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Abstract
Seed dispersal is a critical mechanism for escaping specialist natural enemies. Despite this, mean dispersal distances can
vary by an order of magnitude among plant species in the same community. Here, we develop a theoretical model to explore
how interspecific differences in seed dispersal alter the impact of specialist natural enemies, both on their own and though
a trade-off between seed dispersal and enemy susceptibility. Our model suggests that species are more able to recover
from rarity if they have high dispersal because (1) seedlings are more likely to escape their parent’s natural enemies, (2)
adults are more spread out, reducing the chance that a seed will disperse near conspecifics, and (3) seedlings compete less
with kin for open gaps. Differences in dispersal do not produce stabilizing mechanisms—species with low dispersal are
purely at a disadvantage and do not gain a novel niche opportunity. However, dispersal-susceptibility trade-offs will be
equalizing, as species disadvantaged by low dispersal will benefit from being less susceptible to specialist natural enemies.
This mechanism, unlike most mechanisms of dispersal-mediated coexistence, does not require that there is an abundance of
empty space: high-dispersers gain an advantage by escaping from their enemies, not by colonizing empty habitat. Our study
therefore suggests that differences in dispersal are unlikely to promote diversity on their own, but may strengthen other
coexistence mechanisms.

Keywords Janzen-Connell hypothesis · Plant-soil feedback · Modern coexistence theory · Apparent competition · Seed
dispersal · Natural enemies

Introduction

Tropical forests contain hundreds of tree species, far more
than the number of limiting resources, and how this can
occur has long puzzled ecologists (Hutchinson 1961).
Specialist natural enemies (e.g., pathogens, herbivores,
and seed predators) are thought to drive coexistence, as
species that become rare will have increased recruitment
due to a lack of natural enemies (Gillett 1962; Janzen
1970; Connell 1971). Specialist natural enemies are
thought to be common (Terborgh 2012; Comita et al.
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2014), and non-spatial models suggest they could be a
powerful mechanism promoting diversity (Grover 1994;
Bever et al. 1997). However, specialist natural enemies
are not homogeneously distributed across communities;
instead, many are distance-responsive (occurring near adult
hosts) or density-responsive (occurring in areas of high
seedling density) (Janzen 1970). Similarly, seeds are not
homogeneously distributed; instead, many disperse within
a few dozen meters of their parent (Muller-Landau 2008;
Bullock et al. 2017). Recent studies have shown that these
spatial effects matter. Distance-responsive enemies are less
effective at promoting coexistence, because if a species
becomes rare, and its seeds mostly stay in high-mortality
zones due to limited dispersal, then it will still experience
high mortality (Stump and Chesson 2015). Also, if tree
species differ in susceptibility to their natural enemies (as
they do in many plant communities (Klironomos 2002;
Mangan et al. 2010; Zhu et al. 2018; Chen et al. 2019)),
then species that are more susceptible will tend to be less
abundant and potentially excluded from the community
(Mangan et al. 2010; Chisholm and Muller-Landau 2011;
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Miranda et al. 2015; Stump and Comita 2018). Exclusion
occurs because limited dispersal ensures that many seeds
are exposed to their parent’s natural enemies; therefore, tree
species that are highly susceptible to those natural enemies
are at a disadvantage (Stump and Comita 2018). Thus,
understanding how seed dispersal interacts with distance-
and density-responsive enemies is critical for understanding
how (or if) specialist natural enemies promote diversity.

Nearly every model of distance-responsive enemies
makes the simplifying assumption that tree species have
equal dispersal (e.g., Adler and Muller-Landau (2005),
Mangan et al. (2010), Sedio and Ostling (2013), Stump
and Comita (2018), and Levi et al. (2019)). In reality, co-
occurring tree species can have mean dispersal distances
that vary by an order of magnitude (Muller-Landau 2008),
and this will likely alter plant interactions. Species with
high dispersal have an advantage in spatially homogeneous
environments (Hastings 1980) and a disadvantage in
spatially heterogeneous environments (Hastings 1983;
Snyder and Adler 2011). Numerous models have shown
competition-dispersal trade-offs can allow species to coexist
(Hastings 1980; Bolker and Pacala 1999; Yu and Wilson
2001) and may boost the ability of other mechanisms to
promote diversity (Gross 2008). Also, in a recent theoretical
study, we showed that differential susceptibility to natural
enemies could undermine diversity; however, our model
also revealed that if there was an equalizing trade-off, such
that susceptible species had some competitive advantage,
then differential susceptibility could promote diversity
(Stump and Comita 2018). We believe that a dispersal-
susceptibility trade-off could produce such an equalizing
effect.

It has long been hypothesized that seed dispersal and
enemy susceptibility will trade off (Howe 1993). Smaller
seeds are more susceptible to natural enemies (Lebrija-
Trejos et al. 2016; Clark et al. 2018), and there is
some evidence that smaller seeds disperse farther ((Muller-
Landau 2008), but see Seidler and Plotkin (2006) and
Clark et al. (2018)). Dispersal-susceptibility trade-offs
are likely related to tree species life history strategies.
Specifically, species on the fast end of the fast-slow
life history continuum—i.e., those that invest in growth
and reproduction over maintenance—tend to have higher
seed dispersal than those on the slow end of the
continuum (Beckman et al. 2018); such “fast” species
also tend to invest less into defense (Loehle 1988) and
thus be more susceptible to natural enemies. Finally,
this trade-off seems likely to evolve—species that are
highly susceptible to distance-responsive enemies will
be under stronger selection to increase seed dispersal
(Howe and Smallwood 1982).

The spatial distribution of adults likely alters the impact
of natural enemies. Species with low seed dispersal tend

to be more clustered (Seidler and Plotkin 2006), and
therefore, their seeds likely experience high mortality even
if they are rare on the landscape (Fricke and Wright
2017). Additionally, rare species tend to be more clustered
than common ones (Condit et al. 2000), though it is
not clear if this is a cause or consequence of rarity.
Despite this, the exact impact of spatial structure on
distance- and density-responsive enemies is unknown. All
studies that we are aware of either used a spatially
implicit approach that does not produce spatial structure
(e.g., Bever et al. (1997) and Stump and Chesson
(2015)) or used simulations that did not tease apart the
impact of clustering from other effects (e.g., Muller-
Landau and Adler (2007) and Mack and Bever (2014)).
Thus, it is not clear if spatial structure alters stabilizing
mechanisms or reduces the fitness of species that are more
clustered.

We developed a spatially explicit model designed to
address the following questions:

– How do interspecific differences in seed dispersal affect
stabilizing mechanisms and fitness effects, both on their
own and through interactions with specialist natural
enemies?

– What impact does the spatial aggregation of adults
have on coexistence, and how are its effects altered by
differences in seed dispersal and enemy susceptibility?

Using a hybrid approach of computer simulations and
analysis, we found that spatial structure weakens stability,
as rare species become clustered and therefore more
exposed to natural enemies. Species with high dispersal
gain three advantages: seeds are likely to escape their
parent’s natural enemies, adults are less clustered, and
seeds experience less competition from kin. On their own,
these undermine coexistence by creating fitness differences.
However, we found that dispersal-susceptibility trade-offs
have an equalizing effect, which makes it easier for
coexistence in the presence of specialist natural enemies.
Our results also produce a general method for analyzing
future simulations of distance- and density-responsive
enemies and reveal key variables to measure in future
empirical studies.

Methods

We modeled competition between R tree species (Fig. 1).
Variables and parameters are listed in Table 1. The forest
is an L × L grid of sites. Each site is an l × l square
containing one adult. We define Nj(x, t) as 1 if a species
j adult occupies site x at time t , and 0 otherwise;
E
[
Nj(t)

]
is the fraction of sites held by species j at

time t .
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Fig. 1 A diagram of our model.
We modeled the life of a tree in
four steps. a First, each adult
produces Yj seeds (for species
j ) and disperses them according
to its dispersal kernel, dj (z). b
Second, seedlings are exposed
to natural enemies. Each
survives with probability
Sj (x, t) (for species j , at site x

and time t), which is reduced by
nearby adult conspecifics and
conspecific seedlings in the
same site. c Third, each adult
dies with probability δ. If the
adult survives, the seeds under it
die. d If the adult dies, the
C(x, t) seedlings at the site
compete to capture the site

In the model, four processes occur each time step (Fig. 1).
First, each adult produces Yj seeds (for sp. j ) and disperses
them according to its dispersal kernel dj (z) (where dj (z)

is the probability a seed of species j disperses to a site
a given site a distance z away). Second, seeds survive the

seed-to-seedling transition with probability Sj (x, t) (for sp.
j at site x and time t). Third, each adult dies with density-
independent probability δ. If the adult lives, the seedlings
under it die. Last, if an adult dies, then a random seedling
present at the site becomes the adult by the next time step;

Table 1 Parameters, variables, and functions used in our model

Parameter Description

Ij Baseline (density-independent) probability of seedling survival for species j

pA,j Potential negative density dependence cause by distance-responsive enemies (sp. j ) (A for the impact of adults)

pS,j Potential negative density dependence caused by density-responsive enemies (sp. j ) (S for the impact of seeds)

Yj Number of seeds produced by each adult of species j each time step

δ Probability an adult will die each time step

L Length of the community (in number of adults)

l Length of a site

R Number of competing species

Variable Description

pj Potential negative density dependence for sp. j (the combined effect of distance- and density-responsive enemies) (Eq. 3)

E
[
Nj (t)

]
Frequency of species j

Nj (x, t) Occupancy variable for species j at site x at time t

Function Description

dj (z) Seed dispersal kernel for species j (the probability a seed disperses a distance z)

dA,j (z) Distribution kernel for distance-responsive enemies of species j (the distribution of enemies at distance z)

dp−j (z) Distribution kernel for enemies of species j (the distribution of enemies at distance z, Eq. 4)

λj (x, t) Fitness of an adult of species j at site x at time t , (Eq. 1)

λ̃′
j (t) Growth rate of species j (i.e., mean of (λj (x, t) − 1)/δ over all adults, Eq. 31)

Sj (x, t) Probability a sp. j seed survives to become a seedling (site x time t), (Eq. 2, 5)

C(x, t) Total number of seedlings competing for site x at time t (Eq. 21)
˜dj dP,j The product of the seed and natural enemy dispersal kernels for species j , summed over all sites (i.e. their dot product, Eq. 33)
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thus, if there are a total of C(x, t) seedlings at site x,
then each has a 1/C(x, t) chance of becoming an adult.
Therefore, a sp. j adult at x will disperse Yjdj (|x − y|)
seeds to a given site y (where |x−y| is the distance between
x and y), and each will become an adult with probability
δSj (y, t)/C(y, t). The expected fitness of an adult, λj (x, t)

(for species j adult site x and time t), is the chance it
survives plus the expected number of adults it will produce
by the next time step (i.e., the probability of recruitment
summed over all sites),

λj (x, t) = (1 − δ) + Yj

L2∑

y=1

dj (|x − y|)δ Sj (y, t)

C(y, t)
, (1)

where the summation is across all sites. The growth rate
of species j , λ̃′

j (t), is then the mean of λj (x, t) over

all sites containing a species j adult. We derive λ̃′
j (t) in

Appendix A1 (Eq. 31).
The dispersal kernel dj (z) must sum to 1 across all sites.

We assume that dispersal is only affected by distance, such
that the probability of a seed dispersing from x1 to y1 is the
same as the probability of dispersing a seed from x2 to y2 as
long as |x1−y1| = |x2−y2|. However, dj (z) can take on any
form (we chose a specific form for computer simulations,
see below).

We assume that each seedling has a baseline chance
Ij of survival (for sp. j ), which is reduced by nearby
conspecifics. We define pA,j and pS,j as the potential
negative density dependence (NDD) caused by distance-
and density-responsive enemies (the maximum effect they
can have on mortality, Kobe and Vriesendorp (2011)),
respectively. Each conspecific adult z sites away reduces
survival by pA,j dA,j (z) (where dA,j (z) is the distribution
kernel of enemies produced in x). Each conspecific seed
at the site reduces survival by pS,j /Yj . There will be
∑L2

y=1Yjdj (|y − x|)Nj (y, t) seeds of sp. j that disperse to
x at time t (summed over all y sites). Thus, the chance of
surviving the seed-to-seedling transition is

Sj (x, t) = Ij

⎛

⎝1 −
L2∑

y=1

pA,j dA,j (|y − x|)Nj (y, t)

−
L2∑

y=1

YjpS,j dj (|y − x|)Nj (y, t)

⎞

⎠ , (2)

(where the summations are over all y sites). Thus, the first
summation is the impact of distance-responsive enemies,
and the second is the impact of density-responsive enemies.
We assume that the parameters are constrained such
that Sj (x, t) ≥ 0. Our results also work if Sj (x, t)

is approximately a linear function of enemy density
(Appendix A1.2).

Equation 2 can be simplified by combining the natural
enemy terms. We do this by defining a combined potential
NDD as

pj = pA,j + pS,j (3)

and a combined enemy distribution kernel as

dp−j (z) = pA,j dA,j (z) + pS,j dj (z)

pj

. (4)

Under these definitions, survival becomes

Sj (x, t) = Ij

⎛

⎝1 −
L2∑

y=1

pjdp−j (|y − x|)Nj (y, t)

⎞

⎠ . (5)

Thus, distance- and density-responsive enemies have
equivalent effects on coexistence, as density-responsive
enemies are essentially distance-responsive enemies whose
distribution kernel matches its host’s seed dispersal kernel.

Model analysis

We analyzed our model with invasion analysis (Turelli
1978). Each species was selected in turn to be an
invader (denoted with subscript i) and removed from the
community. The other species (the residents, subscript r)
grew to equilibrium and reached a stable spatial structure.
Then, a small number of invaders were introduced into
the community randomly. They were given some time to
reach a stable spatial structure, and then we measured their
population-level growth rate, λ̃′

i . If every species had a
positive invader growth rate, they coexisted (Turelli 1978).

