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ABSTRACT
Future autonomous systems will employ sophisticated machine
learning techniques for the sensing and perception of the surround-
ings and the making corresponding decisions for planning, control,
and other actions. They often operate in highly dynamic, uncertain
and challenging environment, and need to meet stringent timing,
resource, and mission requirements. In particular, it is critical and
yet very challenging to ensure the safety of these autonomous sys-
tems, given the uncertainties of the system inputs, the constant
disturbances on the system operations, and the lack of analyzabil-
ity for many machine learning methods (particularly those based
on neural networks). In this paper, we will discuss some of these
challenges, and present our work in developing automated, quan-
titative, and formalized methods and tools for ensuring the safety
of autonomous systems in their design and during their runtime
adaptation. We argue that it is essential to take a holistic approach
in addressing system safety and other safety-related properties,
vertically across the functional, software, and hardware layers, and
horizontally across the autonomy pipeline of sensing, perception,
planning, and control modules. This approach could be further ex-
tended from a single autonomous system to a multi-agent system
where multiple autonomous agents perform tasks in a collaborative
manner. We will use connected and autonomous vehicles (CAVs)
as the main application domain to illustrate the importance of such
holistic approach and show our initial efforts in this direction.
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1 INTRODUCTION
Learning-enabled autonomous systems, such as self-driving vehi-
cles and industrial robots, promise huge societal and economic
benefits and have shown promising results in early adoptions. At
the heart of these systems is their ability to sense and perceive
the dynamic environment, reason about the situation considering
various factors and uncertainties, and make decisions accordingly
for system planning, control and other functions. They increas-
ingly rely on the application of sophisticated machine learning
techniques across the autonomy pipeline of sensing, perception,
planning, control, and general decision making.

However, there are significant technical challenges for the de-
sign and runtime operation of these learning-enabled autonomous
systems, hindering their wider adoptions. In particular, as many of
these systems are safety-critical, it is essential and yet challenging
to ensure the correctness of their safety-related functions, espe-
cially given the uncertainties of dynamic surrounding environment
and changing inputs, the lack of analyzability for many machine
learning techniques (particularly the ones based on deep neural
networks), and the constant disturbances to system operations
from environment interference, software and hardware faults, and
malicious attacks [109].
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Figure 1: Illustration of uncertainties and disturbances in
connected and autonomous vehicles.

As an example, Fig. 1 shows the various sources of uncertainties
and disturbances in the operation of connected and autonomous
vehicles (CAVs), including inherent uncertainties from the environ-
ment input, noises in sensing devices, uncertainties in the percep-
tion, planning, and control algorithms (where neural networks
are used widely for the former and increasingly for the latter
two), noises in the actuation devices, disturbances to the software-
hardware execution of the algorithms, and disturbances to the
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communication among vehicles and their surrounding infrastruc-
tures, i.e., the V2X (vehicle-to-vehicle, vehicle-to-infrastructure,
etc.) communication. These uncertainties and disturbances could
lead to unexpected scenarios and cause disastrous system failures,
as evidenced by several high-profile accidents in practice. To ad-
dress them and ensure system safety, a new set of design methods
and tools is greatly needed.

In this paper, we argue that it is important to take a holistic ap-
proach in addressing system safety and other related properties for
learning-enabled autonomous systems, across the different system
layers vertically and the various modules in the autonomy pipeline
horizontally. Vertically-speaking, we need to analyze how system
safety may be affected by the algorithm design (e.g., design of neu-
ral networks) at the functional layer and by their implementations
at the software and hardware layers (e.g., considering whether com-
putation and communication may be carried out within deadlines,
how functional correctness may be affected by transient faults, and
in general whether the assumptions made at the functional layer
can be preserved at the software and hardware layers). Horizontally-
speaking, we need to analyze system safety in an end-to-end and
closed-loop manner, i.e., from sensing to actuation and with the
consideration of system plant. For instance, when considering the
impact of sensing noises or adversarial attacks on sensing input,
we should not stop at the sensing and perception module itself,
but need to analyze the end-to-end effect on safety across sensing,
perception, planning and control modules.

Enabling such holistic view for the design and operation of
learning-enable autonomous systems requires developing new quan-
titative and formalized methods for individual layers and modules,
and requires new formalization and methodologies for cross-layer
and inter-module analysis, design and adaptation. Recently, we
have made some progresses in developing safety-assured design
and adaptation methods for individual modules and across system
layers. In the rest of the paper, we will introduce these initial efforts
from us, and also discuss the general challenges in designing safety-
assured autonomous systems and other state-of-the-art methods.
Section 2 focuses on methods for sensing and perception, Section 3
focuses on planning and control, Section 4 addresses multi-agent
collaboration, and Section 5 concludes the paper.

