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Abstract
The geologist Hakon Wadell proposed the roundness definition in the 1930s for quantifying the particle angularity of

granular soils. Due to the difficulty in obtaining three-dimensional (3D) particle geometries in the 1930s, Wadell used two-

dimensional (2D) projections of particles to develop his roundness definition, although it is limited for analyzing 3D

particles. This study shows that Wadell’s 2D roundness could be extended to a 3D definition. The 3D roundness is defined

as the ratio of the average radius of spheres fitting to corners and ridges of a 3D particle to the radius of the maximum

inscribed sphere of the 3D particle. A computational geometry algorithm is proposed to automatically identify corners and

ridges, fit appropriate spheres to corners and ridges, identify the maximum inscribed sphere of the 3D particle, and compute

3D roundness. The number of slices per diameter of the maximum inscribed sphere of the particle, NSD, is defined for

controlling the sphere fitting process. The minimum required NSD = 300 is established to ensure the reliable use of the

proposed 3D computational geometry algorithm. Finally, a total of 20,000 particles from five sand specimens with various

angularities are scanned by X-ray computed tomography. The 2D and 3D roundnesses of these 20,000 particles are

compared. The 2D roundnesses capture the general trend of the corresponding 3D roundnesses, but vary in a large range,

resulting in significant uncertainties when using 2D images to infer 3D particle angularities.

Keywords Computational geometry � Particle angularity � Particle shape characterization � Wadell roundness

1 Introduction

Particle angularity is a fundamental property of granular

soils governing the capability of particles for forming

interparticle locking. Angular particles have many sharp

protrusions (or corners), which can interlock with each

other to form a large coordination number and a stronger

load-bearing skeleton of granular soils. Experimental and

numerical studies have shown that angular soils exhibit

larger values of index void ratios, angle of internal friction,

dilatancy, constant volume friction angle, compressibility,

and small-strain modulus than rounded soils

[3, 4, 11, 14, 31, 32, 42, 49, 55, 65, 74, 82, 85, 87, 89].

Recently, more studies have demonstrated the effects of

particle shape on other physical behavior of granular soils

such as liquefaction and shear banding [38, 75], thermal

conductivity and shear wave velocity [39], and soil struc-

tural interface [90].

The discrete element method (DEM) has become the

preeminent numerical tool for investigating granular
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material behavior. Typical DEM models use circular or

spherical particles, but such oversimplified particulate

models cannot provide adequately accurate insight into the

mechanical behavior of granular soils. Methods to better

simulate irregular particle shapes for use in DEM have

therefore been sought [83]. Researchers have explored the

use of ideal particle shapes, such as ellipsoids, spherical

cylinders, pentagons, and rounded-cap elongated rectan-

gles, in DEM simulations [8–10, 16, 18, 28, 41, 52, 76].

These works led to significant progress in the simulation of

idealized particle shapes. However, these techniques can-

not simulate realistic soil particles with irregular particle

shapes. Very recently, various techniques have been

developed for simulating realistic particle geometries such

as poly-superellipsoid-based approach [79], polyhedral

particles [21], and physics engine-based approach [27].

The importance of particle angularity has been recog-

nized in other disciplines dealing with granular materials,

such as pavement engineering [43, 50, 62, 63], cement and

concrete [24], geology [46], material science [66], mining

[29], powder technology [19], chemical engineering [15],

pharmaceuticals [20], and agriculture [47].

The angularities of granular soils are quantified by a

factor called roundness, which was proposed by the geol-

ogist Hakon Wadell in the 1930s [67–69]. Using two-di-

mensional projections of particles as shown in Fig. 1a,

Wadell defined roundness as the ratio of the average radius

of curvature of the corners of a particle to the radius of the

maximum inscribed circle:

R2 ¼
average radius of curvature of corners

radius of the largest inscribed circle

¼
PN

i¼1 r2;i
�
N

r2;in
ð1Þ

where r2,i is the radius of the ith corner circle, N is the total

number of corners, and r2,in is the radius of the maximum

inscribed circle, and the subscript ‘‘2’’ means Wadell’s

roundness is based on two-dimensional (2D) particle

projection.