To quantify what factors allowed species to coexist, we
partitioned each species’ growth rate into six components,
using methods in Barabás et al. (2018) and Chesson
(2000). We compared the invader’s value of each component
to that of the average resident (Chesson 2000). If the
invader’s value was more positive, it indicates that the
species had an advantage, helping it invade. We calculated
the stabilizing effect of a component by averaging this
invader-resident difference across species (Chesson 2003;
Barabás et al. 2018). If this number was positive, it
helped species to coexist; if it was negative, it undermined
coexistence. Additionally, we calculated the fitness effect
of each component on species j by taking species j ’s
invader-resident difference and subtracting the stabilizing
mechanism (Chesson 2003; Barabás et al. 2018). If this
value is positive, it indicates that the mechanism gives
species j a competitive advantage overall.

Most of the work was done analytically (Appendix A1,
A2). However, population dynamics were affected by how
aggregated each species was, and we could not predict this
from our parameters. Instead, we analyzed the impact of
the spatial structure by comparing computer simulations
to an analytical approximation that lacked spatial structure
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(Stump et al. 2018a) (Appendix A4). We also used
simulations to test how a species’ dispersal distance and
frequency affected its spatial distribution (Appendix A5). To
speed computation, we determine the distance between sites
using the Manhattan distance function (i.e., the distance
between sites (x1, y1) and (x2, y2) is |x1 − x2| + |y1 − y2|,
Appendix A3). We simulated dispersal using a discrete
approximation of a 2-dimensional t (2Dt) distribution
(Clark et al. 1999; Muller-Landau 2008), modeled natural
enemy distribution with a negative exponential function
(Comita et al. 2010), and assumed that the log-likelihood
of survival was a linear function of potential NDD; we
explain how each of these were implemented in Appendix
A3 (specifically, Eqs. 73 and 74 for dispersal, Eq. 57 for
enemy distribution, and Eq. 75 for seedling survival). We
simulated the model using Matlab 2017b (The MathWorks
Inc 2017) and 2019a (The MathWorks Inc 2019), using code
that was modified from previous work (Stump et al. 2018b;
Stump and Comita 2018).

Throughout the text, we use E[A] to indicate the spatial
average of A over all sites x, A to indicate an average of
A over species, cov (A, B) to indicate a covariance between
A and B over all sites y, and covS (A, B) to indicate
a covariance of A and B over species. We will use the

summation
∑L2

y=1 to indicate a sum over all sites y, the sum
∑

r �=i

to indicate a sum over all residents species r , and
∑R

j=1

to indicate a sum over all species j .

Results

We partitioned invader growth rates into six factors
(Table 2), such that the growth rate of an invader can be
written as

λ̃i − 1

δ
≈ ΔYi + ΔPi + ΔκPi + ΔκCi + Δκ ′

Pi + Δκ ′
Ci . (6)

Each Δ term represents a comparison between the invader
and the residents in some factor that affects their fitness;
we will discuss each term in detail below. We found
approximations for the first four factors that closely
matched simulations (Figs. 7 and 8). We could not
approximate the last two terms because they depended on
the spatial structure of the community and therefore could
only be measured using simulations. Most quantities in
Table 2 can be measured empirically; we describe how to do
so in the “Discussion.”

We present three scenarios for how differences in
dispersal affect coexistence. As a baseline, we first examine
a community where species have identical dispersal and
susceptibility to natural enemies. Second, we examine how
the model changes if species have different mean dispersal

distances. Third, we examine how it changes if species
differ in both seed dispersal and susceptibility to natural
enemies.

Baseline: no difference in dispersal or susceptibility

Our model was designed so that species have an advantage
if they produce more seeds, or if those seeds have higher
survival. This effect is quantified by the term ΔYj ,

ΔYi = R

R − 1

(
ln {YiIi} − ln

{
Yj Ij

})
(7)

where ln
{
Yj Ij

}
is the across-species mean of the product

of Yj (the number of seed produced each time step) and
Ij (density-independent survival). The mean of ln {YiIi} −
ln
{
Yj Ij

}
across species is 0; therefore, this term produces

only fitness-differences. If species with high Yj have low Ij ,
this can create an equalizing trade-off, but it cannot create
any novel niche interactions. Thus, in the absence of a rare
species advantage, the species with the highest ΔYj will
dominate.

We found that rare species gain an advantage because
their specialist natural enemies are also rare. This effect can
be quantified by calculating the mean chance a seed would
die in a random site (and comparing residents vs. invaders):

ΔPi = −E

⎡

⎣
L2∑

y=1

pidp−i (|y − x|)Ni(y, t)

⎤

⎦

+ 1

R − 1

∑

r �=i

E

⎡

⎣
L2∑

y=1

prdp−r (|y − x|)Nr(y, t)

⎤

⎦ , (8)

(Appendix A1). When species have identical dispersal and
natural enemy susceptibility (i.e., pj = pj for all j ), then
this can be approximated as

ΔPi ≈ pj

R − 1
. (9)

This will be identical between species, and thus stabilizing:
the rarer a species is, the less likely a seed is to encounter
distance- or density-dependent enemies, and thus, the more
likely it is to survive. The stabilizing term is proportional to
pj , because the more harmful natural enemies are, the more
a species benefits if its natural enemies become rare.

Of course, seeds are not randomly distributed across the
landscape, and our model revealed that spatial structure has
two effects that weaken the stabilizing impact of natural
enemies. First, seeds tend to fall near their parent and thus
may be killed by their parent’s distance-responsive enemies,
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Table 2 A list of factors affecting invader growth rates. The approximations are listed in units of increased fitness per lifetime, λ̃′
j (t). An overline

indicates the mean across all species, and the covariance is over all species at equilibrium

Description Stabilizing mechanism Fitness difference

Effect of seed yield and density-
independent seedling survival ΔYj

ΔY = 0 ΔYj − ΔY = R
R−1

(
ln
{
Yj Ij

}− ln {YrIr }
)

Zero. Positive if species j has above-
average seed yield and seedling
survival.

Mean effect of natural enemies, ΔPj
ΔP ≈ pj

R−1 + covS
(
E
[
Nj (t)

]
, pj

)
ΔPj − ΔP ≈ −pj +pj

(R−1)2

Positive (unless there is positive
density dependence).

Very small, positive for species
that tolerate natural enemies.

Effect of parent’s natural enemies,
ΔκPj

ΔκP ≈ pj
˜dj dP,j

R−1 − covS
(
E
[
Nj (t)

]
, pj

˜dj dP,j

)
ΔκPj − ΔκP ≈ − R

R−1

(
pj

˜dj dP,j − pr
˜drdP,r

)

Negative. Positive for species that can
tolerate or disperse away from
their natural enemies.

Effect of parent competition, Δκ ′
Cj

No approximation No approximation

Negative. Positive for species that are
less aggregated (likely those with
high seed dispersal).

Spatial structure of natural enemies,
ΔκCj

Approximation in
Appendix A2.4 (Eqs. 59 and 66)

Approximation in Appendix A2.4 (Eqs. 59 and 66)

Negative, but smaller than ΔP and ΔκP Positive for species with high dispersal

Spatial structure of competition, Δκ ′
Cj

No approximation No approximation

Negative. Positive for species with high dispersal.

or density-responsive enemies generated by kin. We can
quantify the impact that a parent has on its offspring as

ΔκPi = L2E[cov (di(|x − y|), ln {Si(y, t)})]
− L2

R − 1

∑

r �=i

E[cov (dr(|x − y|), ln {Sr(y, t)})] (10)

where the covariance is over all sites x (Appendix A2.5).
When pj and dj (|x−y|) are identical for species, Eq. 10 can
be simplified. To do this, we must calculate the chance that
a seed encounters a natural enemy produced bit its kin, it is
the dot product of dj (z) (sp. j ’s seed dispersal kernel) and
dp−j (z) (sp. j ’s enemy distribution kernel) (i.e., the sum

of their product over all sites), which we will call ˜djdP,j .
Thus, if pj and dj (z) are identical for species, Eq. 10 can
be approximated as

ΔκPi ≈ −pj
˜djdP,j

R − 1
(11)

where ˜djdP,j is the mean of ˜djdP,j over species

(Appendix A2.3). pj and ˜djdP,j are strictly positive; thus,
ΔκPi produces a negative stabilizing mechanism (Fig. 2c).
Essentially, the impact of a parent’s seeds on its offspring
represent a density-independent effect, and thus, those seeds
will not generate a stabilizing mechanism. This term thus
removes some of the rare-species advantage generated by

ΔPi . This term will approach 0 if either seeds or natural
enemies are spread out across the landscape.

Second, we found that species are harmed if they are
spatially clustered, because seeds are more likely to disperse
near a conspecific and therefore encounter natural enemies.
This effect can be quantified as

Δκ ′
Pi = L2cov

(
cov (di (|x − y|), ln {Si(y, t)}) ,

Ni(x, t)

E[Ni(t)]
)

− L2

R − 1

∑

r �=i

cov
(
cov (dr (|x − y|), ln {Sr (y, t)}) ,

Nr (x, t)

E[Nr(t)]
)

(12)

(where the outer covariance is over sites x, and the inner
covariance is over sites y) (Appendix A1.3). Here, the inner
covariance chooses a site x and measures the relationship
between the chance a seed disperses to a nearby site and
log seedling survival that site (this will be positive if sites
near that adult have high survival). The outer covariance
measures the relationship between the inner covariance at
a given site x and the probability that that site will be
occupied (this will be positive if adults are more likely
to be found in high-survival areas). We could not find an
approximation for this, as it would require being able to
predict the spatial structure of the adult community from our
parameters. However, we could study it using simulations
(Appendix A2 and A5). We found that the outer covariance
terms in Δκ ′

Pj are related to the pair correlation function
of adult density (Fig. 10). We also found that Δκ ′

Pj is
generally negative (Fig. 2e), as the rarer a species is, the
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Fig. 2 We simulated an invasion analysis where every species was
identical, and showed how stabilizing mechanisms changed as disper-
sal changed. a We show the community average stabilizing mechanism
in each community. b–f We show the Δ mechanisms for each species
(excluding ΔYj ). The more positive it is, the stronger contribution it

makes to the stabilizing mechanism. We used the following parame-
ters: S = 7, pA,j = 0.3, pS,j = 0, Yj = 7.8, δ = 0.4, l = 10,
L = 200. We modeled dispersal using an approximation of the 2Dt
distribution, and αj is the shape parameter (described in Appendix A3)

more clustered it tends to be across the landscape (Fig. 3).
Thus, Δκ ′

Pj weakens the stabilizing mechanism: species that
are rare on the landscape will continue to experience high
seed mortality if most of their seeds remain in an area where
they are locally common.

Finally, we found that the number of seeds that die
from natural enemies affects the number of seedlings
competing for a gap. A site held by a common species
will contain a large number of conspecific seedlings, all
of which will experience a high chance of enemy-induced
mortality. However, a seed that survives its natural enemies
will have fewer seedling to compete with, which slightly
counteracts the negative effects of natural enemies. The
same cannot be said for rare species: if a rare species’ seed
survives near a conspecific, it is likely to be competing
with many heterospecific seedlings. We found that this
slightly counteracts ΔPj . Also, trees with high seed
production and survival tend to be surrounded by more
seedlings, which slightly offsets the impact of ΔYj . We
quantified these effects as the effect of a parent on nearby
seedling competition

ΔκCi ≈ −L2E[cov (di(|y − x|), ln {C(y, t)})]
+ 1

R − 1

∑

r �=i

L2E[cov (dr(|y − x|), ln {C(y, t)})]. (13)

(analogous to ΔκPj , see Appendix A2.4 for its approxima-
tion), and the impact of clustering on seedling competition

Δκ ′
Ci = −L2cov

(
cov (di (|y − x|), ln {C(y, t)}) ,

Ni(x, t)

E[Ni(t)]
)

+ L2

R − 1

∑

r �=i

cov
(
cov (dr (|y − x|), ln {C(y, t)}) ,

Nr (x, t)

E[Nr(t)]
)

. (14)

(where the outer covariance is over all sites x, analogous
to Δκ ′

Pi , Appendix A1.3). When pj and dj (z) are identical
between species, ΔκCi and Δκ ′

Ci appear to have little effect
(Fig. 2d, f).

Species differ in dispersal

Next, we examine the case where species differ in seed
dispersal (dj (z)) but are equally susceptible to natural
enemies (pj = pj ). In this model, Eqs. 7, 8, 10, 12, 13,
and 14 continue to apply, though their approximations will
differ.

We found that if species differ in dispersal, then the
approximation for mean effect of natural enemies over all
sites (ΔPj ) can continue to be approximated by Eq. 9. This
occurs because ΔPj is the mean chance a seedling will die
in a random site across the environment. As such, ΔPj will
not differ between species (Fig. 4b).
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b

a

Fig. 3 Species are more clustered when they have low dispersal,
and when they are rare. a We simulated community dynamics in an
8-species community and calculated the spatial clustering (pair corre-
lation at 3 sites, or 30 m, using Manhattan distances) for each species
when it was held at a particular abundance. The pair correlation g(z) is
the mean fraction of sites that are occupied by a conspecific a distance
z from each adult, divided by the global average frequency; it will be
1 if a species is randomly distributed, and > 1 if a species is clustered.
Species tended to become more clustered when they become rare. At a
given abundance, species with low dispersal tend to be more clustered
than those with high dispersal. b We show the spatial distribution of the

best disperser (mean dispersal 47.6 m, where each site is 10 m × 10 m)
when its abundance was held at E[Nj (t)] = 0.03 and 0.15. As it
becomes rare, its clustering increases from g(3) = 1.20 to 2.27. We
also show the spatial distribution of the worst disperser (mean disper-
sal 14.0m) when its abundance was held at E[Nj (t)] = 0.03 and 0.15.
As it becomes rare, its clustering increases from g(3) = 1.52 to 3.87.
Parameters: δ = 0.4, l = 10, Yj = 7.8 for all j , Ij = 0.269 for all j ,
pA

j = pS
j = (0.475, 0.421, 0.368, 0.314, 0.261, 0.207, 0.154, 0.100),

dj (z) used a 2Dt distribution with dispersal parameter αj =
(7, 6.63, 6.26, 5.89, 5.53, 5.56, 4.79, 4.42)

Instead, we found that differences in dispersal alter the
impact of natural enemies by changing the chance a seed
will land in a high-mortality site (Fig. 4c). If a species has
high dispersal, its seeds are more likely to escape natural
enemies generated by its parent; as such, the ΔκPi can now
be approximated as

ΔκPi ≈ −pj
˜djdP,j

R − 1
− pj covS

(
E[Nj(t)], ˜djdP,j

)

