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ABSTRACT

Many safety-critical real-time systems operate under harsh environ-
ment and are subject to soft errors caused by transient or intermit-
tent faults. It is critical and yet often very challenging to apply fault
tolerance techniques in these systems, due to resource limitations
and stringent constraints on timing and functionality. In this work,
we leverage the concept of weakly-hard constraints, which allows
task deadline misses in a bounded manner, to improve system’s ca-
pability to accommodate fault tolerance techniques while ensuring
timing and functional correctness. In particular, we a) quantitatively
measure control cost under different deadline hit/miss scenarios
and identify weak-hard constraints that guarantee control stabil-
ity; b) employ typical worst-case analysis (TWCA) to bound the
number of deadline misses and approximate system control cost;
c) develop an event-based simulation method to check the task
execution pattern and evaluate system control cost for any given
solution; and d) develop a meta-heuristic algorithm that consists of
heuristic methods and a simulated annealing procedure to explore
the design space. Our experiments on an industrial case study and
synthetic examples demonstrate the effectiveness of our approach.
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« Computer systems organization — Embedded and cyber-
physical systems.
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1 INTRODUCTION

Many real-time embedded systems, such as automotive, avionics,
and industrial automation systems, often operate under harsh en-
vironment and are subject to soft errors caused by transient or
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intermittent faults (e.g., those from radiation [3]). As those systems
are often safety-critical, it is important to improve their resiliency
by applying fault tolerance techniques [1, 19].

In the literature, various error detection and recovery mecha-
nisms have been proposed [9, 16, 28, 35]. For instance, to address
soft errors, there are both hardware based approaches [2, 30, 31]
and software approaches [9, 25, 26]. In this work, we focus on ad-
dressing transient soft errors through software layer, by relying on
error detection techniques to detect potential soft errors and pos-
sibly performing recovery jobs to correct them. As defined in [9],
there are two main categories of error detection techniques, i.e.,
embedded error detection (EED) and explicit output comparison
(EOC). EED-type techniques have built-in error detection mech-
anisms and do not reply on redundant execution. Some common
EED approaches include watchdog timer [25], control flow check-
ing and instruction signature checking [26]. In contrast, EOC-type
techniques rely on explicit redundant execution with either tempo-
ral redundancy or spatial redundancy, e.g., executing the same task
at least twice and compare the outputs. One common approach of
EOC is the triple modular redundancy scheme [23]. In this work, we
consider the general type of EED techniques and an EOC technique
based on temporal redundancy, i.e., EOC tasks are executed twice
on the same computation resource and in the case of a soft error, a
re-execution job is scheduled immediately on the same resource.

Both EED and EOC techniques incur significant timing over-
head, and thus quantitative schedulability analysis is needed to
ensure system timing correctness. For instance, the work in [9]
presents an offline scheduling algorithm for EOC-type techniques.
The work in [35] explores the tradeoff between EOC- and EED-type
techniques and presents an algorithm to optimize their selection
and scheduling, while considering timing constraints. However,
applying fault tolerance techniques to resource-constrained real-
time systems is quite challenging and sometimes infeasible, as it is
often difficult to meet the stringent hard timing constraints with
the additional overhead from those fault tolerance techniques.

In this work, we present a novel approach for improving system
fault tolerance that leverages the concept of weakly-hard constraints
as defined in [4], where bounded deadline misses are allowed, to
provide more slack in task execution and enable the addition of
more error detection and correction measurements. Unlike tradi-
tional hard real-time constraints, weakly-hard constraints allow
occasional deadline misses in a bounded manner, which are of-
ten specified as the maximum number of deadline misses allowed
within a given number of consecutive job instances (or a window
of time) [4, 12].

The exploration of weakly-hard constraints is motivated by the
fact that many system functions can tolerate certain degree of
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deadline misses while still satisfy functional correctness require-
ments. For example, recent works have studied control performance
and stability under deadline misses specified by weakly-hard con-
straints [10, 14, 27]. The work in [10] proves an analytical upper
bound of deadline miss ratio to ensure the stability of a distributed
embedded control platform. In [27], the impact of deadline miss pat-
tern on control performance is studied. The work in [14] presents
a method to formally verify the safety of certain control systems
under weakly-hard constraints, which is further improved in [13].
On the other hand, a number of approaches have been presented
for schedulability analysis of real-time system with weakly-hard
constraints [4, 6, 21, 29, 32, 34]. In [4], the response time analysis
for periodic task is discussed. In [32], the schedulability analysis is
modeled as a mixed integer linear programming (MILP) problem
and applied to periodical tasks with unknown task activation offset.
In [29], 2 model is proposed to describe task activation pattern,
and typical worst-case analysis (TWCA) is introduced to bound the
number of deadline misses due to overload. The work in [34] further
improves the approach from [29]. Then, there is also limited work
on trying to leverage the scheduling flexibility from weakly-hard
constraints to improve other design objectives. For instance in [22],
a co-design approach is presented to improve system security while
ensuring control safety. In [15], application of weakly-hard para-
digm to networked systems is discussed.