The original procedure for determining Wadell’s

roundness requires considerable manual effort. Each corner

on a particle’s outline is compared to a series of transparent

templates to find the maximum sized circle that will fit

inside the corner. In the 1950s, charts consisting of a set of

reference particle silhouettes were prepared to facilitate

rapid estimation of Wadell’s roundness through visual

comparisons to particles viewed under a microscope. Three

such charts were developed by Krumbein [34], Krumbein

and Sloss [35], and Powers [53]. The manual method is

tedious, and the chart method is subjective. Both methods

are difficult to implement on a large number of particles

[30].

Advances in optical image gathering have led to the

rapid digitization of soil particle projections and created a

potential to automate Wadell’s procedure. However,

automation is a considerably challenging mathematical

problem, and thus, researchers have proposed alternative

definitions of roundness, which could be more easily

computerized. Such alternative definitions have included:

Fourier analysis [13, 71, 73], angularity index [2, 58], and a

fractal technique [7, 23]. A comprehensive review of these

newer methods was provided by Masad et al. [44]. How-

ever, the alternative definitions of roundness have not yet

prevailed over Wadell’s, owing to the latter’s longer his-

tory, a large body of research based on it, and numerous

useful correlations to mechanical properties based on it.

In light of its continuing popularity and wide usage,

Zheng and Hryciw [81, 84] developed a computational

geometry algorithm to automate Wadell’s roundness. This

code can automatically read binary particle projections

(Fig. 1a–c), identify corners, fit appropriate circles to cor-

ners, compute the maximum inscribed circles to the parti-

cles, and compute R2 values based on Eq. (1). This

technique eliminates the subjectivity in roundness compu-

tation. To facilitate researchers to use the computational

Fig. 1 Definition of R2 and the shortcomings of R2 for characterizing the angularity of 3D particle

Acta Geotechnica

123



geometry code, the source code has been posted online so

that researchers are free to download, extend, and cus-

tomize the code based on their needs. To date, this code has

been frequently used by researchers in various disciplines;

some of their publications include

[1, 12, 17, 22, 25, 26, 40, 45, 51, 54, 56, 57, 64, 65, 70,

72, 78].

In fact, three projections in Fig. 1a–c are from the same

three-dimensional (3D) soil particle shown in Fig. 1d, but

they appear completely different as three different parti-

cles. The computed R2 values vary in a wide range from

0.29 to 0.60. Essentially, each view direction of the 3D soil

particle (except for sphere) will yield an entirely new 2D

image and a new R2. Wadell suggested using the maximum

projections of particles for R2 computation, merely because

of the ease in obtaining the maximum projections, not

because of the correctness. When spreading particles on a

flat surface, the particles will naturally show the maximum

projection upward under gravity. Therefore, it is easy to

trace the particle perimeter for roundness analysis.

Uncertainties in R2 definition for characterizing angu-

larities of 3D particles limit the usage of this fundamental

soil property. Therefore, although it has been well estab-

lished that particle angularity affected macro mechanical

behavior of granular soils, this fundamental property was

commonly ignored by engineers in their practice and not

used in classification (e.g., Unified Soil Classification

System) of coarse-grained soils due to the inherent limi-

tations of 2D definitions for characterizing 3D particle

shapes.

Today, geotechnical engineers have utilized various 3D

imaging techniques for capturing 3D particle geometries,

such as X-ray computed tomography (X-ray CT)

[5, 33, 48, 59, 60], laser scanning technique [6, 37, 77],

stereophotography [80, 86, 88], and structured light tech-

nique [61]. Therefore, obtaining 3D particle geometries

does not remain an obstacle for quantifying 3D particle

angularity. 3D computer vision techniques for analyzing

3D particle geometries have been developed. For example,

Lai and Chen [36] reconstructed granular particles from

X-ray CT using the machine learning and level set method.

However, the computer vision techniques for determining

3D Wadell roundness are absent. The paper aims to extend

Wadell’s 2D roundness definition to develop a 3D round-

ness definition. Then, 3D computational geometry tech-

niques are developed to analyze particle geometries to

determine the 3D roundness automatically.