2 SENSING AND PERCEPTION
In autonomous systems, many of the sensing and perception tasks
are safety-critical and time-critical. For example, imagine an au-
tonomous vehicle is driving and a pedestrian suddenly runs across
the road, as shown in Fig. 2. To avoid an accident and ensure system
safety, it is vital for the vehicle to correctly detect the pedestrian
within a short time. In this section, we will discuss some of the
techniques for ensuring the functional safety and timing safety of
sensing and perception in learning-enable autonomous systems, as
summerized in the figure.

2.1 Functional Safety
Machine learning techniques, especially neural network based ones,
have demonstrated significant improvements on sensing and per-
ception over traditional methods. However, the impact of these
methods on system safety has not been sufficiently studied, which
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Figure 2: Functional and timing safety for the sensing and
perception in learning-enabled autonomous systems.

impedes their further adoption in safety-critical systems. For in-
stance, one major issue that has been raised recently is that neural
networks may misclassify images with small but intentional pertur-
bations, known as adversarial attacks [2, 27, 82]. To achieve better
robustness against adversarial attacks and ensure system safety, we
will need methods for 1) quantitatively evaluating the robustness
of neural networks under input perturbations, and 2) designing
neural networks with more robust structures.

2.1.1 Output Range Analysis for Neural Network Robustness. Out-
put range analysis techniques could provide a quantitative bound
for the output of a neural network when given an input space.
More formally, it solves the following problem: given a neural
network 𝑓 and the input range X, compute the output range of
𝑓 (X) or its overapproximation Y such that 𝑓 (X) ⊆ Y. Such
overapproximation can provide an explicit bound for determin-
ing whether the neural network output falls into an unwanted
region. In the context of adversarial robustness, for a data point 𝑥
with the concerned error bound 𝜖 , we can define the input space as
the small 𝐿∞-norm box [𝑥 − 𝜖, 𝑥 + 𝜖] and estimate the output range
as [𝑙1, 𝑙1]×· · ·× [𝑙𝑔, 𝑙𝑔] · · ·× [𝑙𝑛, 𝑙𝑛] for 𝑛 labels, where 𝑙𝑔 (𝑙𝑔) denotes
the lower (upper) bound of the output in terms of the ground truth.
If 𝑙𝑔 ≥ 𝑙𝑖 , for 𝑖 = 1, · · · , 𝑛, we can safely say that the neural network
is locally robust on 𝑥 with respect to the perturbation 𝜖 .

State-of-the-art methods for output range analysis include sym-
bolic interval propagation (SIP) and constraint programming (CP).
SIP is developed from the earlier work of interval bound propaga-
tion (IBP). It denotes the range of a neuron with a symbolic rep-
resentation, and propagates it layer-by-layer. For instance, ERAN
uses symbolic zonotopes [79], while NNV adopts symbolic image-
star representation [88, 89]. When handling nonlinear operations,
symbolic intervals have to be concretized to range intervals and
lose the dependencies between dimensions. CP methods encode
the neural network as a constraint system and compute the output
range with constraint programming techniques, such as mixed inte-
ger linear programming (MILP) [9, 16, 24, 66, 87] and semi-definite
programming (SDP) relaxation [22, 71]. The main challenge for CP
methods lies on the complexity. It needs to solve a large nonlin-
ear programming problem encoding the entire network and thus
suffers from the curse of dimensionality.
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In [42], we present a new approach that leverages both SIP and
CP. We first compute the interval relaxation for each operation
with a propagation-based method (IBP or SIP) as the initialization
step. Based on the initial range, we use a linear programming (LP)
relaxation approach to better approximate the variable range. Then,
the relaxation can be further tightened via MILP encoding, i.e., by
dividing the input range for each operation into multiple segments.
Our approach can iteratively improve the approximation precision
by increasing the number of segments in the MILP encoding. In ad-
dition, we refine the variable range such that fewer integer variables
are needed to achieve a similar approximation precision. Exper-
iments on a number of common dataset demonstrate significant
improvement of our approach over other state-of-the-art methods
such as ERAN and NNV.

