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Abstract

Computers have been taught to clone granular soil particles for discrete element method simulations to alleviate difficulties
of using three-dimensional imaging techniques for scanning a large number of particles. In this process, computers analyze
a few scanned particles to extract morphological characteristics of the target soil, which are used to clone as many particles
as necessary. However, many natural granular soils contain a wide range of particle shapes mixing more than one type of
morphological characteristics, causing difficulties in cloning. This research aims to address this challenge by integrating
spherical harmonics with Gaussian mixture model, expectation—-maximization, and Dirichlet process. Spherical harmonics
coefficients are used to characterize morphological information of the granular soil. Gaussian mixture model is used to fit a
function to the mixed morphological characteristics. The expectation—maximization and Dirichlet process are used to
estimate the fitting parameters in Gaussian mixture model. Then, Gaussian mixture model is used to generate new spherical
harmonics coefficients and then generate new particles. The effectiveness and accuracy of the proposed methodology are
verified using a Griffin sand. Although this approach is developed for granular soils, the proposed technique can also be
used to clone other particulate materials.

Keywords Discrete element method - Gaussian mixture model - Granular particle generation - Particle shape
characterization - Spherical harmonics - X-ray computed tomography

1 Introduction analytical and numerical methodologies for explaining the
observed macro-mechanical behavior of granular soils. For

Particle shape profoundly affects the engineering behavior ~ example, realistic particles were increasingly used in the

of granular soils. For example, experimental studies have
shown that sands consisting of angular and elongated
particles exhibit larger values of index void ratios, internal
friction, dilatancy, constant volume friction angle, com-
pressibility, and small-strain modulus than sands with
rounded and spherical particles [2, 3, 7, 9, 10, 16, 18-20,
25, 27, 35, 42, 44, 52, 60-62, 68]. Therefore, realistic
particle geometries have been increasingly used in
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discrete element method (DEM) to more precisely simulate
the realistic mechanical behavior of granular soils
[59, 63, 66].

The realistic particles can be scanned by various three-
dimensional (3D) imaging techniques, such as X-ray
computed tomography (X-ray CT) [11, 12, 4548, 73],
laser scanning technique [5, 17, 21], optical interferometer
[1, 37], stereophotography [64, 65, 67], and structured light
technique [49]. The optical interferometer, stereophotog-
raphy, and structured light can only obtain half particle
geometries exposing to the field of review of cameras. The
laser scanner and X-ray CT were able to scan 3D full
particle geometries. However, the laser scanner must scan
particles one by one, so considerable labor efforts and time
must be required to scan many particles. X-ray computed
tomography (CT) was an ideal technique, which can scan
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many particles at the same time to obtain their full 3D
geometries. However, X-ray CT technique was limited by
the high-cost devices and their maintenance, extensive
image processing skills, demanding computational efforts
for data processing, and small scanning field of view.

The typical sizes of soil specimens for X-ray CT scans
were approximately 12 mm in diameter and 24 mm in
height in the existing studies [11, 12, 24, 4548, 73].
Therefore, scanning a sufficient amount of soil particles for
simulating a triaxial test in DEM (diameter = 50 mm,
height = 100 mm) required approximately 70 scans. This
issue is recently addressed by Semnani and Borja [41].
They developed a stochastic framework based on multiple-
point statistics that used high-resolution training images to
enhance low-resolution images obtained over a large field
of review. They evaluated the proposed approach using
X-ray CT images of organic-rich Woodford shale obtained
at two different resolutions. Results showed that the pro-
posed technique can generate realistic high-resolution
images of the microstructure of shale over a large field of
review.

Due to the limitations of imaging techniques for
obtaining 3D realistic particles, many techniques were
developed by researchers to generate realistic particles by
computers. These techniques can be divided into two cat-
egories. The techniques in the first category aimed to
generate random particle geometries. For example, Vor-
onoi-based spheropolyhedra algorithm introduced by
Galindo-Torres and Pedroso [14] and Galindo-Torres and
Muiioz [13] and a Fourier-Voronoi-based algorithm intro-
duced by Mollon and Zhao [29-31] have been developed to
generate realistic particles. These randomly shaped parti-
cles may not be precisely representative of real granular
soil particles.

