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Abstract
Computers have been taught to clone granular soil particles for discrete element method simulations to alleviate difficulties

of using three-dimensional imaging techniques for scanning a large number of particles. In this process, computers analyze

a few scanned particles to extract morphological characteristics of the target soil, which are used to clone as many particles

as necessary. However, many natural granular soils contain a wide range of particle shapes mixing more than one type of

morphological characteristics, causing difficulties in cloning. This research aims to address this challenge by integrating

spherical harmonics with Gaussian mixture model, expectation–maximization, and Dirichlet process. Spherical harmonics

coefficients are used to characterize morphological information of the granular soil. Gaussian mixture model is used to fit a

function to the mixed morphological characteristics. The expectation–maximization and Dirichlet process are used to

estimate the fitting parameters in Gaussian mixture model. Then, Gaussian mixture model is used to generate new spherical

harmonics coefficients and then generate new particles. The effectiveness and accuracy of the proposed methodology are

verified using a Griffin sand. Although this approach is developed for granular soils, the proposed technique can also be

used to clone other particulate materials.

Keywords Discrete element method � Gaussian mixture model � Granular particle generation � Particle shape

characterization � Spherical harmonics � X-ray computed tomography

1 Introduction

Particle shape profoundly affects the engineering behavior

of granular soils. For example, experimental studies have

shown that sands consisting of angular and elongated

particles exhibit larger values of index void ratios, internal

friction, dilatancy, constant volume friction angle, com-

pressibility, and small-strain modulus than sands with

rounded and spherical particles [2, 3, 7, 9, 10, 16, 18–20,

25, 27, 35, 42, 44, 52, 60–62, 68]. Therefore, realistic

particle geometries have been increasingly used in

analytical and numerical methodologies for explaining the

observed macro-mechanical behavior of granular soils. For

example, realistic particles were increasingly used in the

discrete element method (DEM) to more precisely simulate

the realistic mechanical behavior of granular soils

[59, 63, 66].

The realistic particles can be scanned by various three-

dimensional (3D) imaging techniques, such as X-ray

computed tomography (X-ray CT) [11, 12, 45–48, 73],

laser scanning technique [5, 17, 21], optical interferometer

[1, 37], stereophotography [64, 65, 67], and structured light

technique [49]. The optical interferometer, stereophotog-

raphy, and structured light can only obtain half particle

geometries exposing to the field of review of cameras. The

laser scanner and X-ray CT were able to scan 3D full

particle geometries. However, the laser scanner must scan

particles one by one, so considerable labor efforts and time

must be required to scan many particles. X-ray computed

tomography (CT) was an ideal technique, which can scan
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many particles at the same time to obtain their full 3D

geometries. However, X-ray CT technique was limited by

the high-cost devices and their maintenance, extensive

image processing skills, demanding computational efforts

for data processing, and small scanning field of view.

The typical sizes of soil specimens for X-ray CT scans

were approximately 12 mm in diameter and 24 mm in

height in the existing studies [11, 12, 24, 45–48, 73].

Therefore, scanning a sufficient amount of soil particles for

simulating a triaxial test in DEM (diameter = 50 mm,

height = 100 mm) required approximately 70 scans. This

issue is recently addressed by Semnani and Borja [41].

They developed a stochastic framework based on multiple-

point statistics that used high-resolution training images to

enhance low-resolution images obtained over a large field

of review. They evaluated the proposed approach using

X-ray CT images of organic-rich Woodford shale obtained

at two different resolutions. Results showed that the pro-

posed technique can generate realistic high-resolution

images of the microstructure of shale over a large field of

review.

Due to the limitations of imaging techniques for

obtaining 3D realistic particles, many techniques were

developed by researchers to generate realistic particles by

computers. These techniques can be divided into two cat-

egories. The techniques in the first category aimed to

generate random particle geometries. For example, Vor-

onoi-based spheropolyhedra algorithm introduced by

Galindo-Torres and Pedroso [14] and Galindo-Torres and

Muñoz [13] and a Fourier-Voronoi-based algorithm intro-

duced by Mollon and Zhao [29–31] have been developed to

generate realistic particles. These randomly shaped parti-

cles may not be precisely representative of real granular

soil particles.