2.1.2 Attack and Uncertainty Mitigation. Knowing the local robust-
ness of neural networks under input perturbations could help us
design more robust networks or retrain existing ones to mitigate
the impact of adversarial attacks. Note that beyond intentional
input perturbations, there could also be inherent data and model
uncertainties to the neural networks. The data uncertainties may
be caused by random input noises or inherent randomness of the
real data, while model uncertainties result from a lack of training
data in certain areas of the input domain (i.e., test example is out of
distribution). To estimate these two, we may use Assumed Density
Filtering (ABF) for data uncertainties and quantile regression or
Monte Carlo methods [25, 67] for model uncertainties. However,
estimating and bounding these uncertainties is generally a very
difficult task, given the large number of scenarios that may occur
during operation.

Designing mitigation strategies against uncertainties and adver-
sarial attacks is therefore a very challenging task. One promising
direction is to conduct end-to-end analysis on how such uncertain-
ties and attacks eventually affect safety at the system level and
design the mitigation strategies accordingly.

2.2 Timing Safety
Besides functional safety, it is equally important to ensure that the
system functionality can be carried out in time. In the case of sens-
ing and perception modules, this means that their implementations
at the software and hardware layers should be sufficiently efficient
for meeting the timing constraints at real-time operation. Achiev-
ing both accuracy and efficiency could be challenging however,
given the complexity of most neural network based approaches
and the often limited resources on many autonomous systems. In
the literature, there has been an extensive body of work address-
ing the efficiency of neural networks from different aspects. We
only discuss a very small subset of them below to illustrate some
widely-explored directions.

Algorithm improvement. Sometimes more efficient algorithms
could be designed for the perception tasks. For instance, object de-
tection [8, 95] and semantic instance segmentation [13, 103] are part
of the main components in many autonomous systems. The algo-
rithms for these perception tasks can be classified into two groups,
the anchor-based methods and the anchor-free methods. Anchor-
based method generate a large number of anchors where objects

may exist on the image, and then classification, localization or seg-
mentation may be performed based on the anchors. The algorithms
include one-stage detectors such as SSD [61] and RetinaNet [59],
two-stage detectors such as faster R-CNN [75] and R-FCN [12], and
instance segmentation models [31, 47, 96]. However, a large amount
of time in anchor-based methods is consumed in anchor generation
and selection. Thus, anchor-free methods are proposed, which use
predefined or learned object key-points/center-points rather than
anchors for better generalization ability and faster detection speed.
Such methods include YOLO v1 [74], CornerNet [51], FCOS [86],
CenterMask [53], etc.
Network architecture design. One important way to improve ef-
ficiency is to explore various architecture designs for the neural net-
works. For instance, depth-wise separable convolution [10, 35, 76],
group convolution [46, 91], and dilated convolution [100] have
been proposed to reduce computation complexity. Many light-
weight network architectures have been proposed in recent years,
such as Shufflenet [102], MobileNet [35, 76], and EfficientNet [83].
Apart from hand-crafted network architectures, extensive research
has also been conducted on automated neural architecture search
(NAS) [11, 36], including for efficiency purpose.
Network pruning and quantization. The general idea of net-
work pruning is to remove the “unimportant” part of neural net-
works to achieve more efficient designs. Such methods typically
include 1) removing unimportant weight connections [14, 30, 52], 2)
removing unimportant neurons [81], and 3) removing unimportant
filters [32, 54]. The goal of network quantization is to reduce the
number of bits for representing neural weights [1, 26, 101]. One
special case in this topic is network binarization [60, 65, 73].
Knowledge distillation. The main idea of knowledge distillation
is to train a smaller model to mimic a pre-trained, larger model or
ensemble of models. This training process is sometimes referred to
as "teacher-student", where the larger model is the teacher and the
smaller one is the student [3, 34]. It has been applied to a variety of
perception tasks for model compression, e.g., for object detection
in [5, 55, 68, 90].
Early-exit networks. Deep neural networks (DNNs) often benefit
from having a large number of layers, but sometimes many data
points in classification tasks can be accurately classified with much
less work. To improve efficiency, the idea of exiting early before
the normal endpoint of the neural network has been proposed.
In [69], convolutional layer features are used to assess the difficulty
of input instances and conditionally activate the deeper layers of
the network. In [84], additional side branch classifiers are added to
a DNN to allow early exit with high confidence. Recently, the early-
exit idea is applied to intermittent inference with non-uniformly
compressed neural networks for energy harvesting devices [99].
Runtime fast-forwarding. Another idea for improving percep-
tion efficiency is to “fast-forward” through the unimportant frames,
i.e., by skipping their processing. This is conceptually similar to the
goal of data summarization but focuses more on runtime adapta-
tion. In [49], we propose a video fast-forwarding framework called
FFNet, to fast-forward a video stream on the fly based on reinforce-
ment learning. The approach can significantly reduce the number
of frames to be process (by more than 80% in the experiments) while
effectively identifying the important ones (performing better than
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ot h er s u m m ari z ati o n t e c h ni q u es i n t h e lit er at ur e). T his a p pr o a c h
h as b e e n f urt h er e xt e n d e d t o m ulti- a g e nt s yst e ms i n [ 4 9 ] ( m or e
d et ails i n S e cti o n 4).

