves close to that of the virtual mode
The results for biaxial loading do show the same trend, how
ever, of the initial rates of nucleation converging toward the b
havior of the virtual model with increasing NN.

The uniaxial case shows greater sensitivity to a change in N
than the biaxial case, though no ordering of the results with r
spect to NN is observed. This lack of convergence towards th
virtual model with increasing NN indicates greater randomne
to the transformation rates under uniaxial loading.

4. Discussion

The results of both the virtual model and the KMC-FEA cou
pled model show the effect of load path and kinematic couplin
on the transformation rates of martensite. The virtual mode
used to validate the KMC parameters by comparison to ex
perimental data, shows how the effect of load path on nucl
ation originates from the Magee effect–different stress state
imposed by different boundary conditions encourage/suppre
each of the 24 martensite variants differently. The fully couple
model shows how kinematic coupling, or changes in NN, affe
transformation rate differently for each load path. In short, th
Magee effect sets each load path apart from each other, whic
results in different sensitivities to kinematic coupling. The com
parison of the virtual model results to experimental data is di
cussed first. The role of the Magee effect is then discusse
followed by the role of kinematic coupling in each load path.

4.1. Comparison to experimental data

The data provided by Ennis et al. (2017) and Cramer et a
(2018) provide important context for present results. The mod
was primarily validated by Ennis’ experimental data, and on
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Figure 5: Results of the FEA-KMC coupled model for simulation cells of different volumes, with the same volume of austenite distributed throughout.

ure 6: Transformation rates for the fully coupled FEA-KMC and virtual models. Results are grouped by load path, demonstrating the effect of austenite spaci
the transformation rate for each case.

mpared to the data presented by Cramer. Aspects of both
terials were used as a basis for model constitutive behaviors,
th the bulk of assumptions being derived from Ennis’ con-
sions; the primary assumption being the isothermal stress-

sisted nucleation of martensite. Ennis presents data for the
se of uniaxial deformation of TADP steel, concluding that
s material undergoes the isothermal stress-assisted nucle-
on of martensite. For this reason Ennis’ data is presented
imarily as validation of the current model. The uniaxial data
ovided by Ennis represents measurement of austenite volume
ctions as measured by X-ray diffraction, and so provides a
tistically significant volume of data well suited for validation
the input parameters of the models presented here.

The comparison of present results to the data provided by
amer et al. has implications regarding possible relation-
ips between stress-assisted and strain-induced martensite nu-
ation. Q&P steels are generally assumed to undergo the
ain-induced martensite transformation, as their Mσ

s is usu-
y reported to be well below room temperature (De Moor
al., 2008; Wang and Speer, 2013). The excellent fit of the
tual model to Cramer’s data in the plane strain and biaxial

cases may suggest a greater role of stress-assisted nucleatio
kinetics in Q&P. Both modes of nucleation may happen in an
material, and the primary task in defining Mσ

s is one of dete
mining which nucleation mode is most dominant for a give
temperature range. Other microstructural features may affe
how and when retained austenite deforms, and so stress-assiste
nucleation of martensite may be happening within the materi
studied by Cramer. Additional confirmation of the mode of nu
cleation within the alloy studied by Cramer may be achieve
through the observation of ε-martensite shear bands directl
The comparison of present results to the uniaxial data provide
by Cramer are suspect, primarily due to concerns about ho
that data was gathered (Miles, 2019).

In any case, while the model is derived from characteristic
of these materials, it is a model and is internally self consisten
Regardless of any implications that arise from comparison
these data, the results represent how both the Magee effect an
kinematic coupling affect nucleation kinetics within the virtu
and KMC-FEA models.
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ure 7: The rates of transformation for each of the 24 variants of martensite for a single nucleation site under each load path. The grain orientation of the austen
leation site is unrotated from the reference frame. Numbers depict how the 24 variants are grouped within each cluster of curves.