2 Development of 3D roundness definition

The geometric structure of a 3D soil particle surface

includes corners, flat parts, concave parts, and ridges. The

corners and ridges are protrusions on the particle surface,

as shown in Fig. 2. The protrusions of particles interact

with each other creating interparticle locking and forming

the soil skeleton. The ridges are important features on the

particle surface, while the corners are essentially intersec-

tions of several ridges. However, the ridges are either

occluded or projected as corners in the 2D particle pro-

jection. Wadell’s 2D roundness definition can be naturally

extended to 3D by evaluating the sharpness of corners and

ridges of particles. Therefore, the 3D roundness (R3) can be

defined as:

R3 ¼
average radius of corner and ridge spheres

radius of the largest inscribed sphere

¼
PN

i¼1 r3;i
�
N

r3;in
ð2Þ

where r3,i is the radius of the kth corner or ridge sphere,

N is the number of detected corner and ridge spheres, and

r3,in is the radius of the maximum inscribed sphere, and the

subscript ‘‘3’’ means newly proposed roundness definition

is based on 3D particle geometry. Computation of R3

requires determining the maximum inscribed sphere,

identifying corners and ridges, and fitting appropriate

spheres to corners and ridges of 3D particles. A computa-

tional geometry algorithm is developed in this study to

determine these parameters.

Fig. 2 Protrusion parts on 3D soil particle
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3 Determination of the maximum inscribed
sphere

Zheng and Hryciw [81] showed that the maximum inscri-

bed circle of a 2D particle projection can be determined

using a 2D Euclidean distance map. The same concept is

used to determine the maximum inscribed sphere of a 3D

particle. A 3D Euclidean distance map of a 3D particle

geometry is computed by determining the distance of each

point inside the particle to the nearest boundary as shown

in Fig. 3a. The point O located at (572, 608, 720) having

the maximum distance value identifies the center of max-

imum inscribed sphere Smax. The distance value at point O,

which is 390 lm, is the radius of the maximum inscribed

sphere r3,in. The determined maximum inscribed sphere is

superimposed to the original particle in Fig. 3b.

3.1 3D computational geometry to determine R3

The identification of corners on 3D particles is challenging

because of the highly irregular nature of soil particles.

Significant variances exist in the numbers and curvatures of

corners on the same particle and certainly the corners on

many particles. The 3D particles are more complicated

than the 2D projections due to new features, ridges, which

is either occluded or projected as corners in 2D particle

projections. It is difficult to establish a rigorous and

repeatable procedure for a computer to follow. Another

issue is that surface roughness is superimposed on the soil

particle surface. Humans can intuitively distinguish the

roughness from small and sharp corners while computer

must be taught to do so. This paper developed a 3D com-

putational geometry algorithm to solve these issues.

Figure 4 illustrates the basic concept of the 3D com-

putational geometry algorithm using the example particle

in Figs. 2 and 3. We assumed that an appropriate corner

sphere S1 has been fitted to corner 1. The S1 is located at

(330, 484, 268) with a diameter of 167 lm. Then, we use

slices in X, Y, and Z directions to cut through the corner 1

and S1 as shown in Fig. 4a, c, and e. Figure 4b, d and f

shows the intersections of these slices with soil particle

geometry and S1. In these slices, the cross sections of

corner sphere S1 become circles having the same center but

different radii, which are fitting corners of particle

boundary. This observation establishes the linkage between

3D corner spheres and 2D corner circles. Therefore, if we

discrete particles into slices and identify corner circles in

all the slices, concentric circles (circles located at the same

center) in the consecutive slices may belong to a corner

sphere, which can be used to identify and reconstruct

corner spheres.

Based on the analysis above, the following algorithm is

designed in Fig. 5 to identify corner and ridge spheres. The

overall algorithm contains three basic steps. Firstly, the 3D

particle geometry is discretized into slices. Then, each slice

is input into the 2D roundness computational algorithm

developed by Zheng and Hryciw [81].

Zheng and Hryciw’s [81] algorithm removes the surface

roughness superimposed on the perimeter and determines a

mean surface using two statistical techniques, including

locally weighted scatter plot smoothing (LOESS) and K-

fold cross-validation. Then, a loop algorithm is developed

to identify the corners and fit appropriate circles to corners.

In the last step, all the computed circles from different

slices are analyzed. The concentric circles in the consec-

utive slices are used to reconstruct the corner and ridge

spheres.