N ot e t h at f or ti mi n g s af et y, it c o ul d b e m or e i m p ort a nt i n s af et y-
criti c al s yst e ms t o e ns ur e t h e pr e dict a bilit y of ti mi n g b e h a vi or, i. e.,
ti mi n g i n t h e w orst c as es, t h a n t h e p ur e e ffi ci e n c y i n t h e a v er a g e
s e ns e. I n [ 1 0 9 ], w e pr o vi d e m or e i n- d e pt h dis c ussi o ns o n t h e c o n c e pt
of ti m e- pr e di ct a bl e D N Ns.

3 P L A N NI N G A N D C O N T R O L

Pl a n ni n g, c o ntr ol, a n d g e n er al d e cisi o n m a ki n g f or a ut o n o m o us
s yst e ms is a n ot h er cr u ci al el e m e nt i n e ns uri n g t h e o v er all s yst e m
s af et y. Gi v e n t h at t h es e m o d ul es g e n er at e a ct u ati o n si g n als t h at
dir e ctl y a ff e ct s yst e m st at e, it is ess e nti al t o h a v e q u a ntit ati v e a n d
f or m ali z e d m et h o ds f or ass essi n g t h eir i m p a ct o n s yst e m s af et y
a n d d esi g ni n g t h e m wit h s af et y ass ur a n c e. I n t his s e cti o n, w e will
st art wit h dis c ussi n g t h e f or m al d e fi niti o ns of c o ntr ol s af et y f or
a ut o n o m o us s yst e ms, a n d t h e n dis c uss s af et y u n d er a si n gl e n e ur al
n et w or k b as e d c o ntr oll er, u n d er m ulti pl e m o d el- b as e d or n e ur al
n et w or k b as e d c o ntr oll ers, a n d u n d er ti mi n g u n c ert ai nti es. N ot e
t h at h er e w e us e “ c o ntr ol” i n a m or e g e n er al s e ns e t h at m a y i n v ol v e
pl a n ni n g a n d ot h er d e cisi o n m a ki n g f u n cti o ns.

C o ntr oll ers
( m o d el-b as e d or
N e ur al n et w or k)

A d a pt or
( O pti o n al)

P h ysi c al 
Pl a nt

𝜅 1

𝜅 𝑛

𝑢 1

𝑢 𝑛

𝑢 𝑥

𝜔

𝑡 = 0 ,1 ,⋯ ,𝑛 ,⋯

𝑥 𝑡 + 1 = 𝑓 ( 𝑥 𝑡 ,𝑢 𝑡 ,𝜔 ( 𝑡 ) )
𝑢 𝑛 𝑡 = 𝜅 𝑛 ( 𝑥 ( 𝑡 ) )

Ti mi n g 
U n c ert ai nt y

Fi g u r e 3: A n ill u st r ati o n of c o nt r ol a n d a d a pt ati o n i n a u-
t o n o m o u s s y st e m s.

Fi g. 3 s h o ws a n ill ustr ati o n of c o ntr ol a n d a d a pt ati o n f or a u-
t o n o m o us s yst e ms, w h er e m ulti pl e m o d el- b as e d or n e ur al n et w or k
b as e d c o ntr oll ers m a y e xist a n d a n a d a pt or c o ul d b e d esi g n e d t o
s wit c h a m o n g t h e m. I n t er ms of s yst e m s af et y, n ot e t h at wit h t h e
e xist e n c e of e xt er n al dist ur b a n c es, t h e c o ntr ol m o d ul e m a y n ot
pr e cis el y f oll o w t h e r ef er e n c e tr aj e ct or y, a n d t h us o nl y e ns uri n g
s af et y of t h e r ef er e n c e tr aj e ct or y d o es n ot g u ar a nt e e t h e s yst e m
s af et y. F or m o d el- b as e d c o ntr oll ers t h at tr a c k t h e r ef er e n c e tr a-
j e ct or y, s yst e m s af et y c a n b e e ns ur e d b y b o u n di n g t h e tr a c ki n g
err or of t h e c o ntr ol b ef or e t h e tr aj e ct or y pl a n ni n g. F or i nst a n c e
i n [1 8 ], t h e tr a c ki n g err or is b o u n d e d f or tr aj e ct ori es t h at ar e m o d-
ell e d wit h t h e s a m e or di n ar y di ff er e nti al e q u ati o n ( O D E) of t h e
tr a c ki n g c o ntr ol wit h o ut c o nsi d eri n g e xt er n al dist ur b a n c e. T his
a p pr o a c h is e xt e n d e d i n [ 1 9 ], w h er e t h e tr aj e ct ori es ar e o nl y r e-
q uir e d t o b e pi e c e- wis e c o nti n u o us wit h r es p e ct t o t h e O D E of t h e
tr a c ki n g c o ntr ol. As t h e pl a n ni n g m o d els ar e us u all y c o ars er t h a n
t h e r e al s yst e m d y n a mi cs f or e ffi ci e n c y p ur p os e, t h e fr a m e w or k

