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A B S T R A C T

This paper characterizes fabric anisotropy of granular soils by using both two-dimensional (2D) and three-
dimensional (3D) images and evaluates the accuracy and effectiveness of using 2D images to characterize fabric
anisotropy in 3D soils. The X-ray computed tomography (X-ray CT) is used to reconstruct the 3D volumetric
images of five air-pluviated sand specimens. Then, six slices are obtained by vertically cutting the 3D volumetric
image in an angle increment of 30°. The 3D and 2D images are analyzed to determine long axis fabric, contact
normal fabric, and branch vector fabric. The results show that 2D images produce satisfactory predictions for
long axis fabric and branch vector fabric. The 2D images produce satisfactory predictions for contact normal
fabric for rounded to well-rounded sands, but underestimate or contain large uncertainties to predict contact
normal fabric for very angular to sub-rounded soils. This study shows that particle shapes affect the inherent
fabric anisotropy in sands. Elongated sands tend to have stronger degrees of long axis and branch vector fabric
anisotropy. Angular sands tend to have stronger degrees of contact normal fabric anisotropy.

1. Introduction

In natural sedimentary soils, particles depositing through water and
air generally align their largest projected surface normal to the de-
positional direction. As such, cross-anisotropic fabric develops in allu-
vial, coastal, and lacustrine deposits [1,2]. The deposit direction is
defined as fabric direction in this study. Therefore, macro-mechanical
behavior of soils depends on the relative angles between loading and
fabric directions.

The laboratory test results show that when angles between loading
and fabric directions change from zero to 90°, friction angle of sands
would typically decrease by 4–16° [3–7], bearing capacity would ty-
pically decrease by 25–34% [8], and shear modulus, constrained
modulus, and elastic modulus would typically decrease by 20–30% [9].
These studies demonstrated the importance of fabric anisotropy on the
mechanical behavior of granular soils.

Fabric can be quantified by spatial distributions of particle long
axes, contact normals and branch vectors [10,11], as shown in Fig. 1. In
this research, results of three types of fabric characterizations are de-
fined as long axis fabric, contact normal fabric, and branch vector
fabric, respectively. Researchers have been using both two-dimensional
(2D) and three-dimensional (3D) images of sand specimens to quantify
three types of fabrics.

In early works, Oda [4] and Oda and Nakayama [11] injected resin
into the pores of sand specimens to solidify them and then cut them into
thin sections. They manually traced the orientations of particles’ long
axes to determine spatial distributions of particle long axes to quantify
long axis fabric anisotropy in sands. Later, Kuo et al. [12] and Yang
et al. [13] used the same method to cut sand specimen as Oda [4] and
Oda and Nakayama [11] did. However, instead of using manual
methods to trace particle long axes, they developed image processing
techniques to automate such process. The key steps of the image pro-
cessing method included a thresholding technique to separate particles
and resins, and an image segmentation technique to separate contacting
particles. These techniques pioneered the development of image-based
fabric characterization methodologies. However, their techniques had
limitations. Particles must have a different coloration than the back-
ground resin. It was very challenging to adequately define the bound-
aries of individual particles and correctly segment contacting particles
in natural soil images.

To address these limitations, Zheng and Hryciw [1,2] proposed a
rotational Haar wavelet technique to quantify fabric from particle as-
sembly images. This technique eliminated resin impregnation, spe-
cimen cutting, image thresholding, and image segmentation processes.
This technique analyzed texture patterns of particle assembly images to
determine particle long axes orientation. This technique can rapidly
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and accurately quantify cross-anisotropic fabric based on one cross-
section to infer fabric in 3D sand specimens, which significantly facil-
itates fabric characterization.

To characterize fabric in 3D sand specimens, the X-ray computed
tomography (X-ray CT) must be used to scan the specimen and re-
construct the microstructure. Fonseca [10,14] used X-ray CT to in-
vestigate evolutions of three types of fabrics (i.e., long axis fabric,
contact normal fabric, and branch vector fabric) in sands in triaxial
tests. Alam et al. [15] and Imseeh et al. [16], and Al Mahbub and Haque
[17] used X-ray CT to investigate evolutions of three types of fabric in
sands in oedometer tests. Soriano et al. [18] used X-ray CT to analyze
the contact normal fabric of fiber-reinforced sands. Druckrey et al. [19]
used X-ray CT to analyze contact normal fabric in sands. Wiebicke
[20,21] used X-ray CT to analyze long axis and contact normal fabrics.
Recently, Sun [22] developed a series of computational geometry
techniques to analyze volumetric images to determine three types of
fabrics.