− R

R − 1

(
pi

˜didP,i − p˜djdP,j

)
(15)

(Appendix A2.3). This equation contains two terms
that did not appear in Eq. 11. First, the term

pj covS
(
E[Nj(t)], ˜djdP,j

)
affects the stabilizing mech-

anism. It will be negative if the most common species
have higher dispersal—in this case, the most common
species are also the least regulated by natural enemies,
which has previously been shown to weaken the stabi-
lizing mechanism (Stump and Comita 2018). Second,

the term R
R−1pj

(
˜didP,i − ˜djdP,j

)
creates a fitness-

difference (Fig. 4c). The term quantifies the difference

in the impact a parent tree has on its offspring’s chance
of enemy-induced mortality. This impact is density-
independent; thus, species that have low seed dispersal

(and therefore ˜djdP,j ) are at a density-independent dis-
advantage against species with a high seed dispersal.
When this difference is large between species, it can cause

species with high ˜djdP,j to be excluded by species with

low ˜djdP,j .
Additionally, when species differ in dispersal, they

become differently clustered around the landscape. If a
species is more spread out, then so too are their specialist
natural enemies, weakening their impact. As a result, ΔκPj

now creates a mean-fitness differences, putting species that
are more clustered at a disadvantage (Fig. 4d). Simulations
show that species with high seed dispersal were less
clustered (Fig. 3); thus, a seed that falls near its parent is less
likely to be near a large number of conspecifics (increasing
Δκ ′

Pi).
The new impacts of ΔκPi and Δκ ′

Pi are slightly reduced
by the impact of competition—the more seeds are killed,
the lower seedling competition will be (affecting ΔκCi and
Δκ ′

Ci).
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Fig. 4 We simulated an invasion analysis in several communities
where species were identical except for their seed dispersal. a We show
the invader growth rate of each species. Each circle represents a partic-
ular species’ invader growth rate in a community. Circles at the same
x coordinate are coexisting. The lines connecting the circles show the
relative level of seed dispersal (i.e., the black line represents the species
with the highest dispersal in each community, the middle line repre-
sents the species with the fourth highest dispersal). b–f We show the Δ

mechanisms for each species (excluding ΔYj , which was the same for

all species). In each case, the mechanism makes the most positive (or
least negative) contribution to the fitness of the species with the high-
est dispersal. We used the following parameters: S = 7, pA,j = 0.3,
pS,j = 0, Yj = 7.8, δ = 0.4, l = 10, L = 200. We modeled disper-
sal as described in Appendix A3; in each community, the α parameter
used to model dispersal varied uniformly between species with a mean
of 5.1, and a range is given by the x-axis (e.g., a range of 0.36 meant
that α varied from 4.92 to 5.28)

We also found that differences in dispersal modify the
impact of seedling competition (ΔκCj and Δκ ′

Cj ) through
an increase in kin-competition (Fig. 4d, f). If a species has
low seed dispersal, then sites near an adult of that species
tend to have more seeds and therefore higher seedling
competition (decreasing ΔκCj ). Additionally, species with
low dispersal were more clustered (Fig. 3), further raising
seedling competition (decreasing Δκ ′

Cj ). In both cases,
these mainly contribute to a mean fitness-difference, rather
than a stabilizing mechanism.

Our results show that differences in dispersal mainly
create fitness-differences, rather than stabilizing mecha-
nisms (Table 2, Fig. 4a). For example, interspecific differ-
ences in dispersal do not change the mean invader growth
rates in Fig. 4a, they only change the growth rates of
particular species. Species with high dispersal are at an
advantage relative to those with low dispersal, and if this
advantage outweighs the stabilizing effect of natural ene-
mies, then species with low dispersal species be excluded
(Fig. 8g). Dispersal differences alone do not generate sta-
bilizing mechanisms: low-dispersal species do not have a
novel niche that reduces competition with high-dispersal
species.

Species differ in dispersal and susceptibility
to natural enemies

Finally, we consider the case where species can differ in
susceptibility to natural enemies (pj ). In this case, the
average impact of natural enemies becomes

ΔPi ≈ pj

R − 1
+ covS (E[Nj(t)], pj

)− pi − pj

(R − 1)2
, (16)

where pj is the mean of pj across species, and
covS

(
E[Nj(t)], pj

)
is the covariance of E[Nj(t)] and

pj across species at equilibrium (Appendix A2.2). This
approximation of ΔPi has two novel terms. The last term
represents a small fitness effect, which harms species that
are more susceptible to natural enemies. The covariance
term represents a contribution to the stabilizing effect, as it
will be the same across all species. The covariance will be
negative, and thus will weaken the stabilizing mechanism,
if the species that are most resistant to their natural enemies
are most common (because the community will be less
regulated by natural enemies overall, (Stump and Comita
2018)). All else being equal, this covariance term will tend
to be negative, as natural enemy resistance tends to allow
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Fig. 5 We simulated an invasion analysis in communities where
species were identical except for their sensitivity to natural enemies.
a We show the invader growth rate of each species. Each circle repre-
sents a particular species’ invader growth rate in a community. Circles
at the same x coordinate are coexisting. b–f We show the Δ mech-
anisms for each species. Most mechanisms are the most positive (or
least negative) for the species that is least sensitive to enemies. The

two exceptions are ΔκCj and Δκ ′
Cj , because there is more crowding in

their sites (i.e., because the seedlings can resist enemies so well). We
used the following parameters: S = 7, pS,j = 0, Yj = 7.8, δ = 0.4,
l = 10, L = 200. We modeled dispersal as described in Appendix A3,
and each species had αj = 5.1. pA,j varied uniformly between species
with a mean of 0.3

species to become common (Fig. 5a, b). However, we found
that a dispersal-susceptibility trade-off can strengthen the
stabilizing mechanism: high dispersal increases a species’
abundance; thus, a dispersal-susceptibility trade-off can
make susceptible species more common and resistant
species rarer, making covS

(
E[Nj(t)], pj

)
less negative and

boosting the stabilizing mechanism (though this does not
always occur, Fig. 6b).

Although a dispersal-susceptibility trade-off may slightly
alter the stabilizing mechanism, we find that it often generates
a much stronger equalizing effect by reducing the advantage
of high dispersal (Fig. 6). Consider the community in Fig. 6:
there are large interspecific differences in each of the Δ mecha-
nisms (Fig. 6b–f); however, the invader growth rates (Fig. 6a)
remain similar for all species. The chance a seed is killed by
its parent’s natural enemies is the product of two factors: the
chance it encounters those natural enemies (˜djdP,j ) and the
chance it dies from those natural enemies (pj ). As a result,
when pj can differ between species, ΔκPj becomes

ΔκPi = ≈ −pj
˜djdP,j

R − 1
− covS

(
E[Nj(t)], pj

˜djdP,j

)

− R

R − 1

(
pi

˜didP,i − pj
˜djdP,j

)
. (17)

where pj
˜djdP,j is the across-species mean of the product

of pj and ˜djdP,j . Note that the third term now depends

on the difference in the product of pj and ˜djdP,j , not

just ˜djdP,j alone. Thus, a species can have a positive
ΔκPi if it has high dispersal or low susceptibility. Under
a dispersal-susceptibility trade-off, seedlings that are more
likely to encounter their parents’ natural enemies are less
likely to die from them; thus, between-species differences
are reduced. Differences in the impact of clumping (Δκ ′

Pj )
are also reduced, as species that are more clustered have
seedlings that are more likely to survive in areas with many
enemies.

We also tested what happens if dispersal and suscepti-
bility differ randomly between members of the community,
rather than according to a trade-off. Here, species with low
dispersal and high susceptibility have both disadvantages.
However, they could coexist with trees with higher disper-
sal and lower susceptibility as long as the fitness-differences
were smaller than the stabilizing mechanism (Fig. 12b).
Interestingly, simulations showed that community assem-
bly itself often produced a trade-off by excluding weaker
species (Fig. 12a).
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Fig. 6 We simulated an invasion analysis in communities where dis-
persal traded off with sensitivity to natural enemies. a We show the
invader growth rate of each species. Each circle represents a particu-
lar species’ invader growth rate in a community. Circles at the same
x coordinate are coexisting. b–f We show the Δ mechanisms for each

species. We used the following parameters: S = 7, pS,j = 0, Yj = 7.8,
δ = 0.4, l = 10, L = 200. We modeled dispersal as described in
Appendix A3. The trade-off was such that the average individual had
αj = 5.1 and pA,j = 0.3, and increasing pA,j by 0.1 increased αj by
0.3

Discussion

Specialist natural enemies are thought to be a key driver of
tree diversity in tropical forests (Wright 2002; Comita et al.
2014; Terborgh 2015; Levi et al. 2019). However, recent
studies have shown that seed dispersal and natural enemy
movement alter how natural enemies affect coexistence
(Adler and Muller-Landau 2005; Mack and Bever 2014;
Stump and Chesson 2015; Miranda et al. 2015; Stump
and Comita 2018). Here, we extend this work by using
theoretical models to examine how interspecific differences
in seed dispersal could modify coexistence. We find that
species that disperse their seeds farther are less likely to
encounter distance- and density-responsive enemies. On
its own, differences in dispersal undermine coexistence by
putting low-dispersal species at a disadvantage (Fig. 4).
However, empirical ecologists have long suspected that seed
dispersal trades off with tolerance to natural enemies (Howe
1993). Such a trade-off can be equalizing, as the species that
are most likely to encounter specialist natural enemies are
the most resistant to them.

Our results probe the impact that spatial clustering has
on coexistence. If a species is spatially aggregated, its
seeds are more likely to disperse near conspecifics, and
thus more likely to encounter specialist natural enemies.
This has two effects. First, we found that spatial structure

weakens the stabilizing mechanism by creating a rare
species disadvantage: rarer species become more clustered
(Fig. 3) and therefore lose more seeds to natural enemies
(Fig. 2e). This result agrees with previous theoretical studies
suggesting that species will become more aggregated when
they become rarer (Usinowicz 2015; Detto and Muller-
Landau 2016), as well as empirical evidence that rare
tree species tend to be more aggregated than common
species (Condit et al. 2000). Second, species that are more
clustered are at a competitive disadvantage relative to those
that are spread out because seeds are more exposed to
natural enemies (Fig. 4d). Our model agrees with previous
empirical and theoretical work showing that species with
low seed dispersal will be more clustered (Detto and Muller-
Landau 2016; Cobo-Quinche et al. 2019). It is also possible
that differences in clustering may be caused by habitat
preferences, which causes higher survival, and therefore
higher densities, at sites with optimal conditions for the
species (Plotkin et al. 2002). The interactive effects of
seed dispersal, habitat preferences, and specialized enemies
should be investigated in future studies to determine their
effects on tree species coexistence (though see Stump and
Chesson (2015)).

The dispersal-susceptibility trade-off described here
differs from previous mechanisms of dispersal-mediated
coexistence. For example, the competition-colonization
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trade-off promotes coexistence if species that quickly
colonize empty sites are displaced by stronger competitors
that colonize sites more slowly (Hastings 1980; Murrell
and Law 2003). Similar mechanisms have been proposed
in which species coexist because dispersal trades off with
fecundity (Yu and Wilson 2001), survival (Tilman 1994),
or the ability to fill in local gaps (Bolker and Pacala
1999). Those models differ from ours because the trade-
offs themselves generate a stabilizing mechanism: high-
dispersal species have a unique niche because they are more
able to compete for empty sites. As a result, a strict trade-
off is required; otherwise, species cannot coexist (Hastings
1980; Yu and Wilson 2001). In our model, specialist
natural enemies generate the stabilizing mechanism, and
the dispersal-susceptibility trade-off modifies their effect.
Because of this, a strict trade-off is not required for
coexistence (Fig. 12). Rather, the natural enemies set the
coexistence bandwidth of the system, and the trade-off
helps species remain within that bandwidth. Additionally,
in most dispersal trade-off models, coexistence is only
possible if there is lots of empty space; otherwise, weak
competitors have no competition-free areas to colonize
(Hastings 1980; Bolker and Pacala 1999). In our model,
high dispersal is advantageous because it helps seeds to
escape specialist natural enemies; therefore, it could occur
in a crowded community. Dispersal-competition trade-offs
have often been criticized for relying on overly stringent
and unrealistic assumptions (Levin et al. 2003; Levine and
Murrell 2003): high-diversity tropical forests are not known
for having empty space, and the diverse morphology of
seeds and fruit make a strict dispersal-competition trade-off
seem unlikely. As such, we think the dispersal-susceptibility
trade-off in this model is more likely to contribute to tropical
tree diversity.

Using our methods as a baseline for future
simulations

Most previous works on distance-responsive enemies either
analyzed simplified models that could not include spatial
structure (e.g., (Turnbull et al. 2010; Stump and Chesson
2015; Mack et al. 2019)) or examined spatially explicit
models using simulations that did not tease apart the impact
of spatial structure from other effects (e.g., (Muller-Landau
and Adler 2007; Sedio and Ostling 2013; Mack and Bever
2014; Miranda et al. 2015; Levi et al. 2019)). The hybrid
approach here merges these techniques and suggests three
effects are critical to understanding how natural enemies
affect coexistence (ΔPj , ΔκPj , and Δκ ′

Pj ). These factors
can easily be measured using simulations, even in models
far more complicated than ours.

Our methods suggest a framework for quantifying the
impact that natural enemies are having on persistence and

coexistence (akin to those in Ellner et al. (2016) and Ellner
et al. (2019), who showed generically how to quantify the
storage effect using simulations). To use these methods,
one would need to perform an invasion analysis and then
measure three factors. First, one would calculate the average
chance of seed mortality (ΔPj ) by averaging the risk of
mortality across the landscape and comparing this effect
on invaders vs. residents. ΔPj quantifies how generally
hostile the landscape is to residents and invaders, and if
the spatial structure of mortality does not matter, it will
be the only non-zero term. Second, one would calculate
how much a seed’s chance of mortality can be attributed
to its parent (ΔκPj ) by randomizing the distribution of
adults, calculating a seed’s average risk of mortality if
it dispersed from a given adult, and subtracting ΔPj .
Third, one would calculate the impact of clustering on
mortality (Δκ ′

Pj ) by calculating a seed’s average risk of
mortality and subtracting ΔκPj and ΔPj . Δκ ′

Pj quantifies
how the spatial distribution of adults affects mortality rates
and coexistence.