The second type of techniques aimed to clone a granular
soil: a few of 3D particles were scanned by 3D imaging
techniques and analyzed to obtain shape characteristics,
which are used to generate as many particles as necessary
to clone the target soil. The spherical harmonics technique
was typically used by researchers for cloning soils. A few
of 3D scanned particles were analyzed to determine their
spherical harmonics coefficients, which are considered as
morphological properties, or “morphological gene,” of this
soil. Then, probability techniques were used to add “gene
mutation,” which enabled a computer to create random
morphological variances in the generated particles to pro-
vide different particle shapes [15, 26, 43, 46,
56, 57, 70-72]. These studies demonstrated that the particle
shape distributions of original and cloned soils remarkably
agreed with each other.

The spherical harmonics techniques demonstrated
excellent results for granular soils containing particles with
similar shapes [15, 26, 43, 56, 57, 70-72]. These particles
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were sharing with similar spherical harmonics coefficients
or similar morphological genes. However, some natural
soils contained a wide range of particle shapes, and these
particles did not necessarily have similar morphological
genes, such as Griffin sand.

We randomly picked 403 particles from a Griffin sand
and filled these particles into a plastic cylinder. A high-
resolution X-ray CT was used to scan the soil specimen
with a spatial resolution of 10 um/voxel. The obtained 3D
volumetric images were processed by image segmentation
techniques to identify individual soil particles. The first
step was to use image thresholding techniques [36] to
segment air and particles, resulting in a binary image, in
which the soil particles had a voxel value of ones (white
color), and the air had a voxel value of zeros (black color).
In this binary image, the soil particles were contacting with
each other. Therefore, the second step was to use an
improved watershed analysis technique [48] to segment
contacting particles. The segmented volumetric image is
shown in Fig. la. Six typical particles are shown in
Fig. 1b—g. Griffin sand contains particles having angular
and elongated shapes as shown in Fig. 1b—d and rounded
and spherical shapes as shown in Fig. le-g.

Seven particle shape descriptors were used in this study
to quantify the particle shapes as shown in Table 1. These
particle shape descriptors can be determined using 3D
computational geometry techniques [34, 48, 58, 69].
Distributions of particle shape parameters are shown in
Fig. 2. It is evident that Griffin sand included two types of
particle shapes displaying a gap in shape distributions. We
used spherical harmonics-based particle generation tech-
nique developed by Wei et al. [56] to generate 25,000
particles. The 3D computational geometry techniques were
used to analyze particle shape distributions of generated
particles, and results are also shown in Fig. 2.

The shape distributions of cloned and original Griffin
sand do not match well due to the gap existing in shape
distributions. Existing spherical harmonics techniques
assumed that all the particles in the soil have similar
morphological characteristics and determine one morpho-
logical gene for the soil. Therefore, these methods failed to
clone the sands with mixed particle morphological char-
acteristics. This study aimed to address this issue by inte-
grating spherical harmonics with Gaussian mixture model,
expectation—-maximization, and Dirichlet process tech-
niques. The proposed technique can evaluate how many
types of particle morphological genes in the soil and extract
each morphological gene. These different morphological
genes were used to generate different types of particle
shapes. This technique was effective and robust for cloning
granular soils with complex and mixed particle morpho-
logical characteristics.
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Fig. 1 3D Griffin sand specimen scanned by X-ray CT and six typical particles

Table 1 Commonly used shape descriptors and their definitions

Definitions (reference) Formula Note

Convexity 3D ¢, = Vl The ratio of the volume of the particle (V) to the volume of the minimum convex hull circumscribing
(solidity) [32] ¢ the particle (V,)

Circularity [6] 3D Cc=-% The ratio of the volume of the particle (V) to the volume of the sphere having the same surface area

\/g (As) as the particle

Intercept sphericity 3D S = [/hd The cubic root of ratio of the product of the width of the particle (d5) and the thickness of the particle
[22] & (d3) to the square of the length of the particle (d;)

Volume sphericity 3D Sy = vl The ratio of the volume of the particle (V) to the volume of the smallest circumscribed sphere (V)
[40] i

Diameter 3D 5= % The ratio of the diameter of a sphere having the same volume as the original particle (D, 3) to the
sphericity [53] o diameter of the minimum circumscribed sphere (D 3)

