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ABSTRACT

Neural networks have been increasingly applied to control in learning-
enabled cyber-physical systems (LE-CPSs) and demonstrated great

promises in improving system performance and efficiency, as well as

reducing the need for complex physical models. However, the lack

of safety guarantees for such neural network based controllers has

significantly impeded their adoption in safety-critical CPSs. In this

work, we propose a controller adaptation approach that automatically

switches among multiple controllers, including neural network con-
trollers, to guarantee system safety and improve energy efficiency.
Our approach includes two key components based on formal meth-
ods and machine learning. First, we approximate each controller with

a Bernstein-polynomial based hybrid system model under bounded

disturbance, and compute a safe invariant set for each controller

based on its corresponding hybrid system. Intuitively, the invariant

set of a controller defines the state space where the system can al-
ways remain safe under its control. The union of the controllers’
invariants sets then define a safe adaptation space that is larger than

(or equal to) that of each controller. Second, we develop a deep rein-
forcement learning method to learn a controller switching strategy

for reducing the control/actuation energy cost, while with the help

of a safety guard rule, ensuring that the system stays within the safe

space. Experiments on a linear adaptive cruise control system and a

non-linear Van der Pol’s oscillator demonstrate the effectiveness of
our approach on energy saving and safety enhancement.

CCS CONCEPTS

* Computer systems organization — Embedded and cyber-physical

systems; * Software and its engineering — Formal methods.
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1 INTRODUCTION

Learning-enabled cyber-physical systems (LE-CPSs) [7, 16, 33, 39]
often leverage machine learning techniques in their perception of
the environment, and increasingly also in the consequent decision
making process for planning, navigation, control, etc. In particular,
neural network based controllers have been applied to a variety of
LE-CPSs, such as building HVAC control [36, 37], autonomous
vehicles [24], smart grid [25] and robotics [40], due to their im-
provement on control performance and efficiency, and the fact that
they do not require building complex physical models of system
dynamics. However, the uncertainties from the system input and the
neural network itself make it quite challenging to ensure the safety of
neural-network controlled systems, which has significantly hindered
their adoption in safety-critical CPSs [38].

In this work, we present an approach to leverage multiple con-
trollers (including but not limited to neural network controllers) and
design an intelligent adaptor for switching among them to enhance
both system safety and efficiency. At each sampling instant, the
adaptor will choose the appropriate controller based on the current
system state, and then applies the control input computed by the
chosen controller. Our approach is motivated by the intuition that
for many CPSs, multiple controllers designed based on different
methodologies may each have their advantages at different system
states. Thanks to the rapid advancement in learning-based control,
there are a variety of learning methodologies that can help build
neural network controllers for a system [12, 15, 23]. In addition,
well-established model-based controllers, such as PID [4], LQR [6]
and MPC [28], have their own advantages and could be comple-
mentary to data-driven neural network controllers. With effective
adaptation/switching strategy, multiple such controllers can jointly
provide a larger operation space the facilities the improvement of
system safety and efficiency.

With this intuitive motivation, our approach addresses two key
technical challenges for achieving the guarantee of system safety
and the improvement of system energy efficiency:

e We develop an invariant-based formal method for analyzing the
safe configuration space of each controller to guide the adaptor
for making the safe choice. Computing an invariant for classi-
cal systems has been extensively explored [30, 42]. However,
it still remains an open problem for neural-network controlled
systems (NNCSs). To address this challenge, our method pro-
vides a general approach to compute the (robust) invariant set
for a large variety of controllers, including linear, polynomial,
and neural network based ones. First, we approximate each con-
troller with Bernstein polynomials under bounded error, and if
the approximation precision is not sufficient, further refine the
approximation by partitioning the system state space. Then, using
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over-approximation, we convert the system with each controller

to a hybrid polynomial system under bounded disturbance and

compute its (robust) invariant set with semi-definite programming

(SDP) [42]. After obtaining the invariant of each controller, the

adaptor can ensure the system safety by only choosing from the

controllers whose invariant set covers the current system state.

# Given the computed invariant sets for the controllers, the second
challenge is to intelligently switch among the controllers for re-
ducing the energy consumption while guaranteeing safety. An
effective strategy should select the appropriate controller from all
safe choices to reduce the overall energy. Given the complexity
and heterogeneity of multiple controllers, traditional methods
based on optimization techniques can hardly be effective. Thus,
we develop a deep reinforcement leamning (DRL) algorithm that
automatically learns the adaptation strategy among safe con-
trollers. At each sampling instant, the adaptor makes a choice
among the safe controllers based on the current system state, and
finds the most efficient one for reducing overall energy consump-
tion. This is achieved by a carefully designed reward function in
learning and a safety guard mule to discard the rare unsafe choice.