3.2 Discretize particle into slices and identify
corner circle in slices

The particle is discretized into slices in three directions

along X, Y, and Z axes such as Fig. 4a, c, and e. In fact, the

number of slicing directions required for identifying

Fig. 3 Determination of the maximum inscribed sphere
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corners and ridges on particles depends on particle angu-

larity: Rounded particles require fewer slicing directions

while angular particles require more. The extreme case is a

sphere that requires one slicing direction. However, using

slices in one direction may not be adequate to find all the

corner and ridge spheres for angular particles. As will be

shown in Fig. 12, there are 31, 38, and 26 corner spheres

found using slices in X, Y, and Z directions. Some corners

Fig. 4 Relationship between 2D corner circles and 3D corner spheres (unit is in lm)
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and ridges are not identified using slices in one direction,

because the soil particle appears different in different view

angles: Some corners are visible in one direction but not in

the other direction. Therefore, multiple slicing directions

are necessary for analyzing angular particles.

In this study, a total of 8000 angular particles were

selected from crushed limestone (Fig. 16a) and crushed

Gabbro (Fig. 16b). These 8000 particles are analyzed to

determine the minimum number of slicing directions. We

find that using three slicing directions along with X, Y, and

Z axes ensures all the corners and ridge spheres can be

identified for these 8000 angular particles. Three slicing

directions adequate will naturally satisfies less angular

particles. Therefore, this study suggests that using three

slicing directions along with X, Y, and Z axes for dis-

cretizing particles generates, and this criterion generates

satisfactory results for most particles encountered in prac-

tice. If readers have specialized soils requiring more slicing

direction, they can rotate the particles by an angle and

using three slicing directions along with X, Y, and Z axes to

discretize the particle again to generate more slicing

directions to analyze particle angularity.

The slicing interval D controls the number of slices and,

therefore, is key to the reliability and accuracy of the

proposed 3D computational geometry algorithm. However,

the D depends on particle sizes. Naturally, small particles

require small D. Therefore, to eliminate the effects of

particle size, a dimensionless parameter NSD (the number

of slices per diameter of the maximum inscribed sphere of

the particle) is defined. The diameter of the maximum

inscribed sphere of a particle is related to the particle size.

Therefore, by establishing the minimum required NSD

value, the D can be back-calculated. The minimum

required NSD value that ensures reliable roundness calcu-

lations will be investigated in Sect. 5 of this paper. At this

point, we will use NCD = 156 for the demonstration of the

developed methodologies. The diameter of the maximum

inscribed sphere of the example particle in Fig. 3 is

780 lm. Therefore, the interval between slices D is 5 lm.

The particle is discretized with an interval of 5 lm in X, Y,

and Z directions, generating a total of 669 slices, including

205 slices in the X direction, 241 slices in the Y direction,

and 223 slices in the Z direction.

Each slice is input into the 2D computational geometry

algorithm to compute appropriate corner circles. The

results for seven slices in the Z direction are shown in

Fig. 6. Three circles (C1, C2, and C3) are fitted into three

corners on each slice.

3.3 Reconstruction of corner and ridges spheres
from concentric circles

After finding corner circles for each slice, the next step is to

search concentric corner circles. However, due to the

angular nature of soil particles and the computational

round-off, the computed centers of corner circles rarely

have the same coordinates. For example, the circles C1 of

slices Z = 155 to 185 in Fig. 6 belong to a corner sphere.

Centers of C1 at different slices are very close but not

identical. We found that the divergence of coordinates of

centers of concentric circles is typically within

0.013 9 r3,in, where r3,in is the radius of the maximum

inscribed sphere. In this example, D = 5 lm.

A total of 53 corner circles are founded in the slices

Z = 120 to 210 (19 slices in the Z direction and seven slices

are shown in Fig. 6). The coordinates of centers of these 53

corner circles are plotted in Fig. 7a. A square window

having a size of D 9 D (e.g., 5 9 5 lm in this example) is

used to scan through all the centers as shown in Fig. 7a.

Two scanning squares containing more than one center are

founded: square 1 contains 19 centers, and square 2 con-

tains 3 centers. Square 1 is magnified in Fig. 7b. The 19

circles included in square 1 are used to reconstruct a corner

sphere.

These 19 concentric circles in square 1 are plotted in the

3D particle geometry in Fig. 8. Figure 8a and c is the

oblique view and front view of the same corner, which are

enlarged in Fig. 8b and d. These concentric circles depict

the shape of a corner sphere. The next step is to reconstruct

the corner sphere using these concentric circles.