The second type of techniques aimed to clone a granular

soil: a few of 3D particles were scanned by 3D imaging

techniques and analyzed to obtain shape characteristics,

which are used to generate as many particles as necessary

to clone the target soil. The spherical harmonics technique

was typically used by researchers for cloning soils. A few

of 3D scanned particles were analyzed to determine their

spherical harmonics coefficients, which are considered as

morphological properties, or ‘‘morphological gene,’’ of this

soil. Then, probability techniques were used to add ‘‘gene

mutation,’’ which enabled a computer to create random

morphological variances in the generated particles to pro-

vide different particle shapes [15, 26, 43, 46,

56, 57, 70–72]. These studies demonstrated that the particle

shape distributions of original and cloned soils remarkably

agreed with each other.

The spherical harmonics techniques demonstrated

excellent results for granular soils containing particles with

similar shapes [15, 26, 43, 56, 57, 70–72]. These particles

were sharing with similar spherical harmonics coefficients

or similar morphological genes. However, some natural

soils contained a wide range of particle shapes, and these

particles did not necessarily have similar morphological

genes, such as Griffin sand.

We randomly picked 403 particles from a Griffin sand

and filled these particles into a plastic cylinder. A high-

resolution X-ray CT was used to scan the soil specimen

with a spatial resolution of 10 lm/voxel. The obtained 3D

volumetric images were processed by image segmentation

techniques to identify individual soil particles. The first

step was to use image thresholding techniques [36] to

segment air and particles, resulting in a binary image, in

which the soil particles had a voxel value of ones (white

color), and the air had a voxel value of zeros (black color).

In this binary image, the soil particles were contacting with

each other. Therefore, the second step was to use an

improved watershed analysis technique [48] to segment

contacting particles. The segmented volumetric image is

shown in Fig. 1a. Six typical particles are shown in

Fig. 1b–g. Griffin sand contains particles having angular

and elongated shapes as shown in Fig. 1b–d and rounded

and spherical shapes as shown in Fig. 1e–g.

Seven particle shape descriptors were used in this study

to quantify the particle shapes as shown in Table 1. These

particle shape descriptors can be determined using 3D

computational geometry techniques [34, 48, 58, 69].

Distributions of particle shape parameters are shown in

Fig. 2. It is evident that Griffin sand included two types of

particle shapes displaying a gap in shape distributions. We

used spherical harmonics-based particle generation tech-

nique developed by Wei et al. [56] to generate 25,000

particles. The 3D computational geometry techniques were

used to analyze particle shape distributions of generated

particles, and results are also shown in Fig. 2.

The shape distributions of cloned and original Griffin

sand do not match well due to the gap existing in shape

distributions. Existing spherical harmonics techniques

assumed that all the particles in the soil have similar

morphological characteristics and determine one morpho-

logical gene for the soil. Therefore, these methods failed to

clone the sands with mixed particle morphological char-

acteristics. This study aimed to address this issue by inte-

grating spherical harmonics with Gaussian mixture model,

expectation–maximization, and Dirichlet process tech-

niques. The proposed technique can evaluate how many

types of particle morphological genes in the soil and extract

each morphological gene. These different morphological

genes were used to generate different types of particle

shapes. This technique was effective and robust for cloning

granular soils with complex and mixed particle morpho-

logical characteristics.
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2 Spherical harmonics for particle
generation

A 3D particle surface can be represented by the spherical

harmonics coefficients cmn and spherical harmonics func-

tions Ym
n ðh;uÞ [33]:

rðh;uÞ ¼
X1

0

Xn

m¼�n

cmn Y
m
n ðh;uÞ ð1Þ

where rðh;uÞ (h 2 ½0; p�, u 2 ½0; 2p�) is coordinates of

points on particle surface in the spherical coordinate sys-

tem. The n and m are the degree and order of spherical

harmonics, respectively. The base functions Ym
n ðh;uÞ can

be determined as [57]:

Ym
n ðh;uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þðn� mÞ!