. Role of the Magee effect

The Magee effect underlies the differences in transformation
es between all 24 variants via the interaction of the applied
ess field with the stress field that results from the martensite
nsformation. Due to the strain energy dominated nature of
rtensite nucleation kinetics, the transformation rates are sen-

ive to the stress state caused by imposed boundary conditions
well as more local stresses caused by adjacent transforma-
ns. As such, the Magee effect provides a useful framework
r the description of present results. The calculations within

KMC algorithm further add useful means of quantifying the
agee effect, through the calculation of kinetic rates.
Figure 7 depicts the kinetic rates of transformation for all 24
riants of martensite for a single potential nucleus. Each load
th, with their respective differences in imposed stress state,
ult in different ”spectra” of kinetic rates. These spectra lead
different groupings of the variants, as well as their corre-

onding magnitudes of kinetic rates, as a function of equiva-
t strain. The plane strain spectrum shows 6 groups of 4 vari-

ts each, distributed over a smaller range of kinetic rates when
mpared to biaxial and uniaxial load cases. Three of these
oups experience a positive energetic bias (are assisted) while

other three experience a negative energetic bias (are sup-
essed). The biaxial case shows 3 groups of 8 variants each,
which only one group is suppressed. The uniaxial case also
ows 3 groups of 8, but two of the three groups are suppressed.
It is important to note that these spectra are a function of the
ientation of the austenite crystal where the potential nucleus
located, and spectra for only one orientation are shown here.
this orientation is changed, the curves in each spectrum ”ro-

e” between states of being suppressed and assisted in various
gnitudes. The grouping of variants into concentrated bands
thin the spectrum is also a function of the orientation of the
cleus. This suggests that a mapping between the space of
cleus orientations and the space of resulting spectra can be

created—such a mapping could be used to study or even con
trol how retained austenite texture affects the kinetics of th
stress-assisted nucleation of martensite.

Figure 8: Representation of the total kinetic rate ktot as a function of equivale
strain for each load path, as calculated in the virtual model. The magnitu
of the total rate at a given equivalent strain corresponds with the rate of a
austenite transformation event occurring.

The overall effect that these differing variant spectra have o
the nucleation behavior of martensite can be demonstrated b
considering the total kinetic rate ktot, or sum of all the individ
ual rates in the spectra as calculated by the KMC algorithm
Figure 8 plots the total kinetic rate as a function of equivale
strain for each load path, as calculated for the virtual mode
As such, it includes not only the effects of the different spectr
but the case where a range of orientations can uniquely con
tribute to the rates. The shape of the curves gives insight in
the different stages of martensite nucleation behaviors that a
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gorithm 2 KMC-FEA Model

: Load FEA mesh containing 20 austenite spheres in a cube
of matrix material

: t = 0, Nnuc = 20
: while Nnuc > 0 do
: for each nucleus do
: for each martensite variant do
: Calculate k (eqns. 3, 4, and 7)
: Add k to list kn
: end for
: end for
: Calculate ktot = Σkn
: Generate random numbers ξ1 and ξ2
: Calculate ∆t = − ln ξ2/ktot
: if ∆t ≥ ∆tmax then
: t = t + ∆tmax
: Step DBCs forward at ε̇ = 0.001
: Solve FEA time step for stresses in cube
: else
: Calculate array of partial sums s( j) (eqn. 8)
: Choose event j such that ξ1 ∈ [s( j − 1), s( j)]
: Remove nucleus from list of possible nuclei
: Nnuc = Nnuc − 1
: t = t + ∆t
: Step DBCs forward at ε̇ = 0.001s−1

: Set εt for elements of sphere containing nucleus
: Solve FEA time step for stresses in cube
: end if
: end while

verned by competing factors. The first stage is an increase in
al kinetic rate as stress increases during initial linear elastic
ding, the beginnings of plasticity, and the initial transforma-
n of austenite regions. During this early loading, each load
th shows a similar trajectory at early strains, overlapping until
proximately 2% equivalent strain. Each load path eventually
mes to a peak where the nucleation of assisted variants out-
ces the overall increase in kinetic rate as potential nuclei are
en out of the pool of events contributing to the total. The