X-ray CT is an ideal technique to characterize fabric in 3D sand
specimens. However, the shortcomings of X-ray CT are apparent. First,
the initial cost of an X-ray CT device is very high, and an experienced
technician is required to operate and maintain it. Second, because of
constraints of resolution and field of view, the X-ray CT can only scan a
small specimen. The scanned specimen sizes reported in the literature
[19,23–27] are typically 12mm in diameter and 24mm in height.
Therefore, X-ray CT can only be used to investigate fabric in uniform
fine sands. Third, processing X-ray CT images is computationally de-
manding and time-consuming requiring high-performance computing
resources. Fourth, extensive imaging processing skills and specialized
software are required for analyzing X-ray CT images, which are usually
not familiar to geotechnical engineers. Therefore, 3D fabric character-
izations are limited to only a few high-end research laboratories; and it
has not been used in practice by common soil laboratories.

Due to limitations of X-ray CT techniques, researchers have been
cutting 3D specimens into 2D slices and analyzing 2D images to infer
fabric in 3D sand specimen [1,2,5,12,13,28–30]. The results may not be
accurate compared with 3D fabric characterizations based on X-ray CT
techniques, but 2D images have advantages. First, it is simple and can
be implemented using off-the-shelf cameras without high-cost X-ray CT.
Second, by using good cameras, this method can analyze a large spe-
cimen without constraints of field of view and resolution. Third, this
method does not require extensive computations and complicated
image processing skills. However, the accuracy and effectiveness of
fabric characterizations based on 2D images for predicting 3D fabric in
cross-anisotropic granular soils are unknown.

This study will use both 2D and 3D images to quantify fabric ani-
sotropy of five sand specimens in the dense condition: crushed lime-
stone (very sand to angular particles), Agsco sand (sub-angular parti-
cles), griffin sand (sub-angular to sub-rounded particles), Ottawa sand

(rounded to well-rounded particles) and glass beads (well-rounded
particles). The 2D and 3D fabric characterizations will be compared to
evaluate the effectiveness of the 2D fabric characterizations for pre-
dicting 3D fabric characterizations. This study may help researchers
and practitioners to decide which characterization methodologies (i.e.,
simple but less accurate 2D method or complicated but accurate 3D
method) should be used in their analyses.

Particle shape significantly affects macro-mechanical behavior of
coarse-grained granular soils. Elongated and angular particles can in-
terlock with each other to form larger coordination number and the
stronger load-bearing skeleton of granular soils. Experimental and nu-
merical studies have shown that elongated and angular soils exhibit
larger index void ratios, a larger angle of internal friction, a larger di-
latancy, a larger constant volume friction angle, and a larger small-
strain modulus than spherical and rounded soils [1,31–43]. Based on
fabric characterizations of five sands with a range of particle shapes, the
second goal of this paper is to investigate the effects of particle shape on
the fabric anisotropy in sands.

2. Fabric characterization and visualization

2.1. 3D fabric tensor

Spatial orientations of particle long axes, contact normals, and
branch vectors are quantified by a second-order fabric tensor φ*ij
[44,45]:

∑= =φ
N

n n i j* 1
*

* *, ( , 1, 2, 3)ij
N

i j
* (1)

where the superscript * represents either ‘p’, ‘c’ or ‘b’ meaning particle
long axes, contact normals or branch vectors, respectively; n *i (i=1, 2,
3) are the components of a 3D unit vector n*, which could be a particle
long axis (*= p), a branch vector (*= b) or a contact normal (*= c);
N* is the total number of vectors n* in the assembly of particles.

Eq. (1) yields a 3-by-3 symmetric matrix. The principal values (i.e.,
eigenvalues) of the fabric tensor, defined as φ *1 , φ*2 , and φ*3 , are com-
monly used to perform advanced geotechnical analysis, such as the
development of anisotropic constitutive models [46–50] and analysis of
DEM results [51–55]. For natural sedimentary soils exhibiting cross-
anisotropic fabric, as shown in Fig. 2(a), φ*2 , and φ*3 should be very close
to each other. The φ *1 is the fabric direction (F in Fig. 2(a)), which
should be close to the vertical direction. The angle between F and the
horizontal plane is defined as β, which should be close to 90°. For cross-
anisotropic fabric, the single parameter β can be used to quantify fabric
direction relative to the horizontal plane.

2.2. 3D rose diagram and density function

Orientations of particle long axes, contact normals and branch
vectors in 3D space can be visualized by a rose diagram. For example,
this paper generates a random distribution of vectors in 3D space. These
vectors are plotted as a 3D rose diagram in Fig. 3(a). Each bar re-
presents the frequency of vectors in this direction in the 3D space.