Related work: Our work is related to a rich literature on the safety
verification of controlled systems. General safety verification relies
on the computation of the reachable set, which contains all possible
system states after a finite time for a given initial state set. Existing
techniques falls into two main categories: 1) explicitly evaluating
the reachable set [2, 3, 19, 20, 32], and 2) implicitly considering
the reachable set with techniques such as barrier certificates [18,
27, 29, 43]. The main difference between the invariant set in our
approach and the reachable set in the literature is that the invariant
set enables infinite-time safety verification while the reachable set
provides a finite-time horizon. Moreover, in [10, 11, 19], Bemstein
polynomials are applied in reachable set computation to approximate
neural network controllers, but only on a small part of the state space.
In contrast, our method applies Bernstein polynomials on the entire
space for invariant set computation.

As we develop a DRL-based method with safety guarantees, our
approach is related to the research topic of safe reinforcement learn-
ing [1, 22]. The action exploration in RL. may lead to unsafe states.
Thus, one idea is to force the agent to explore within the action
set that is known a priori to be safe for the current state [14]. Our
approach leverages a similar idea but with formally verified safety
results. Formal methods are also used in [13] for linear adaptive
cruise control{ ACC) with the tabular Q-keaming method. In contrast,
our approach mainly targets neural network controllers.

Our work is also related to [21], which tries to guarantee system
safety by deriving three different levels of safety sets and reduces
the energy consumption by opportunistically skipping control input.
The approach does not apply to neural network controllers though,
which is the focus of this work.

In summary, our work makes the following contributions:

= We develop a novel framework for energy-efficient control with
safety guarantees by intelligently switching among multiple con-
trollers (including neural network controllers) for LE-CPSs.

& Owur framework guarantees infinite-time system safety, as long
as the initial state is within the joint safe configuration space

Yeewan, Chao and Oi

computed through a novel Bernstein polynomial based controller
approximation method.

= We develop a new DRL method to learn an adaptation strategy
that reduces the overall control energy consumption, while ensur-
ing that the system stays within the safe space.

= We conduct extensive experiments on a linear ACC system and a
non-linear Van der Pol’s oscillator system. The results indicate
the effectiveness of our approach in enhancing system safety and
energy efficiency, when compared with using a single controller.
The rest of the paper is organized as follows. Section 2 introduces

an illustrating example and defines problem formulation. Section 3

presents our approach. Section 4 shows the expenimental results, and

Section 5 provides further discussion. Section 6 concludes the paper.

2 PROBLEM FORMULATION

We will start with an illustrating example that helps explain the
problems we are trying to solve, and then formally formulate them.
Nlustrating Example [Van der Pol’s Oscillator]: Van der Pol's
oscillator [5] is a 2-dimensional non-linear system whose discrete-
time dynamics is given as

(1) =2 (1) +2z(0)5

xz(t41) = 2z (1) + S[ (1= (1)) xz (1)1 (H+u(f)] + w(t)
where § = 0.05 is the sampling period, u(t) is the control input,
and e(t) is the external disturbance that is uniformly and randomly
distributed over [-0.05, 0.05]. {xy,xz) are the state variables. The
safe state space is a box [-2,2] = [-2,2].

Previous works [17, 26, 35, 41] have designed various neural
networks to control the oscillator to the origin point. In this paper,
we use two neural network controllers ky and k2 for the oscillator that
are designed with the DDPG method [23], as detailed in Section 4.

Assume that the oscillator is at an initial state (1, 1) within the safe
space, we are interested in the following questions. Does the system
always stay within the safe box by applying x17 If not, from what
other initial states, the system could be always safe by applying x, 7
Similar questions could be asked for k7 as well. Then, if we verify
that a system with the initial state (1,1) can be safely controlled
by either x1 or kz, which controller should we pick for the overall
energy reduction? Trying to answer these questions motivates our
formal definition of the problems below and our proposed approach.
The illustrating example will be used throughout the paper and its
solution will be shown in the experiments in Section 4.

Formulation: We consider a discrete-time polynomial system:
x(t+1)= flxir)ult),w(t))¥t = 0, )
where x(1) € R" is the state variable, u(t) € R™ is the feedback
control input variable, @ () € R¥ is a bounded external disturbance,
and f: B" x R™ x B* — R" is a polynomial function.
The safe state space, the constraints on control input, and the
external disturbance are given by
x(the X, uwlthel, wit)e, (3)
where X = {x R"|_f-.”_“=‘11 hpi(x) =0}, U e R™ and 0 = {w &
R‘:l _.-"-".1"’1 h., ;@) = 0}. h denotes the linear box constraint function.
Moreover, We use 1-norm ||u(t)||; to denote the control/actuation
energy consumption over time step ¢ in this paper.