Our work is the first to leverage weakly-hard constraints
for improving fault tolerance. There are two unique challenges
to address for solving this problem: 1) While exploring weakly-hard
constraints, we have to ensure that the allowed deadline misses
will not cause functional incorrectness. In this work, we focus
on the stability of control tasks under deadline misses, and the
behavior of these tasks is particularly difficult to analyze when
we consider the possible faults on them. 2) We need to analyze
the system schedulability under the possible deadline misses from
weakly-hard constraints and the potential redundant task execution
from fault tolerance techniques. Addressing these two challenges
requires new methods for both control and schedulability analysis.

We address these two challenges by developing new methods to
analyze control stability and system schedulability under deadline
misses, faults, and the application of EED or EOC fault-tolerance
techniques. Based on these analysis methods, we also develop an
optimization algorithm for exploring the design space to improve
a system-level fault-tolerance metric. More specifically, our work
makes the following novel contributions:

= We develop a control analysis method for linear time-invariant
({LTI) systems to formally derive the weakly-hard constraints
that can ensure system stability (e.g., the system can be brought
back to the equilibrium state under deadline misses), and to
quantitatively measure the control cost under different deadline
hit/miss patterns.

= We develop two schedulability analysis methods. One is to model
tasks as the superposition of typical and overload activation and
provide an upper-bound of the deadline misses (the control cost
can be approximated based on this upper-bound). The other
method uses an event-based simulation to record the exact pat-
tern of deadline hits and misses (the worst-case control cost can
be calculated under single transient error in this method).

= We develop a meta-heuristic optimization algorithm to explore
the design space, including task allocation, priority assignment,
and the choice of fault tolerance techniques (EED, EOC, or none).
We conduct experiments on an industrial case study and a set of
synthetic examples. Our experiments demonstrate the effective-
ness of our approach in improving system fault tolerance and
trading off between control cost and error coverage.

The rest of the paper is organized as follows. Section 2 intro-
duces our system mode, including task execution model and control
model. Section 3 presents our problem analysis and formulation,
including the analysis on control stability and cost. Section 4 intro-
duces our schedulability analysis methods and our meta-heuristic
optimization algorithm. Section 5 presents the experimental results.
Secion & concludes this work.

2 SYSTEM MODEL

We consider a real-time distributed platform, with multiple homo-
geneous single-core CPUs (communication is not considered in this
work). Let & = {e1,. .., en} be the set of CPUs. The functional layer
is described by a set of independent tasks 7 = {ry,..., 7 }. Each
task r; has a fived period t;, a deadline d;, a worst case execution
time (WCET) ¢; and a static priority p;. We assume that the sys-
tem is subject to uncertainties such as external disturbance and
transient soft errors. To alleviate the impact of uncertainties, we
assume that a) some tasks can be equipped with error detection
and recovery techniques, and b) some control tasks can tolerate
certain degree of deadline miss. In this study, we consider two
types of fault-tolerance techniques, EED and EOC. For each task
7; € T, we use a variable o, to denote the choice of fault-tolerance
technique. Once a transient soft error is detected, corresponding
task re-execution is followed to correct the soft error. Due to the
difference between the two fault-tolerance techniques and the ran-
dom arrival of soft errors, we model each task as a superposition of
typical and overload activation, as explained below in details.

2.1 Error Detection Strategy and Modeling

For simplicity, we consider a single-error model in this work, where
we assume that there is at most one transient soft error within the
task set hyper-period (in practice this covers vast majority of the
cases). Let C; be the worst case execution time with error detection
for task r;, and ¢; be the original WCET when error detection is not
applied. Then the worst case execution time with error detection
for any task r; can be defined as in [35]:

Ci= ¢ +Pf[ﬂ‘.‘|{ff +ﬁi)+{l—ﬂf}ﬂ.ﬁ-‘f], {1}

where p; denotes whether any error detection (EQOC or EED) is
applied for task r;, A; the time for output comparison and Ac; the
EED overhead. Moreover, o; = 1 if EOC is selected, otherwise o; = 0.
MNote that C; only includes WCET and error detection overhead.
Once an error is detected, a re-execution is scheduled immediately.
Let CR; be the error recovery/re-execution time for a task . We
have

CR; = pilei + (1 — of)Aes).
As we will discuss later, CR; corresponds to the execution time of

an overload activation due to transient soft errors, while C; is the
execution time of regular periodic activation.