4pðnþ mÞ!

s

Pm
n cosðhÞeimu ð2Þ

where Pm
n is Legendre function. The Legendre function can

be expanded by Rodrigures’s formula [56]:

Fig. 1 3D Griffin sand specimen scanned by X-ray CT and six typical particles

Table 1 Commonly used shape descriptors and their definitions

Definitions (reference) Formula Note

Convexity

(solidity) [32]

3D Cx ¼ V
Vc

The ratio of the volume of the particle (V) to the volume of the minimum convex hull circumscribing

the particle (Vc)

Circularity [6] 3D C ¼ 6Vffiffiffi
A3s
p

q The ratio of the volume of the particle (V) to the volume of the sphere having the same surface area

(As) as the particle

Intercept sphericity

[22]

3D SI ¼
ffiffiffiffiffiffiffi
d2d3
d2
1

3

q
The cubic root of ratio of the product of the width of the particle (d2) and the thickness of the particle
(d3) to the square of the length of the particle (d1)

Volume sphericity

[40]

3D SV ¼ V
Vcir

The ratio of the volume of the particle (V) to the volume of the smallest circumscribed sphere (Vcir)

Diameter

sphericity [53]

3D SD ¼ De;3

Dc;3

The ratio of the diameter of a sphere having the same volume as the original particle (De,3) to the

diameter of the minimum circumscribed sphere (Dc,3)

Surface area

sphericity [23]

3D SA ¼ Ae

As
The ratio of the surface area of the sphere having the same volume as the particle (Ae) to the real

surface area of the particle (As)

Roundness [53–55] 3D

R ¼

PN
i¼1

r3;i

�
N

rins;3

The ratio of the average radius of spheres fitting the corners of the 3D particle geometry (r3) to the

radius of the maximum inscribed sphere to the 3D particle geometry (rins,3)
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Pm
n ðxÞ ¼ ð1� x2Þ mj j=2 � d

mj j

dx mj j
1

2nn!
� d

n

dxn
ðx2 � 1Þn

� �
: ð3Þ Figures 3a, b illustrate the Ym

n ðh;uÞ and cmn for n = 0, 1,

and 2. The spherical harmonics coefficients cmn are unique

for a particle. As shown in Fig. 3b, the zero degree (n = 0)

Fig. 2 Distributions of particle shape descriptors for original and cloned griffin sands by spherical harmonics algorithm
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of spherical harmonics coefficient c00 determines the vol-

ume of the particle; the first degree of spherical harmonics

coefficients (n = 1), including c11, c
�1
1 , and c01, determine

the spatial displacement of the particle relative to origin;

and the second degree of spherical harmonics coefficients

(n = 2), including c�2
2 , c22, c

0
2, c

�1
2 , and c12, store morpho-

logical properties of the particle. Despite not displaying in

Fig. 3b, the larger degrees of spherical harmonics coeffi-

cients (n[ 2) also store morphological properties of the

particle. Naturally, more detailed morphological properties

of the particle will be contained for higher degrees n in

spherical harmonics, so generated particles will be closer to

the original particles if containing higher degrees of

spherical harmonics coefficients. However, high degrees

will significantly increase computational loads. Research-

ers [31, 56, 57] have found that n = 15 provides satisfac-

tory accuracy for particle representation and generation.

Therefore, n = 15 was also used in this study.

The spherical harmonics coefficients cmn are a complex

number:

cmn ¼ amn þ bmn � i ð4Þ

where amn and bmn are the real part and imaginary part. The

second norm of cmn determines the amplitude of spherical

harmonics at different degrees Ln:

Ln ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

m¼�n

cmn
�� ��2

s

ðn ¼ 0; 1; 2; . . .; 15Þ ð5Þ

Fig. 3 Expansion of spherical harmonics for the first two degrees
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The L0 represents the volume of the particle. To remove

the influence of particle volume, all the Ln can be divided

by L0:

Ln
L0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

m¼�n

amn
L0

� �2

þ bmn
L0

� �2
" #vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

m¼�n

ccmn
�� ��2

s

ð6Þ

Then, normalized spherical harmonics coefficients ccmn
are defined by eliminating the effects of particle volume:

ccmn ¼ camn þ cbmn � i ð7Þ

where camn and cbmn are normalized real and imaginary parts

correspondingly:

camn ¼ amn
L0

ð8Þ

cbmn ¼ bmn
L0

ð9Þ

A soil particle is shown in the insert of Fig. 4a. Spher-

ical harmonics coefficients cmn of this particle were

Fig. 4 The spherical harmonics coefficients and normalized spherical harmonics coefficients for a soil particle
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determined based on Eqs. (1)–(3). The degree n was set as

15. Therefore, a total of 256 spherical harmonics coeffi-

cients cmn were computed. These cmn values were complex

numbers: the 256 real part amn values are plotted in Fig. 4a,

and the 256 imaginary part bmn values are plotted in Fig. 4b.

The volume of the particle L0 is computed as 8.8 based on

Eq. (5), which was used to normalize spherical harmonics

coefficients cmn to eliminate effects of volume. Therefore,

the normalized real and imagery parts camn and cbmn were

determined based on Eqs. (8) and (9), as shown in

Fig. 4c, d.

The camn and cbmn stored the morphological properties of

the particle, and they were independent of each other.

Therefore, camn and cbmn together determined morphological

genes of particles. If particles in a granular soil have

similar shapes, their morphological genes should be also

close to each other. For example, we scanned 450 Ottawa

sand particles using X-ray CT as shown in Fig. 5a. Some

typical particles are shown in Fig. 5b–g. The Ottawa sand

particles all had well-rounded shapes, and their shapes

were visually close to each other. Using Eqs. (1)–(9), camn
and cbmn values of particles were computed. The histograms

of camn and cbmn values for n = 2–15 are shown in Fig. 6a, b.

The camn and cbmn values of particles having similar mor-

phological properties are close to each other and follow a

Gaussian distribution. The same observation has been

reported by Wei et al. [56].

The camn and cbmn values together determine the particle

morphological gene. Therefore, a spherical harmonics

descriptor was introduced by integrating camn and cbmn values

by Wei et al. [56, 57] and Mollon and Zhao [31]:

Dn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
camn

	 
2þ cbmn
� �2

r
ð10Þ

The Dn distributions for n = 2–15 are shown in Fig. 6c,

which also follow Gaussian distributions.

The distributions of camn and cbmn values or Dn values can

be considered as the morphological gene of Ottawa sand.

Gaussian functions were determined by fitting distributions

of camn and cbmn values and plotted as solid lines as shown in

Fig. 6. Then, these new camn and cbmn values can be generated

based on the Gaussian functions. Then, the new camn and cbmn
values can be input into Eq. (7) to generate a new set of

normalized spherical harmonics coefficients ccmn values.

Then the ccmn values can be used in Eqs. (1)–(3) to generate

new particles. This was the basic concept of the exiting

Fig. 5 3D Ottawa sand specimen scanned by X-ray CT and six typical particles
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spherical harmonics techniques for cloning granular soils

[15, 26, 43, 56, 57, 70–72].

It should be noted that newly generated particles had a

unit volume because the normalized spherical harmonics

coefficients ccmn values were used. Then, the generated

particles can be up-scaled or down-scaled to match particle

sizes, as will be shown later in the paper.

In Fig. 6a, b, the Gaussian functions were used to pro-

duce randomly camn and cbmn values and then these camn and cbmn
values were used to generate 25,000 new Ottawa sand

particles. The typically generated particles are shown in

Fig. 5h, which visually have the same shape as original

particles in Fig. 5a–g. Both original and cloned particles

were analyzed by 3D computational geometry techniques

[34, 48, 58] to determine particle shape descriptors. The

Fig. 6 The distributions of camn , cbmn , and Dn for n = 2–8 of 450 Ottawa sand particles
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particle shape distributions of original and cloned Ottawa

sand remarkably agree with each other as shown in

Fig. 7a–g.

The particle size distribution of the original 450 parti-

cles was analyzed by using both sieving test and 3D

computational geometry [48], and results agree with each

other as shown in Fig. 7h. The 25,000 cloned particles all

had a unit volume. Therefore, these particles were ran-

domly up-scaled and down-scaled to match the particle

distribution curve of original particles as shown in Fig. 7h.