Surface area 3D S, = % The ratio of the surface area of the sphere having the same volume as the particle (A.) to the real

sphericity [23]
Roundness [53-55] 3D

surface area of the particle (As)

The ratio of the average radius of spheres fitting the corners of the 3D particle geometry (r3) to the
radius of the maximum inscribed sphere to the 3D particle geometry (7ins3)

2 Spherical harmonics for particle points on particle surface in the spherical coordinate sys-

generation

tem. The n and m are the degree and order of spherical
harmonics, respectively. The base functions Y*(6, ¢) can

A 3D particle surface can be represented by the spherical ~ be determined as [57]:

harmonics coefficients ¢} and spherical harmonics func-

tions Y"(0, @) [33]:

(0.0) =33 (0, )
0

m=—n

Y0, ) =

(1)

where P} is Legendre function. The Legendre function can
be expanded by Rodrigures’s formula [56]:

where r(6,¢) (0 € [0,7n], ¢ €[0,2n]) is coordinates of
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Fig. 2 Distributions of particle shape descriptors for original and cloned griffin sands by spherical harmonics algorithm

P"(x) = (1 — )2 dm ~d—n(x2 —1yl. (3) Figures 3a, b i.llustrate the.Y,’l”(Q7 ®) a.md c forn = Q, 1,
dxlml | 2np! dxn and 2. The spherical harmonics coefficients ¢]’ are unique
for a particle. As shown in Fig. 3b, the zero degree (n = 0)
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Fig. 3 Expansion of spherical harmonics for the first two degrees

of spherical harmonics coefficient ¢J determines the vol-
ume of the particle; the first degree of spherical harmonics
coefficients (n = 1), including ¢!, ¢;!, and ¢, determine
the spatial displacement of the particle relative to origin;
and the second degree of spherical harmonics coefficients
(n = 2), including 52, ¢3, ¢Y, ¢;!, and ¢}, store morpho-
logical properties of the particle. Despite not displaying in
Fig. 3b, the larger degrees of spherical harmonics coeffi-
cients (n > 2) also store morphological properties of the
particle. Naturally, more detailed morphological properties
of the particle will be contained for higher degrees n in
spherical harmonics, so generated particles will be closer to
the original particles if containing higher degrees of
spherical harmonics coefficients. However, high degrees

will significantly increase computational loads. Research-
ers [31, 56, 57] have found that n = 15 provides satisfac-
tory accuracy for particle representation and generation.
Therefore, n = 15 was also used in this study.

The spherical harmonics coefficients ¢ are a complex
number:

m __ .m m o
¢ =a, +Db'-i

(4)

where @)} and b)) are the real part and imaginary part. The
second norm of ¢} determines the amplitude of spherical
harmonics at different degrees L,:

Li= /> flen (n=0,1,2,...,15) (5)
@Springer
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Fig. 4 The spherical harmonics coefficients and normalized spherical harmonics coefficients for a soil particle

The L, represents the volume of the particle. To remove
the influence of particle volume, all the L, can be divided

by Lo:

Then, normalized spherical harmonics coefficients En’ﬁ
are defined by eliminating the effects of particle volume:
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(7)

where a and b are normalized real and imaginary parts

i g pm
cn=qam" 4 b

correspondingly:

—~ a”

am" == 8
=7 ®)
— b

b =1 9
=g ©)

A soil particle is shown in the insert of Fig. 4a. Spher-
ical harmonics coefficients ¢}’ of this particle were
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(h) Generated Ottawa sand particles
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Fig. 5 3D Ottawa sand specimen scanned by X-ray CT and six typical particles

determined based on Eqs. (1)—(3). The degree n was set as
15. Therefore, a total of 256 spherical harmonics coeffi-
cients ¢’ were computed. These ¢} values were complex
numbers: the 256 real part a;' values are plotted in Fig. 4a,
and the 256 imaginary part b}’ values are plotted in Fig. 4b.
The volume of the particle Ly is computed as 8.8 based on
Eq. (5), which was used to normalize spherical harmonics
coefficients ¢’ to eliminate effects of volume. Therefore,

the normalized real and imagery parts @ and I;n’; were
determined based on Eqs. (8) and (9), as shown in
Fig. 4c, d.