()
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The trajectory @y (g to the system (2) starting from an initial state
x(0) € X follows the following discrete dynamics

Peio) (T + 1) = flogq (1), ult). wit)),

where gy o) (0) = x(0). As stated in Section 1, we may obtain/design
multiple continuous controllers k(i = 1,2, - -- , M) for such a system,
including neural network controllers. Then, the first problem we want
to address is safety verification of the system with each controller
xk;, formulated as the Problem 1.

PrROBLEM 1. Given a dynamical system defined with Equations (2)
and (3) and M continuous controllers k(i = 1,2,--- | M) including
neural network controllers, the safety verification problem for the
svarem with each controller k; is to determing whether the controlled
trajectory gy gy (1) € X, ¥t = 0, Ya(t) € 0,¥x(0)  X.

With the verification results of the above problem, we then want
to design an adaptation strategy gi{= (1)) : B" — {1,--- .M} to re-
duce the overall energy consumption by switching among controllers
based on the system state. Here g maps the system state at each time
step t to a controller choice. The overall control energy consump-
tion is defined as in Definition 2.1, and the adaptation optimization
problem with safety guarantees is formulated as the Problem 2.

Definition 2 1. If with infinite-time safety guarantee, the overall
control energy consumption of the system in Equation (2) as a
function of the adaptation strategy g is defined as !

e(g) = ) llx, x(t)ll;
=0

PrOBLEM 2. Given a system defined with Equations (2) and (3)
and multiple continwous controllers k(i = 1,2,--- | M) including
newral network comtrollers, and ¥Vx(0) € X, the problem of opii-
mizing the overall energy consumption with safery guaraniee by
adaptation strategy function g is formulated as

min e(g)

]
st x(1+1) = fla(t)x, (x(6), w(t)), Ve = 0
Px(n (1) € X,V = 0,V e O

3 ENERGY-EFFICIENT CONTROLLER
ADAFPTATION WITH SAFETY GUARANTEE

As stated in Section 1, there are two key aspects of our approach:
1) computing the robust invariant set of each controller to build
a joint safe configuration space, and 2) developing a DRL-based
method to leamn an efficient adaptation strategy within the joint safe
configuration space.

For 1), informally, robust invariant set Xj C X of the controller
k; is a set that any controlled trajectory starting from it will never
leave it under any possible disturbance within 0. To compute the
Xf{i’ = 1.2,,---,M), we first apply Bemstein polynomials with
bounded error to overly approximate each controller via state space
partition. This approximation comverts each original controlled sys-
tem such as an NNCS into a hybrid polynomial system with bounded
disturbance. We can then obtain the inner-approximation of the X]
with SDP by using existing techniques [42]. After that, we build the

Ui, i short for Kype (s in this paper.

e X

ﬂ
x(l \1\ s(Iﬁ]lElr"'"," x(3)
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Figure 1: MMustration of the schematic of our approach: Con-
sider the oscillator with two NN controllers k1 and xz. Here X
is the defined safe state space. Ammx;',xf are the robust in-
variant sets for each controller, respectively. The joint safe con-
figuration space is X U X[. For safety guarantee, when system
is at the state x(3) = X, we should choose ;. For energy effi-
ciency, when system is at the state x(2) € X 1 X}, where it can
he safely controlled by using either x; or k;z, the adaptor decides
to choose controller kz to reduce overall control energy cost.

joint safe configuration space as the union of the computed inner-
approximations of robust invariant sets, within which the infinite-
time safety is guaranteed for the system.

For 2), we develop a DRL method to leam an efficient adaptation
strategy within the joint safe configuration space, thus guaranteeing
the system safety. More specifically, we set a reward function for
punishing large control input and unsafe controller choice, so that
the DRL agent can learn to reduce the energy consumption while
maintaining safety. In the rare case that the DRL agent selects an
unsafe controller choice, a safety guard rule will discard it and
randomly choose a safe controller instead.

The schematic of our approach is illustrated in Figure 1. Its overall
framework is described in Algorithm 1.

Algorithm 1 Framework of Our Approach.

Require: Multiple controllers k;(i= 1,2,--- , M) for the system
1: Compute robust invariant set X for each controller x;.
2: Build the joint safe configuration space as UM X,
3: Learn the adaptation strategy g for reducing energy consumption
and maintaining system state within U‘gle (see Algorithm 2).
- Initialization: t «— 0, x(0) € UM XxT.
: while true do
Read the system state x (t).
Adaptor g selects controller k, based on x(1), with safety
guard rule applied if needed.
Actuate the control input x_ (x(1)).
& te—1+1
1: end while

bl U A

o

3.1 Deriving Joint Safe Configuration Space for
Safety Guarantee

In this section, we show how to compute X for the system with x;.
We first formally define the concept of robust invariant set X].
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Definition 3.1. Consider a system where the dynamics are defined
as Equation (2) and the constraint is defined in Equation (3). For a
controller x, Xy is called an invariant if

X = {=(0) | ¥t = 0,a(1) & £, - @y () (1) € X1}
Moreover, any set that is a subset of the invariant is called an inmer-
approximate invariant

Let Xj be the invariant for the i-th controller. Then, the joint safe
configuration space by multiple controllers can be built as l_.l‘;ile,
within which the infinite-time safety is guaranteed for the system.