Fig. 7 Particle shape and size distributions of original and cloned Ottawa sands
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Finally, the morphological gene of Ottawa sand (i.e., size

and shape) has been successfully preserved in the cloned

particles.

3 Gaussian Mixture Model (GMM)
and Expectation–Maximization (EM)
algorithm

The Griffin sand in Fig. 1 contains more than one type of

particle morphological genes. The distribution of Dn values

of the scanned 403 particles was determined, and his-

tograms of D2, D3, D4, and D5 values are shown in Fig. 9.

(The distributions of other Dn values (n = 6, 7, …, 15) are

similar, so they are not plotted.)

Unlike Ottawa sand, the D2 values of Griffin sand did

not simply follow Gaussian distribution due to the mixed

particle morphological characteristics. There were certainly

other types of granular soils in nature with mixed particle

morphological characteristics that possessed more com-

plicated distributions of Dn values. Therefore, it was

challenging to use a function to fit random distributions of

Dn values. Therefore, a Gaussian mixture model (GMM)

was introduced by this study to address this issue.

GMM is a probabilistic model using a finite number of

Gaussian functions to fit complicated distributions of data

points. In other words, GMM divides data points into

several groups and uses Gaussian function to fit data points

in each group [4, 28]. The brief introduction of GMM is as

follows.

Using the histogram of D2 values in Fig. 8a as an

example, the D2 values can be divided into several groups

and each group can be fitted by a Gaussian function. All

these Gaussian functions together constitute the GMM.

This progress essentially divided all the soil particles into

several groups based on their morphological genes (D2

values). Then, each group of particles with a similar mor-

phological gene obeys their own Gaussian function, which

is a component of GMM.

If a set of data points X1, X2, X3, … Xi, …, Xn follows a

GMM consisting of k Gaussian functions, the GMM can be

expressed as:

PðXi hj Þ ¼
Xk

j¼1

ajNðlj;RjÞ ð11Þ

where Nðlj;RjÞ is the j-th Gaussian function; l is the

expectation (or mean);
P

is covariance matrix;h represents

parameters for k Gaussian functions

l1; l2; . . .; lk;
P

1;
P

2; . . .;
P

k; a1; a2; . . .; ak

 �

; aj (j = 1,

2,…, k) represents the weight of j-th Gaussian function in

the GMM; and the summation of all aj (j = 1, 2,…,

Fig. 8 Distributions of D2 values of 403 particles of Griffin sand
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k) values is 1. The physical meaning of aj is percentage of

data points in the j-th group. For example, a3 = 0.55 means

55% percentage data points are in the group #3.

Expectation–Maximization (EM) algorithm was typi-

cally used to determine parameters in GMM

h = l1; l2; . . .; lk;
P

1;
P

2; . . .;
P

k; a1; a2; . . .; ak

 �

[8, 38]. For example, if the GMM contains three Gaussian

functions (i.e., three groups), there will be a total of nine

unknown parameters in GMM:l1, l2, l3, R1, R2, R3, a1, a2,
and a3. In the most application of EM, the number of

groups is given by a priori. However, types of particle

morphological genes cannot be predicted for a soil, so the

number of Gaussian functions in GMM cannot be deter-

mined by a priori. Therefore, we introduced Dirichlet

process to solve this issue.

4 Dirichlet process (DP)

Dirichlet process (DP) is a stochastic process for dividing

data into groups based on properties of data without

specifying the number of groups a priori [50, 51].

Fig. 9 The Dirichlet process algorithm for grouping soil particles
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Therefore, this study used DP to analyze the morphological

properties of all the particles to determine how many types

of particle morphological genes that soil has. In this

research, D2 values are used to represent the morphological

property that DP is operating on.

Four randomly selected particles are used to conceptu-

ally illustrate the grouping process using DP in Fig. 9a.

The goal is to group these particles based on their mor-

phological genes (D2 values). The D2 values of #1, #2, #3

and #4 particles are computed as D2,1 = 0.31, D2,2 = 0.24,

D2,3 = 0.03 and D2,4 = 0.11, respectively.

In the first step in Fig. 9b, four particles are divided into

four groups (each particle forms a group). The D2 value of

each particle is used to fit a Gaussian function.