Using our model to interpret empirical results

The parameters in our model (Table 1) can be estimated
using established techniques. Baseline seedling survival
(Ij ) can be estimated using long-term seedling plots (see
Comita et al. (2010) and Visser et al. (2016)). Seed dispersal
kernels (dj (z)) can be estimated by comparing data from
seed traps to the spatial distribution of adults (see Clark
et al. (1999) and Muller-Landau (2008)). The distribution
kernel of distance-responsive enemies (dA,j (z)) can be
estimated by determining how seedling mortality changes
with the distance from conspecific adults (see Augspurger
(1983), Becker and Wong (1985), and Comita et al. (2010)).
The frequency of adults of each species (E[Nj(t)]) is
easily determined from surveys (Hubbell et al. 2005). Seed
production (Yj ) can be estimated by comparing the number
of seeds found in seed traps to the number of nearby
adults, after accounting for dispersal (Muller-Landau 2008;
Visser et al. 2016). Adult mortality (δ) can be determined
from long-term surveys (Hubbell et al. 2005). The impact
of specialist natural enemies (pj ) can be measured by
experimentally removing natural enemies (see Fricke et al.
(2014) and Krishnadas and Comita (2018)), or conducting a
plant-soil feedback experiment (Bever 1994). Alternatively,
the impact of natural enemies can be estimated using
techniques to measure NDD (see Augspurger and Kelly
(1984) and Comita et al. (2010)); however, the latter
method comes with the caveats that it cannot distinguish
between the impact of natural enemies vs. other sources of
NDD (Huntly 1991), estimates may be altered by habitat
(Stump and Chesson 2015), and NDD is notoriously hard
to measure (Freckleton and Lewis 2006). In either case, pj
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needs to be quantified as the maximum effect that natural
enemies could have on survival.

There are three ways our results could be used to study
real systems. First, one could parameterize our model and
simulate the dynamics of a community. This could be
used to test whether species are coexisting, or to examine
how a perturbation (e.g., fragmentation) would alter the
community; such methods are currently being used in a
parallel study (Krishnadas and Stump, in review). If the
model is accurate and the parameters are correct, then
the abundance and spatial structure should match those
in the field. This method may be difficult to implement,
as it requires knowledge all of the parameters, some of
which require a great deal of data to estimate (e.g., seed
dispersal kernels). However, one method around this is to
use sensitivity tests to determine how critical each parameter
is to community dynamics.

Second, one could estimate the stabilizing and fitness
effects of the Δ terms using data. The terms that can
be estimated are those describing the species’ differences
in fecundity and survival (ΔYi), species’ differences in
the spatially averaged chance of seedling mortality (ΔPi),
species’ differences in the chance a seedling will die from
its parent’s enemy shadow (ΔκPj ), and species’ differences
in seedling competition in proximity to their parent (ΔκCj ).
For example, the stabilizing mechanism produced by the
spatial-average impact of natural enemies, (ΔPj ), requires
estimating the potential NDD (pA,j or pS,j ) and frequencies
of all species (E[Nj(t)]) (Table 2). Estimating the impact
of spatial structure on seedling mortality (Δκ ′

Pj ) and
seedling competition (Δκ ′

Cj ) is more challenging, as we
have no estimates that can be derived purely from model
parameters (Table 2). However, we give some suggestions
in Appendix A6.1. Measuring the Δ terms will not test
if species are coexisting, but rather how much particular
factors are helping or reducing species’ ability to persist
(Barabás et al. 2018).

Third, one could compare Δ terms to describe qualitative
impacts on the system. For example, the stabilizing
impact of natural enemies is weakened if common
species are more tolerant of their natural enemies; this
effect is

ΔP with variation in natural enemy susceptibility

ΔP without variation in natural enemy susceptibility
≈

(
pj

R−1

)
+ covS

(
E[Nj(t)], pj

)

(
pj

R−1

) (18)

(previously shown in Stump and Comita (2018)). Also, low
seed dispersal reduces the ability of natural enemies to
stabilize coexistence; this effect is

Stabilizing effect with limited dispersal

Stabilizing effect with universal dispersal

= ΔP + ΔκP

ΔP

≈ 1 − ˜djdP,j −
covS

(
pjE[Nj(t)], ˜djdP,j

)

(
pj

R−1

)
+ covS

(
E[Nj(t)], pj

) (19)

We explain how to use Eq. 19 in detail in Appendix A6.2,
using empirical estimates of seed dispersal for canopy trees
on Barro Colorado Island, Panama (Muller-Landau 2008).
We roughly estimate that limited seed dispersal reduces the
stabilizing effect of density-responsive enemies by about
6%. Finally, one could estimate whether differences in
dispersal and susceptibility do produce an equalizing effect;
we describe methods for this in Appendix A6.3.

Conclusion

Seed dispersal is the only chance a tree has to move during
its lifetime, and it is an important mechanism for escaping
specialist natural enemies. However, seed dispersal can vary
by an order of magnitude among competitors. Our model
suggests that these differences will not stabilize coexistence,
though a dispersal-susceptibility trade-off could promote
coexistence as an equalizing mechanism. This mechanism
does not require a strict trade-off, nor an abundance of
empty sites, and thus, we believe it is more likely to be
operating in tropical forests. Our results outline quantities
that can be measured in simulations and using real-world
data and thus lay the groundwork for future studies on
the interaction between seed dispersal and distance- and
density-responsive enemies.
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Appendix A1: Deriving the formula for λ̃′
j(t)

A1.1 Size assumptions for analysis

Our analysis is based on Taylor Series approximations.
These work well for a parameter range where the
populations are approximately quadratic, though may fail if
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parameters are too extreme. Thus, to bound the amount of
variation in our model, we define a “small” parameter ε.
We write O(ε) to indicate that a parameter is of the same
order as ε (for a technical definition, see Chesson (1994)).
We assume that for all species, Yj/Yk = 1 + O(ε)Ij/k

=
1 + O(ε), pj is O(ε), and d2

j (z)/d2
k (z) = 1 + O(ε), and

(dp−j (z))2/(dp−k (z))2 = 1 + O(ε) for all z. Terms that
are smaller than these, such as (pj )

2, are mostly left out
of our approximation, leaving the growth rate of species as
λ̃′

j (t) = O(ε). We write ≈ to indicate that numbers are
identical up to their O(ε) terms.

In a few cases in the text, we do not approximate
our model as much as we could. For example, in
Table 2, we mention that the impact of seedling mortality
caused by a seedling’s parents, ΔκPj , contains the term(

pj
˜djdP,j − pj

˜djdP,j

)
. We could approximate pj

˜djdP,j

using a Taylor series around pj = pj and ˜djdP,j = ˜djdP,j

(where pj and ˜djdP,j are the means of pj and ˜djdP,j across
species) and get that

pj
˜dj dP,j ≈ pj

˜dj dP,j + (pj − pj )˜dj dP,j + (˜dj dP,j − ˜dj dP,j )pj (20)

pj and (˜djdP,j − ˜djdP,j ) are both O(ε); therefore, the
third term is O(ε2). Thus, we could ignore that term, and

our approximation simplifies to pj
˜djdP,j ≈ pj

˜djdP,j .
However, we found that this leads to poorer approximations.
Thus, there were some parts of our analysis where some
O(ε1.5) and O(ε2) terms were included implicitly. We
feel that the quality of our approximations (Appendix A4)
justifies their inclusion and note that previous work has
suggested higher order terms will at times be necessary
(Chesson 1994; Barabás et al. 2018).

A1.2 Deriving λ̃′
j (t )

Equation 1 gives the fitness of an individual of species
j . The effect of competition, C(x, t), is the number of
seedlings in site x at time t . For a seed that was produced
at site y to become a seedling at x, it must disperse there
(which it does with probability dj (|x−y|)), and then it must
survive its natural enemies. Thus, C(x, t) can be calculated
by summing this parameter over all sites and all species.
Each adults of species j will disperse Yjdj (|x − y|) seeds
to x, and therefore, a total of Yj

∑∞
y=1Nj(y, t)dj (|x − y|)

seeds will be dispersed to x (where the summation is over
all sites y). Each of those seeds will then become seedlings
with probability Sj (x, t). Thus,

C(x, t) =
R∑

j=1

Sj (x, t)Yj

L2∑

y=1

Nj(y, t)dj (|x − y|) (21)

where
∑R

j=1 is the summation over all species.
For the text that follows, we write the growth rate as

λ′
j (x, t) = (λj (x, t) − 1)/δ, so that fitness is defined

as 0 when there is no population growth and it is in
per-generation time scale. Thus,

λ′
j (x, t) = Yj

L2∑

y=1

dj (|y − x|)Sj (y, t)

C(y, t)
− 1. (22)

Note that λ′
j (x, t) is defined in terms of x (the position of

the adult), as it will vary across space (due to the distribution
of conspecific and heterospecific adults).

The summation can be seen as a weighted average,

Yj

L2∑

y=1

dj (|y − x|)Sj (y, t)

C(y, t)

= L2E
[
Yj

dj (|y − x|)Sj (y, t)

C(y, t)

]

= L2E
[
dj (|y − x|)]E

[
Yj

Sj (y, t)

C(y, t)

]

+ L2Yjcov
(

dj (|y − x|), Yj

Sj (y, t)

C(y, t)

)
, (23)

where the covariance is over all sites y. If Sj (x, t) =
Ij (1 + O(ε)) and Yj/Yk = 1 + O(ε) for all j and k (as

we assumed), then
Yj Sj (y,t)

C(y,t)
≈ 1+ ln

{
Yj

}+ ln
{
Sj (x, t)

}−
ln {C(x, t)}. Thus,

Yj

L2∑

y=1

dj (|y − x|)Sj (y, t)

C(y, t)
≈

L2E
[
dj (|y − x|)] (1 + ln

{
Yj

}

+ E
[
ln
{
Sj (y, t)

}]− E [ln {C(y, t)})]

+ L2cov
(
dj (|y − x|), ln

{
Sj (y, t)

}− ln {C(y, t)}) . (24)

Finally, note that
∑L2

y=1dj (|y − x|) = 1, as it is a dispersal

kernel. Thus, E
[
dj (|y − x|)] = 1/L2, and

Yj

∑

y

dj (|y − x|)Sj (y, t)

C(y, t)
≈

1 + ln
{
Yj

}+ E
[
ln
{
Sj (y, t)

}]− E [ln {C(y, t)}]
+ L2cov

(
dj (|y − x|), ln

{
Sj (y, t)

})−
L2cov

(
dj (|y − x|), ln {C(y, t)}) . (25)

Putting these back into Eq. 22,

λ′
j (x, t) ≈

ln
{
Yj

}+ E
[
ln
{
Sj (y, t)

}]− E [ln {C(y, t)}]
+ L2cov

(
dj (|y − x|), ln

{
Sj (y, t)

})

− L2cov
(
dj (|y − x|), ln {C(y, t)}) . (26)
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This equation represents the fitness of an adult at site x.
To calculate the finite rate of increase of a population, λ̃′

j (t),
we average this over all sites containing adults of species j ,

λ̃′
j (t) = E

[
λ′

j (x, t)

∣
∣
∣Nj(x, t) = 1

]

= E[λ′
j (x, t)Nj (x, t)] (E[Nj(t)]

)−1

= E
[
λ′

j (x, t)
]

+ cov
(

λ′
j (y, t),

Nj (y, t)

E[Nj(t)]
)

. (27)

The first term represents the average fitness that an
individual would have if it were placed in random location,
and the second term describes the impact of spatial structure
(Chesson 2000). For example, if species j is rare but
highly aggregated, then E[λ′

j (x, t)] will be positive (i.e., the
species is rare, so a random adult is unlikely to be in a high-

mortality area), but cov
(
λ′

j (y, t), Nj (y, t)/E[Nj(t)]
)

will

be negative (i.e., most of the individuals are aggregated in
high-mortality areas). We then substitute Eq. 26 into this.
The term ln

{
Yj

}
and the spatial average terms are already

constants, and they will not contribute to the covariance.
Thus,

λ̃′
j (t) ≈ ln

{
Yj

}+ E[ln {Sj (y, t)
}] − E[ln {C(y, t)}]

+ L2E
[
cov

(
dj (|y − x|), ln

{
Sj (y, t)

})]

− L2E
[
cov

(
dj (|y − x|), ln {C(y, t)})]

+ L2cov
(
cov

(
dj (|y − x|), ln

{
Sj (y, t)

})
,

Nj (x, t)

E[Nj(t)]
)

− L2cov
(
cov

(
dj (|y − x|), ln {C(y, t)}) , Nj (x, t)

E[Nj(t)]
)

(28)

(where the outer covariances are over all sites x). This can
be simplified further by approximating survival, Sj (x, t).
By Eq. 5,

ln
{
Sj (x, t)

} = ln
{
Ij

}+

ln

⎧
⎨

⎩
1 −

L2∑

y=1

pjdp−j (|y − x|)Nj (y, t)

⎫
⎬

⎭
. (29)

pj is O(ε); therefore,

ln
{
Sj (x, t)

} ≈ ln
{
Ij

}−
L2∑

y=1

pjdp−j (|y − x|) Nj (y, t). (30)

The above equation is the reason that our results will
hold if Sj (x, t) is an approximately linear function of

conspecific density (as stated in the main text); this is why
we felt justified modeling Sj (x, t) using a log-likelihood
function in our simulations (described below in Appendix
A3, Eq. 65). Thus,

λ̃′
j (t) ≈ ln

{
Yj

}− E [ln {C(y, t)}]

+ ln
{
Ij

}− E

⎡

⎣
L2∑

y=1

pjdp−j (|y − x|)Nj (y, t)

⎤

⎦

+ L2E
[
cov

(
dj (|y − x|), ln

{
Sj (y, t)

})]

− L2E
[
cov

(
dj (|y − x), ln {C(y, t)})]

+ L2cov
(
cov

(
dj (|y − x|), ln

{
Sj (y, t)

})
,

Nj (x, t)

E[Nj(t)]
)

− L2cov
(
cov

(
dj (|y − x|), ln {C(y, t)}) , Nj (x, t)

E[Nj(t)]
)

(31)

A1.3 Invasion analysis and partitioning terms

Here, we perform an invasion analysis. We assume that
species i is rare, and the other R − 1 resident species are at
equilibrium in the absence of i. We assume that all species
are at a long-term steady state and stable spatial distribution.
Because the residents are at equilibrium, λ̃′

r (t) = 0 for all
r �= i. Thus,

λ̃′
i (t) = λ̃′

i (t) − 1

R − 1

∑

r �=i

λ̃′
r (t) (32)

(where the summation is over all resident species).
Substituting approximations Eqs. 30 and 31 into the above
equation, we can partition the invader growth rate into a
series of additive terms.