The 5;} and En’; stored the morphological properties of
the particle, and they were independent of each other.

Therefore, a/Z\“ and Ef together determined morphological
genes of particles. If particles in a granular soil have
similar shapes, their morphological genes should be also
close to each other. For example, we scanned 450 Ottawa
sand particles using X-ray CT as shown in Fig. 5a. Some
typical particles are shown in Fig. Sb—g. The Ottawa sand
particles all had well-rounded shapes, and their shapes
were visually close to each other. Using Egs. (1)-(9), af
and @ values of particles were computed. The histograms

of 5;’7 and @ values for n = 2—15 are shown in Fig. 6a, b.

The a/f and l/)na values of particles having similar mor-
phological properties are close to each other and follow a
Gaussian distribution. The same observation has been
reported by Wei et al. [56].

The c/lf and Ena values together determine the particle
morphological gene. Therefore, a spherical harmonics

descriptor was introduced by integrating En’z and Ena values
by Wei et al. [56, 57] and Mollon and Zhao [31]:

@+ (@)

The D,, distributions for n = 2—15 are shown in Fig. 6c¢,
which also follow Gaussian distributions.

D, (10)

The distributions of En'z and Zf values or D,, values can
be considered as the morphological gene of Ottawa sand.
Gaussian functions were determined by fitting distributions

of E;E and EZZ values and plotted as solid lines as shown in
Fig. 6. Then, these new E;} and EZZ values can be generated

based on the Gaussian functions. Then, the new En’ﬁ and b
values can be input into Eq. (7) to generate a new set of
normalized spherical harmonics coefficients c” values.

Then the En’7 values can be used in Egs. (1)—(3) to generate
new particles. This was the basic concept of the exiting
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Fig. 6 The distributions of a”,

spherical harmonics techniques for cloning granular soils
[15, 26, 43, 56, 57, 70-72].

It should be noted that newly generated particles had a
unit volume because the normalized spherical harmonics
coefficients E;? values were used. Then, the generated
particles can be up-scaled or down-scaled to match particle
sizes, as will be shown later in the paper.

@ Springer

l/rn’;, and D,, for n = 2-8 of 450 Ottawa sand particles

In Fig. 6a, b, the Gaussian functions were used to pro-

duce randomly @ and @ values and then these 5;7 and Bf
values were used to generate 25,000 new Ottawa sand
particles. The typically generated particles are shown in
Fig. 5h, which visually have the same shape as original
particles in Fig. 5a—g. Both original and cloned particles
were analyzed by 3D computational geometry techniques
[34, 48, 58] to determine particle shape descriptors. The
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Fig. 7 Particle shape and size distributions of original and cloned Ottawa sands

particle shape distributions of original and cloned Ottawa
sand remarkably agree with each other as shown in

Fig. 7a—g.
The particle size distribution

of the original 450 parti-

cles was analyzed by using both sieving test and 3D

computational geometry [48], and results agree with each
other as shown in Fig. 7h. The 25,000 cloned particles all
had a unit volume. Therefore, these particles were ran-
domly up-scaled and down-scaled to match the particle
distribution curve of original particles as shown in Fig. 7h.
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Fig. 8 Distributions of D, values of 403 particles of Griffin sand

Finally, the morphological gene of Ottawa sand (i.e., size
and shape) has been successfully preserved in the cloned
particles.

3 Gaussian Mixture Model (GMM)
and Expectation-Maximization (EM)
algorithm

The Griffin sand in Fig. 1 contains more than one type of
particle morphological genes. The distribution of D,, values
of the scanned 403 particles was determined, and his-
tograms of D,, D3, D4, and D5 values are shown in Fig. 9.
(The distributions of other D,, values (n = 6, 7, ..., 15) are
similar, so they are not plotted.)

Unlike Ottawa sand, the D, values of Griffin sand did
not simply follow Gaussian distribution due to the mixed
particle morphological characteristics. There were certainly
other types of granular soils in nature with mixed particle
morphological characteristics that possessed more com-
plicated distributions of D, values. Therefore, it was
challenging to use a function to fit random distributions of
D,, values. Therefore, a Gaussian mixture model (GMM)
was introduced by this study to address this issue.