In the second step in Fig. 9c, we unlabel the #1 particle

and evaluate the probability of this particle belonging to

the remaining three groups, P(D2,1,2), P(D2,1,3) and

P(D2,1,4) and the probability of creating a new group for

itself P(D2,1,1). For example, the results are computed as

P(D2,1,2) = 0.40, P(D2,1,3) = 0.01, P(D2,1,4) = 0.26 and

P(D2,1,1) = 0.32. Clearly, P(D2,1,2) = 0.40 is the largest

probability among these four values. Therefore, in the third

step in Fig. 9d, particle #1 is grouped with #2 particles.

Then the Gaussian function parameters of this group are

updated due to the particle #1 being added.

In the fourth step in Fig. 9e, we unlabel the #2 particle

and then calculate the probabilities of particle #2 belonging

to the remaining three groups. For example, the results are

computed as P(D2,2,1) = 0.42, P(D2,2,3) = 0.01, and

P(D2,2,4) = 0.21 and the probability of creating a new

group is computed as P(D2,2,2) = 0.36. Clearly,

P(D2,1,1) = 0.42 is the largest probability among these four

values. Then, in the fifth step in Fig. 9f, the particle #2 is

grouped with the particle #1.

Fig. 10 The original and cloned particles of Griffin sand by the proposed technique in this study
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In the sixth step in Fig. 9g, we unlabel the #3 particle

and then compute probabilities of particle #3 belonging to

the remaining two groups, P(D2,3,1) = 0.01 and

P(D2,3,4) = 0.04 and the probability of creating a new

group, P(D2,3,3) = 0.95. Apparently, the probability of

creating a new group is largest, so particle #3 creates a new

group for itself, as shown in the seventh step in Fig. 9h.

We repeat this process for particle #4, which is classified

into a new group, as shown in Fig. 9i, j. After labeling the

four particles, the results are shown in Fig. 9j. Therefore,

four sand particles are successfully divided into three

groups based on their D2 values (morphological charac-

teristics). The same process can be conducted to group

many particles.

5 Particle classification by Gaussian mixture
model (GMM), expectation–maximization
(EM), and Dirichlet process (DP)

The 403 Griffin sand particles in Fig. 1a were analyzed by

spherical harmonics and their real and imagery parts camn
and cbmn values and spherical harmonics descriptors Dn

values were determined. Their D2 values were input into

Dirichlet process (DP) algorithm. The same process shown

in Fig. 9 was repeated for 403 particles to classify the

particles based on their morphological characteristics (D2

values). This resulted in three groups. Therefore, three

Gaussian functions were included in GMM.

Parameters for three Gaussian functions include

h ¼ l1; l2; l3;
P

1;
P

2;
P

3; a1; a2; a3

 �

. The GMM-EM

optimization process was performed based on the D2 values

of these 403 particles. Then, the parameters for GMM were

determined as

h ¼
Group 1: l1 ¼ 0:2569 R1 ¼ 0:0049 a1 ¼ 0:49
Group 2: l2 ¼ 0:1722 R2 ¼ 0:0028 a2 ¼ 0:26
Group 3: l3 ¼ 0:0269 R3 ¼ 0:0001 a3 ¼ 0:25

8
<

:

9
=

;

ð12Þ

The weights of three Gaussian functions in GMM are

determined as a1 = 0.49, a2 = 0.26 a3 = 0.25, respectively.

Some of particles in three groups are shown in Fig. 10a.

The group 1 included 197 particles that had angular and

elongated shapes. The group 2 included 105 particles that

had subangular and elongated shapes. The group 3 included

101 particles that had rounded and spherical shapes.

The GMM is superimposed on the D2 histogram in

Fig. 11, which fits the distributions of D2 values very well.

The fractal dimension (FD) contains the information of

spherical harmonics coefficients which is introduced.