We combine the terms ln
{
Yj

}
and ln

{
Ij

}
(giving us

ln
{
Yj Ij

}
). Taking the invader-resident difference in this, we

are left with ΔYi in Eq. 7. The invader-resident difference
in the fourth term gives us ΔPi , Eq. 8. The invader-resident
difference in the fifth term gives us ΔκPi , Eq. 10. The
invader-resident difference in the sixth term gives ΔκCi ,
Eq. 13. The invader-resident difference in the seventh term
gives Δκ ′

Pi , Eq. 13. Finally, the invader-resident difference
in the last term gives Δκ ′

Ci , Eq. 14. Together, this gives us
Eq. 6.

Note that Eq. 6 does not have a term comparing the
E[ln {C(y, t)}] values, as these are the same for all species,
and therefore E[ln {C(y, t)}] − 1

R−1

∑

r �=i

E[ln {C(y, t)}] = 0.

Appendix A2: Simplifying theΔ terms

In this section, we simplify the Δ terms, to give the
approximations in Table 2. Additionally, we break them into
their stabilizing components (their average over all species),
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and their mean fitness-difference components (the value for
a given species minus the average).

To simplify notation, we define the following:

d̃2
j = E

⎡

⎣
L2∑

y=1

(
dj (|x − y|))2

⎤

⎦

˜djdP,j = E

⎡

⎣
L2∑

y=1

dj (|x − y|)dp−j (|x − y|)
⎤

⎦

˜djd
2
P,j = E

⎡

⎣
L2∑

y=1

dj (|x − y|) (dp−j (|x − y|))2
⎤

⎦ . (33)

Thus, d̃2
j is the sum of dj (|x−y|)2 over all sites (i.e., the dot

product of the dispersal kernel with itself), ˜djdP,j is the sum
of the product of dj (|x−y|) and dp−j (|x − y|) over all sites
(i.e., the dot product of the dispersal kernel and the enemy

distribution kernel), and ˜djd
2
P,j is the sum of the product of

dj (|x−y|) and (dp−j (|x − y|))2 (i.e., the dot product of the
dispersal kernel with the square of the enemy distribution
kernel). These terms simplify notation below. For example,
we show below that the probability that a seedling is killed

by its parent’s natural enemies is related to ˜djdP,j .

A2.1 Appendix: SimplifyingΔYj

We first simplify ΔYi , Eq. 7, which is the invader-resident
difference in the term ln

{
Yj Ij

}
. To do this, we rewrite it

such that the summation is over all species,

ΔYi = ln {YiIi} − 1

R − 1

∑

r �=i

ln {YrIr }

= ln {YiIi} + ln {YiIi}
R − 1

− ln {YiIi}
R − 1

− 1

R − 1

∑

r �=i

(ln {YrIr})

= (R − 1) (ln {YiIi}) + (ln {YiIi})
R − 1

− 1

R − 1

R∑

j=1

(
ln
{
Yj Ij

})

= R (ln {YiIi})
R − 1

− R

R − 1

1

R

R∑

j=1

(
ln
{
Yj Ij

})

= R

R − 1

(
ln {YiIi} − ln

{
Yj Ij

})
. (34)

When we average ΔYi over all species, the ln
{
Yj Ij

}
terms

will cancel with ln
{
Yj Ij

}
, leaving

ΔY = 0. (35)

The fitness effect for species j , ΔYj − ΔY , can thus be
written with either Eq. 7 or 34.

A2.2 SimplifyingΔPj

We next simplify ΔPi , Eq. 8, which comes from differences

in E

[
L2∑

y=1
pjdp−j (|y − x|)Nj (y, t)

]

. The only terms that

vary spatially are the Nj(y, t) terms. Thus,

ΔPi = −
L2∑

y=1

pidp−i (|y − x|)E [Ni(x, t)]

+ 1

R − 1

∑

r �=i

L2∑

y=1

prdp−r (|y − x|)E [Nr(x, t)]

= −piE [Ni(x, t)]
L2∑

y=1

dp−i (|y − x|)

+ 1

R − 1

∑

r �=i

prE [Nr(x, t)]
L2∑

y=1

dp−r (|y − x|). (36)

E [Ni(t)] = 0, and dj (|y − x|) sums to 1, therefore

ΔPi = 1

R − 1

∑

r �=i

prE [Nr(t)] . (37)

Because
∑

r �=i

E [Nr(t)] = 1, this term is simply 1
R−1 times

the frequency-weighted mean of pr . This can rewritten as

ΔPi ≈ 1

(R − 1)2

∑

r �=i

pr + covS (E [Nr(t)] , pr)
{−i} , (38)

where the covariance is over all species except species i.
Thus, it tends to be smaller if the most abundant species are
the least affected by their natural enemies.

Next, we calculate the stabilizing mechanism. The
average of 1

R−1

∑

r �=i

pr , when averaged over all species, is

simply the mean of pr across species, pj . Previous work has
suggested that the average of covS (E[Nr(t)], pr)

{−i} can
be approximated as covS

(
E[Nj(t)], pj

)
, calculated over all

species when they are at equilibrium (Stump and Comita
2018). Thus,

ΔP ≈ pj

R − 1
+ covS (E[Nj(t)], pj

)
. (39)

Additionally, previous work has suggested that the differ-
ence in the covS

(
E[Nj(t)], pj

)
terms will have a negligible
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effect on fitness-differences (Stump and Comita 2018).
Thus, the fitness effect of ΔPj is

ΔPj − ΔP ≈ 1

(R − 1)2

∑

r �=i

pr − pj

R − 1

= − pi

(R − 1)2
+ pi

(R − 1)2

+ 1

(R − 1)2

∑

r �=i

pr − pj

R − 1

= − pi

(R − 1)2
+ 1

(R − 1)2

R∑

j=1

pj − pj

R − 1

= − pi

(R − 1)2
+ pjR

(R − 1)2
− pj

R − 1

= − pi

(R − 1)2
+ pjR − pj (R − 1)

(R − 1)2

= − pi − pj

(R − 1)2
. (40)

As in previous work (Stump and Comita 2018), this effect
is generally minor.

A2.3 SimplifyingΔκPj

We next simplify ΔκPi , Eq. 10, which begins as

ΔκPi = L2E [cov (di(|y − x|), ln {Si(y, t)})]
− 1

R − 1

∑

r �=i

L2E [cov (dr(|y − x|), ln {Sr(y, t)})] (41)

We first calculate the covariance
cov

(
dj (|y − x|), ln

{
Sj (y, t)

})
. By the law of total

covariance,

cov
(
dj (|y − x|), ln

{
Sj (y, t)

}) =
E[cov (dj (|y − x|), ln

{
Sj (y, t)

}∣∣Z
)]

+ cov
(
E
[
dj (|y − x|)∣∣Z] ,E [ ln

{
Sj (y, t)

}∣∣Z
])

, (42)

where cov (X, Y | Z) is the covariance of X and Y

conditioned on some condition Z (the expectation is then
over all possible Z’s). We condition our covariances on
|y − x| = z (i.e., on the assumption that a seed
dispersed a distance z); for notational simplicity, we
write this as conditioning on z. The first term is 0,
because dj (|y − x|) will be constant when z is constant.
Similarly, E

[
dj (|x − y|)∣∣ z] = dj (z). Finally, we use our

approximation in Eq. 30 to write ln
{
Sj (y, t)

}
as ln

{
Yj

} −
∑L2

y=0pjdp−j (|y − x|)Nj (|y − x|, t). The term ln
{
Yj

}
is

constant and thus will not affect the covariance. Thus,

cov
(
dj (|y − x|), ln

{
Sj (y, t)

}) =

− cov

⎛

⎝dj (z),E

⎡

⎣
L2∑

y=0

pj dp−j (|y − x|)Nj (|y − x|, t)
∣
∣∣
∣
∣∣
z

⎤

⎦

⎞

⎠ . (43)

We next find a formula for the mean
impact of natural enemies averaged over space,

E
[∑L2

y=1pjdp−j (|y − x|)Nj (y, t)

∣
∣∣ z
]
. We are averaging

over all possible sites x, so spatial structure does not matter
(this is taken into account with Δκ ′

Pj ). Let us define ψz

as the number of sites a distance z from x. Let us first
begin with the z that we are conditioning on, z = |x − y|.
We know that at least one of those sites must contain a
conspecific adult (i.e., the parent of the seed at x). The
remaining ψz − 1 sites will contain a conspecific adult
with probability E[Nj(t)]. Thus, there will on average be
ψzE[Nj(t)] + 1 − E[Nj(t)] adults a distance z away (and
they will reduce survival by pjdp−j (z)). At any other dis-
tance w �= |x − y|, there will be ψw sites, each will contain
a conspecific adult with probability E[Nj(t)], and they will
each reduce survival by pjdp−j (w). Thus,

E

⎡

⎣
L2∑

y=1

pjdp−j (|y − x|) Nj (y, t)

∣
∣∣∣
∣∣
z

⎤

⎦

= pjdp−j (z) (1 − E[Nj (t)]) +
L2∑

y=1

pjdp−j (y − x)E[Nj (t)]

= pjdp−j (z) (1 − E[Nj (t)]) + pjE[Nj (t)] (44)

Only the first term varies with z. Therefore,

cov
(
E
[
dj (|y − x|)∣∣ z] ,E [ ln

{
Sj (y, t)

}∣∣ z
])

= cov
(
dj (z), pjdp−j (z) (1 − E[Nj(t)]) + pjE[Nj(t)]

)

= (
1 − E[Nj(t)]

)
pj cov

(
dj (z), dp−j (z)

)
(45)

The covariance term cov
(
dj (z), dp−j (z)

)
is

pjE[dj (z)dp−j (z)] − pjE[dj z]E[dp−j (z)]. The mean of

the product is 1
L2

˜djdP,j (by our definition in Eq. 33). The

mean of dj (z) and dp−j (z) are each L2, as they are disper-
sal kernels and therefore must sum to 1 over all L2 sites.
Thus,

E[cov (dj (|y − x|), ln
{
Sj (y, t)

})]
= 1

L2

(
1 − E[Nj(t)]

)
(

pj
˜djdP,j − 1

L2
pj

)
. (46)

If L is large, we can ignore the − 1
L2 pj term.

Substituting this into Eq. 10

ΔκPi ≈ −pi (1 − E [Ni(t)]) ˜didP,i

+ 1

R − 1

∑

r �=i

pr (1 − E [Nr(t)]) ˜drdP,r

≈ −1

R − 1

∑

r �=i

prE [Nr(t)] ˜drdP,r

−
⎛

⎝pi
˜didP,i − 1

R − 1

∑

r �=i

pr
˜drdP,r

⎞

⎠ . (47)
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Using a procedure similar to Eq. 34, this becomes

ΔκPi ≈ −1

R − 1

∑

r �=i

prE [Nr(t)] ˜drdP,r

− R

R − 1

(
pi

˜didP,i − pj
˜djdP,j

)
. (48)

Thus, averaging across species, this becomes a frequency-

weighted mean of pj
˜djdP,j . We believe that the approxi-

mation for ΔP will hold (i.e., that we can approximate the
mean of the covariance over invaders as the covariance when
all species are at equilibrium); in this case,

ΔκP ≈ −pj
˜djdP,j

R − 1
− covS

(
E[Nj(t)], pj

˜djdP,j

)
. (49)

Additionally, if the covariances cancel out of the mean
fitness differences, then

ΔκPj − ΔκP ≈
⎛

⎝ −1

R − 1

∑

r �=i

pr
˜drdP,rE [Nr(t)]

− R

R − 1

(
pj

˜djdP,j − pj
˜djdP,j

))
+ pj

˜djdP,j

R − 1
. (50)

E[Ni(t)] = 0, and therefore the summation
∑

r �=i

pr
˜drdP,rE[Nr(t)] over all residents is equal to the sum-

mation
R∑

j=1
pj

˜djdP,jE[Nj(t)] over all species. This term is

pj
˜djdP,j +RcovS

(
pj

˜djdP,j ,E[Nj(t)]
)

, although if we

can cancel out the covariance term, then

ΔκPj − ΔκP ≈
⎛

⎝− pj
˜dj dP,j

R − 1
− R

R − 1

(
pj

˜dj dP,j − pj
˜dj dP,j

)⎞

⎠

+ pj
˜dj dP,j

R − 1

= − R

R − 1

(
pj

˜dj dP,j − pj
˜dj dP,j

)
. (51)

A2.4 SimplifyingΔκCj

We next simplify ΔκCi , Eq. 13. Using the law of total
covariance and conditioning on |y − x| = z (as before),

cov
(
dj (|y − x|), ln {C(y, t)}) =

cov
(
dj (z),E [ ln {C(y, t)}| z]

)
. (52)

We next find a formula for E [ ln {C(y, t)}| z]. We define
C(j, y, t) as the number of seedlings at y of species j ; it is

C(j, y, t) =
L2∑

x=1

dj (|x − y|)YjSj (y, t)Nj (x, t). (53)

Thus, C(y, t) =
R∑

j=1
C(j, y, t). C(j, y, t) can be rewritten

as

C(j, y, t) = Yj

⎛

⎝Ij

⎛

⎝1 − pj

L2∑

x=1

dp−j (|x − y|) Nj (x, t)

⎞

⎠

⎞

⎠×
⎛

⎝
L2∑

x=1

dj (|x − y|)Nj (x, t)

⎞

⎠ . (54)

This will be easier to work with if its value is close to
E[Nj(t)]. Thus, we next divide this divide both sides by the
across-species mean of Yj Ij , which we call (Y I)∗. Then,
we define Ŷ I j = Yj Ij /(Y I)∗ − 1, and

C(j, y, t)

(Y I)∗
= (1 + Ŷ I j

)
⎛

⎝1 − pj

L2∑

x=1

dp−j (|x − y|) Nj (x, t)