2.2 Task Execution Model

Considering the sporadic nature of transient soft errors, we charac-
terize our task model by its activation pattern and execution time
pattern, similarly as in [20]. Each pattern is further distinguished by
a typical component and an overload component. More specifically,
for each task with any error detection technique, the periodical
activation pattern corresponds to the typical model, whereas the
sporadic overload is due to addressing the transient soft errors.
They are formally defined below.

Definition 2.1. Event models [20]: The event models ;""" (Ar)
and q:‘“p}{ﬂt} {q,‘“"’{m} and Jﬁ‘{aj (At), respectively) provide
lower and upper bound on the number of typical (overload, respec-
tively) activations of task ; during any time interval [z, t + At).

Due to the periodicity of task events, we have r;;‘“p} = r;:‘“ﬂ =
["}'—:]. There is a minimal interval Aferror between two consecutive
soft errors and q'__‘:"} = qf*‘t""} = [%], if applicable. For simplic-
ity, we assume that the worst-case event model 5} = q:‘“‘n} +q,+‘M.
Definition 2.2. Execution time model [20]: The execution time
model .,,'_—.“P}{ﬂ) and r:_h'[fPJ{"} {}..;1(03{"} and r;h(l‘-"} (n), respec-
tively) provide lower and upper bound on the typical (overload,
respectively) share of the service demand required by any n con-
secutive activation of task .

In this work, we have ].';‘“p} (m) = r:‘“p}{n} = n ¥ Cj, where
C; is the WCET with error detection as defined in (1). Similarly,
ri_":“}{n) = }f‘f"ﬂ{n} = nx CR;.

Throughout the paper, we assume that some tasks can miss
certain mumber of deadlines. We employ a general representation to
characterize such task timing requirement. Let {; = {{k',Nil), ey
{k:t",N:t‘}} be the set of the weakly-hard constraints of task =,
where {H,N{) means for E.[IYN'ZF consecutive activations of task
r;, at most k}" deadline misses are allowed. {0, 1) is the special case
for hard deadline tasks. The system is schedulable if

dmm(N]) < k], Vj,1< j< Vi, (2)

where dmmi{Nf) is the maximum number of deadline misses of
task ; in any Nf consecutive activations. We further assume that
when a task instance misses its deadline, it will continue munning
until completion.

2.3 Control Model

We consider linear time-invariant (LTI) control tasks. The system
dynamic is modeled as:

(1) = Ax(t) + Bu(1),
y(t) = Cx(1),

where A, B and C are system matrices, and x(t), u(t) and y(t) are
vectors representing the system state, control input and system out-
put at time t, respectively. We further assume that the control task

is activated periodically and follows the Logical Execution Time
(LET) diagram. The LET implementation applies control input at

the deadlines and provides fixed closed-loop delay [8, 27]. The cor-
responding discrete-time system dynamics with certain sampling
period h is given by [17]:

x[k +1] = Agx[k] + By qu[k] + By yu[k - 1], (3)
h-D ]
where B = f e'*-Bdsand By, = _J'r &% Bds. D is the relative
o h-D
deadline. By defining an augmented state matrix z[k] = ";-'[Elll .
we can rewrite the delayed system in (3) as:
z[k + 1] = Aguyz[k] + Baygulk], (4)

Ag B Bap .
il .a.,,,:l ] ‘.cm5=|c 0], with 0 and

I denoting zero matrix and identity matrix of suitable dimensions,
respectively. The control law u[k] = —Kz[k] is calculated by pole
place technique [18].

where A, =

3 PROBLEM ANALYSIS AND FORMULATION

In this section, we introduce our analysis and formulation of the
problem, inchiding the definition for a system-level error coverage
metric and the analysis for control stability and cost.