Quevedo et al. [39] proposed an empirical method to

Fig. 11 Gaussian mixture model superimposed on D2 distribution of Griffin sand

Fig. 12 The relationship between Fractal dimensions and roundnesses

of particles of Griffin sand
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determine the fractal dimension of spherical harmonics

descriptor:

FD ¼ 3þ logðDnÞ
logðnÞ ð13Þ

where FD is the fractal dimension. The fractal dimension

versus roundness is plotted in Fig. 12. The most data points

of one type of soil particles are concentrating, and three

clusters were observed. This validates the effectiveness of

accuracy of integrated GMM, EM, and DP algorithms for

classifying particle morphological genes.

Fig. 13 The distribution of camn and cbmn for n = 2–8 of 403 Griffin sand particles
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6 Cloning soil particles

The 403 Griffin sand particles have been classified into

three groups. For each group of particles, their normalized

harmonics coefficients camn and cbmn values can be plotted.

For example, Fig. 13 plots the camn and cbmn values for n = 2–

7 for each group of particles. The remaining camn and cbmn
values for n = 8–15 are similar, so they are not plotted in

Fig. 13.

Fig. 14 Particle shape and size distributions of original and cloned Griffin sands by the proposed technique in this study
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The Gaussian functions were fitted to camn and cbmn values

of three types (i.e., very angular, subangular, and well

rounded) of soil particles, respectively, as shown in

Fig. 13. Then, new camn and cbmn values for three types of

particles were generated based on the Gaussian distribu-

tion, and these new camn and cbmn values were used to generate

new Griffin sand particles within three groups. For exam-

ple, as shown in Fig. 13a, the distributions of cam2 and cbm2 of

angular particles are determined. Then, we drew new cam2
and cbm2 from their own Gaussians. Similarly, a set of camn
and cbmn (n = 2, 3, …, 15) were also drawn from their own

distribution randomly. Then the associated ccmn were

obtained from Eq. (7). Applying Eqs. (1)–(3), a realistic

angular particle was generated. Subangular and well-

rounded particles could also be generated from their camn
and cbmn distributions in Fig. 13b, c, respectively.

The weights of three Gaussian functions in GMM are

determined as a1 = 0.49, a2 = 0.26 a3 = 0.25, respectively.

Therefore, the percentage ratios of generated particles must

obey 49:26:25 in very angular, subangular, and well-

rounded groups, respectively. Therefore, we generated

12,250 very angular particles, 6500 subangular particles,

and 6250 well-rounded particles. A total of 25,000 particles

were generated.

Generated particles and original particle are compared

in Fig. 10. They are visually very similar. The shape dis-

tributions of the original 403 particles and generated

25,000 particles are compared in Fig. 14a–g. Their shape

distributions remarkably agree with each other. Therefore,

the particle shapes of Griffin sand were successfully cloned

by the proposed study.

Finally, the particle sizes of the original 403 particles

were determined using computational geometry [48] and

sieve analysis as shown in Fig. 14h. The optical and

sieving results agree with each other, validating effective-

ness of optical based particle size quantification. The

generated 25,000 particles are randomly scaled up or scaled

down to match the particle size distributions as shown in

Fig. 14h. Therefore, the cloned Griffin sand particles suc-

cessfully preserved both particle shape and size charac-

teristics of original Griffin sand.

The proposed method was effective and accurate to

clone granular soil with mixed particle morphological

characteristics. Although the framework (spherical har-

monics, GMM, EM, and DP) is developed based on

granular soils, this framework can be used to clone other

particulate materials with mixed particle shapes.

7 Conclusion

The natural soils, such as Griffin sand, contain particles

with a mixture of morphological characteristics, or differ-

ent morphological genes. This research integrates spherical

harmonics, Gaussian mixture model, expectation–maxi-

mization, and Dirichlet process to clone such granular soils

with mixed particle morphological genes. Spherical har-

monics coefficients are used to extract morphological

genes of the particles. Gaussian mixture model, expecta-

tion–maximization, and Dirichlet process analyze spherical

harmonics coefficients to determine the types of morpho-

logical genes and their percentages. The Gaussian function

is determined for each type of morphological gene, forming

a Gaussian mixture model. The Gaussian mixture model is

used to generate new spherical harmonics coefficients,

which are used to generate new soil particles. The particle

shape and size distributions of generated particles agree

well with target soil. The proposed technique can also be

used to clone other particulate materials with a mixture of

particle shapes.
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