⎞

⎠×
⎛

⎝
L2∑

x=1

dj (|x − y|)Nj (x, t)

⎞

⎠ . (55)

We next approximate the conditional average of C(j, y, t)

given an Nj(x, t) for some location x. Nj(x, t) it could
be 0 or 1, we will define this later. We approximate
the mean of C(j, y, t) as the value of C(j, y, t) when
Nj(x, t) = E[Nj(t)]; the true mean would include an
effect of the variance of Nj(x, t); however, we find that
the approximations that this simplification produces fit well
(see Appendix A4). Thus,

E
[
C(j, y, t)|Nj (x, t)

]

(Y I)∗
≈ (1 + Ŷ I j

)×
(
1 − pjE[Nj (t)] − (Nj (x, t) − E[Nj (t)]

)
pj dp−j (|x − y|))×

(
E[Nj (t)] + (Nj (x, t) − E[Nj (t)]

)
dj (|x − y|)) . (56)

Next, we multiply these terms. The term Ŷ I j is O(ε); thus,
Ŷ I jpj will be small, and we will ignore it. If Nj(x, t) = 0,
this becomes

E
[
C(j, y, t)| Nj (x, t) = 0

]

(Y I)∗
≈

E[Nj (t)]
[
1 − dj (|x − y|) + Ŷ I j

(
1 − dj (|x − y|))

−pjE[Nj (t)]
(
1 + dp−j (|x − y|)) (1 − dj (|x − y|))] . (57)

If Nj(x, t) = 1,

E
[
C(j, y, t)|Nj(x, t) = 1

]

(Y I)∗
≈

E
[
C(j, y, t)|Nj(x, t) = 0

]

(Y I)∗
+ dj (|x − y|)

+ Ŷ I j dj (|x − y|) − pjdj (|x − y|)dp−j (|x − y|)
− pjdj (|x − y|)E[Nj(t)]

(
1 − dp−j (|x − y|))

− pjdp−j (|x − y|)E[Nj(t)]
(
1 − dj (|x − y|)) . (58)
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For notational simplicity, we will define ξj (|x − y|, t) as
the amount that a seed of species j would change seedling
competition at y by being at x,

ξj (|x − y|, t) = E
[
C(j, y, t)|Nj(x, t) = 1

]

(Y I)∗

− E
[
C(j, y, t)|Nj(x, t) = 0

]

(Y I)∗
≈ −pj

(
dj (|x − y|)dp−j (|x − y|)

− 2E[Nj(t)]dj (|x − y|)dp−j (|x − y|)
+E[Nj(t)]dj (|x − y|) + E[Nj(t)]dp−j (|x − y|))

+ dj (|x − y|) + Ŷ I j dj (|x − y|). (59)

We can write the mean of C(y, t) using the C(j, y, t)

terms

E [C(y, t)]

(Y I)∗
=

R∑

j=1

E [C(k, y, t)]

(Y I)∗
(60)

(summed over all species k). If we focus on a particular site
x, then this could also be written as

EC(y, t)

(Y I)∗
=

R∑

k=1

E [C(k, y, t)| Nk(x, t) = 0]

(Y I)∗

+
R∑

k=1

E [Nk(t)] ξj (|x − y|, t),
(61)

i.e., the first term is the impact of all sites other than x,
and the second term is the specific contribution that site x

has on seedling competition at y. If we knew that species j

occupied x, then

E
[
C(y, t)|Nj (x, t) = 1

]

(Y I)∗
=

R∑

k=1

E
[
C(k, y, t)|Nj (x, t) = 0

]

(Y I)∗

+ ξj (|x − y|, t). (62)

Thus, combining the above two equations,

E
[
C(y, t)|Nj(x, t) = 1

]

(Y I)∗
=E[C(y, t)]

(Y I)∗
+ ξj (|x − y|, t)

−
R∑

k=1

E[Nk(t)]ξj (|x − y|, t).

(63)

The terms E[C(y, t)] and (Y I)∗ are within O(ε), and thus
their ratio will be close to 1. Additionally, the ξj (|x − y|, t)
terms be within O(ε). Thus, if we take the natural log of
both sides and cancel the ln {(Y I)∗} terms, then we are
left with

ln
{
E
[
C(y, t)|Nj(x, t) = 1

]} ≈ ln {E[C(y, t)]}

+ξj (|x − y|, t) −
R∑

j=1

E[Nj(t)]ξj (|x − y|, t). (64)

Plugging (64) into our formula for the covariance, Eq. 52

cov
(
dj (|y − x|), ln {C(y, t)}) ≈

cov

(

dj (z), ξj (d, t) −
R∑

k=1

E[Nj(t)]ξk(d, t)

)

. (65)

(Note that the ln {E[C(y, t)}] terms cancel, as they are
constant). Therefore,

ΔκCi ≈ −cov

⎛

⎝di(z), ξi(z, t) −
R∑

j=1

E[Nj (t)]ξj (z, t)

⎞

⎠

+ 1

R − 1

∑

r �=i

cov

⎛

⎝dr (z), ξr (z, t) −
R∑

j=1

E[Nj (t)]ξj (z, t)

⎞

⎠ . (66)

Our attempts at simplifying this equation further resulted
in a poor approximation. Thus, we leave it as this. The
stabilizing effect is thus the above equation averaged over
species, and the fitness effect is the above equation minus
the across-species average.

A2.5 Simplifying theΔκ ′ terms

The terms Δκ ′
Pj and Δκ ′

Cj account for the effects of spatial
aggregation. In order to find a simple approximation, we
would need an approximation for the spatial structure of
each species. We were unable to derive this from first
principals. Thus, we need to study its behavior using
computer simulations. Here, we outline how these terms can
be calculated from simulations.

We begin with Δκ ′
Pj . The average probability that a seed

would survive can be determined by calculating the mean
survival of seeds produced by each adult, and is

1

YE[Nj(t)]L2

L2∑

x=1

YjNj (x, t)

L2∑

y=1

dj (|y − x|)Sj (y, t). (67)

Thus, the per-seed average of ln
{
Sj (y, t)

}
can be simplified

to

(
per-seed mean ln

{
Sj (y, t)

})

= 1

YE[Nj (t)]L2

L2∑

x=1

Yj Nj (x, t)

L2∑

y=1

dj (|y − x|) ln
{
Sj (y, t)

}

= E[ln {Sj (y, t)
}] + cov

(
dj (|y − x|), ln

{
Sj (y, t)

})

+ cov
(
dj (|y − x|) ln

{
Sj (y, t)

}
, Nj (x, t)

)
. (68)

Thus,

cov
(
dj (|y − x|) ln

{
Sj (y, t)

}
, Nj (x, t)

)

= (
per-seed mean ln

{
Sj (y, t)

})

− E[ln {Sj (y, t)
}] − cov

(
dj (|y − x|), ln

{
Sj (y, t)

})
(69)
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The effect of Ij will cancel out of the mean log seed survival
and E[ln {Sj (y, t)

}]. Putting this into our resident-invader
comparison, we find that

Δκ ′
Pi ≈ [(per-seed mean ln {Si(y, t)})

− 1

R − 1

∑

r �=i

(per-seed mean ln {Sr(x, t)})
⎤

⎦

− ΔPi − ΔκPi . (70)

This result is somewhat tautological—we wanted to
quantify the species-specific differences in the per-seed
average log chance of seed survival, so we defined the third
term as the per-seed average log chance minus the other two
terms. We did this because it was mathematically correct (by
definition), and because each term represents a qualitatively
different effect. And, intuitively, the covariance in Δκ ′

Pj is
any impact on the per-seed mean log survival that could not
be explained by the other two effects. This equation would
be useless if ΔPi and ΔκPi could not be independently
verified; however, as we show in the next section, we
were able to run simulations where spatial aggregation
was removed (i.e., so that Δκ ′

Pj would be 0 on average).
We found that, indeed, the community dynamics could be
predicted fairly accurately by ΔPj , ΔκPj , ΔκCj , and ΔYj .

We can show similarly that the per-seed mean of
ln {C(y, t)} (i.e., the average amount of competition
experienced by a species) is

(per-seed mean ln {C(y, t)})j

= 1

YE[Nj (t)]L2

L2∑

x=1

YjNj (x, t)

L2∑

y=1

dj (|y − x|) ln {C(y, t)}

= E [ln {C(y, t)}] + cov
(
dj (|y − x|), ln {C(y, t)})

+ cov
(
dj (|y − x|) ln {C(y, t)} , Nj (x, t)

)
. (71)

Therefore,

Δκ ′
Ci ≈ ((per-seed mean ln {C(y, t)})i

− 1

R − 1

∑

r �=i

(per-seed mean ln {C(x, t)})r
⎞

⎠−ΔκCi . (72)

In Appendix A3, we run several simulations and check
how Δκ ′

Pj and Δκ ′
Cj vary with a species mean dispersal

distance and resident-invader state.

Appendix A3: Computer simulations

In this section, we describe how we implemented our
computer simulations.

To speed computation, our model worked with the
Manhattan distance function (i.e., the distance between
(x1, y1) and (x2, y2) is |x1 − x2| + |y1 − y2|), rather than
the Euclidean distance function (i.e., the distance between

(x1, y1) and (x2, y2) is
√

(x1 − x2)2 + (y1 − y2)2). The
area of a circle is different under each distance function,
which affects how many trees are a given distance away. For
example, imagine we placed point in a grid, with each point
separated by 1 m; then, say we selected a focal point. Under
the Manhattan distance function, there would be 20 points
a distance 5 m away from the focal point; however, under
the Euclidean distance function, there would be 28 points
between 4.5 and 5.5 m away from the focal point. But, given
that none of our analysis depends on the distance function
used (and indeed, dA,j (z) and dj (z) are arbitrary), we do not
believe that this qualitatively affected our results.

We model dispersal using a discrete approximation
of a 2-dimensional t (2Dt) distribution. The probability
distribution function of a 2Dt distribution with mean 0 and
2 degrees of freedom (i.e., the pdf that a seed will disperse
a distance z if it is equally likely to disperse in every
direction) is

D(z) = 2πz

π exp{αj }(1 + z2 exp{−αj })2
(73)

where αj is a species-specific parameter. Note that the 2πz

in the numerator is used because D(z) calculates the chance
that it lands in anywhere a distance z away; this is generally
left off to model the chance that it lands at a particular
location a distance D(z) away. As stated above, Euclidean
and Manhattan distances are different; thus, when we were
generating seed dispersal kernels, we decided to preserve
the probability that a seed would disperse a given distance,
rather than the probability it would disperse to a given point.

In our simulations, we calculate dj (z) as follows: A seed
that does not disperse beyond l/2 (i.e., half a site) remains in
its parent’s site, and a seed that disperses between l(z−0.5)

and l(z + 0.5) is dispersed to one of the 4z sites a distance z

away with equal likelihood. To reduce computational load,
we assume that if a seed dispersed more than 5.5l, then it
was placed in a random site (this could include sites within
5 sites, though the impact was trivial if L was large). Thus,

dj (z) =

⎧
⎪⎨

⎪⎩

∫ l/2
0 D(y)dy + ∫∞

5.5l
D(y)

L2 dy z = 0
1
4z

∫ l(z+0.5)

l(z−0.5)
D(y)dy + ∫∞

5.5l
D(y)

L2 dy 1 ≤ z ≤ 5
∫∞

5.5l
D(y)

L2 dy z > 5

(74)

We modeled the community as a torus (i.e., a seed that
moved off one side was warped to the other side), so that
there were no edge effects.

In simulation, we modeled survival such that enemies
affected tho log-odds probability of survival, rather than
having a linear impact on survival. We did this so that
survival would never become negative, and because this
connected better with empirical literature (Comita et al.
2010). However, when pA,j and pS,j were small, the log-
odds function is close enough to linear to be approximated
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by Eq. 2. We defined the terms Ĩj and p̃j , such that survival
on the log-odds scale was

Sj (x, t) = logit

⎛

⎝Ĩj −
L2∑

y=1

p̃j dp−j (|x − y|) Nj (y, t)

⎞

⎠ . (75)

To relate these terms to our previous definitions, Ĩj was
defined as the inverse logit of Ij (i.e., so that when there are
no natural enemies, survival is Ij ) and p̃j was defined as
pj (1+exp{Ĩj }) (i.e., so that a small increase ε in the number
of nearby conspecifics reduces survival by approximately
pjε).

We modeled the impact of distance-responsive enemies
as declining exponentially according an exponential dis-
tance function (Comita et al. 2010). We calculate survival at
the midpoint of a site (which was 0.25 sites for the parent’s
site) and ignore adults more than 5 sites away. Thus,

dA,j (z) =

⎧
⎪⎨

⎪⎩

c1 exp{−0.25c2} z = 0

c1 exp{−c2z} 1 ≤ z ≤ 5

0 z > 5

(76)

where c1 is a distance constant and c2 is a constant that
allows dA,j (z) to sum to 1. In all cases below, we chose
c2 = 0.5 (to match empirical literature of 0.2 per m, Comita
et al. (2010)), and c1 = 0.752.

A3.1 Computational details for running simulations

We modeled sites as l =10 m squares, and usually
simulated a 200 × 200 site (400 ha) community. The
simulation was usually initiated by filling each site with
a random individual with equal likelihood. In cases where
one species’ density was held constant, we randomly filled
that number of sites with the focal species and filled the
remainder by randomly selecting the R − 1 other species
with equal probability.

Each time step, we examined each adult to determine
if it died. If it survived, then there was no change; if the
adult died, then we calculated the number of seeds that
were expected to fall in each site. Thus, an individual of
species j at site x would contribute Yjdj (|y − x|) seeds
to site y. We then calculated the impact of distance- and
density-responsive enemies. If there were sj (y) seeds of
species j at y, then every seed’s log-odds survival was
reduced by sj (y)p̃S

j ; similarly, an adult of species j at x

reduced the log-odds survival to species j seedlings at y by
p̃A

j dA
j (|y−x|). We used these to calculate Sj (y, t) and used

this to calculate the expected number of seedlings at each
site (it was rarely a whole number). We then chose a species
randomly in proportion to the relative fraction of seedlings
at the site. This procedure was repeated each time step.