F as Tr a c k [ 3 3 , 8 0 ] pr o p os es m et h o ds b as e d o n H a milt o n-J a c o bi ( HJ)
r e a c h a bilit y a n d s u m- of-s q u ar es ( S O S) pr o gr a m mi n g t o b o u n d t h e
tr a c ki n g err or f or s u c h m o d el- mis m at c h e d pl a n ni n g. Ot h er w or ks
of s af et y- ass ur e d m o d el- b as e d c o ntr ol i nt e gr at e t h e pl a n ni n g a n d
c o ntr ol t o g et h er, a n d l e v er a g e r e a c h a bilit y a n al ysis a n d r o b ust i n-
v ari a nt s ets t o g u ar a nt e e t h e s yst e m s af et y, i n cl u di n g m et h o ds
s u c h as b arri er c erti fi c at es [ 3 8 , 7 0 , 9 7 ], T a yl or m o d el [7 , 2 8 ], a n d
r e a c h a bl e-s et b as e d m o d el pr e di cti v e c o ntr ol ( M P C) [ 3 9].

Wit h t h e f ast a d v a n c e m e nt of a ut o n o m o us a p pli c ati o ns, n e w
c h all e n g es h a v e ris e n f or e ns uri n g c o ntr ol s af et y. First, d u e t o t h e
i n cr e asi n g a p pli c ati o n of m a c hi n e l e ar ni n g t e c h ni q u es i n c o ntr ol,
a n al y zi n g s yst e m s af et y r e q uir es n e w m et h o ds f or t h e c as es of a
n e ur al n et w or k b as e d c o ntr oll er or m ulti pl e s wit c hi n g c o ntr oll ers
wit h s o m e b ei n g n e ur al n et w or k b as e d. T h e n, c o m pl e x d e cisi o n
m a ki n g pr o c ess m a y als o bri n g ti mi n g u n c ert ai nti es. I n t h e r est of
t h e s e cti o n, w e m ai nl y f o c us o n t h e s af et y v eri fi c ati o n of s yst e ms
wit h n e ur al n et w or k b as e d c o ntr oll ers a n d wit h ti mi n g u n c ert ai n-
ti es. We st art wit h a m or e f or m al d e fi niti o n of c o ntr ol s af et y ( b as e d
o n t h e c o n c e pt of st at e r e a c h a bilit y) t h at w e c o nsi d er.

C o nsi d er a n a ut o n o m o us s yst e m wit h st at e 𝑥 (𝑡 ). T h e pl a n ni n g
m o d ul e is d esi g n e d t o b uil d a r ef er e n c e tr aj e ct or y 𝑥 𝑟 𝑒 𝑓 (𝑡 ), 𝑡 ∈ [ 0 , 𝑇] ,
w hi c h r e a c h es 𝑥 𝑟 𝑒 𝑓 (𝑇 ) ∈ 𝑋 𝑓 at ti m e 𝑇 . H er e 𝑋 𝑓 is t h e t ar g et st at e
s p a c e, wit h t h e c o nstr ai nt 𝑥 𝑟 𝑒 𝑓 (𝑡 ) ∉ 𝑂 (𝑡 ),∀ 𝑡 ∈ [ 0 , 𝑇] , w hi c h r e-
q uir es a v oi di n g a n y o bst a cl es or u ns af e r a n g e 𝑂 (𝑡 ) at all ti m es.
T h e c o ntr ol m o d ul e is d esi g n e d t o c o m p ut e t h e c o ntr ol si g n al 𝑢 (𝑡 )
t o m a k e t h e s yst e m f oll o w t h e r ef er e n c e tr aj e ct or y. T h e s yst e m
d y n a mi cs c a n b e m o d ell e d b y a n O D E 𝑥 = 𝑓 (𝑥, 𝑢, 𝑤 ), w h er e 𝑤 is
t h e e xt er n al dist ur b a n c e t o t h e s yst e m. F or m all y, w e c a n d e fi n e t h e
r e a c h a bilit y a n d s af et y of t h e a ut o n o m o us s yst e m as f oll o ws:

D e fi niti o n 3. 1 ( R e a c h a bilit y). Gi v e n t h e i niti al st at e s p a c e 𝑋 0 ,
ti m e h ori z o n 𝑇 , t ar g et st at e s p a c e 𝑋 𝑓 a n d dist ur b a n c e b o u n d 𝑊 ,
t h e s yst e m is r e a c h a bl e f or t h e c o ntr oll er 𝑢 (𝑡 ), 𝑡 ∈ [ 0 , 𝑇] if ∀ 𝑥 (0 ) ∈
𝑋 0 ,∀ 𝑤 ∈ 𝑊 , 𝑥 (𝑇 ) ∈ 𝑋 𝑓 .

D e fi niti o n 3. 2 ( S af et y). Gi v e n t h e i niti al st at e s p a c e 𝑋 0 , u ns af e
st at e s p a c e 𝑂 (𝑡 ), a n d dist ur b a n c e b o u n d 𝑊 , t h e s yst e m is s af e f or
t h e c o ntr oll er 𝑢 (𝑡 ) if ∀ 𝑥 (0 ) ∈ 𝑋 0 ,∀ 𝑤 ∈ 𝑊 , 𝑥 (𝑡 ) ∉ 𝑂 (𝑡 ).

S af et y u n d e r a si n gl e n e u r al n et w o r k b a s e d c o nt r oll e r. N e u-
r al n et w or k b as e d m et h o ds ar e i n cr e asi n gl y b ei n g us e d i n pl a n ni n g
a n d c o ntr ol as t h e y m a y pr o vi d e b ett er p erf or m a n c e t h a n m o d el-
b as e d m et h o ds a n d als o d o n ot r e q uir e b uil di n g c o m pl e x, c ostl y,
a n d err or- pr o n e p h ysi c al m o d els. T h e s af et y of n e ur al n et w or k c o n-
tr oll e d s yst e ms ( N N C Ss) h as b e e n r e c e ntl y c o nsi d er e d i n [1 5 , 4 3 , 4 8 ].
T h es e w or ks s h ar e t h e si mil ar m et h o d ol o g y t h at a tr a ct a bl e m o d el
is first us e d t o o v er a p pr o xi m at e t h e n e ur al n et w or k c o ntr oll er a n d
t h e n t h e s af et y of t h e n e w s yst e m wit h t h e a p pr o xi m at e d c o ntr oll er
is v eri fi e d. D u e t o t h e o v er a p pr o xi m ati o n, t h e s af et y of t h e n e w
s yst e m is a s u ffi ci e nt c o n diti o n f or t h e s af et y of t h e ori gi n al N N C S,
a n d h e n c e t h e a p pr o a c h is s o u n d. T h e di ff er e n c es a m o n g di ff er e nt
w or ks r esi d e o n t h eir c h oi c e of t h e a p pr o xi m ati o n m o d el a n d t h e r e-
s ulti n g a p pr o xi m ati o n err or. I n [ 4 8 ], a di ff er e nti a bl e n e ur al n et w or k
is e q ui v al e ntl y tr a nsf or m e d i nt o a h y bri d s yst e m, a n d t h e n t h e e n-
tir e s yst e m is v eri fi e d as a h y bri d s yst e m. I n [1 5 ], a ut h ors f o c us o n
R e L U n et w or ks a n d us e pi e c e wis e p ol y n o mi als f or a p pr o xi m ati o n.
I n o ur w or k [4 3 ], w e utili z e B er nst ei n p ol y n o mi als f or a p pr o xi-
m ati o n a n d pr o p os e a s a m pli n g- b as e d err or esti m ati o n a p pr o a c h
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based on Lipschitz constant of the network. Due to the fact that
Bernstein polynomials could be a universal approximator for con-
tinuous functions, our approach can handle most common types of
neural networks, including Sigmoid, ReLU, tanh, and combinations
of them. However, this approach is not sufficiently efficient for net-
works that require a large number of samplings or networks with a
large Lipschitz constant. To improve the efficiency of our approach,
in [20], we develop a knowledge distillation approach to retrain
a network for reducing its Lipschitz constant while maintaining
similar performance, such that the resulting NNCS is easier to ver-
ify. Then in [21], we improve the sampling efficiency via parallel
computing and GPU acceleration.