ProPOSITION 3.2. (Soundness). For any initial state x(0) =
Uﬁle, a system where dynamics and consiraints are defined in
Equation (2) and (3) with controllers k;(i= 1,2,--- | M) i5 ensured
ta have infinite-time safety guarantee.

Proof. Given any initial state x(0) € UM X!, we can at least find
one feasible controller x; such that x(0) Xf Then, the system
safety is ensured if we always choose x; as the sysiem controller,
since as due to Definition 3.1, the controlled trajectory gy o) (f) €
X/ cx\VtzoVeeq

REMARK 1. In general, it is inractable to compute the exact
robust invariant set XJ'.' for a nonlinear system [9], especially for
newral-network controlled systems. Thus in this paper, we compute
an inner-approximation af the robust invariant ser for the system
with each controller, as the inner-approximation maintains the safety
guarantee and is more tractable [9]. For simplicity, we somewhar
abuse the notation: X| in the rest of this paper represents an inner-
approximation of the robust invariant set for ;.

To compute Xf, we first want to approximate controller k; with
polynomials under bounded error. This is because neural network
controllers are complex and hard to tackle with, while polynomials
are more tractable. This approximation converts the original con-
trolled system such as an NNCS into a polynomial system with
bounded disturbance. Prior work [19] shows that Bernstein poly-
nomials can be effectively applied to approximate any continuous
controller. However, a single polynomial approximation may have
to use very high degree to achieve reasonable precision, while the
computation complexity of Xj increases drastically as the degree
increases. Also, the error reduction by this measure is often limited
in practice, eesulting in an inner-approximation that is too conserva-
tive. Thus, following the idea of interpolation, we propose a partition
approach to achieve more precise approximation using polynomi-
als with much lower degrees. With such partition approximation,
the original controlled system is converted into a hybrid system
with low degrees on each subsystem. We can then obtain the inner-
approximation of the robust invariant set for such a hybrid system
by using SDP. We detail each of these steps in the next

3.1.1 Single Bernstein Polynomial with Bounded Error for
Controller Approximation. We first introduce the concept of Bern-
stein polynomial. Let d = (dy,--- ,dn) € R" and x; be a continuous
controller of the system over state variables x = (xy,--- ,xp) € X.
The polynomials related to controller k;

n
iy dn) @ di—a
Ki |55 (aplx; (1 =)™
2, g @ )
=Lz -.n)

By, 4(x) =

Yeouwan, Chao and Oi

Table 1: Error bound by different approximation methods for
the oscillator’s neural network controller k7. The control input
space is normalized into interval [-1, 1]. Note that the partition
approximation achieves the smallest bound. Simply increasing
the degree will reduce the error bound but has limited effect.

3-Partition (d=3) Single (&=3) Single (d=5) Single (d=T)
0.102 0.27 0169 0163

are called Bemstein polynomials of k; under degree d.

To obtain the inner-approximation X for the system with con-
troller k;, we first overly approximate x; by a single Bernstein poly-
nomial with bounded error in Equation (4) on the safe state space X,
similarly as in [19],

Ki(x) € By, a(x) + [€,€].¥x € X, (4

where £ is the approximation error bound. Since the controllers
in this paper are all considered as continuous functions, according
to [8], we can always ensure that such approximation exists.

This approx imation converts the system with x; into a polynomial
system. The disturbance for the converted system is the Minkowski
sum (3 of external disturbance and approximation error. Now, the
system with controller x; is approximated as

x(t+1) = f(x(1), B, a(x(0)),0(1)), 1 2 0,
with () = w(t) &2 &

However, this single Bemstein polynomial approximation is not
sufficient for all encountered neural network controllers in our ex-
periments. Recall the oscillator example with the neural network
controller &z (details in Section 4), a single Bemnstein polynomial
with a low degree, e.g., d = 3, for the approximation introduces a
large error bound 2, as shown in Table 1. With such large error bound,
we just get an empty set for XJ.Z by SDP. To reduce the error bound, a
simple way is to increase the degree, e.g., set d = 5 or 7 for Bemstein
polynomial approximation. However, the reduction is limited in prac-
tice, as shown in Table 1. Moreover, increasing the approximation
degree converts the system into a higher order polynomial system,
resulting in drastically-increasing computation complexity for Xf
Thus, we propose a partition approximation method with low-degree
polynomials to reduce the error bound.