llowing stage, representing a decay of the total rate as vari-
ts nucleate, demonstrates the effect of the differing spectra
r each load path: The plane strain case having the most grad-
l decay as a result of the greatest number of variants in the
ectra that are assisted by the stress state. Because the uni-
ial load path assists only a few variants, the total kinetic rate
cays much faster as the assisted variants are selected to nucle-
. The biaxial case represents a more balanced combination
assisted variants at a high rate, thus having the highest peak
d a rate of decay intermediate to that of the uniaxial and plane
ain cases. In short, the biaxial load case tends to be the upper
und of the curves plotted in figure 5 due to this balance. The
ong preference of a few variants in the uniaxial case is what
uses the uniaxial curves in figure 5 to be consistently below

biaxial curves.

4.3. Role of kinematic coupling

The adjacency of austenite regions has a direct impact on th
extent to which transformation stress fields interact with eac
other. This difference can be seen in the different transform
tion rates for different values of NN, as shown in figure 6. Th
suggests a difference in sensitivity to kinematic coupling acro
the different load paths. The inclusion of the transformatio
rates of the virtual model in figure 6 provide an important poi
of comparison, because the virtual model’s behavior represen
an absence of any kinematic coupling or NN = ∞. This com
parison elucidates the different roles that kinematic couplin
plays in the different load paths.

For the plane strain load case, these plots show different in
tial nucleation rates with respect to NN–suggesting that great
kinematic coupling is responsible for increasing the transform
tion rate of martensite while under a plane strain load. In oth
words, with increasing NN the magnitude of the initial nucl
ation rate decreases, and the results of the fully coupled mod
converge toward the virtual model’s behavior. The spread o
initial nucleation rates for plane strain is greater than the oth
load paths, suggesting that martensite nucleation is more sens
tive to kinematic coupling under plane strain loading than bo
uniaxial and biaxial conditions.

The biaxial load path seems to converge to the virtu
model’s behavior similarly, but over such a narrow range of nu
cleation rates as to suggest a relative insensitivity to kinemat
coupling in comparison with the plane strain load path. Th
uniaxial load path does not exhibit the same ordering of mod
behaviors as average nearest neighbor distance changes; the av
erage behavior of the model under plane strain loading acro
all average nearest neighbor distances is close to the behavio
of the virtual model.

In summary, the plane strain load path exhibits sensitivi
to the kinematic coupling of adjacent regions (i.e. austenite r
gions are more likely to transform the closer they are to adjace
transforming austenite regions) while the biaxial and uniaxi
load paths remain relatively unaffected by changes in averag
nearest neighbor distance.

4.4. Application to TRIP-assisted steels

As the strength and ductility exhibited by TRIP-assiste
steels are dependent upon the martensitic transformation, w
examine how the conclusions of this work might influence th
design or expected behaviors of TRIP-assisted steels that ex
hibit the stress-assisted nucleation of martensite. For suc
steels under uniaxial or biaxial loading, the general proximi
of austenite regions does not appear to accelerate or retard th
transformation behavior. As nucleation behaviors appear un
affected by the proximity of retained austenite regions, an in
crease in volume fraction (and thus a decrease in average di
tance between austenite regions) may not reduce the range o
equivalent strains in which austenite transforms. Because o
this, it may be easier to affect the hardening behavior of thes
steels over large ranges of strain in the case of uniaxial or b
axial loading simply by increasing the initial volume fractio
of austenite. On the other hand, Because the plane strain cas
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hibits faster nucleation behaviors when austenite regions are
se to each other, increasing the volume fraction of austen-
may have undesirable effects if the intention is to pace the

nsformation of austenite over a larger range of plastic strains.
These expected behaviors are, of course, a function not only
the initial volume fraction of austenite but also of other mi-
structural characteristics that effect the dispersion of austen-

: volume of individual austenite regions, austenite grain mor-
ology, etc. Both the virtual model and the KMC-FEA cou-
d model would provide a good field for the study of texture
the transformation of austenite. Future applications of the
del may also study the effects of retained austenite morphol-

y or composite load paths. Additionally, the incorporation of
rystal plasticity method into the model would allow for the
eenwood-Johnson effect to play a role in the model’s behav-
. More work is required to provide the necessary insight to
derstand the influence of these other factors.