Miustrating Example: To illustrate how we leverage the weakly-
hard constraints, let us consider 4 tasks running on a single-core
CPU as defined in Table 1 and shown in Figure 1. If there is no error
detection applied to these tasks, the taskset is schedulable under
hard timing constraints. If we want to add EOC to the control task «,
the WCET (with error detection) of the control task becomes 2. The
system is still schedulable when no soft error occurs. However, if
there is an error, the control task has to schedule a re-execution job
and the system with hard timing constraints is no long schedulable
(as the re-execution job of the control task will miss its deadline),
as shown in Figure 1.

If the control task is robust enough and can tolerate some dead-
line misses, we can leverage weakly-hard constraints to improve
its fault tolerance. For instance, let us assume r, satisfies (2, 10)
weakly-hard constraint, the system can be proven schedulable with
EOC applied to =y.

Table 1: Task set of the illustrating example.

Task name | =y | > | = | Controller oy
Period 5 6| 3 10
WCET 1 1 1 1

3.1 Error Coverage

We define a system-level error coverage metric as the probability
that either the transient soft errors are either detected by the er-
ror detection technique or the errors occur during the idle time!.
For a single-core CPU, assuming K uniformly distributed soft er-
rors can happen within a hyper-period, the error coverage can be

For system idle time, transient errors like memory errors may still ooour. W assume

that the probability that the program is affected by such error is negligible, although
we can extend our formulation to cover idle time errorn
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Figure 1: Illustrating example: task -, cannot be applied with EOC under hard timing constraints.

approximated as defined in [35]:

K i .
S0 () ety B o e
! J T&yper T&yper T&yper

where « and g are the average probabilities that an error is detected
by EED and EOC, respectively. Here, I, .4, fege a0d fh4ne are the time
spent by tasks using EED, EOC and no error detection, respectively.
Thyper = leed * leoe + Inone + fi4,- FOr our study, we assume K = 1
and the above equation can be further approximated as follows
according to [35]:

_ E'qE‘T'{l _EII}CI-
I

Pl

¥

where £, is the error detection rate for task r;. In our experiment,
we set @ = 0.7 and § = 1, similarly as in [9, 35]. In our work, we
assume that there is an error coverage requirement EC_Threshold
defined, such that P < EC_Threshold.

3.2 Control Stability and Cost

We consider stabilization controller that can bring the system back
to the equilibrium state after a disturbance. Moreover, due to poten-
tial deadline misses, some control inputs may not always be applied
on time. Following the LTE diagram, we assume that if a control
task misses its deadline, the last control input will be used. The
control cost is defined as the number of sampling periods needed
to bring the system back to the equilibrium state [33]. The control
input delay at the k-th instance can be bounded by:

Ve < Yimax = f:—:L

where r; is the worst-case response time obtained by the schedula-
bility analysis (detailed later in Section 4.1). Under such deadline
miss case, the system state can be captured by the augmented state
vector:

Elk] = [=T [k u¥ [k = 1],..., 6" [k — Ymax]]"

and the system dynamic can be re-written as:

1k + 1] = AgZ[K] + Beulk] )
0
Ag Bi ... By, By I
0 0 0
Ag[k]: rB‘_;‘:z . (&)
oo ... I 0 CI-

where By, = By, and B; = 0,Vi # ¥ u[k—yy] is the latest control
input. The above system dynamic can be simplified as [k + 1] =
(Ag[K] — BelkIKe)ETK] = I)E[k], where Kz = [K, 0].

Control Stability: Assuming we are given the deadline hit/miss
pattern of a control task within a hyper-period, the delay . in
a hyper-period and the transition matrix Ag[k] of each control
period are known (¥k € [0, N]). Thus, we have:

Elk+N] = g[k+N — 1]...$[k + 1]£[k]

[ k
= |1 ¢ [] ¢Lnck
E=k+N -1 =N-1

= ¥ d1k]
The above system under deadline misses is asymptotically stable if
the eigenvalues of &y are within the unit circle for all k [33].
Control Cost: We define the cost of a control task as its ability
to reject an external disturbance. Formally, let us assume that an
external disturbance occurs at the k-th job and brings the system
state to x [k]. We consider the disturbance is rejected if the residual
disturbance after r sampling period satisfies:

|l [k +r]]|
TR < Jen, ¥rzhy,

where J;j is a pre-defined threshold. Let £[k + r] = Dy i E[k]-
Then x [k + r] can be expressed as:

x[k+r] = ff[k+r] = j"‘I"i:+r,i:é‘-!['k] = Fq'kw,ijx[k]:
where [ = [Inxn [Jnxm]T. Then, the control cost is defined as:
Definition 3.1. The control cost metric of a control task r; is
defined as J; = max{hg|¥k }, where hy satisfies:

Ietk+rlll p - vesh. @

Ty, ] <
|| i:+r,|l*f|| ||x[k]||



Approximation of Control Cost: Calculating the precise control
cost through event-based simulation is time-consuming. We try
to approximate it by utilizing the deadline miss bound from the
schedulability analysis (detailed in Section 4.1). Assuming that a
control task satisfies the (k, n) weakly-hard constraint, where k is
an upper-bound of the number of deadline misses in n consecutive
activations. Then, for any i € N, Ag[i] can take at most k different
forms. Similarly, ¢[i] can take at most k different forms. Since &
and n are typically small numbers, we can exhaustively search all
patterns of length n that satisfy the (k n) deadline miss bound
and find out the worst-case pattern as our approximation. Figure 2
shows result of a demo cruise control controller [10], when n = 10
and k changes from 0 to 4. The red line is the approximated cost®.

—— Worst-case comtrol cost
N Al possible patiern

Figure 2: Control cost approximation of a demo controller,
where k ranges from 0 to 4, when n = 10.

3.3 Overall Problem Formulation

Our optimization objective is the overall system-level control cost
defined as the weighted sum of each individual control cost:

T= Y, ot ®
neTr i
where w; are the given weights, 7 is the set of control tasks, and
_jff"’ is the desired control cost of task r; assuming no deadline miss
occurs. We can formulate our problem as:
{P1) Given &, 7, T}, optimize task assignment, selection of error
detection mechanism @ = {o,,,.. ., orl,,‘_rl} such that
# schedulability constraints as defined in Equation (2) are satisfied,
= the stability of control tasks as defined above are satisfied, and
# the error coverage requirement EC_Threshold is satisfied.

4 META-HEURISTIC ALGORITHM FOR
DESIGN SPACE EXPLORATION

Our meta-heuristic algorithm relies on the schedulability analysis

under weakly-hard constraints and the fault-tolerance model. In this

section, we first introduce the two schedulability analysis methods

and then we present our optimization algorithm.

?In this demo example, for k = Z, there is an outlier point when the deadline misses
are evenly distributed.

4.1 Schedulability Analysis

We assume that tasks running on the same CPU is scheduled by the
static priority preemptive (SPP) scheduling policy. In this study, we
leverage two different schedulability analysis methods for weakly-
hard systems. One extends the work from [34], where the deadline
miss model can be upper-bounded by employing typical worst-case
analysis (TWCA). The other extends the event-based schedulabil-
ity analysis in [22]. The event-based schedulability simulates the
execution of tasks within a hyper-period and derives the deadline
miss patterns for all tasks in a single run. In the following, we will
briefly introduce TWCA and then a detailed explanation of the
event-based simulation with error injection.

4.1.1 Bounding Deadline Miss Model Using TWCA. Our schedu-
lability analysis extends the ideas from [20, 34]. The state-of-art
technique [34] is an improved version of [29]. In [29, 34], the task ac-
tivation model is a superposition of typical activation and sporadic
overload. The typical activation is assumed to be feasible whereas
the overload activations can cause at most m deadline misses out of
k consecutive activation of a task. However, neither [29] nor [34]
distinguishes the execution time of different activation classes (Le.
regardless of whether typical or overload activation). In [20], the
authors extend the task model with sporadic long execution time
overload and the TWCA algorithm is extended based on the result
in [29]. In this study, we borrow the task model in [20] and bound
the deadline misses by counting the number of possible overload
activations with the consideration of fault-tolerance techniques.

Worst-case Response Time of Typical Activation: Due to er-
ror detection techniques considered in this work, our approach to
calculate the worst-case response time is different compared to the
common practice as in [20, 29, 34]. More specifically, we explicitly
consider the potentially varying execution time of recovery jobs.
Let B} (g) denote the maximum time needed to process g typical
activations of task r; within any busy window, where the transient
soft error may occur®:

B =@+ Y PP ety o
rehp ()
+max{y?'” (7' (B} (@)))Ve; € hp(z)}.  (10)

Here, the first term is the service demand of the g typical activations;
the second term is the interference from higher priority tasks; and
the last term is the maximum possible overload service demand

due to transient soft error.

Definition 4.1. Worst-case level-i busy window [34]: A worst-case
level-i busy window, denoted as BW;, is the maximal time window
during which tasks of equal or higher priority than task «; have
pending jobs.

BW; can be calculated as following:
BW; = B} (Ky), (11)
where

K;= min{g > 1: B} (q) < 1" (g+ D).