Safety undermultiplemodel-based or neural network based
controllers. In practice, it is common to have multiple controllers
available for the same control function. They could be designed by
different teams or based on different design methodologies, includ-
ing well-established model-based controllers and emerging neural
network based ones. They could each have their own advantages
and disadvantages, e.g., some aremore robust but less efficient while
others are the opposite. Thus, it could be beneficial to conduct run-
time adaptation (switching) among the controllers based on the
current system state and mission requirements, as shown in Fig. 3.
For instance, in [77], rule-based switching logic among application
controllers and a safety controller is proposed to enhance system
performance and fault tolerance. In [72], multiple controllers are
dynamically-weighted based on reinforcement learning (RL) to
compute the system control input for improving performance. In
our work [45, 92], RL-based switching approaches are developed
with safety guarantees based on invariant set computation, which
is essential for safety-critical systems.

Safety under timing uncertainties. As shown in Fig. 1, at the
software and hardware layers, there could be disturbances to system
operations (e.g., computation, communication, or storage opera-
tions) due to environment interference, transient faults, ormalicious
attacks. The effects of many of such disturbances manifest as timing
uncertainties, where the system operations may miss their deadlines
or fail entirely. Under traditional hard timing constraints for safety-
critical systems, any deadline misses will be deemed as system
failures. However, many system functions (e.g., control, planning
and perception functions) have some inherent robustness and can
sustain occasional and bounded deadline misses from disturbances,
while still meeting their performance and safety requirements. To
more accurately capture system behavior under timing uncertain-
ties (execution disturbances) and formally analyze their properties,
we propose to leverage the weakly-hard paradigm. One common
type of weakly-hard formalization is the so-called (𝑚,𝑘) constraint,
where a system operation (i.e., a task) is allowed to miss at most𝑚
times during any 𝑘 consecutive activations. By allowing deadline
misses through weakly-hard constraints, we could exploit such
flexibility to facilitate system retrofitting and runtime adaptation,
for improving system performance, safety, security, etc.

The first key to leverage weakly-hard constraints is to formally
verify that system functions can still meet their requirements (e.g.,
safety requirements) under the allowed deadline misses. In [44], we
propose an approach based on exponential stability for formally

verifying the safety of control functions under weakly-hard con-
straints, and further extend it to more general systems in [37] by
leveraging descretization techniques and graph theory. Our experi-
ments demonstrate that often the safety of control functions can
still be proven in the cases where a single deadline miss is always
followed by several successful completions. It becomes much harder
to prove the control safety when consecutive deadline misses are
allowed to occur. This shows that beyond the frequency of deadline
misses (or disturbances in general), the temporal pattern of these
misses has a significant impact on system safety, which is precisely
what weakly-hard constraints try to capture.

Knowing whether the system can safely sustain missed dead-
lines could enable proactive skipping of operations. In [45], we
propose a safety-assured RL-based online adaptation framework
to proactively skip control steps for saving actuation energy. The
skipping decision is made according to the real-time system state,
which significantly reduces the pessimism from the worst-case anal-
ysis during offline verification. The online adaptation framework is
shown to be effective in leveraging the robustness of controllers
for energy saving, while maintaining system safety. In [93], we
formally analyze control stability under various deadline miss pat-
terns, and explore control periods that can improve performance
while maintaining stability under deadline misses. Note that shorter
sampling periods typically lead to better control performance and
stability, however on a resource-limited platform, the increased
execution load may lead to deadline misses that are detrimental to
performance and stability. Thus, our approach provides a quanti-
tative analysis of the tradeoff between the two factors, and helps
identifying the control period that has the optimal performance
with guaranteed stability.

We can also leverage weakly-hard paradigm at the design time
to help system retrofitting. Our work in [58] analyzes how much
deadline misses certain control functions can accommodate under
safety requirements, and extracts those scheduling slack to facilitate
adding monitoring tasks for improving system security. In [57], we
develop an approach for analyzing control stability under deadline
misses and leveraging the obtained slack to apply fault-tolerance
techniques for transient errors, including explicit output compari-
son (EOC) and embedded error detection (EED) techniques [104].

4 MULTI-AGENT COLLABORATION
In some application domains, autonomous systems may collabo-
rate with each other to improve system safety and performance.
However, such collaboration often faces its own safety challenges.
In this section, we will discuss these aspects.