Summary and Conclusions

A KMC based model is employed to study the interrelation-
ip between the kinetics of isothermal stress-assisted marten-
e nucleation, kinematic coupling of adjacent austenite re-
ns, and deformation through different load paths (plane

ain, biaxial, and uniaxial). Two different KMC models are
ed to explore the effects of both kinematic coupling and load
th by comparing their results. In a virtual model, indepen-
nt transformation events are simply counted as the KMC al-
rithm progresses using pre-tabulated stresses. The full KMC-
A coupled model solves for stresses between each iteration
the KMC algorithm, incorporating the effects of both load
th and kinematic coupling. The role of kinematic coupling in

fully coupled model is demonstrated by controlling the av-
ge nearest neighbor distance NN between austenite regions.
e can then quantify how the transformation rate differs with

plied strain for the different spacing between austenite re-
ns and for the different load paths.

The differences in transformation rate compared across the
erent load paths can be attributed the Magee effect, where
erent groups of variants are suppressed/assisted based on the

ain path. This suppression/assistance is illustrated by the dif-
ent ”spectra” of nucleation rates for each strain path, which
pict how individual variants are affected by the applied stress
te. Given these spectra, the isothermal nucleation kinetics
stress-assisted martensite may be a function of the texture of
ained austenite.
The results of the fully-coupled KMC-FEA model depict dif-
ent outcomes for the different load paths as a function of the
erage nearest neighbor distance NN between adjacent austen-
regions. The plane strain load path is unique, in that the rate
austenite transformation appears to be more sensitive to the
ematic coupling between adjacent austenite regions as com-

red with biaxial and uniaxial load paths. The overall trends
pear to be consistent with the virtual model, in which the
stenite regions are not kinematically coupled.
The design of the model incorporates some aspects of the
crostructures of TRIP-assisted steels, namely the amount

of austenite present, the crystallographic parameters of th
martensite transformation, and KMC input parameters th
were chosen by fitting to experimental data. With respect
TRIP-assisted steels that undergo the stress-assisted martensi
transformation, several implications of this model’s results in
clude:

• The fraction of austenite transformed during deformatio
depends on load path, and so hardening behavior und
different load paths may vary.

• The kinetics of stress-assisted martensite nucleation diff
by load path through the Magee effect, which provides
means of mapping the relationship between nucleation k
netics and applied stress states.

• The rates of transformation of retained austenite in TRIP
assisted steels undergoing the stress-assisted martensi
transformation can be expressed as a function of the prox
imity of austenite regions when under plane strain load
ing, and so hardening behavior under this load path ma
be possible to influence by controlling kinematic couplin
of adjacent austenite regions.

• The biaxial load path is relatively unaffected by the kin
matic coupling of adjacent austenite regions, and so ma
be insensitive to many aspects of microstructure, such a
the relative proximity of austenite regions.
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Appendix A. Phenomenological theory of martensite cry
tallography

Appendix A.1. General crystallography
The various morphologies of martensite can be distinguishe

by their respective habit planes, and mode of accommodatin
the deformation that accompanies their change in shape (Chri
tian, 1975; Pereloma and Edmonds, 2012). Thin-plate marten
sites, comprised of small alternating layers of twinned marten
site variants, are often observed to have habit planes close
(3 10 15) in the austenite phase (Turteltaub and Suiker, 200
Tjahjanto et al., 2008; Pereloma and Edmonds, 2012). Th
morphology often exhibits the Greninger-Troiano orientatio
relationship. In contrast is lath martensite, where the hab
planes are close to (5 5 7) and the orientation relationship tend
towards Kurdjumov-Sachs (Kelly, 1992; Morito et al., 200
2006; Pereloma and Edmonds, 2012). During the martensi
transformation, significant changes in shape give rise to a nee
for an internal mechanism for accommodating deformation. I
the case of plate martensite, where the final martensite ma
have a higher degree of tetragonality, that accommodation hap
pens via internal twinning. Again, this is contrasted by la
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rtensite, where the internal mode of deformation accommo-
tion is slip (Pereloma and Edmonds, 2012). In both cases,
se deformation modes are required to achieve the observed