The X and Y coordinates of centers of the corner sphere

can be determined as the average of the X and Y coordi-

nates of centers of these 19 circles, which are X = 326 and

Y = 483 as shown in Figs. 7b and 8. The Z coordinate and

the radius of the corner sphere are unknown and assumed

as Zs and rs, respectively, as shown in Fig. 8b and d. If we

Fig. 5 Overview of the 3D computational geometry algorithm
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connect the center of corner sphere Os, the center of the ith

concentric circle Oi, and a point C on the ith concentric

circle, a triangle DOsOiC is constructed as shown in Fig. 8b

and d. Therefore, the following relationship can be found:

Zs � Zið Þ2þr2i ¼ r2s ð3Þ

where Zi and ri are the Z coordinate and radius of the ith

concentric circle.

In Eq. (3), there are two unknowns of Zs and rs. Once we

determine Zs and rs, the best-fitting sphere to this corner

can be uniquely determined. At least two concentric circles

are required to solve Eq. (3). Usually, there will be more

than two concentric circles are found at the same location.

A system of nonlinear equations will be generated. A least

square method is used to search the optimized Zs and rs.

The results for the above example are Zs = 268 and rs-
= 167. The computed corner sphere is shown in Fig. 9,

which is well fitted to the corner. The above process

illustrates the process of fitting one corner sphere.

Generally, the corner circles centered in the scanning

square of D 9 D do not necessarily belong to a unique

corner sphere. Therefore, a more general algorithm is

presented herein. For example, Fig. 10a shows a part of

particle surface in the Y–Z plane trimmed from a soil

particle. It has a complicated surface structure with three

consecutive corners. In Fig. 10b, 41 slices cut through the

surface along the Z axis. The 2D computational geometry

algorithm is used to compute the corner circles at each slice

as shown in Fig. 10c. A total of 35 concentric circles are

found. The X and Y coordinates of all these 35 concentric

circles are all in the same D 9 D square with an average

center of (X0, Y0). For the ith concentric circle, the Z co-

ordinate and radius are Zi and ri, respectively. The process

of reconstructing those concentric circles into three corner

spheres is the following.

Fig. 6 2D corner circle for seven slices in the Z direction (the unit is in lm)

Fig. 7 Identification of concentric circles
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Firstly, all the #1 to #35 concentric circles are used to

find a best-fitting sphere using Eq. (3), resulting in a sphere

located at (X0, Y0, Zs) with a radius of rs as shown in

Fig. 10d. The minimum distance from the center (X0, Y0,

Zs) to the 3D particle surface is dmin. If dmin is smaller than

rs, the best-fitting corner sphere extrudes particle surface,

which is not satisfactory. Then the #35 circle is eliminated

from fitting. The last circle moves to the #34 circle.

The #1 to #34 circles are now used to fit a new sphere.

The recomputed dmin and rs are compared again. The dmin

is still smaller than rs. Then #34 circle is eliminated, and

the #33 circle becomes the last one. Such process will

continue until finding a sphere satisfying rs = dmin or there

is only one circle remaining for fitting. Figure 10e shows

the last corner circle moves to the #29 circle, but no sat-

isfactory sphere is found. When the last corner circle

moves to the #13 circle in Fig. 10f, the first corner sphere

satisfying rs = dmin is found. The #1 to #13 circles are fitted

Fig. 8 Fitting process for the corner sphere

Fig. 9 Reconstruction of corner spheres from the 19 concentric

circles
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to the first corner sphere, and they are permanently

removed from the fitting process.

In the next step, the first circle moves to the #14 circle,

and the last circle moves back to the #35 circle. The #14 to

#35 circles are used to fit a sphere in Fig. 10g. The rs and

dmin are recomputed and compared again. The above pro-

cess is repeated. However, when the last circle moves back

to the #15 circle, there is still no satisfying sphere as shown

in Fig. 10h. Then the #14 circle is permanently removed

without finding a corner sphere.

The first circle moves to the #15 circle, the last circle

moves back to the #35 circle as shown in Fig. 10i, and the

above process continues. The final fitting results are shown

in Fig. 10k. As expected, three corner spheres are fitted to

three corners.