*We assume that the time interval between two consecutive soft errors are large
enough such that soft error will not happen during the execution of recovery jobs.



The worst-case response time can be calculated as:

= max (5/(@) - 5" @),

where 5;‘“’)} is the event distance function of typical activations.

TWCA assumes that task r; is schedulable in the typical model
(i.e,, no transient soft error). However, in the worst case, out of
the K; activations in the worst-case busy window, some may miss
their deadlines. Let us denote these deadline misses by N; and thus
Ni={geN[1< g < KAB (g)- 5" (g) > d;}. These deadline
misses are caused by the overload activations due to transient soft
errors. Thus, in order to bound the maximum number of deadline
misses, we just need to find how many recovery jobs may affect
the k consecutive typical activations. The maximum time window
M";__'f" during which the overload activation of r; may impact the k
activation of task r; can be calculated by [20]:

ATH = Bw; + 8P (k) + 7,
Finally, the number of deadline misses is then bounded by:
Ak

A
dmm; (k) = |N;| % Lﬂ k 1 (12)

EFFor

4.1.2  Event-based Simulation for Exact Deadline Miss Pattern. The
aforementioned schedulability analysis only guarantees a pessimistic
upper-bound to the number of deadline misses within k consecutive
activations. However, the exact deadline hit/miss patterns some-
times have a non-negligible effect on the control cost. Moreover, due
to the randomness of the soft errors, the activation patterns of re-
covery jobs are not clear. Thus, we build an event-based simulation
with error injection. The pseudo-code is shown in Algorithm 1.

Our event-based simulation records the time-stamp of each event
such as the job release time, finish time, etc. we denote the j-th
invocation of task =; as job 6;; = (sg,.cq,;). where sg, = j -t
is the release time of the job. cg,; keeps track of the remaining
computation time of the job. For each task ;, we record its deadline
miss patterns in an array Miss[i], where Miss[i][j] = true if ;'s
j-th job 8;; misses its deadline. event_queue and job_queue are
two job priority queues to store the unreleased jobs and pending
jobs, respectively. event_queue is sorted by the job release time s,
while job_gueue is sorted by the task priority.

We assume that the soft error can arrive any time during the
hyper-period. The algorithm first pushes all typical activations into
the event_quewe. Function In jectError() tries to inject a soft error
for each event and the corresponding re-execution job is pushed into
event_gueue. Then we conduct an efficient even-based simulation
of the whole hyper-period (lines 10-28). If the event belongs to a
task without error detection technique, we just skip to the next
event. For a time point cur_time, any jobs that can be released are
popped from the epent_gqueue and then pushed into the job_gqueue,
and the highest priority job in the job_gueue is scheduled to run.
Here, #y; is the scheduled job at cur_time and 8;; is the next job to
release. Afterwards, the simulation moves to the next time point.

If the scheduled job has not finished at time next, it will update its
remaining execution time cg - and be pushed back to the job_queue.
Every time a job 8, finishes, the simulation records whether it
misses its deadline in Miss[k][[]. After the simulation completes,

the function Veri fyWH Constraint() counts the maximum dead-
line misses of any consecutive Nf activations (iLe., dm m,—{N':f}‘} to
verify whether tasks have met corresponding weakly-hard con-
straints. Once we have finished the simulation of the whole hyper-
period, we clear the error and move to next possible event. The
return value indicates whether current system configuration is
schedulable under the worst-case soft error scenario.

Algorithm 1: EventSim: Event-based Simulation with Er-
ror Injection

1: WCRTAnalysis('T)

z if ¥ e T,ry = d,, then

3 return troe

+ fortask ; € 7 do
s for je {0,... Huperferiod 4y 4,
& enent_gueue, p:.'sﬁ{'ﬂ',- i)
7. forecs event_gueue do
&  if InjectError(e) then
% Bij = event_queue.pop(), cur_time = sq,,
1 while cur_time < HyperPeriod do
11: while sg,; < cur_time do
12 5 = event_queue.pop(), job_queue push(8;;)
1% if job_gueue is empty then
14: cur_time = s,gij
15: else
16: B = job_gqueue.pop(), next = say;
17 response = cur_time + cg,,
18 if response < next then
1% if response < 55, +dy, then
20 Miss[k][l] = false
21 cur_time = response
2z else
2% Miss[k][l] = true
24: cur_time = max(sg,, + dy, , cur_time)
25 else
26: Cggy = Cgyy — (Mext — cur_time)
27 Job_queue.push(8y), cur_time = next
28 ClearError{e)

29: schedulability = Veri fyWHConstraint{Miss)
30 if 1schedulability then

18 return false

iz return true

4.2 Optimization Algorithm

In this section, we develop a meta-heuristic that tries to optimize
control cost while meeting various constraints. We first use a simple
heuristic to decide the initial choice of error detection technique
for each task. Then an initial solution for the whole system is gen-
erated by using a bin-packing scheme [7). Finally, we use simulated
annealing (SA) to further explore the design space.