The 3D rose diagram can be represented by a 3D density function f
(n) [45]:
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where D*ij is the second-order deviatoric fabric tensor and D*ijkl is the
fourth-order deviatoric fabric tensor:
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Fig. 1. Schematic graph of directional parameters for fabric characterizations.
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In Eqs. (2) and (3), the δij is the Kronecker delta and the φ*ij and φ*ijkl
are the second-order and the fourth-order fabric tensors, respectively.
The second-order fabric tensor is defined in Eq. (1). The fourth-order
fabric tensor is defined as:

∑= =φ
N

n n n n i j k l* 1
*

* * * *, ( , , , 1, 2, 3),ijkl
N

i j k l
* (5)

The vectors in Fig. 3(a) are used to determine the density function
by using Eqs. (1)–(5). The result is shown in Fig. 3(b). The density
function is essentially a best-fitting surface of the 3D rose diagram. The
previously defined principal values (i.e. φ *1 , φ*2 , and φ*3 ) and fabric di-
rection (F and β) are computed using Eq. (1) and superimposed on the
3D density function in Fig. 3(b).

2.3. 2D fabric tensor

In the cross-anisotropic granular soils in Fig. 2(a), the particles de-
velop isotropic fabric in the depositional plane, and therefore, φ*2 and
φ*3 should be the same [2,11]. Therefore, we only need to analyze one
slice in the x1–x3 plane to determine three principal values of φ *1 , φ*2 ,
and φ*3 , as shown in Fig. 2(b). Based on this concept, Oda and Na-
kayama [11] developed the fabric characterization method based on 2D
images.

In the x1–x3 plane in Fig. 2(b), Eq. (1) is simplified as a 2D fabric
tensor (the bar on the top indicates it is a 2D fabric tensor):

∑= =φ
N

n n i j¯ * 1
*

¯ * ¯*, ( , 1, 2)ij
N

i j
* (6)

where n̄ *i (i=1, 2) are the components of a 2D unit vector n̄*. Eq. (6) is
a 2-by-2 matrix having two principal values of φ̄ *1 and φ̄*3 .

Assuming that the principal values φ̄ *1 and φ̄*3 in a 2D image are

proportional to the principal values φ *1 and φ*3 in a 3D image [11] and
knowing that φ*2 =φ*3 (for cross-anisotropy) and + + =φ φ φ* * * 11 2 3 , the
principal values of the fabric tensor φ *1 , φ*2 , and φ*3 in 3D sands can be
obtained as:
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The fabric direction F is the eigenvector of φ̄ *1 , and the angle be-
tween F and the horizontal plane is β as shown in Fig. 2(b). Therefore,
by analyzing one slice of the cross-anisotropic specimen, the 3D fabric
characterizations, including φ *1 , φ*2 , φ*3 and β, can also be determined.

2.4. 2D rose diagram and density function

Orientations of particle long axes, contact normal, and branch
vectors in the 2D plane can be plotted as a 2D rose diagram, as shown in
Fig. 4.

The 2D rose diagram can be quantified by a 2D density function
[45]:

= + + =f n
π

D n n D n n n n i j k l¯ ( ) 1
2

(1 ¯ * ¯ * ¯* ¯ * ¯ * ¯* ¯ * ¯ *), ( , , , 1, 2),ij i j ijkl i j k l (8)

The second-order deviatoric fabric tensor D̄*ij and the fourth-order
deviatoric fabric tensor D̄*ijkl from 2D images are

= ⎛
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In Eqs. (9) and (10), the δij is the Kronecker delta; the φ̄*ij can be
computed from Eq. (6). The φ̄*ijkl is the fourth-order fabric tensor in 2D
images:

Fig. 2. Fabric characterizations by 3D and 2D images: (a) Cross anisotropic fabric in 3D soil specimen; and (b) 2D fabric characterization in one slice to estimate
fabric anisotropy in 3D soil specimen.

Fig. 3. Fabric visualization: (a) 3D rose diagram; and (b) 3D density function f
(n).

Fig. 4. The 2D rose diagram and 2D density function f(n).
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∑= =φ
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The vectors in Fig. 4 are used to determine the 2D density function
by using Eqs. (8)–(11). The density function is superimposed as the
curve in Fig. 4, which is essentially a best-fitting curve of the 2D rose
diagram. The previously defined principal values (i.e. φ̄ *1 and φ̄*3 ) and
fabric direction (F and β) are also superimposed on the 2D density
function in Fig. 4.