In some cases, we held the frequency of one species
constant. To do this, we began each time step by recording

where each individual of that species was located. We then
calculated the births and deaths across the community as
described above. At the end of the time step, we calculated
the amount that the focal population changed in order to
estimate λ̃′

j (t), and the values needed to estimate our Δ

terms. If the population had increased by n individuals, then
we randomly killed n individuals of the focal population.
If the population had decreased by n, then we randomly
selected n individuals that had died (i.e., using the record
from the start of the time step) and restored them.

We performed invasion analyses using the following
steps. First, we simulated a community for 2000 time
steps, to eliminate any species that was not coexisting.
We also recorded the mean frequency of each remaining
species. Then, each species was selected in turn to be
an invader. We removed the invader and increased every
other species’ density proportionately. We then simulated
the community dynamics for 100 time steps, so that it could
reach equilibrium and a stable spatial structure. We then
introduced a small number of invader individuals (typically
50 adults). The invaders were placed in random locations,
replacing the adult that was there. We ran community
dynamics for several time steps (typically 13 time steps,
or 5 generations), so that the invader could build up
a spatial distribution, but not so long that they became
common. We then continued to run the simulation for
37 time steps, and each time step, recorded data on the
invader. We calculated the expected value of λ̃′

j (t) by
calculating the probability that species j captures each
site (i.e., the number of seedlings divided by the total
number of seedlings, both after accounting for natural
enemies), dividing that value by E[Nj(t)], multiplying that
value by δ, and adding (1 − δ). We also calculated ΔYj ,
ΔPj , ΔκPj , ΔκCj , Δκ ′

Pj , and Δκ ′
Cj , using approximations

derived in Appendix A2. We averaged our results over
37 time steps and ran 120 replicate simulations. It was
rare for an invader to die off stochastically, but when it
did, we only recorded growth and the Δ values when it
was alive.

A3.2 Parameter sets

The six parameter sets used for figures are listed in Table 3.
In all cases, we assumed that Ĩj = −1 for all species (i.e.,
Ij ≈ 0.27), that, δ = 0.4, and that p̃A,j = p̃S,j . We
generated parameters for 8 species, though in some cases
not all persisted. The “trade-off” parameter set assumed
that there was a strict trade-off between αj and p̃j , such
that increasing p̃j by 0.1 increased αj by 0.5. The “equal
sensitivity” parameter set assumed that αj varied, but all
species had the same p̃j value; this was used to isolate the
particular effects of differences in dispersal. Similarly, the
“equal dispersal” parameter set assumed that p̃j varied, but
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αj was the same between species and was used to isolate the
impact of differences in natural enemy susceptibility. In the
“yield differences” parameter set, species differ in only their
yield values; we also assumed that p̃j values were higher
than in other parameter sets. We also included two “random
parameters” sets, in which p̃j , αj , and Yj were selected
randomly (without replacement) from the same distribution;
these were used to test what would occur if there was not a
strict trade-off.

We tested several additional parameter sets during our
analysis. We included a community where species differed
in p̃j and had near-universal dispersal, we tested two
parameter sets that lacked specialist natural enemies, and
we tested an additional random parameter set. We chose
not to include these data, because we felt they did not add
anything. We also ran similar parameter sets but changed
the range over which αj and p̃j could vary, and parameters
where p̃A,j �= p̃S

j (including p̃S
j = 0). Our results were

basically similar.

Appendix A4: Checking our approximation

In this section, we describe how we used our computer
simulations to check our analytical approximations. We
simulated a community without spatial structure. We did
this by randomly rearranging the community at the end
of each time step (a method previously referred to as the
“shaken” method, (Stump et al. 2018b)). This allowed us to
remove the effects of spatial structure generated by clumped
adult distributions (i.e., the Δκ ′

Pj and Δκ ′
Cj terms), without

removing the impact than adult had on its offspring (i.e., the
ΔκPj and ΔκCj terms).

We studied our model in two ways. First, we performed
invasion analysis on our model. We calculated the Δκ ′

Pi

and Δκ ′
Ci values for each invader i, and averaged them

over the 120 simulations. The approximations for Δκ ′
Pi

and Δκ ′
Ci calculates the actual impact of natural enemies

and competition, and then subtract out the expectation
in a model without adult spatial structure. Thus, if
our approximation of the non-spatial structure case is
accurate, then we predict that Δκ ′

Pi and Δκ ′
Ci should be

approximately 0 on average.
Second, we attempted to study our model in a non-

invasion context. We could no longer assume that λ̃′
j (t) = 0

for all species; however, because the community had a fixed
number of sites, E[Nj(t)]λ̃j needed to sum to 1 across all
species. Thus, for all species

λ̃′
j (t) = λ̃′

j (t) −
R∑

r=1

E [Nr(t)] λ̃′
r (t) (77)

where the summation is over all species. We then defined
the following terms:

Δ̃Yj = ln
{
Yj

}+ ln
{
Ij

}−
R∑

r=1

E [Nr(t)] (ln {Yr } + ln {Ir }) .

Δ̃Pj = −E

⎡

⎣
L2∑

y=1

pjdp−j (|y − x|) Nj (|y − x|, t)]
⎤

⎦

+
R∑

r=1

E [Nr(t)]E

⎡

⎣
L2∑

y=1

prdp−r (|y − x|) Nr(|y − x|, t)
⎤

⎦

˜ΔκPj = −L2E
[
cov

(
dj (|y − x|), ln

{
Sj (x, t)

})]

+
R∑

r=1

E [Nr(t)] L2E
[
cov

(
dr (|y − x|), ln

{
Sj (x, t)

})]

˜ΔκCj ≈ −L2E[cov (dj (|y − x|), ln {C(y, t)})]

+
R∑

r=1

E [Nr(t)] L2E[cov (dr (|y − x|), ln {C(y, t)})] (78)

Therefore, if spatial structure in the adult community had no
effect,

λ̃′
j (t) ≈ Δ̃Yj + Δ̃Pj + ˜ΔκPj + ˜ΔκCj . (79)

To test the quality of our approximation, we simulated a
shaken community with a large number of sites. We com-
pared this to a community which was governed by the above
dynamical system. All of the parameters and initial con-
ditions were identical; thus, if our approximation perfectly
represented the simulation, their dynamics would be iden-
tical to within demographic stochasticity. Additionally, at
each time step, we calculated the covariance between seed
density at a site x and both ln

{
Sj (x, t)

}
and ln {C(x, t)},

along with our estimates for the covariance between those
terms at dj (|y − x|), Eqs. 46 and 65.

Our approximations performed extremely well. Our
approximation tended to slightly overestimate the invader
growth rate of each species (Fig. 7). The measured values of
Δκ ′

Pi and Δκ ′
Ci tended to be close to 0. For example, in the

six communities in Fig. 7, Δκ ′
P was measured to be between

−0.0016 and −0.0033, and Δκ ′
C was between −0.0020

and −0.0036 (i.e., indicating that there was this much
error). In the non-equilibrium setting, our predictions from
Eqs. 78 and 79 tended to match the simulations fairly well
(Fig. 8). Additionally, during the simulations, the measured
the covariance between seeds at x and both ln

{
Sj (x, t)

}
and

ln {C(x, t)} closely matched our estimates for those terms
(Fig. 8).

Appendix A5: Studying our model
with simulations

In this section, we describe how we used computer
simulations to analyze our model.
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Table 3 Parameters in displayed figures. If only one number is given, then all species have that value for that parameter

Name Parameters

Trade-off p̃A,j = (0.15, 0.193, 0.235, 0.279, 0.321, 0.365, 0.407, 0.45)

αj = (4.5, 4.71, 4.93, 5.14, 5.36, 5.57, 5.79, 6)

Yj = 7.8

Equal sensitivity p̃A,j = 0.3

αj = (4.5, 4.71, 4.93, 5.14, 5.36, 5.57, 5.79, 6)

Yj = 7.8

Equal dispersal p̃A,j = (0.15, 0.193, 0.235, 0.279, 0.321, 0.365, 0.407, 0.45)

αj = 5.25

Yj = 7.8

Yield differences p̃A,j = 0.3

αj = 5.25

Yj = (7.5, 7.59, 7.67, 7.76, 7.84, 7.79, 8.01, 8.1)

Random parameters p̃A,j = (0.231, 0.45, 0.407, 0.236, 0.279, 0.193, 0.364, 0.15)

αj = (4.71, 5.57, 5.14, 6, 4.93, 4.5, 5.36, 5.79)

Yj = (7.5, 7.59, 7.67, 7.76, 7.84, 7.79, 8.01, 8.1)

Random parameters 2 p̃A,j = (0.364, 0.407, 0.193, 0.45, 0.321, 0.15, 0.236, 0.279)

αj = (5.57, 5.78, 4.71, 6, 5.36, 4.93, 5.14, 4.5)

Yj = (7.5, 7.59, 7.67, 7.76, 7.84, 7.79, 8.01, 8.1)

First, simulations suggest that spatial structure made
communities less stable (similar results have been shown by
Bolker and Pacala (1999) and Durrett and Levin (1994)). In
several of our parameter sets, fewer species persisted when
there was spatial structure than when there was no spatial

structure. For example, in the “equal sensitivity” parameter
set, 8 species persisted without spatial structure, but only
6 persisted with spatial structure. In the “equal dispersal”
parameter set, 8 species persisted without spatial structure,
but only 7 persisted with spatial structure. In the “Random
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Fig. 7 We ran invasion analyses on communities without spatial struc-
ture (i.e., using the shaken model) and compared its outcome to
invasion analyses run using using Eqs. 78 and 79. Each dot represents

the invader growth rate of a particular species. If the approximations
were perfect, the dots would be on the one-to-one line. Each graph lists
the parameter set used in the title
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Fig. 8 a We simulated a community without spatial structure
(i.e., using the shaken model) in a large community (L = 300)
and present the populations as the solid lines. We also sim-
ulated the growth of the community using Eqs. 78 and 79
and present the populations as the dotted lines (correspond-
ing colors were the same species). We used “equal sensitivity”
parameters. b At each time step of the simulation, we recorded

cov

(

seed density at x,
L2∑

y=1
pidp−j (|y − x|)Nj (|y − x|, t)

)

, and

also used Eq. 46 to estimate what it should be. Each dot represents
an estimate at one time point for one species (different colors refer to
different species). If our approximation was exact, all dots would be
exactly over the one-to-one line. c This graph is similar to b, except
comparing cov (seed density at x, ln {C(x, t)}) to approximation
(65). d through f are the same as a through c, except with the “equal
dispersal” parameters. g through i are the same as a through c, except
with the “random” parameters

parameter” set, 7 species persisted without spatial structure,
and 5 persisted without spatial structure. Additionally,
when we ran an invasion analysis on a community with
spatial structure, and then compared this to an identical
community without spatial structure (i.e., a shaken model),
we found that invader growth rates were lower with spatial
structure (Fig. 9). In general, differences in invader growth
rates can mostly be attributed to the impacts of spatial
structure, Δκ ′

Pj and Δκ ′
Cj . For example, in the communities

shown in Fig. 9, the Δκ ′
Pj and Δκ ′

Cj terms explained
between 67% and 98% of the difference between the
simulated community and the non-spatial approximation.

The remaining differences are likely caused in part by
demographic stochasticity in simulations, but could also be
caused by shifts in the relative abundances (which would
impact ΔPj ).

The impact of adult aggregation on mortality risk,
Δκ ′

Pj , appeared to undermine diversity. In all of the our

parameter sets, Δκ ′
Pj was negative (i.e. it was destabilizing).

It was always lower than ΔκPj , and often about twice
the magnitude. Δκ ′

Pj also produced fitness differences,
which tended to be smaller in magnitude than the fitness
differences produced by ΔκPj . We also found that Δκ ′

Pj was
negative for all species in nearly every simulation we ran,
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Fig. 9 We ran invasion analyses on communities with spatial struc-
ture, and compared its outcome to invasion analyses run using Eqs. 78
and 79 (which does not account for spatial structure). Each dot

represents the invader growth rate of a particular species. If a dot is
below the line, it indicates that spatial structure reduced that species’
invader growth rates. Each graph lists the parameter set used in the title

i.e. that even the biggest fitness advantage granted by Δκ ′
Pj

could not make up for its destabilizing effect.
The impact of adult aggregation on competition, Δκ ′

Cj ,
also undermined diversity, though the impact was less
strong. In all cases, Δκ ′

Cj was negative; however, its actual
effect was typically small, and usually much smaller than
ΔκCj and Δκ ′

Pj . It also tended to produce fitness effects; the
fitness effects were always smaller than those of ΔκCj (the
impact of the parent on competition), but could be bigger
than the fitness effects of natural enemies.

We found a strong and consistent correlation between
a species’ abundance and its aggregation. Measuring
aggregation as ln {g(3) − 1} (i.e. the natural log of the pair
correlation at 3 sites, or 30m, minus 1), we found that
across our parameter sets, frequency and aggregation was
approximately

ln {g(3) − 1} ≈ a + bE[Nj(t)] (80)

for some a and b. In most cases, the slope of the line for
a particular species was about −1.2. This varied slightly
but was always between −1.1 and −1.25 in the parameter
range we tested. We are not sure why this occurred, and how
much it was driven by our specific parameters. The intercept
value, a differed between species. It appeared that dispersal
differences had the biggest impact on a, with species with
high dispersal being the least aggregated. Additionally,

species with strong potential NDD had a lower a, i.e. were
less aggregated, though the impact was slightly weaker than
the impact of dispersal.

We found that the terms the covariance between
seed density and both ln

{
Sj (x, t)

}
and ln {C(x, t)}, the

covariance which contribute to Δκ ′
Pj and Δκ ′

Cj , tend to
increase with pair correlation function. For example, in
Figs. 10 and 11 we show how they change with the
pair correlation at 30m for the three different datasets.
The ln

{
Sj (x, t)

}
covariance increases with clustering in

all cases, and the ln {C(x, t)} covariance increases with
clustering in all but 1 case. Both of these covariances
contribute negatively to population growth, thus, the fact
that they increase shows why Δκ ′

P and Δκ ′
C both destabilize

coexistence.
The covariance terms cov

(
seed density at x, ln

{
Sj (x, t)

})

and cov (seed density at x, ln {C(x, t)}) differ significantly
between species, even if they are at the same clustering
(Figs. 10 and 11). This shows how Δκ ′

P and Δκ ′
C

produce fitness differences. The differences occur because the
covariances are driven by other factors as well. For example,
species that are more susceptible to natural enemies will have
a stronger value of cov

(
seed density at x, ln

{
Sj (x, t)

})
.