GMM is a probabilistic model using a finite number of
Gaussian functions to fit complicated distributions of data

@ Springer

0.02 0.04 0.06 0.08 0.1 0.12

points. In other words, GMM divides data points into
several groups and uses Gaussian function to fit data points
in each group [4, 28]. The brief introduction of GMM is as
follows.

Using the histogram of D, values in Fig. 8a as an
example, the D, values can be divided into several groups
and each group can be fitted by a Gaussian function. All
these Gaussian functions together constitute the GMM.
This progress essentially divided all the soil particles into
several groups based on their morphological genes (D,
values). Then, each group of particles with a similar mor-
phological gene obeys their own Gaussian function, which
is a component of GMM.

If a set of data points X;, X5, X3, ... Xj, ..., X, follows a
GMM consisting of k£ Gaussian functions, the GMM can be
expressed as:

k
PXI0) = > 0N (5, %) (11)
=1

where N(p;, 2;) is the j-th Gaussian function; u is the
expectation (or mean); Y is covariance matrix;0 represents
parameters for k Gaussian functions
Ll s o D1 0 e D 0, 02y o s 0 (=1,
2,..., k) represents the weight of j-th Gaussian function in
the GMM; and the summation of all ; (=1, 2,...,
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h) Step 7: Create a new group for particle #3.

for itself.

XIE

P(D; 4,1)=0.30 P(D,4,3)=0.04  P(D,,4)=0.66

(d) Step 3: Group particle #1 with particle #2.

(i) Step 8: Unlabel particle #4, and compute
probabilities of particle #4 belonging to the remaining
two groups and the probability of creating a new group
for itself.

2@ @

P(D,,1)=0.42 P(D,,,2)=0.36 P(D,,3)=0.01 P(D,,,4)=0.21

/o0 )

(e) Step 4: Unlabel particle #2, and compute
probabilities of particle #2 belonging to the remaining
three groups and the probability of creating a new group
for itself.

(j) Step 9: Create a new group for particle #4 and
finalize groups.

Fig. 9 The Dirichlet process algorithm for grouping soil particles

k) values is 1. The physical meaning of o; is percentage of

data points in the j-th group. For example, a3 = 0.55 means

55% percentage data points are in the group #3.
Expectation—-Maximization (EM) algorithm was typi-

cally

used to determine parameters in GMM

0= {:ulnu2w . '7:“1(7217227'”72](7“170‘27 . -vo‘k}

[8, 38]. For example, if the GMM contains three Gaussian
functions (i.e., three groups), there will be a total of nine
unknown parameters in GMM: py, 1o, U3, X1, 2o, 23, o1, 0,
and o3. In the most application of EM, the number of
groups is given by a priori. However, types of particle

D Unlabel particle

morphological genes cannot be predicted for a soil, so the
number of Gaussian functions in GMM cannot be deter-
mined by a priori. Therefore, we introduced Dirichlet
process to solve this issue.

4 Dirichlet process (DP)
Dirichlet process (DP) is a stochastic process for dividing

data into groups based on properties of data without
specifying the number of groups a priori [50, 51].

@ Springer
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(a) Original Griffin sand particles

(b) Generated Griffin sand particles

Group 1 Group 2 Group 3
Angular Subangular Well-rounded
particles particles particles

Group 1 Group 2 Group 3
Angular Subangular Well-rounded
particles particles particles

@

Fig. 10 The original and cloned particles of Griffin sand by the proposed technique in this study

Therefore, this study used DP to analyze the morphological
properties of all the particles to determine how many types
of particle morphological genes that soil has. In this
research, D, values are used to represent the morphological
property that DP is operating on.

Four randomly selected particles are used to conceptu-
ally illustrate the grouping process using DP in Fig. 9a.
The goal is to group these particles based on their mor-
phological genes (D, values). The D, values of #1, #2, #3
and #4 particles are computed as D, ; = 0.31, D,, = 0.24,
D, 3 =0.03 and D, 4 = 0.11, respectively.

In the first step in Fig. 9b, four particles are divided into
four groups (each particle forms a group). The D, value of
each particle is used to fit a Gaussian function.