2.5. Degree of fabric anisotropy

To quantify the degree of fabric anisotropy of 3D soil specimens,
Barreto and O’Sullivan [55] proposed a generalized octahedral fabric
factor:

= − + − + −φ φ φ φ φ φΔ* 1
2

[( * *) ( * *) ( * *) ]D3 1 2
2

1 3
2

2 3
2 0.5

(12)

where the superscript * represents either ‘p’, ‘c’ or ‘b’ meaning degrees
of long axis fabric anisotropy, contact normals fabric anisotropy, or
branch vectors fabric anisotropy, respectively. In 2D fabric character-
izations, φ*2 equals to φ*3 . Therefore, the Eq. (12) is simplified as

= −φ φΔ* * *D2 1 2 .

3. 3D and 2D images of soil specimens

3.1. Soil specimen

Five sand specimens were used in this study, including crushed
limestone (very angular particles), Agsco sand (angular to sub-angular
particles), Griffin (subangular to sub-rounded particles), Ottawa sand
(rounded to well-rounded particles) and glass beads (well-rounded
particles). For each sand, we manually picked 2925 particles in the size
range of #30 sieve (0.595mm) to #16 sieve (1.19 mm). These particles
were weighted and then were funneled into a 12mm diameter plastic
cylinder to generate a loose specimen. The designed relative density
was 85% for five sand specimens. Therefore, based on the designed
relative density, final heights of these five sand specimens in the cy-
linder were computed as 15.5 mm, 14.0mm, 13.0 mm, 12.4mm, and
12.0 mm for crushed limestone, Agsco sand, Griffin sand, Ottawa sand,
and glass beads respectively. Then, the cylinder was mounted on a vi-
bration table and was shaken until the specimens reached the designed
heights.

3.2. Improve watershed analysis to identify individual particles

A high-resolution X-ray CT was used to scan the soil specimen with a
spatial resolution of 12 µm/voxel. Having obtained 3D volumetric
images, individual soil particles were identified by image segmentation
techniques. The first step was to use image thresholding techniques
[56] to segment air and particles. This resulted in a binary image, in
which the soil particles had a voxel value of ones (white color), and the
air had a voxel value of zeros (black color). In this binary image, the soil
particles were contacting with each other. Therefore, the second step
was to use a watershed analysis [27,57] technique to segment con-
tacting particles.

The watershed analysis cannot discriminate two contacting particles
and a peanut-shaped particle, and therefore, mistakenly segmented
peanut-shaped particles into two and even more particles [58]. An
improved watershed analysis, developed by Sun et al. [22], was used to
overcome oversegmentation. The concepts of the watershed analysis
and improved watershed analysis are briefly introduced here. Two
contacting particles in Fig. 5(a) are used to explain the idea. Particle 1 is
a peanut-shaped particle containing two spheres, and particle 2 is a
spherical particle.

The watershed analysis contains two steps: distance transform and

watershed transform. The distance transform computes the minimum
distance of each point inside of the particle to the particle surface,
which results in a Euclidean distance map. The Euclidean distance map
can be conceptually plotted as a topographic map, as shown in
Fig. 5(b). The points with the maximum distance value create local
minima while the shallower points between two local minima create
ridges. The watershed transform can be thought of as gradually in-
jecting water into basins through the local minima points. The water
table rises uniformly and eventually, and the water from the two basins
will meet along the ridges. The meeting planes identify the contacts
between particles.

Each constrained region in the image generates a ridge in the dis-
tance map, and watershed analysis essentially identifies these ridges
and segment particles at ridges. However, the peanut-shaped particles,
such as particle 1, also contain a constrained region, which can be

Fig. 5. Illustration of improved watershed analysis: (a) two contacting particles
(particle 1 is a peanut-shaped particle and particle 2 is a spherical particle) and
oversegmentation of peanut-shaped particle; (b) Euclidean distance map com-
puted by traditional watershed analysis; (c) the modified distance map by
image morphological reconstruction technique in the improved watershed
analysis; and (d) the correct segmentation by improved watershed analysis.
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regarded as necks of peanut-shaped particles. The watershed analysis
cannot discriminate the necks of peanut-shaped particles and contacts
between two particles, leading to oversegmentation of peanut-shaped
particles.

To teach a computer to discriminate the necks and real contacts, Sun
et al. [22] developed an improved watershed analysis to automatically
discriminate neck ridges and contact ridges based on the observation
that necks usually had large constraint regions than the contacts. As a
result, ridges generated by necks are shallower than ridges generated by
contacts. Then, this technique uses an image morphological re-
construction technique to modify the Euclidean distance map by ele-
vating the local minima, so that neck ridges (i.e., the ridge 1 in
Fig. 5(b)) are hidden, but contact ridges (i.e., the ridge 2 in Fig. 5(b))
still exist. In the modified distance map in Fig. 5(c), watershed trans-
form performs segmentation only at ridge 2. The correct segmentation
result is shown in Fig. 5(d).