Some well-known traffic accidents involving autonomous ve-
hicles clearly demonstrate the limited capability of a single au-
tonomous vehicle. For example, in March 2017 at Tempe, Arizona,
an Uber autonomous vehicle going straight collided with a left-turn
vehicle in the opposing direction [29], as shown in Fig. 4. This acci-
dent could be avoided if the autonomous vehicle had out-of-sight
situational awareness or traffic signal phase plan. Many researchers
thus argue the importance and necessity of collaboration between
autonomous vehicles and Road Side Units (RSUs), which can extend
perception range, improve detection accuracy, and lead to more
efficient planning and control.
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V1

V2

Figure 4: Illustration of the Uber accident. When the traffic
signal turns yellow from green, two orange carsmake a com-
plete stop; while the autonomous vehicle V2 intends to get
through the intersection before the traffic signal turns red as
it cannot stop before the intersection. The view of the left-
turn vehicle V1 is blocked by the two orange vehicles and it
enters the intersection when the signal is yellow. Then V2
and V1 collide in the intersection.

Based on connectivity provided by vehicular ad-hoc networks,
many connected vehicle applications have been proposed, such as
Cooperative Adaptive Cruise Control (CACC) [94], Autonomous
Intersection Management (AIM) [17, 78], and so on. In these appli-
cations, a group of connected vehicles collaboratively make deci-
sions to improve traffic safety and efficiency, and can be viewed
together as a multi-agent system. There is a rich literature on al-
gorithm design at the functional layer for multi-agent systems. In
our work [50], as mentioned in Section 2, we propose an adaptive
and consensus-based framework, named DMVF, for distributed
multi-agent video fast-forwarding in real-time. In DMVF, multi-
ple stationary or mobile cameras communicate with each other
and dynamically decide what fast-forwarding paces to use. DMVF
offers high coverage, low processing rate, and small communica-
tion overhead, and can be applied to a variety of resource-limited
multi-agent systems to balance performance, safety, and efficiency.
In [40, 41], we propose a hierarchical MPC framework to efficiently
control multi-agent systems with safety guarantees for linear and
switched linear dynamical systems, respectively. In [63, 64], we fo-
cus on CAVs in particular and leverage the Markov decision process
(MDP) model to capture network-level traffic information, which is
then combined with a locally-optimal motion planner to improve
long-term travel efficiency in mixed traffic stream. Our simula-
tions demonstrate statistically significant efficiency for the subject
vehicle and its surrounding vehicles in different traffic states.

While those designs based on multi-agent collaboration provide
many benefits, significant challenges arise when considering the
potential disturbances to V2X communication from environment
interference, device faults, or malicious attacks. For instance, the
work in [6] analyzes the vulnerability of intelligent traffic signal
that collects Basic Safety Messages (BSMs) from vehicles for signal

phase planning. It demonstrates that spoofing attacks from a single
attacker can lead to a significantly worse system performance when
compared with the case of no connectivity. The work in [98] shows
that, in dense traffic conditions, the V2X communication delay can
be as much as several hundred milliseconds, which may fail to meet
the requirements of safety-critical applications. The work in [85]
studies the string stability of CACC platoon under communication
delays and shows that the string stability cannot be guaranteed
when the communication delay exceeds an upper bound.

Our work [56, 105–108] conducted in-depth studies of CACC and
AIM applications under communication delays and packet losses,
and proposed delay-aware safety-assured designs. For instance, our
recent work in [106] proposes a communication delay-tolerant pro-
tocol for general multi-lane intersection management. We model
the proposed protocol as a finite state machine and define timeouts
in the protocol to address communication delays and packet losses.
We formally prove that our protocol is safe, deadlock free, and satis-
fies the liveness property. We also demonstrate that it outperforms
the various designs of smart traffic signals based on simulations in
an extended traffic simulation suite SUMO.

Interactions between autonomous vehicles and human-driven ve-
hicles also havemajor impact on system safety. Our recentwork [62]
explicitly models driving attitudes of vehicles in a lane changing
process, and investigates how the performance and safety of a sin-
gle vehicle and that of the entire system will be influenced by the
level of information sharing of personal driving attitudes among
autonomous and human-driven vehicles. The work in [23] consid-
ers time-varying, probabilistic characteristics of human behavior,
and proposes a Bayesian model to estimate the confidence in its
human model. The robot can thus adapt its motion plan according
to this confidence. The work in [4] proposes a hierarchical rein-
forcement and imitation learning (H-REIL) approach for improving
the safety during the interaction between autonomous vehicles and
human-driven vehicles in near accident scenarios.

5 CONCLUSION
In this paper, we discuss the challenges in addressing safety and
safety-related properties in learning-enabled autonomous systems,
argue the importance of taking a holistic approach, and introduce
some of our initial efforts in this direction, along with other state-
of-the-art methods.
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