anges in both shape and orientation.
The first formal descriptions of the martensite transforma-
n were given simultaneously by Wechsler et al. (1953) and
wles and Mackenzie (1954). Both works describe the geo-
tric constraints on the martensite transformation, and show
w those constraints can be used to determine a unique so-
ion for the habit plane and orientation relationship for plate
rtensite. Their work forms the foundation of the PTMC. The
MC describes the martensite transformation as an invariant-
ne deformation; this must be the case for the habit plane,
ere the austenite-martensite interface is observed to be in-

riant at length scales much larger than the austenite unit cell
rameter. At shorter length scales, the habit plane can be de-
ribed as an array of coherency dislocations forming a glissile
erface that moves as a martensite particle grows (Christian,
75; Pereloma and Edmonds, 2012). In addition to leaving
habit plane undistorted and unrotated, the deformation must

rrectly change an FCC lattice to a BCC or BCT lattice. These
uirements are met by coupling the Bain strain B with a rigid-

dy rotation R and a lattice-invariant deformation L to give the
formation gradient

F = RBL, (A.1)

ere the Bain strain is defined as

B =


η1 0 0
0 η1 0
0 0 η2

 η1 =

√
2aM

aA
, η2 =

cM

aA
. (A.2)

The Bain strain contains the principal stretches η1 and η2 that
st occur for an FCC lattice to form a BCC or BCT lattice

ermute the positions of η1 and η2 for a total of 3 Bain vari-
ts). These stretches are functions of aA, and both aM , and
, the lattice parameters of austenite and martensite, respec-
ely. The Bain strain describes the transformation from one
tice to the other by a contraction along one axis of the FCC
it cell, and a uniform expansion in the other two axes. The
in strain alone, however, will not produce the orientation re-
ionships observed for martensite in steel, nor does it leave
y plane undistorted and unrotated. As noted above, the Bain
ain must be coupled with both a lattice-invariant deformation
and a rigid-body rotation R. The lattice-invariant deforma-
n (either slip or internal twinning) allows for the martensite
rticle to change shape without changing the base lattice. This
upling is sufficient to define a habit plane that is undistorted,
t rotated from its original position. The inclusion of the rigid-
dy rotation brings the habit plane back into its original orien-
ion, now undeformed. The deformation tensor can then take
form given in equation A.1, and is equivalent to the dyadic

rm given in equation 5.

pendix A.2. Lath martensite
While the PTMC is well suited to the description of the de-
rmation required for plate martensite, lath martensite presents

several challenges. Because slip is the internal mechanism b
which lath martensite accommodates its own shape change, th
lattice-invariant deformation L of equation A.1 must be ex
pressed as a the activation of slip on a combination of ratio
nal slip systems at smaller length scales. Early attempts
determine a single slip system that would serve as a suitab
lattice-invariant deformation failed to provide satisfactory solu
tions (Kelly, 1992; Pereloma and Edmonds, 2012). More rece
studies on the crystallography of lath martensite included a se
ond slip system, providing additional degrees of freedom fo
the lattice-invariant strain and allowing for a solution that pr
dicts habit plane orientations closer to what is actually observe
(Sandvik and Wayman, 1983a,b,c; Kelly, 1992, 2006; Mori
et al., 2003, 2006). This double-shear form of the deformatio
tensor takes the form of equation A.3, with S1 and S2 represen
ing the shear deformation caused by slip on two different sl
systems. The deformation gradient can then be defined as

F = RBS2S1. (A.3

Various studies (Sandvik and Wayman, 1983c; Kelly, 1992
examine the possible choices of shear systems S1 and S2. Mu
tiple authors (Kelly, 1992; Morito et al., 2003) tabulate th
shape deformations for each variant of martensite using la
tice parameters that correspond to pure iron. These shape d
formations agree with observed habit planes formed by la
martensite, as well as observed orientation relationships. Thes
lattice parameters are aA = 0.36313 nm for austenite an
aM = 0.28974 nm for BCC martensite. These define the choic
of B described by equation A.2. The shear systems S1 an
S2 and their respective magnitudes of shear, g1 and g2, ar
S1 = (1 0 1)[−1 0 1]γ or (1 1 2)[−1 −1 1]α′ with g1 = 0.2648
and S2 = (1 0 0)[0 1 − 1]γ or (1 1 0)[−1 1 − 1]α′ wi
g2 = 0.09122. Ultimately, the double-shear system for the cry
tallography of lath martensite provides satisfactory prediction
of habit plane orientations and orientation relationships.