Fig. 10 General algorithm of reconstructing corner spheres from concentric circles

Fig. 11 Reconstruction of ridge spheres
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The above algorithm can be extended to find the best-

fitting spheres to ridges. An example is shown in Fig. 11. A

total of 91 slices cut through a ridge on the 3D particle as

shown in Fig. 11a. Using the algorithm described above,

ten spheres are reconstructed, which are well fit the ridge.

Figure 11b superimposes these ten spheres on the soil

particle surface, while Fig. 11c only shows these ten

spheres.

The above algorithm is used to reconstruct corner and

ridge spheres from all the slices in the X, Y, and Z direc-

tions. There are 31, 38, and 26 corner spheres are found

using slices in X, Y, and Z directions as shown in Fig. 12a–

c, respectively. The computed spheres are not the same in

different directions because the soil particle appears dif-

ferent in different view angles: Some corners are visible in

one direction but not in the other direction.

Fig. 12 Best-fitting spheres using slices in X, Y, and Z directions, respectively

Fig. 13 Final corner and ridge spheres by combining best-fitting spheres in three directions

Fig. 14 Physical meaning of NSD and D
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Fig. 15 Effects of NSDs on the 3D roundness computational results (the black spheres are the maximum inscribed sphere and corner and ridges

spheres are in other colors)
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The next step is to combine all the corner spheres from

three directions. The common corner spheres obtained

from three directions are merged into one sphere. Then, a

total of 54 spheres are determined. Figure 13a superim-

poses these best-fitting corner and ridge spheres into soil

particle surface, and Fig. 13b shows the best-fitting

spheres. The average radius of the corner and ridge spheres

is 236 lm. According to Eq. 3, 3D roundness is computed

as R3D = 236/390 = 0.61.

4 Analysis of NSD

The physical meaning of NSD (number of slices per

diameter of the maximum inscribed sphere of particle) is

shown in Fig. 14, which essentially sets a threshold

between corner and non-corner on soil particle surface. A

large NSD generates a small slicing interval D as shown in

Fig. 14a, while low NSD generates a large slicing interval

D as shown in Fig. 14b. Therefore, assuming the corner in

Fig. 14 is the smallest corner on a soil particle, the NSD

must be sufficiently large so that at least two slices cut

through this corner. Then, a corner sphere can be recon-

structed by two concentric circles. Once the smallest corner

is identified, further increasing NSD does not change the

results, but generates more slices and dramatically increa-

ses computational loads.

The NSD depends on particle angularity. For a rounded

particle consisting of large corners, a small NSD value is

enough to identify all the corners. Nevertheless, for an

angular particle, a large NSD is necessary to detect its small

and sharp corners. Therefore, an angular particle is inves-

tigated as the worst-case scenario to determine minimum

NSD value (NSDmin) as shown in Fig. 15a. A series of NSD

Fig. 16 Five sand specimens scanned by X-ray computed tomography (X-ray CT)
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values are used in 3D computational geometry algorithm to

determine R3 values as shown in Fig. 15a. When NSD

decreases from 1200 to 300, the number of identified cor-

ner and ridge sphere N and determined R3 keep constant.

Therefore, the NSDmin = 300 gives reliable results for this

angular particle, which is selected as a criterion for using

the proposed 3D computational geometry.

This trial and error process is repeated for the other three

particles with subangular to rounded shapes as shown in

Fig. 15b–d. A series of NSD values are used to determine

R3 values. As shown, more rounded particles require

smaller NSDmin values. However, the NSDmin = 300

adequate for the angular particle in Fig. 15a satisfies less

angular particles in Fig. 15b–d. Therefore, the criterion of

NSDmin = 300 is defined for using 3D computational

geometry algorithm.

5 Comparison between 2D and 3D
roundnesses

Five sand specimens were used in this study to evaluate

and effectiveness of the proposed 3D roundness definition,

3D computational geometry algorithm, and compare 2D

Fig. 17 3D roundness computational results of 15 particles randomly selected from 20,000 particles of five sands (the black spheres are the

maximum inscribed sphere, and corner and ridges spheres are in other colors)
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and 3D roundnesses. They included crushed limestone

(very angular to angular particles), crushed Gabbro (very

angular to subangular particles), crushed granite (very

angular to subangular particles), Griffin sand (subangular

to subrounded particles), and Ottawa sand (rounded to

well-rounded particles). For each sand, we manually

picked 4000 particles in a range of #30 sieve (0.595 mm)

to #18 sieve (1.00 mm). These five sand specimens may be

representative of commonly used sands in geotechnical

research and practice.