3.1.2 Partition Approximation. We first partition X into P boxes
with each box named as X*, forp=(1,2,--- P}

X XP2 = 0,if py # p; and uﬁ;lx?:x,

where py,pz € {1,2,--- ,F}. Now each box X* has its own state
constraints, defined as X? = {x € R"| A\ hp;(x) < 0}, where h
denotes the linear box constraint function.

Then, on each box X¥, a Bernstein polynomial BE-;: is applied
for approximation, reducing the overall a'pprminml:io;ermr bound
&= max(éF), where & is the error bound on box X¥ as

Ki(x) € B",;bd{x} +[-&8,éP], vx e XP.

With such partition, the system with each controller can now be
converted into a hybrid polynomial system. Each partition now acts

2d = 3 actually means d = (3, 3), representing that the highest polynomial degree for
the oscillator state (xy, x5 is (3, 3). The same applies tod = 5, 7.



Energy-Efficient Control Adaptation with Safety Guarantess for Leaming-Enabled Cyber-Physical Systems  ICCAD '20, November 2-5, 2020, Virtual Event, USA

as a subsystem with Bernstein polynomial control input on it. For
this hybrid system, the new bounded disturbance is the Minkowski
sum & of external disturbance w and overall approximation error
bound max (£#). Such a hybrid system can be expressed as

a(t+1) = fla(), d(r), a(r)),t >= 0,
where d(t) and £&(t) are

P
a(t)= ) 1xe - B 4(x(0), &() = (1) (P max(é?), (5)
=1

where 15, is an indicator function, p = (1,2,--- , P

When we use the partition approach to approximate the xz of
the oscillator, we achieve the smallest error bound, when compared
with the non-partitioned single-polynomial approximation approach
under d = 3,5, 7. This is shown in Table 1.

REMARK 2. For polynomial comtroller w; with degree dy, if we
choose Bernsiein polynomial B, ;. also with degree dy, then the
approximartion error € = 0. For the feed-forward neural network
conmtreller, the partition approximation greatly reduces € in practice,
compared to single-polynomial approximartions.

Next, the inner-approximation of the robust invariant set of such
a converted hybrid system is computed.

3.1.3 Inner-approximation of Robust Invariant Set. Each con-
verted hybrid system has constraints defined as Definition 3.3.

Definition 3.3, Each converted hybrid polynomial system is sub-
ject to state constraints on each partition X*, the entire safe space
X and the disturbance © (& defined in Equation (5)), which can be
expressed as the following sets:

X={xeBR"| A" hy;(x) <0}

=1

XP = {x e R | A hy;(x) < 0}

= {de Rk | _.l"'-;_fl h‘_',‘.'{d"} < 0}

where p=(1,2,--- , F), and h denotes the linear box constraint.

Following the method in [42], the inner-approximation of the
robust invariant set for such a hybrid system can be obtained by
solving an SDP. First, we compute the one-step reachable set R(X)
as the states reachable from the X within one-step computation, i.e.,

R(X) = {x|x = flxi,d),xeX,ded}UX.

Then, we define a continuous function o{x) : R" — R. When
o(x) is constrained to the polynomial type and the system state is
constrained in a ball B with H as a constant

B={x | ||xllz— H = 0},

such that R{X) € B. According to [42], the inner-approximation of
the robust invariant set as {x € B | o(x) < 0} can then be obtained
by solving an SDP optimization problem

min , W

B, s-:fl, 3}} S ¥ i

o(x) — o(f(x, i, &) + L,* | ;:; by, (x)+
Tp2, st (&) - sph(x) € SOS(x, &),

(14K )o(x) — ho j(x) - 5, ;h(x) € SOS(x),

a5 \
| |
" o
1 Singleid=7)
3 =Partonid=3] A

=10 =I5 =10 =05 00 a5 18 15 20
Xy

Figure 2: XJ.Z of oscillator with x; by SDP for different approx-
imation methods. For Single(d = 3), the SDF returns an empty
set due to its large error bound. For Single(d = 7), we obtain
a non-empty inner-approximation but it is much more conser-
vative/inaccurate than the 3-Partition method, where 3 polyno-
mials are used with the partition approximation. Moreover, it
took about 2 hours to compute XJ.Z by 3-Fartition and 41 hours
by single(d = 7) with Mosek 8.0 and Matlab 2015,

where ¢-w= _J';; o(x)dx, ¢ is the unknown coefficient vector in o{x),
and w is the vector of the integration for each monomial in o(x)
over B. sﬂ:, si}, Sp. ;L_F are the sum-of-squares(505) polynomials,
where p = (L2---,P).ly = (1,2~ .mp).lp = (L,2---,nz) and

j= (1,2 ,mg). ;j‘fz sg, sp € S05(x,&) and s‘u € SOS(x).