References

Balluffi, R. W., Allen, S. M., Carter, W. C., and Kemper, R. A. (2005). Kineti
of materials. J. Wiley & Sons, Hoboken, N.J.

Beese, A. M. and Mohr, D. (2011). Effect of stress triaxiality and lode angle
the kinetics of strain-induced austenite-to-martensite transformation. Ac
Materialia, 59(7):2589–2600.

Bowles, J. S. and Mackenzie, J. K. (1954). The crystallography of martens
transformations .1. Acta Metallurgica, 2(1):129–137.

Cantara, A. M., Zecevic, M., Eghtesad, A., Poulin, C. M., and Knezevic, M
(2019). Predicting elastic anisotropy of dual-phase steels based on crys
mechanics and microstructure. International Journal of Mechanical Sc
ences, 151:639–649.

Caspersen, K. J. and Carter, E. A. (2005). Finding transition states for cry
talline solid–solid phase transformations. Proceedings of the Nation
Academy of Sciences, 102(19):6738–6743.

Chen, Y. and Schuh, C. A. (2015). A coupled kinetic monte carlo-finite el
ment mesoscale model for thermoelastic martensitic phase transformatio
in shape memory alloys. Acta Materialia, 83:431–447.

Christian, J. W. (1975). The theory of transformations in metals and alloys
an advanced textbook in physical metallurgy. International series on mat
rials science and technology v 15. Pergamon Press, Oxford ; New York,
edition.

Cramer, J., Adams, D., Miles, M. P., Fullwood, D. T., Homer, E. R., Brow
T., Mishra, R. K., and Sachdev, A. (2018). Effect of strain path on formi

15

Jo
ur

na
l P

re
-p

ro
of



De

En

Gib

Go

Ha

Ho

Hs

Ka

Ka

Ke

Ke

Ke

Le

Ma

Ma

Ma

Ma

Mi
Mo

Mo

Ols

Ols

Ols

Ols

Ols

Ols

tic

ng
n,

ss
s.

in
rd

ite
ns

ite
al

ite
al

ur
el

e-
p)

el
s-
a,

he
n-

h-
r-

al
a-

gy
al

s,
in

t-

he
ng

of
p-
.
l-

ri-
cs

.,
en
n.

Journal Pre-proof
limits and retained austenite transformation in q&p 1180 steel. Materials
Science and Engineering a-Structural Materials Properties Microstructure
and Processing, 734:192–199.
Moor, E., Lacroix, S., Clarke, A., Penning, J., and Speer, J. (2008). Ef-