For each soil, these 4000 particles were spread on a flat

surface, and an image was captured above, which gener-

ated the maximum projections of particles. The 2D com-

putational geometry code was used to determine R2 values.

Then, for each sand, selected particles were funneled

into a 12-mm-diameter plastic cylinder and were vibrated

to generate a dense specimen. A high-resolution X-ray

computed tomography (X-ray CT) was used to scan spec-

imens with a resolution of 10 lm/voxel, which yielded 3D

volumetric images. An improved watershed analysis tech-

nique proposed by Sun et al. [60] was used to process

volumetric images, segment contact particles, and identify

individual particles. A total of 4000 particles were deter-

mined for each sand specimen, which verified the relia-

bility of particle segmentation results. These particles are

plotted in different colors in Fig. 16.

The NSD = 300 was used in the discretization. The 3D

computational geometry code developed by this study was

used to determine R3 values of these 20,000 particles.

Fifteen typical particles are randomly selected to illustrate

the computational results as shown in Fig. 17. The maxi-

mum inscribed spheres are plotted in the black color, while

corner and ridge spheres are plotted in other colors. The

computed spheres well fit the corners and ridges of all the

particles having very angular to well-rounded shapes.

The R2 and R3 values of 20,000 particles are compared

in Fig. 18. The R2 values capture the general trend of the

R3 values, but vary in a large range, resulting in significant

uncertainties when using 2D images to infer 3D particle

shapes. Based on the comparisons, geotechnical engineers

should be cautious when using 2D images to characterize

3D particle shapes. As 3D imaging techniques are

increasingly available to common soil testing laboratory,

the 3D roundness and the associated computational

geometry techniques developed by this study allow

geotechnical engineers to accurately characterize 3D

angularities of granular soils.

6 Discussion

The geometric structure of a 3D soil particle surface

includes corners, flat parts, concave parts, and ridges as

shown in Fig. 19a. The proposed techniques can success-

fully identify corners, ridges, saddle-shaped ridges, and fit

appropriate spheres as shown in Fig. 19b. In fact, the

concave parts interlock with corners and ridges to form soil

skeleton, impacting soil mechanical behavior. However,

Wadell’s roundness only evaluates the sharpness of corners

and ridges. The concave parts are not considered in ana-

lyzing particle shape. A new roundness definition should be

proposed and evaluated by considering concave parts,

corners, and ridges in the future.

7 Conclusions

This study extends the Wadell’s 2D roundness (R2) defi-

nition to 3D roundness (R3) definition. A 3D computational

geometry algorithm is proposed by extending the previ-

ously developed 2D computational geometry algorithm.

The 3D computational geometry can automatically deter-

mine the maximum inscribed sphere, identify corners and

ridges of 3D particles, and fit appropriate spheres to corners

and ridges, and compute R3 values.

A parameter called NSD (number of slices per diameter

of the maximum inscribed sphere of particle) is proposed

as a controlling parameter for the 3D computational

geometry algorithm. Higher NSD is required for angular

particles, while smaller NSD is sufficient for rounded par-

ticles. Therefore, the minimum NSD (NSDmin) is deter-

mined as 300 based on investigations of a very angular

particle. This NSDmin = 300 can naturally be applicable to

less angular particles.

Five sands with a spectral of particle angularities were

scanned by X-ray CT, yielding a database containing

20,000 particle geometries. These particles were analyzed

by 2D and 3D computational geometries technique to

Fig. 18 Comparison between R2 and R3 values of 20,000 particles

from five sands
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determine R2 and R3 values. The R2 values captured gen-

eral trends of the corresponding R3 values, but varied

within large ranges, resulting in significant uncertainties

when using 2D images to infer 3D particle shapes.
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scale physical modelling. Géotechnique 67:138–152. https://doi.

org/10.1680/jgeot.15.P.200

57. Suh HS, Kim KY, Lee J, Yun TS (2017) Quantification of bulk

form and angularity of particle with correlation of shear strength

and packing density in sands. Eng Geol 220:256–265. https://doi.

org/10.1016/j.enggeo.2017.02.015

58. Sukumaran B, Ashmawy AK (2001) Quantitative characterisation

of the geometry of discret particles. Géotechnique 51:619–627.
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