The improved watershed analysis was performed on the volumetric
image of five sand specimens. The results are shown in Fig. 6 respec-
tively. After segmentation, 2925 particles were identified for each sand,
which was the same as the number of used particles during specimen
preparation. Therefore, five soils with different particle shapes were
correctly segmented, which verified the effectiveness and reliability of
the improved watershed analysis.

In the air-pluviated sand specimen, the isotropic fabric develops in a
horizontal plane (i.e., deposit plane), and anisotropic fabric develops in
the vertical plane (i.e., deposit direction). Therefore, previous studies
[1,2,5,12,13,28–30] cut the specimen in the vertical direction and
analyzed fabric anisotropy in these 2D images to infer fabric anisotropy
in 3D soil specimen based on Eqs. (6) to (11). In this study, six 2D slices
were obtained by vertically cutting the 3D volumetric image in an angle
increment of 30°. The obtained images are shown in Fig. 7.

3.3. Particle shape characterization

The sphericity and roundness are used to quantify the particle
shapes in this study. The sphericity quantifies how closely the overall
shape of the particle conforms to a perfect sphere. This study uses the
sphericity definition proposed by Krumbein and Sloss [59]:

=S d d
d
2 3

1
3

(13)

where d1, d2, and d3 are particle length, width, and thickness.
The d1, d2, and d3 values can be determined by a principal com-

ponent analysis technique [19,22]. The points on the 3D particle sur-
faces are projected onto orthogonal directions. Each direction re-
presents a principal component. The first principal component captures
the largest variance of points, which determine the d1 of the particle.

Each succeeding component, in turn, captures the largest variance for
the remaining data points under the constraint that it is orthogonal to
the preceding components. Therefore, the second and third components
identify the d2 and d3 of the particle, respectively. The 3D particles in
Fig. 6 were analyzed by the principal component analysis. The de-
termined S values for five soils are shown in Fig. 6.

The roundness quantifies the angularity of particles. Based on the
maximum projections of particles, the roundness definition was pro-
posed by Wadell [60–62]:

∑= = ⎛

⎝
⎜

⎞

⎠
⎟

=

R
r N

r
Average radius of curvatures of corners

Radius of the largest inscribed circle
1 1
in i

N

i
1 (14)

where ri is the radius of the i-th circle fitting to the i-th corner to
compute the radius of curvature, N is the total number of corners, and
rin is the radius of the maximum inscribed circle.

Zheng and Hryciw [63,64] developed a computational geometry
algorithm, which can automatically identify the maximum projections
of the particles, identify corners and corner circles, and compute R
values. The 3D particles in Fig. 6 were analyzed by the computational
geometry code. The determined R values for five soils are shown in
Fig. 6.

4. Fabric characterizations from 2D and 3D images for granular
soils

This section briefly illustrates image processing techniques to
compute particle long axes, contact normals, and branch vectors in 2D
and 3D images. The details can refer to Sun et al. [22]. Then, three
types of fabrics, namely long axis fabric, contact normal fabric, and
branch vector fabric, are determined from both 2D and 3D images
based on Eqs. (1)–(12). Then, results from 2D images are compared
with results from 3D images in terms of three principal values (i.e. φ *1 ,
φ*2 , and φ*3 , *= p, c and b), fabric direction (β), rose diagram, density
function, and degree of fabric anisotropy (Δ*). The effects of particle
shapes on the degree of fabric anisotropy are investigated.

4.1. Long axis fabric anisotropy

The particle long axes in 3D images (Fig. 6) and 2D images (Fig. 7)
can be determined using principal component analysis. The results are
shown in Figs. 8 and 9. The glass beads do not have long axes and
therefore, are not analyzed here.

The long axes in 3D and 2D images are used to determine principal
values (i.e., φ p

1 , φ
p

2 , and φ
p

3 ), fabric direction (β), 3D rose diagram, and
density function. The results are shown in Fig. 10. In the air-pluviated
soil specimens, particle long axes display a preferred horizontal or-
ientation under the gravity. Therefore, φ p

2 is close to φ p
3 and they are

Fig. 6. Five soil specimens scanned by X-ray CT.
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larger than φ p
1 , and shapes of 3D and 2D rose diagrams and densities

functions are flat in the horizontal direction. The direction of long axis
fabric is close to the vertical (gravity) direction with β values close to
90°.

The φ p
1 , φ

p
2 and φ p

3 values based on 2D images vary depending on
different slicing directions. However, the variance range is small,
within 0.05 for these four sands analyzed in this study. The φ p

1 , φ
p

2 and
φ p

3 values based on 2D images are close to these values based on 3D
images, with a maximum divergence of 0.03.