Safe Controller for the Illustrating Example: Recall the illustrat-
ing example. By solving the above SDP problem, we obtain X} for
the controller kz in the oscillator example with different approx-
imation methods. The proposed partition approximation achieves
better result than the single-polynomial ones, as shown in Figure 2.
Thus, we use it to obtain X] and X7, as shown in Figure 3. It is
easy to check that state (1, 1) belongs to the invariant intersection in
Figure 3, thus guaranteeing the safety by either &y or k2.

Once the joint safe configuration space is derived, we can develop a
DRL method to leamn an energy-saving adaptation strategy with the
safety guarantees, as introduced next.

3.2 DRL-based Control Adaptation

Within the safe configuration space S = UM, X/, we develop a Dou-
ble DON algorithm [34] to lean an energy-efficient adaptation strat-
egy with safety guarantees. The learning process can be formulated
as a Markov decision process (MDP) with a tuple (S, A, P, R, y). &
represents the state space of MDP. A is the action space. P is the
state transition probability, mapping the function S x A — S.y
is the discounted factor, and R is the reward function encoding the
desired goal of the reinforcement leaming agent. More specifically,
they are formulated as follows.

State: To ensure that the adaptation guarantees safety, the state space
5 here is defined as the joint safe configuration space. Moreover, the
state of the Double DOQN agent is the system state x ().

Action: We define the action space as the discrete space A =
{1,--- ,M}. Attime t, a(t) € A means that the Double DON agent
chooses controller &,y for controlling the system.
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Figure 3 Inner-approximation of the robust invariant sets
X},Xf for oscillator controlled by the DDPG controllers xy, k2.
The joint safe configuration space is X U X}. The controller
adaptation learned by DRL will try to reduce the overall energy
consumption by intelligently switching x, and x; while main-
taining the safety.

Reward Function: Reward design encodes the desired goals for the
agent. First, we set a penalty for energy cost as —||u(1)||, for time
step t. In order to maximize the cumulative reward, the agent needs
to leamn to avoid large control input. Momeover, the agent needs to set
a penalty for choosing any unsafe controller, i.e., choosing controller
Ka(ry while x(1) ¢ X (note that x(r) € UM, xf, which means
a safe choice does exist), so that it can learn to avoid such choice.
With these two considerations, we design the reward function as

C—Alju()]s Otherwise,

rix(t),alt),x(t+1)) = Roub if x(1) fx;.{:j,

(&)

where C is a positive constant, A is the weight for the penalty of
energy cost —||u(t)|]1, Rpyp is a negative constant that penalizes the
agent for choosing any unsafe controller. The reward is -100 when
the state is controlled out of the safe space in training. Note that -100
is applied at most once during a training epoch, as the epoch would
end after that.

We develop the Double DOQN algorithm to learn an efficient and
safe adaptation strategy based on the MDP specified above. The
details of the leaming process is shown in Algorithm 2.

Safety Guard Rule: Although we have defined a penalty for any
unsafe choice, the Double DOQN agent may still occasionally choose
unsafe controllers due to the trial-and-error nature of reinforcement
learning. In those rare cases, we set a safety guard rule for ensuring
system safety. Specifically, if the agent chooses an unsafe controller,
the safety guard will discard it and randomly choose a safe one.
Note that as long as the system initial state belongs to the joint safe
configuration space .5, such safe choice always exists.

Energy-saving Controller for the lllustrating Example: In this
example, the leamed Double DON agent chooses controller xy for
the system at the initial state (1, 1), later switches between x; and &z,
and keeps using x, after around 20 steps as the state is approaching
the origin point.

Yeouwan, Chao and Oi

Algorithm 2 Double DON for Learning Adaptation Strategy.

Require: Joint safe configuration space UM X,
1: Imitialize replay memory D, Q network with parameters &, target
network () with parameters #, and update period Cj.
2 for epoch=10,...,N do
Randomly initialize state x(0) € U x.
fort=0,...,Tdo
alt) = e — greedy(Q(= (1)), €).
if x(r) ¢ X" then
Update reward penalty Ry, and break.
end if
Switch to controller ik, : x(f) evolves to x(t + 1); receive
reward r(t); store tuple (x(t), a(t),x(t + 1), r(t)) into D.
1 Sample mini-batch from D; compute TD error [31].

bl i A

1: Apply gradient descent to Q.
12: Update 6=18 every Co steps.
132 end for

14: end for

15: return  forwarding function as the adaptation strategy 4.