fect of retained austenite stabilized via quench and partitioning on the strain
hardening of martensitic steels. Metallurgical and Materials Transactions
A, 39(11):2586.
nis, B., Jimenez-Melero, E., Atzema, E., Krugla, M., Azeem, M., Rowley,
D., Daisenberger, D., Hanlon, D., and Lee, P. (2017). Metastable austenite
driven work-hardening behaviour in a trip-assisted dual phase steel. Inter-
national Journal of Plasticity, 88:126–139.
bs, P. K. (2019). Strain Path Effect on Austenite Transformation and Duc-
tility in TBF 1180 Steel. PhD thesis, Brigham Young University.
odwin, G. M. (1968). Application of Strain Analysis to Sheet Metal Forming
Problems in the Press Shop. SAE Transactions, 77:680093. 380–387.
idemenopoulos, G. N., Aravas, N., and Bellas, I. (2014). Kinetics of
strain-induced transformation of dispersed austenite in low-alloy trip steels.
Materials Science and Engineering a-Structural Materials Properties Mi-
crostructure and Processing, 615:416–423.
mer, E. R. and Schuh, C. A. (2009). Mesoscale modeling of amorphous met-
als by shear transformation zone dynamics. Acta Materialia, 57(9):2823–
2833.
u (Xu Zuyao), T. Y. (2006). Martensitic transformation under stress. Ma-
terials Science and Engineering: A, 438-440:64 – 68. Proceedings of the
International Conference on Martensitic Transformations.
lidindi, S. R., Bronkhorst, C. A., and Anand, L. (1992). Crystallographic
texture evolution in bulk deformation processing of fcc metals. Journal of
the Mechanics and Physics of Solids, 40(3):537–569.
ufman, L. and Cohen, M. (1958). Thermodynamics and kinetics of marten-
sitic transformations. Progress in Metal Physics, 7:165–246.
eler, S. P. and Backhofen, W. A. (1964). Plastic instability and fracture in
sheet stretched over rigid punches . ASM Trans Q, 56:25–48.
lly, P. M. (1992). Crystallography of lath martensite in steels. Materials
Transactions JIM, 33(3):235–242.
lly, P. M. (2006). Martensite crystallography - the role of the shape strain.
Materials Science and Engineering a-Structural Materials Properties Mi-
crostructure and Processing, 438:43–47.
bedev, A. A. and Kosarchuk, V. V. (2000). Influence of phase transforma-
tions on the mechanical properties of austenitic stainless steels. Interna-
tional Journal of Plasticity, 16(7-8):749–767.
ckenzie, J. K. and Bowles, J. S. (1954). The crystallography of martensite
transformations .2. Acta Metallurgica, 2(1):138–147.
nsourinejad, M. and Ketabchi, M. (2017). Modification of olson-cohen
model for predicting stress-state dependency of martensitic transformation.
Materials Science and Technology, 33(16):1948–1954.
rketz, F. and Fischer, F. D. (1994). Micromechanical modeling of stress-
assisted martensitic-transformation. Modelling and Simulation in Materials
Science and Engineering, 2(5):1017–1046.
tlock, D. K. and Speer, J. G. (2009). Third generation of AHSS: microstruc-
ture design concepts, pages 185–205. Springer.
les, M. P. (2019). personal communication.
rito, S., Huang, X., Furuhara, T., Maki, T., and Hansen, N. (2006). The
morphology and crystallography of lath martensite in alloy steels. Acta Ma-
terialia, 54(19):5323–5331.
rito, S., Tanaka, H., Konishi, R., Furuhara, T., and Maki, T. (2003). The
morphology and crystallography of lath martensite in fe-c alloys. Acta Ma-
terialia, 51(6):1789–1799.
on, G. and Cohen, M. (1975a). Thermoelastic behavior in martensitic trans-
formations. Scripta Metallurgica, 9(11):1247–1254.
on, G. and Cohen, M. (1982a). Dislocation structure of martensitic inter-
faces. In Unknown Host Publication Title, pages 1209–1213. Metallurgical
Soc of AIME.
on, G. and Cohen, M. (1986). Dislocation theory of martensitic transforma-
tions. In Dislocations in solids, pages 295–407. North-Holland.
on, G. B. and Azrin, M. (1978). Transformation behavior of trip steels.
Metallurgical Transactions a-Physical Metallurgy and Materials Science,
9(5):713–721.
on, G. B. and Cohen, M. (1975b). Kinetics of strain-induced martensitic
nucleation. Metallurgical Transactions, A 6(4):791–795.
on, G. B. and Cohen, M. (1982b). Stress-assisted isothermal martensitic-
transformation - application to trip steels. Metallurgical Transactions a-

Physical Metallurgy and Materials Science, 13(11):1907–1914.
Pati, S. R. and Cohen, M. (1969). Nucleation of the isothermal martensi

transformation. Acta Metallurgica, 17(3):189–199.
Paul, S. K. (2013). Theoretical analysis of strain- and stress-based formi

limit diagrams:. The Journal of Strain Analysis for Engineering Desig
48(3):177–188.
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