The φ p
1 , φ

p
2 and φ p

3 values are used to compute the degrees of contact

normal fabric anisotropy (Δc) for five sands using Eq. (12). The results
are plotted against sphericity and roundness values of four sand in
Fig. 11, where the Δ D

p
3 and Δ D

p
2 mean Δp values are computed from 3D

and 2D images, respectively. The Δ D
p
2 values agree very well with Δ D

p
3

values with a maximum divergence of 0.05.
In Fig. 11(a), the Δ D

p
3 decreases as increasing sphericity (less elon-

gated), which indicates the elongated soils tend to develop stronger
long axis fabric anisotropy. The same observation has been reported by
Zheng and Hryciw [1,2], Lade et al. [65], and Oda [66]. In Fig. 11(b),
there is no decisive relationship between Δ D

p
3 and roundness.

Fig. 7. Six slices by cutting the 3D soil specimens.
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In summary, the results in Figs. 10 and 11 show that long axis fabric
characterizations based on 2D images yield adequately accurate ap-
proximations to long axis fabric anisotropy based on 3D images. This
confirms the validity of the previous studies [1,2,5,12,13,28–30] using
the 2D images to estimate long axis fabric anisotropy in 3D sand

specimens.

4.2. Contact normal fabric anisotropy

The contacts in 3D and 2D images can be determined by the

Fig. 8. Particle long axes in 3D images by the principal component analysis.

Fig. 9. Particle long axes in 2D images by the principal component analysis.
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improved watershed analysis, as shown in Figs. 12 and 13, respectively.
Then, the contact normals can be determined. The contact normals in
2D images are shown in Fig. 13.

The contact normals in the 3D and 2D images are used to determine

principal values (i.e. φ c
1 , φ

c
2 , and φc

3 ), fabric direction (β), 3D rose dia-
gram, and density function. The results are shown in Fig. 14. Because of
the gravity, the particle contact normals display a preferred vertical
orientation. Therefore, φ c

1 is larger than φc
2 and φc

3 , and shapes of 3D and

Fig. 10. Long axis fabric characterizations based on 2D and 3D images.

Fig. 11. The degrees of long axis fabric anisotropy from 2D and 3D images and their relationships with soil sphericity and roundness.
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Fig. 12. Contacts in 3D images by the improved watershed analysis.

Fig. 13. Contacts in 2D images by the improved watershed analysis.
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2D rose diagrams and density functions are elongated in the vertical
direction. The direction of contact normal fabric is vertical with β va-
lues close to 90°.

As shown in Fig. 14, the φ c
1 , φ

c
2 and φc

3 values based on 2D images
have a large variance range depending on slicing directions for crushed
limestone, Agsco sand, and Griffin sand (from very angular to

subrounded sands). The maximum variance range is 0.16 for these three
sands. For Ottawa sand and Glass beads (rounded to well-rounded
soils), their φ c

1 , φ
c
2 and φc

3 values based on 2D images have a relative
small variance range of 0.06, and are close to these values based on 3D
images, with a maximum divergence of 0.04.

The φ c
1 , φ

c
2 and φc

3 values are used to compute the degrees of contact

Fig. 14. Contact normal fabric characterizations based on 2D and 3D images.
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normal fabric anisotropy (Δc) for five sands using Eq. (12). The results
are plotted against sphericity and roundness values in Fig. 15. For
crushed limestone, Agsco sand, and Griffin sand, the Δ D

c
2 values have a

large variance range due to the large variances of φ c
1 , φ

c
2 and φc

3 values
from 2D images. For crushed limestone and Agsco sand, the Δ D

p
2 values

are smaller than Δ D
p
3 values, suggesting that the results from 2D images

would underestimate degree of contact normal fabric anisotropy in 3D
sands with very angular to angular particles. For Ottawa sand and Glass
beads with rounded to well-rounded particles, the Δ D

c
2 values are close

to Δ D
c
3 values with a maximum divergence of 0.05.
In Fig. 15(b), the Δ D

c
3 values decreases with increasing R values,

suggesting angular sands tend to develop stronger contact normal fabric
anisotropy. However, there is no decisive relationship observed be-
tween Δ D

c
3 values and S values in Fig. 15(a).

The observations in Figs. 14 and 15 may be explained as follows.
The interparticle contacts of granular soils are complicated, which in-
clude point-to-point contacts, point-to-surface contacts, point-to-edge
contacts, surface-to-surface contacts, edge-to-surface contacts, and

Fig. 15. The degrees of contact normal fabric anisotropy from 2D and 3D images and their relationships with soil sphericity and roundness.

Fig. 16. Illustration of the modified Delaunay triangulation technique.