In the second step in Fig. 9c, we unlabel the #1 particle
and evaluate the probability of this particle belonging to
the remaining three groups, P(D;;,2), P(D,;,3) and

@ Springer

P(D;1,4) and the probability of creating a new group for
itself P(D;,1). For example, the results are computed as
P(D,1,2) = 040, P(D,;,3) =0.01, P(D,,,4) =0.26 and
P(D;;,1) = 0.32. Clearly, P(D,;,2) = 0.40 is the largest
probability among these four values. Therefore, in the third
step in Fig. 9d, particle #1 is grouped with #2 particles.
Then the Gaussian function parameters of this group are
updated due to the particle #1 being added.

In the fourth step in Fig. 9e, we unlabel the #2 particle
and then calculate the probabilities of particle #2 belonging
to the remaining three groups. For example, the results are
computed as P(D,p,1) =042, P(D,5,3)=0.01, and
P(D;5,4) =0.21 and the probability of creating a new
group is computed as P(D;5,2) = 0.36. Clearly,
P(D;1,1) = 0.42 is the largest probability among these four
values. Then, in the fifth step in Fig. 9f, the particle #2 is
grouped with the particle #1.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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In the sixth step in Fig. 9g, we unlabel the #3 particle
and then compute probabilities of particle #3 belonging to
the remaining two groups, P(D,3,1)=0.01 and
P(D,3,4) = 0.04 and the probability of creating a new
group, P(D,3,3) = 0.95. Apparently, the probability of
creating a new group is largest, so particle #3 creates a new
group for itself, as shown in the seventh step in Fig. Sh.

We repeat this process for particle #4, which is classified
into a new group, as shown in Fig. 9i, j. After labeling the
four particles, the results are shown in Fig. 9j. Therefore,
four sand particles are successfully divided into three
groups based on their D, values (morphological charac-
teristics). The same process can be conducted to group
many particles.

5 Particle classification by Gaussian mixture
model (GMM), expectation-maximization
(EM), and Dirichlet process (DP)

The 403 Griffin sand particles in Fig. 1a were analyzed by
spherical harmonics and their real and imagery parts Enﬁ

and E,’? values and spherical harmonics descriptors D,,
values were determined. Their D, values were input into
Dirichlet process (DP) algorithm. The same process shown
in Fig. 9 was repeated for 403 particles to classify the
particles based on their morphological characteristics (D,
values). This resulted in three groups. Therefore, three
Gaussian functions were included in GMM.

Parameters for three Gaussian functions include
0= {py, tas 113,150, D03, %1, 02,93 . The GMM-EM
optimization process was performed based on the D, values
of these 403 particles. Then, the parameters for GMM were
determined as

Group 1:
N;(0.2596, 0.0049)

Group 1:
Angular particles

8«
d 9

Fig. 11 Gaussian mixture model superimposed on D, distribution of Griffin sand

Group 1: pu; =0.2569 2, =0.0049 o =0.49
0=« Group 2: u, =0.1722 2, =0.0028 o, =0.26
Group 3: 3 =0.0269 23 =0.0001 o3 =0.25

(12)

The weights of three Gaussian functions in GMM are
determined as o = 0.49, o, = 0.26 a3 = 0.25, respectively.
Some of particles in three groups are shown in Fig. 10a.
The group 1 included 197 particles that had angular and
elongated shapes. The group 2 included 105 particles that
had subangular and elongated shapes. The group 3 included
101 particles that had rounded and spherical shapes.

The GMM is superimposed on the D, histogram in
Fig. 11, which fits the distributions of D, values very well.
The fractal dimension (FD) contains the information of
spherical harmonics coefficients which is introduced.
Quevedo et al. [39] proposed an empirical method to

Well-rounded particles

0.8 - Subangular particles

0.6 1

0.4

0.2 /

Angular particles

Roundness (R)

0 0.5 1 1.5 2 2.5 3
Fractal dimension (FD)

Fig. 12 The relationship between Fractal dimensions and roundnesses
of particles of Griffin sand
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determine the fractal dimension of spherical harmonics

of one type of soil particles are concentrating, and three

descriptor: clusters were observed. This validates the effectiveness of
log(D,) accuracy of integrated GMM, EM, and DP algorithms for
FD=3+——* (13)  classifying particle morphological genes.