4.2.1  Initial Solution. The initial system configuration is generated
by two steps. First, we sort the tasks based on their utilizations in
an ascending order. Then, starting from the task with the lowest
utilization, we assign EED to each task until the error coverage
requirement is met. After the decision for error detection technique



is made, we map the taskset onto the underlying hardware platform
using a bin-packing algorithm. The priority of each task is then
assigned using the deadline monotonic priority assignment. The
pseudo-code for obtaining the initial solution is in Algorithm 2.

Algorithm 2: Obtaining Initial Solution

Input: taskset 7, error coverage requirement EC_Threshold
1: Tsort = utilSort()
2: p = getEC()

3: while p < EC_Threshold do

4:  for 1; € Tsort do

5 7;.07; = max (1, tau;.oz, + 1)

6 p =getEC()

7: return binPacking(Tsort)

4.2.2  Overall Meta-heuristic with SA. Algorithm 3 shows our meta-
heuristic optimization. First, the function ObtainInitialSolution()
generates the initial solution as in Algorithm 2. Then, the func-
tion SchedulabilityAnalysis() checks system schedulability by us-
ing either a) the TWCA analysis to give an upper-bound to the
deadline miss number of each task and check whether it meets
the weakly-hard constraints or b) the event-based simulation to
obtain the exact deadline hit/miss pattern. Then CalculateCost ()
returns the control cost: a) if TWCA is used, CalculateCost() gets
current control cost by approximation as discussed in Section 3.2,
or b) if event-based simulation is used, CalculateCost() calculates
the exact control cost using the obtained deadline hit/miss pattern.
Function AddPenalty() adds a penalty to the cost value if current
solution is unschedulable or the error coverage is below the error
coverage requirement EC_Threshold. During each step of the simu-
lated annealing, S¢y, Will randomly move to another configuration
Snew by either swapping the priority of two tasks or changing the
error detection technique or the allocation of a task. If the new
configuration cannot be guaranteed to be schedulable under the
schedulability analysis, a penalty will be added to the cost value.
The new configuration will be accepted if it has a better objective
value; otherwise, the acceptance probability will be calculated based
on the current temperature and the objective difference.

5 EXPERIMENTAL RESULTS

We evaluate our proposed approach with an industrial case study
and a set of synthetic examples. Our controller tasks are derived
based on 4 example LTI systems [10, 24]. The weakly-hard con-
straints for them are chosen such that the control stability of each
task is guaranteed based on the analysis in Section 3. Each non-
control task is randomly assigned with a (k, n) constraint where k
ranges from 0 to 4 and n ranges from 10 to 20. All experiments are
conducted on a server with Intel Xeon Gold 6130 CPU at 2.1 GHz.

5.1 Synthetic Examples

We conduct experiments with a set of 50 synthetic examples. Each
synthetic example consists of 4 non-control tasks and 4 control
tasks, all mapped onto a single-core CPU.

Hard Constraints vs. Weakly-hard Constraints: To see how
much improvement can be obtained from leveraging weakly-hard

Algorithm 3: Meta-heuristic Optimization with SA

1: So = ObtainInitialSolution()

2 Spest = Scur = Snew = So

3: is_sched = SchedulabilityAnalysis(Sp)
4: current_cost = CalculateCost()

s: current_cost = AddPenalty()

6: Npest = Neur = Nnew = current_cost

7. while T > T* do

8
9

k=1
while k < iter_max do
10: Snew = RandomMove(Scyr)
1t: Nnew = CalculateCost() + AddPenalty()
12: if Mnew < Neur then
13: Scur = Snews Neur = Nnew
14: if Spew.is_sched == true A Syew.EC >
EC_Threshold A Heur < Npesy then
15: Spest = min(Scur, Spest)
16: Nbest = Min(Neurs Npest)
17: else if AccepProb(fnew — Neur, T) > rand() then
18: Scur = Snews Neur = Nnew
19: k=k+1