Fig. 17. Branch vectors in 3D images by the modified Delaunay triangulation.
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edge-to-edge contacts. After cutting specimen vertically, the orienta-
tions of contact normals in 2D slices would be different to their actual
3D orientations, especially for point and edge related contacts (i.e.,
point-to-point, point-to-surface, point-to-edge, edge-to-surface, and
edge-to-edge contacts). Very angular to sub-rounded sands may contain
many point and edge related contacts. Therefore, a large variance range
of Δ D

c
2 values is observed for these sands. Rounded to well-rounded

sands contain mainly face-to-face contacts and their contact normals
are less affected in 2D slices. Therefore, Δ D

c
2 values are within a small

range, andΔ D
c
2 and Δ D

c
3 values are close for rounded and well-rounded

sands.
In summary, contact normal fabric characterizations (φ c

1 , φ
c
2 , φ

c
3 , and

Δ D
c
2 values) determined from 2D images would have a large variance

range for very angular to sub-rounded sands (most natural sands) and
may underestimate contact normal fabric anisotropy in very angular to
angular sands. This would result in a great uncertainty for using 2D
images to estimate contact normal fabric anisotropy in 3D sand speci-
mens.

For rounded to well-rounded sands (typically manufactured sands
for special applications), contact normal fabric characterizations (φ c

1 ,
φc

2 , φ
c

3 , and Δ D
c
2 values) determined from 2D images yield adequately

accurate approximations to contact normal fabric anisotropy in 3D sand
specimens.

4.3. Branch vector fabric anisotropy

A branch vector is a vector connecting the centroids of two con-
tacting particles. The branch vectors only exist between contacting
particles, such as particles M and N in Fig. 1. If the particles are not
contacting, such as particles O and M or particles O and N, no branch
vectors can be constructed. A modified Delaunay triangulation tech-
nique was developed by Sun and Zheng [22] to determine branch
vectors in 3D and 2D images.

Six particles in Fig. 16(a) are used as an example to illustrate the
Delaunay triangulation and modified Delaunay triangulation techni-
ques. The Delaunay triangulation technique is applied to the centroids
of particles to build a 2D mesh in Fig. 16(b). However, the triangular
mesh may not be unique for a set of points. For example, points A, B, C,
and D can construct two possible triangular meshes, as shown in
Fig. 16(b) and (c). Therefore, Delaunay triangulation includes a cri-
terion that circumcircles of triangles cannot contain any other points in
their interiors. For example, in Fig. 16(b), the circumcircle of △ABD
contains point C in its interior, and the circumcircle of △BCD contains
point A in its interior. Therefore, the mesh in Fig. 16(b) is not sa-
tisfactory. In Fig. 16(c), circumcircles of △ABC and △ACD do not
contain other points in their interiors. Therefore, both triangles meet
the Delaunay criterion, and the mesh is satisfactory. The Delaunay
criterion ensures the uniqueness of the mesh and ensures no skewed
and irregular triangles are generated.

Fig. 18. Branch vectors in 2D images by the modified Delaunay triangulation.
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The particles A and D, A and E, A and C, and C and D are not
contacting each other as shown in Fig. 16(d). Therefore, their centroid
connections should not be branch vectors. These connections are de-
fined as “overconnections”, which should be eliminated from the mesh.

The Delaunay triangulation technique cannot identify overconnections
in the mesh. Therefore, Sun and Zheng [22] modified Delaunay trian-
gulation to address this issue.

All the contacts and their associated particles have been identified

Fig. 19. Branch vector fabric characterizations based on 2D and 3D images.

Fig. 20. The degree of branch vector fabric anisotropy from 2D and 3D images and their relationships with soil sphericity and roundness.
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in the improved watershed analysis. Therefore, this information is used
here to evaluate whether contacts exist between two particles to search
overconnections. After removing the overconnections, the branch vec-
tors can be identified as shown in Fig. 16(e).

Delaunay triangulation can also be applied to points in 3D space to
create a 3D mesh. Each mesh element was a tetrahedron consisting of
four points. To ensure the uniqueness of the 3D mesh, the circum-
scribing sphere of each tetrahedron must not contain any other points
in its interior. The contacts between 3D particles have been identified in
the improved watershed analysis. The modified Delaunay triangulation
can use this information to eliminate overconnections between 3D
particles and determine branch vectors.

The modified Delaunay triangulation was used to analyze 3D and
2D images of four sands: crushed limestone, Agsco sand, Griffin sand,
and Ottawa sand, to determine their branch vectors. The results are
shown in Figs. 17 and 18. The branch vectors of glass beads are the
same as the contact normals. Therefore, branch vectors of glass beads
are not ploted in Fig. 17.