Similarly, species with low seed dispersal will have a higher
value of the covariance cov

(
seed density at x, ln

{
Sj (x, t)

})
,

because their seeds are more likely to stay in high-mortality
areas.
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Fig. 10 We simulated community dynamics, holding one
species’ abundance constant. We tracked how clustered the
adult population was at each abundance, and also what

cov

(

seed density at x,
L2∑

y=1
pidp−i (|y − x|)Ni(|y − x|, t)

)

was at

that abundance. Each line represents a different species

Finally, we tested if trade-offs would emerge natu-
rally due to community assembly. To do this, we ran-
domly assembled communities of 15 species. Each species
was given a potential NDD for distance-responsive ene-
mies (pA,j ) and a dispersal distance parameter (αj );
these values were assigned randomly without replace-
ment. Additionally, potential NDD for distance-responsive
enemies, pS,j , was assigned as 0.78pA,j . We calcu-
lated the correlation between pA,j and αj among the
15 species. We then simulated community dynamics for
1500 time steps, to determine which species persisted.
We then calculated the correlation between pA,j and αj

among species that persisted. We repeated this for 150
communities.

Community assembly tended to create a positive cor-
relation between pA

j and αj , such that species that dis-
persed farther were more susceptible to enemies (Fig. 12a).
Our initial communities began with 0 correlation on aver-
age, though this varied with a standard deviation of
0.26. On average, 9.3 species survived in a given ran-
dom community. The average correlation between pA,j

and αj among survivors was 0.43 (with a standard devi-
ation of 0.29), it was positive in 92% of simulations,

and was higher than the initial community in 97% of
simulations.

Additionally, these results show that while a trade-
off would help species coexist, a strict trade-off was not
necessary, as it is for the competition-colonization trade-off
and many other models of dispersal-mediated coexistence.
In fact, a strict trade-off did not emerge in any of our 150
communities. Fig. 12b shows an example of this. Here, 9
of the original 15 species persisted. Among survivors, the
species with the third highest dispersal has the third lowest
enemy susceptibility, making that species strictly better than
5 of its 8 competitors. However, filtering still produced a
correlation of 0.39; this occurred because the species that
were susceptible to natural enemies could not survive unless
they had reasonably high dispersal, and species that had low
dispersal could not survive unless they were tolerant of their
natural enemies.

Appendix A6: Measuring terms empirically

In this section, we discuss how various model parameters
could be measured empirically.
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Fig. 11 We simulated community dynamics, holding one species’ abundance constant. We tracked how clustered the adult population was at each
abundance, and also what cov (seed density at x, ln {C(x, t)}) was at that abundance. Each line represents a different species
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Fig. 12 a We assembled communities out of 15 species. Each
individual had its pA,j and αj values assigned randomly from a
distribution (without replacement). We then allowed the species to
compete, and determine which persisted. We calculated the correlation
between pA,j and αj for all 15 species, and for those that persisted;
each dot represents one such comparison. A positive correlation
indicates that species that dispersed farther were more sensitive to
their natural enemies (i.e. a trade-off was was occurring). pA,j values
were uniformly distributed from 0.1 to 0.5. αj values were uniformly
distributed from 5.5 to 7. pS,j values were set to 0.78pA,j . For other
parameters, we used: Ij = 0.27, δ = 0.4, L = 120, l = 10,
and Yj = 7.8. b Here we show one such randomly assembled
community. Each circle represents a species that persisted, and each x
represents a species that was excluded. In the initial community, the
correlation between pA,j and αj was −0.04; in the final community,
the correlation was 0.39

A6.1 MeasuringΔκ ′
Pj andΔκ ′

Cj

The terms Δκ ′
Pj and Δκ ′

Cj quantify how the spatial distri-
bution of adults affects the amount of seedling mortality
(due to natural enemies) and seedling competition that
species experience. We believe that elements of them can be

measured in an equilibrium setting. To do this, one would
need to map the distribution of seedlings in many loca-
tions and estimate the impact of natural enemies at each
location. This was done, for example, by Comita et al.
(2010), who tracked seedling survival across 20,000 plots
in Barro Colorado Island, Panama. Alternatively, one could
grow seedlings in soil collected from many locations (using
standard methods for plant-soil feedback studies; (Man-
gan et al. 2010)). First, the covariance that would produce
Δκ ′

Pj + ΔκPj can be quantified as the covariance between
seedling density and seedling mortality. For species j , one
would need to calculate the expected chance that a seedling
of species j would die in each of the 20,000 plots, and cal-
culate how this covaries with the actual number of seedlings
in each plot, and then divide this by the mean number of
seedlings found per plot. It is unclear what would be the
best way to estimate survival in a plot without seedlings
(such sites could be left out, or perhaps estimated using
a regression model). Similarly, the covariance that would
produce Δκ ′

Cj + ΔκCj is the covariance between the num-
ber of species j seedlings in a plot and the total number
of seedlings in that plot, divided by the mean number of
species j seedlings in a plot.

The above method has a few drawbacks. First, both of
these effects calculate the total impact of spatial structure
(i.e. including the impact of the seedling’s parent); this is
probably preferable, though if the impact of the parent needs
to be removed, one could subtract what we expect ΔκPj and
ΔκCj to be (based on our model). Second, the method for
calculating Δκ ′

Pj + ΔκPj technically measures the spatial
structure of seedling survival, rather enemies specifically.
It could potentially be flawed if habitat partitioning is
occurring, and species are clustered in areas where they have
high density-independent survival (Stump and Chesson
2015). Similarly, the method for calculating Δκ ′

Cj + ΔκCj

is based on the assumption that inter- and intraspecific
competition are similar (i.e. that crowding matters, but not
which species are causing the crowding); our method will
give an inaccurate picture if this assumption is far from
true. Last, both measure the covariances in an equilibrium
condition, whereas Δκ ′

Pj + ΔκPj and Δκ ′
Cj + ΔκCj are for

invasion situations. This could still be useful, as it would
likely indicate the scope of fitness differences. It could
also be used to test some of our models predictions, such
as that the covariances contributing to Δκ ′

Pj + ΔκPj and
Δκ ′

Cj + ΔκCj will be higher for species with low seed
dispersal, and for rarer species.

A6.2 Measuring how limited seed dispersal reduces
the stabilizingmechanism

In this section, we derive (19) of the main text, which
shows how limited seed dispersal reduces the stabilizing
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effect of natural enemies. We then give an example of how
one could measure this, using parameter estimates from
Muller-Landau et al. (2008).

The basic principal of Eq. 19 is that we calculate what the
stabilizing effect from ΔPj and ΔκPj are, and divided this
by what it would be if seeds had 100% dispersal (i.e. ΔPj

alone). The term ΔPj is the mean of pjE[Nj(t)], and ΔκPj

is the mean of −pj
˜djdP,jE[Nj(t)]. Thus,

ΔPj + ΔκPj

ΔPj

≈ pjE[Nj(t)] − pj
˜djdP,jE[Nj(t)]

pjE[Nj(t)]

= 1 −
pjE[Nj(t)]˜djdP,j + cov

(
pjE[Nj(t)], ˜djdP,j

)

pjE[Nj(t)]

= 1 − ˜djdP,j −
cov

(
pjE[Nj(t)], ˜djdP,j

)

pjE[Nj(t)]
(81)

˜djdP,j is the chance a seed encounters its parent’s natural
enemies, and the second term is the mean of that term
across species. Of course, this effect is not the same for
all species, and the third term accounts for this variation.

That third term is not the same as 1
R−1cov

(
pj , ˜djdP,j

)
+

pj cov
(
E[Nj(t)], ˜djdP,j

)
, though it is a good enough

approximation for intuition. First, if there is a dispersal-
sensitivity trade-off, then the species with the highest pj

(those most susceptible to natural enemies) will have the

lowest ˜djdP,j (i.e. most seeds will escape their parents
natural enemies); in this case, the covariance will be
negative, and thus the stabilizing mechanism will be
strengthened. However, if the species that are the most
common have the highest dispersal (which we might expect
given the fitness advantage), then this will contribute
positively to the covariance, and therefore reduce the
stabilizing mechanism.

The third term requires significantly more information

to assess. As such, simply quantifying ˜djdP,j will give
a first rough estimate, as it will show how much limited
seed dispersal weakens the mechanism in the absence of
a dispersal-sensitivity trade-off. If a dispersal-sensitivity

trade-off is occurring, then ˜djdP,j is an upper-bound of how
harmful limited seed dispersal is.

To give an example of how this can be done, we used data
from Muller-Landau et al. (2008). They estimated dispersal
kernels for 41 species on Barro Colorado Island, Panama.
For our work, we focused on the 26 canopy tree species they
used (“canopy species” defined in (Comita et al. 2007)).
Those values are in Table 4. In a few cases, Muller-Landau
et al. (2008) calculated two estimates for α (the dispersal
distance parameter in a 2Dt distribution); in these cases, we
used data that was fit to seed-fall data rather than fruit.

Our model predicts that the dispersal kernel of density-
responsive enemies is equal to the seed dispersal kernel.

Thus, for density-responsive enemies, ˜djdP,j is d̃2
j . So,

we first calculated dj (z) for each species, for a distance
between 0 and 8 (we still assumed that trees would
take up approximately a 10×10m area). Instead of using
Eq. 75, which relied on Manhattan distances, we used the
following formula:

dj (z) =
{

4
π

∫ l/2
0 D(y)dy z = 0

1
(2πz)

∫ l(z+0.5)

l(z−0.5)
D(y)dy z ≥ 1

(82)

(with D(y) in Eq. 74). For example, Anacardium excelsum
has a dispersal parameter αj = 4.9. Thus,

dj (0) = 0.2002

dj (1) = 0.0747

dj (2) = 0.0157

dj (3) = 0.0041

dj (4) = 0.0015

dj (5) = 0.0006

dj (6) = 0.0003

dj (7) = 0.0002

dj (8) = 0.0001. (83)

Next, we squared each term. Finally, we multiplied dj (z)
2

by the area between 10(z − 0.5) and 10(z + 0.5) (i.e.,
0.79, 6.28, 12.57, 18.85, 25.13, 31.42, 37.70, 43.98, and
50.27m2), and summed those values. Thus, for A. excelsum,
it is 0.07.

We found that across canopy trees, ˜djdP,j varies from
0.002 (Zanthoxylum ekmanii) to 0.193 (Beilschmiedia

pendula), with a mean of ˜djdP,j = 0.057. This suggests that
in the absence of a dispersal-sensitivity trade-off, limited
seed dispersal weakens the stabilizing effect of density-
responsive enemies by about 6%. Future studies could
improve this estimate by quantifying how pj covaries with
˜djdP,j , and whether more common species have higher
˜djdP,j .

A6.3 Measuring dispersal-susceptibility trade-offs

In this subsection, we discuss how our model could be used
to test for dispersal-susceptibility trade-offs.

At a basic level, a dispersal-susceptibility trade-off
indicates that species that disperse their seeds farther are
more susceptible to natural enemies. This could be done,
by calculating each species’ mean dispersal distance, or
some similar parameter (e.g. α in a 2Dt distribution,
Muller-Landau et al. (2008)), and correlating this with their
potential CNDD (measured using techniques discussed in
the main text). If the correlation is positive (i.e. species with



Theor Ecol

Table 4 Here we display data
from Muller-Landau et al.
(2008). We display only
canopy trees, as classified by
Comita et al. (2007). The
parameter αj is used for
calculating a 2Dt distribution

Species name αj
˜dj dP,j

Anacardium excelsum 4.9 0.07

Beilschmiedia pendula 3.84 0.193

Calophyllum longifolium 7.06 0.009

Chrysophyllum cainito 5.6 0.037

Cupania rufescens 6.51 0.015

Dendropanax arboreus 5.73 0.032

Dipteryx oleifera 4.74 0.081

Drypetes standleyi 4.61 0.092

Guapira standleyana 6.47 0.016

Guatteria dumetorum 6.33 0.018

Jacaranda copaia 5.8 0.03

Luehea seemannii 5.67 0.034

Platypodium elegans 4.96 0.066

Platymiscium pinnatum 4.5 0.102

Poulsenia armata 5.15 0.056

Pouteria reticulata 5.2 0.053

Pterocarpus rohrii 5.19 0.054

Quararibea asterolepis 4.24 0.131

Simarouba amara 6.02 0.025

Tabebuia guayacan 4.61 0.092

Tabebuia rosea 6.3 0.019

Terminalia amazonia 8.24 0.003

Tetragastris panamensis 4.8 0.077

Poulsenia armata 8.75 0.002

Trichilia tuberculata 3.93 0.177

Zanthoxylum ekmanii 8.4 0.002

higher dispersal are more susceptible), it indicates a trade-
off is occurring. Indeed, this is essentially what we did in
our simulations in Fig. 12. We are not currently aware of
anyone who has done this.

Ideally, one would show that this trade-off is equalizing.
This is somewhat complicated, as there is no good definition
of “equalizing” in a multispecies community (Barabás et al.
2018). A mechanism is called equalizing if it reduces
mean fitness-differences between species. In a two-species
community, this is simple to calculate, as sp. 1’s fitness is
equal to negative sp. 2’s fitness; thus, if a trade-off causes
the absolute value of both decrease, it is equalizing. In a
community with three or more species, however, this result
is more complex.

With that caveat aside, we would suggest that the best
way to see if this trade-off is equalizing is to check
whether the trade-off affects the variance in mean fitness
differences. The term ΔPj will not contribute much
to fitness-differences, ΔκCj requires a huge number of
parameters (and we worry the quantitative values in Eq. 71
may be model-specific), and Δκ ′

Cj and Δκ ′
Pj cannot be

calculated reliably from parameters alone; therefore, we
suggest focusing on ΔκPj . To do this, one would calculate

pj
˜djdP,j for each species, using methods described above,

and determine its variance. Then, one would calculate what
the variance of pj

˜djdP,j is if all species had identical
˜djdP,j . We would recommend setting ˜djdP,j to what ˜djdP,j

would be if every species had the same mean seed dispersal,

although an argument could be made for setting ˜djdP,j

to the community-average value of ˜djdP,j . In either case,
if the variance is higher when species have identical
˜djdP,j values, then the trade-off is equalizing; otherwise it
increases fitness differences.
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