20 T =T *cooling_factor
21: return Spegs, Npest
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Figure 3: Comparison of average error coverage for weakly-
hard-constraint systems and hard-constraint systems.

constraints, we use the event-based SA to explore the maximum
error coverage. The average maximum error coverage over the 50
synthetic examples is shown in Figure 3. Both hard-constraint and
weakly-hard-constraint systems can achieve 100% error coverage
when the system utilization is below 0.4. As the utilization increases,
our approach can make use of the scheduling slack obtained from
the weakly-hard constraints, i.e., allowing certain tasks to miss their
deadlines can enhance the systems fault-tolerance capability. When
utilization is 0.9, both weakly-hard and hard-constraint systems
are not able to achieve meaningful error coverage.

Impact of System Utilization: Then, we study how the system
control cost can be affected by the system utilization and error
coverage requirement. Figure 4 shows the control cost of differ-
ent system utilization while the actual error coverage increases
from 0.1 to 0.7. As expected, when system utilization is 0.9, we
can hardly improve the maximum error coverage and the control



cost increases dramatically with small increase of error coverage
requirement. For system utilization of 0.7 and 0.8, we are able to
find a solution for most of the cases. The maximum error coverage
that can be achieved by 0.8 system utilization is around 0.5, while
the maximum error coverage of 0.7 system utilization is around 0.7.
This information can facilitate the choice among various design
options under different system utilizations.
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Figure 4: Control cost of different system utilization when
error coverage requirement changes from 0.1 to 0.7

Comparison of Heuristic Algorithms: We also compare the ef-
fectiveness of different heuristic algorithms, i.e., the initial solution
(bin-packing), the event simulation based simulated annealing, and
the TWCA based simulated annealing. We run the three algorithms
on a set of synthetic examples with 0.7 system utilization and error
coverage requirement increasing from 0.4 to 0.7. Note that the x-
axis in Figure 5 is the actual error coverage. As we can see, among
the three heuristic algorithms, event simulation based SA produces
the best solution as it offers the lowest control cost under different
error coverage requirements.
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Figure 5: Control cost obtained by different heuristics.

5.2 Industrial Case Study: WATERS Challenge

Our industrial case is derived from the WATERS 2019 Challenge [11],
which consists of 9 tasks and covers a prototype of an advanced
driver-assistance system (ADAS). The underlying reference plat-
form is NVIDIA Jetson TX-2 consisting of 6 heterogeneous cores
and an integrated GPU. [5] provides a detailed discussion of task
modeling and response time analysis, and shows that the original
taskset as presented in WATERS 2019 Challenge is unschedulable.

For the purpose of our study, we assume a homogeneous platform
and that all tasks are running on ARMv8 A57 cores. To make to the
taskset schedulable, we scale the WCET of each task by a scaling
factor. We also add four additional control tasks. Table 2 shows the
maximum error coverage when the scaling factor changes from 0.3
to 0.7, and the number of CPUs changes from 3 to 5. We can see
that lower utilization and more number of CPUs lead to better error
coverage. The error coverage saturates when the scaling factor is
0.3 and 5 CPUs are used.

Table 2: Error Coverage under different scaling factor and
number of CPUs.

Scaling factor
CPU number 0.3 0.4 0.5 0.6 0.7
3 068 | 03 | na. | na. | na.
0.85 | 0.67 | 0.46 | 0.15 | n.a.
5 1.0 | 0.86 | 0.76 | 0.56 | 0.14

Figure 6 shows the trade-off between error coverage and control
cost when the scaling factor is 0.5 and the number of CPUs is 4.
During the experiments, we increase the error coverage require-
ment changes from 0.1 to 0.45. The x-axis in the figure is the actual
error coverage after SA. Note that the minimal error coverage is
0.27 since there are some idle time and OS overhead is not counted
towards the error coverage. As the error coverage requirement in-
creases from 0.3 to 0.5, the control cost rises accordingly. This study
shows that our approach can enable quantitative tradeoff analysis
between error coverage and control cost for designers.
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Figure 6: Tradeoff analysis enabled by our approach between
error coverage and control cost for the WATERS example.

6 CONCLUSION

In this work, we present a novel approach for improving system
fault tolerance by leveraging weakly-hard constraints. Our ap-
proach includes novel control analysis and scheduling analysis
methods under deadline misses, and a meta-heuristic for exploring
the design space. Experimental results demonstrate its effectiveness
in improving fault tolerance and enabling system-level tradeoffs
between control cost and error coverage.
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