The branch vectors in 3D and 2D image are used to determine
principal values (i.e. φb

1 , φ
b
2 , and φ

b
3 ), fabric direction (β), 3D rose dia-

gram, and density function as shown in Fig. 19. The branch vectors
display a preferred horizontal direction for crushed limestone, Agsco
sand, and Griffin sand as that their φb

2 and φb
3 values are larger than φb

1 ,
and rose diagrams and density functions are flat in the horizontal di-
rection. The fabric direction β is close to 90°. The branch vectors in
Ottawa sand and glass beads (the results of glass beads are shown in
Fig. 14) display an isotropic fabric.

One would expect that branch vector and contact normal between
two contacting particles should be aligned in a similar direction.
Therefore, branch vector fabric characterizations should be similar to
contact normal fabric characterizations. This is true if all the particles
are spheres, but they have no decisive relationship in real soils con-
sisting of irregular particles, because the contact normals of irregular
particles could be any direction and not necessarily align with the
branch vectors [10].

In Fig. 19, the φb
1 , φ

b
2 and φb

3 values based on 2D images vary de-
pending on slicing directions, but the variance range is small, within
0.04. The φb

1 , φ
b
2 and φb

3 values based on 2D images are close to these
values based on 3D images for four soils. The maximum divergences of
φb

1 , φ
b
2 and φb

3 values between 3D and 2D images are within 0.03.
The Δ D

b
3 and Δ D

b
2 values are plotted against sphericity and roundness

in Fig. 20. As discussed before, the contact normal fabric of glass beads
are the same as branch vector normal fabric. Therefore, the results of
glass beads are also plotted in Fig. 20.

The Δ D
b
2 values agree with Δ D

b
3 values for the five sands analyzed in

this study, with a maximum divergence of 0.05. The Δ D
b
3 values de-

crease as increasing S values as shown in Fig. 20(a). There is no decisive
relationship observed between Δ D

b
3 values and R values in Fig. 20(b).

In summary, the results in Figs. 19 and 20 show that branch vector
fabric determined from 2D images yield adequately accurate approx-
imations to branch vector fabric in 3D sand specimens.

5. Conclusion

This study used both 3D and 2D images to characterize inherent
long axis fabric, contact normal fabric, and branch vector fabric in five
sands. These sand specimens were prepared by air-pluviated method
and were prepared at the same relative density of 85%.

For long axis fabric and branch vector fabric, fabric characteriza-
tions (i.e., φ p

1 , φ
p

2 and φ p
3 ) by using 2D images vary in a small range for

differnet slicing directions and they agree with these values computed
from 3D images, with a maximum divergence of 0.03. The degrees of
fabric anisotropy computed from 3D and 2D (i.e., Δ D

p
2 and Δ D

p
3 values)

agree with each other with a maximum divergence of 0.05. Therefore,
the 2D images provide adequate accuracy for estimating the long axis
fabric and branch vector fabric anisotropy in 3D sands.

For contact normal fabric, the reliability of fabric characterizations
(i.e., φ p

1 , φ
p

2 and φ p
3 ) by using 2D images depends on types of soils. For

rounded to well-rounded sands, fabric characterizations (i.e., φ c
1 , φ

c
2 and

φc
3 ) by using 2D images vary a small range for different slicing direc-
tions and they agree with these values computed from 3D images with a
maximum divergence of 0.05. Therefore, the 2D images provide ade-
quate accuracy for estimating the contact normal fabric in 3D sands
with rounded to well-rounded particles. However, for most natural soils
with very angular to sub-rounded particles, contact fabric character-
izations (i.e., φ c

1 , φ
c
2 and φc

3 ) by using 2D images would vary a large
range and would possibly underestimate the contact normal fabric in
3D sands. It contains a great uncertainty to use 2D images to estimate
contact normal fabric in 3D sands with very angular to subrounded
particles.

It has been well-established that particle shape significantly affects
macro-mechanical behavior of granular soils. This study analyzed the
relationship between particle shape descriptors (i.e., sphericity and
roundness) and degree of fabric anisotropy. We observed that sphericity
impacts degrees of particle long axis fabric anisotropy Δ D

p
3 and branch

vector fabric anisotropy Δ D
b
3 in sands. The Δ D

p
3 and Δ D

b
3 values increase

as sphericity decrease, indicating elongated soils tend to develop
stronger long axis fabric anisotropy and branch vector fabric anisotropy
in sands. The roundness impacts degree of contact normal fabric ani-
sotropy Δ D

c
3 in sands. The Δ D

c
3 values increase as roundness decrease,

indicating angular soils tend to develop stronger contact normal fabric
anisotropy in sands.
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