log(n)

where FD is the fractal dimension. The fractal dimension
versus roundness is plotted in Fig. 12. The most data points
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(c) Distributions of ;,,; and 1;,’? values of well-rounded particles forn=21to 5

Fig. 13 The distribution of a/,,’; and l;;? for n = 2-8 of 403 Griffin sand particles
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Fig. 14 Particle shape and size distributions of original and cloned Griffin sands by the proposed technique in this study

6 Cloning soil particles For example, Fig. 13 plots the En’? and Bn’; values for n = 2—

) ) ) ) 7 for each group of particles. The remaining c/zf and En’;
The 403 Griffin sand particles have been classified into o0 " 8 15 are similar, so they are not plotted in

three groups. For each group of particles, their normalized g, e 13

harmonics coefficients En’; and b™ values can be plotted.
@ Springer
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The Gaussian functions were fitted to c/zg\l and Bf values
of three types (i.e., very angular, subangular, and well
rounded) of soil particles, respectively, as shown in

Fig. 13. Then, new 5;,7 and B;L; values for three types of
particles were generated based on the Gaussian distribu-

tion, and these new z/zf and b values were used to generate
new Griffin sand particles within three groups. For exam-

ple, as shown in Fig. 13a, the distributions of afz’% and 5’27 of
angular particles are determined. Then, we drew new aff
and 5’2’\1 from their own Gaussians. Similarly, a set of a”
and l;’,;\f (n=2,3, ..., 15) were also drawn from their own

distribution randomly. Then the associated ¢ were
obtained from Eq. (7). Applying Egs. (1)-(3), a realistic
angular particle was generated. Subangular and well-
rounded particles could also be generated from their Enﬁ

and l:,’} distributions in Fig. 13b, c, respectively.

The weights of three Gaussian functions in GMM are
determined as o; = 0.49, a, = 0.26 a3 = 0.25, respectively.
Therefore, the percentage ratios of generated particles must
obey 49:26:25 in very angular, subangular, and well-
rounded groups, respectively. Therefore, we generated
12,250 very angular particles, 6500 subangular particles,
and 6250 well-rounded particles. A total of 25,000 particles
were generated.

Generated particles and original particle are compared
in Fig. 10. They are visually very similar. The shape dis-
tributions of the original 403 particles and generated
25,000 particles are compared in Fig. 14a—g. Their shape
distributions remarkably agree with each other. Therefore,
the particle shapes of Griffin sand were successfully cloned
by the proposed study.

Finally, the particle sizes of the original 403 particles
were determined using computational geometry [48] and
sieve analysis as shown in Fig. 14h. The optical and
sieving results agree with each other, validating effective-
ness of optical based particle size quantification. The
generated 25,000 particles are randomly scaled up or scaled
down to match the particle size distributions as shown in
Fig. 14h. Therefore, the cloned Griffin sand particles suc-
cessfully preserved both particle shape and size charac-
teristics of original Griffin sand.

The proposed method was effective and accurate to
clone granular soil with mixed particle morphological
characteristics. Although the framework (spherical har-
monics, GMM, EM, and DP) is developed based on
granular soils, this framework can be used to clone other
particulate materials with mixed particle shapes.

@ Springer

7 Conclusion

The natural soils, such as Griffin sand, contain particles
with a mixture of morphological characteristics, or differ-
ent morphological genes. This research integrates spherical
harmonics, Gaussian mixture model, expectation—maxi-
mization, and Dirichlet process to clone such granular soils
with mixed particle morphological genes. Spherical har-
monics coefficients are used to extract morphological
genes of the particles. Gaussian mixture model, expecta-
tion—maximization, and Dirichlet process analyze spherical
harmonics coefficients to determine the types of morpho-
logical genes and their percentages. The Gaussian function
is determined for each type of morphological gene, forming
a Gaussian mixture model. The Gaussian mixture model is
used to generate new spherical harmonics coefficients,
which are used to generate new soil particles. The particle
shape and size distributions of generated particles agree
well with target soil. The proposed technique can also be
used to clone other particulate materials with a mixture of
particle shapes.
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