4 EXPERIMENTAL RESULTS

Experiments on the illustrating Van der Pol’s oscillator example and
an adaptive cruise control (ACC) system, a common safety-critical
system, are conducted to evaluate the effectiveness of our approach.
The major simulation code is built on Pytorch framework and the
invariant computation uses MATLAB, Mosek 8.0 and Yalmip.

4.1 Van der Pol’s Oscillator

The Van der Pol’s oscillator system is defined in Equation (1). As
stated before, we train two controllers by the DDPG method with
different reward designs, and name them ¥, and xz. The reward for
the DDPG leaming can be expressed as follows (note that this is for
learning the underlying controllers 1 and xz, and different from the
Double DON leaming for controller adaptation in Equation (6)):

r=10— Ay (|xq | + |az]) — AzJu] + |u —:."|},

where 10 is the reward for each safely-controlled step, 4,4z = 0 are
weights for state and control input penalty, respectively, and u’ is the
control input of previous step. For controller k1, both 4y and Az ame
set to 1. For kg, A; and A are set to 5 and 0.2, respectively.

To compute the robust invariant sets, both controllers need to be
approximated by Bemnstein polynomials with bounded errors via
partitioning. Each inner-approximation of the robust invariant set is
obtained, as shown in Figure 3. Then the Double DON is applied to
leamn an adaptation strategy between xy and k. The C in the reward
Equation (6) is 2, 4 is 1, and Ry, is -20. The hyper-parameters in
Algorithm 2 is set as follows: the size of the replay buffer D is 5000,
¥ is 0,99, Ca is 100, and the learning rate is le-4.

We set three baselines: using x; only, using &z only, and random
adaptation. We conduct 500 test cases by randomly picking 500
initial states within X! U X7, and run all the methods from the same
initial state for 200 control steps for each case.

Comparison among Different Methods: We compare the average
system safety rate and energy cost among different methods, and
show them in Table 2. Our approach formally guarantees 100% safety
as the initial state is within Xj UX], while the other methods all have
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Table 2: Comparison of results for the oscillator ex periment.

Ours  k; only xz only Random
Safe control rate 100 % 264 % 056% 02%
Energy cost 127.8 1301 1641 3B3R

significant number of unsafe cases. Note that the three baselines do
notemploy the safety guard rule, since they do not have the capability
to compute the safe invariant sets. However, for our approach, even
without the safety guard rule, the system is safe for mome than 99.6%
of the cases, which shows the effectiveness of Double DON for
switching among controllers. Moreover, our approach also provides
the lowest energy cost, which demonstrates that the reward function
design in our Double DON is effective for overall energy saving.

4.2 Adaptive Cruise Control

We also conducted experiments on an ACC system. We consider two
vehicles in the system. The front vehicle is running with a velocity
o¢, while the following/ego vehicle brakes or accelerates according
to the control design. Overall, the system dynamics is

st +1) = s(8) — (o(1) - uf{r)}ﬁ,
oit+ 1) =o(t) — (ko(t) — wit)) s

where s represents the distance between vehicles, o is the velocity
of the ego vehicle, u is the control input, § = 0.1 is the sampling
period, and k = 0.2 is the velocity resistance. 0y = 40 4+ w, where w
is uniformly and randomly distributed over [—4, 4]. The definition
of the safe set X over state variable (s, 0) is

X = {(s,0) | s € [120,180], v € [25,55]}.

Here we want this ACC system to be controlled stably to the
equilibrium state (150, 40). To this end, we design two different
controllers — one is a Linear-Quadratic Regulator (LQR) controller
k1, and the other is a neural network controller xz obtained by the
DDPG method. The LOR's parameters representing the weights for
state and control input are set to 2 and (.4, respectively. The DDPG
controller has the reward function as

r=25—0.5(]s — 150] + [o — 40] + Ju] + Ju—u'|),

where 25 is the reward for every successful control and u' is the
previous control input.

For the LQR controller ik, X;l can be directly obtained by SDP.
For the DDPG controller kz, Bemstein polynomial approximation
via partition is first applied, converting the NNCS into a hybrid
polynomial system with bounded disturbance. Then, X} is obtained
for such a hybrid system. X and X for ACC are shown in Figure 4.
Then, Double DNON is applied to leamn the adaptation strategy. C in
Equation (6) is 25, 4 is 1, and Ry, is -50. The hyper-parameters
in Algorithm 2 are set as follows: the size of the replay buffer D is
5000, y is 0.99, Cg is 100, and the leaming rate is le-4.

We consider three baselines: using LQR k1 only, using DDPG
controller x; only, and random adaptation between the two. We
conduct 500 test cases by randomly sampling 500 initial states within
X! U X7, and run all the methods from the same initial state for 100
control steps for each case.

5 — — p—
._z'. - “\I\
ol / 1\
[ .'
451 |
g III I| )
404 E
5 |I -1
354 II {
| - f
R -}
\ -
12 10 140 150 180 1Ta 1840

Figure 4: Inner-approximation of the robust invariant sets
X},Xf for ACC by LOQR controller k; and DDPG controller .
Joint safe configuration space is Xj.l UXIZ. The controller adapta-
tion learned by Double DON reduces the overall control energy
cost while maintaining the safety.

Table 3: Comparison of results for the ACC experiment.

Ours  k; only xzonly Random
Safecontrol rate 100 % 974% 9% 006%
Energy cost 8357 B54B 0975 10855

Comparison among Different Methods: The comparison of our
approach with three baselines are shown in Table 3. Consistent with
the results for the Van der Pol's oscillator, our approach achieves
the least average energy cost and guarantees 100% safe control rate,
outperforming the baselines. Note that in this example, even without
the safety guard rule, our approach achieves 100% safe rate (although
the safety guard is still needed in practice for guaranteeing safety).

5 DISCUSSION

Scale the External Disturbance: In practice, the system may en-
counter stronger extemnal disturbance that ex ceeds the original design
expectation. The theoretical robust invariant set of the comesponding
system would shrink by some extent in such scenario, and thus safety
is no longer guaranteed with the computed invariant. Although, with
the inner approximation, the system might still have some buffer to
be able to handle such stronger external disturbance. We demonstrate
this conjecture in both ACC and oscillator examples by scaling the
disturbance to twice and four times of the design assumption.

The results of this study are shown in Figures 5 and 6. As the
disturbance scales, the safe control rates for all methods decrease.
However, the safe rate of our approach decreases at a much slower
pace than the baselines, showing its robustness to external distur-
bance (even when the disturbance unexpectedly exceeds the design
assumption). Note that the safe rate of our approach is still 100% in
the experiments when the disturbance doubles, although this is not
always guaranteed.

States Qutside of the Joint Safe Configuration Space: There might
also be cases in practice where we cannot set the initial state to be
within the joint safe configuration space and thus cannot guarantee
the system safety. In this study, we conduct experiments to evaluate
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Figure 5: Safe control rate for our approach and the baselines
when scaling the external disturbance in the oscillator example
by twice (left) and four times (right) of the design assumption.
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Figure 6: Safe control rate for our approach and the baselines
when scaling the external disturbance in the ACC example to
twice (left) and fourth times (right) of the design assumption.

how our approach performs in such scenario, and how it compares
with the baselines. Specifically, we train a Double DQN agent with
the same reward design on the entire state space X, and we do not
end a training epoch if the agent chooses an unsafe controller.

The results for the oscillator example (initial state x(0) = (-2, 2))
and the ACC example (initial state x(0) = (177.74,31.16)) are shown
in Figures 7 and 8, respectively. We can see that our approach can
pull the system state into the joint safe configuration space and then
always maintain its safety from that moment, while the baselines
with a single controller cannot. This shows that even when the initial
state is outside of the joint safe configuration space, our approach
may still be able to adapt the system into such space for ensuring
system safety.

Limitation: It is difficult for our current approach to handle high-
dimensional systems. First, it is challenging to accurately approx-
imate neural network controllers with high-dimensional input by
Bernstein polynomials. Second, the computation complexity of the
robust invariant set increases drastically as the system state dimen-
sion increases. Our future work will focus on addressing these issues.

6 CONCLUSIONS

We present a controller adaptation approach based on formal meth-
ods and machine learning to guarantee system safety and improve

Yixuan, Chao and Qi.
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Figure 7: Robust invariant sets and system trajectory under dif-
ferent methods when initial state [2, -2] is outside of the joint
safe configuration space for the oscillator example. OQur ap-
proach is able to pull the state into the joint safe configuration
space and maintain system safety. x; fails after one step control
(not visible), k, fails after a few steps. (Best viewed in color)
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Figure 8: Robust invariant sets and system trajectory under dif-
ferent methods when initial state [177.74, 31.16] is outside of
the joint safe configuration space for the ACC example. Our ap-
proach can pull the state into the joint safe configuration space
and maintain system safety. LQR controller x; and DDPG con-
troller k, both fail after a few steps. (Best viewed in color)

energy efficiency for LE-CPSs. In particular, we first compute a joint
safe configuration space of the multiple controllers, including neural
network ones, with a novel method based on Bernstein polynomial
approximation, state partitioning, conversion to hybrid systems, and
robust invariant set computation. We then develop a DRL-based
method to intelligently switch between controllers for reducing en-
ergy consumption while maintaining system safety by keeping its
state within the safe space. Experimental results and analysis on two
different case studies demonstrate that our approach significantly
outperforms the baselines in both safety and energy efficiency.
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