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Many three-dimensional (3D) imaging techniques, such as 3D laser scanner, stereophotography, and structured
light techniques, can only capture upper half particle geometries in the camera view, and lower half particle ge-
ometries are occluded from the camera. This research aims to evaluate the accuracy of using half particle geom-
etries to compute 3D particle shape descriptors. Computational geometry techniques are developed to compute

eight commonly used particle shape descriptors automatically. Five coarse sand specimens are scanned by X-ray
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computed tomography and structured light to generate full 3D and half particle geometries, respectively. The
convexity, diameter sphericity, and surface area sphericity computed from half particles overestimate these
values computed from full 3D particles, which are corrected by statistical equations. The circularity, volume sphe-
ricity, intercept sphericity, sphere ratio sphericity, and roundness computed from half particles agreed excel-
lently with these values computed from 3D particles.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Particle shape is a fundamental property of granular soils governing
the capability of particles for forming interparticle locking. Angular and
elongated particles have many sharp protrusions (or corners), which in-
terlock with each other to form a larger coordination number and a
stronger load-bearing skeleton. Therefore, experimental and numerical
studies have shown that angular and elongated soils exhibit larger
values of index void ratios, angle of internal friction, dilatancy, constant
volume friction angle, and small-strain modulus than rounded and
spherical soils [1-5].

Traditionally, two-dimensional (2D) maximum particle projections
were used to characterize particle shapes through either manual mea-
surements or visual comparisons to reference charts [6-8]. The manual
method was tedious, and the visual comparison method was subjective.
Both methods were difficult to implement on a large number of parti-
cles [9]. Advances in optical image gathering have led to the rapid digi-
tization of soil particle projections. Therefore, image processing
algorithms have been developed to automate the computations of 2D
shape descriptors in the last two decades [10-12]. The image-based par-
ticle shape characterizations enabled researchers to rapidly and
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effectively quantify the shapes and sizes of a large number of particles.
However, the 2D particle projections were limited to characterize
three-dimensional (3D) particle shapes. Therefore, researchers were
developing 3D imaging techniques for better analyzing particle shapes.
The X-ray Computed Tomography (X-ray CT) is an ideal technique to
capture the full 3D particle surface geometries, and many geotechnical
researchers have used this technique to analyze particle shapes
[13-20]. However, the shortcomings of X-ray CT are apparent. First,
the initial cost of an X-ray CT device is high, and an experienced techni-
cian is required to operate and maintain it. Second, because of con-
straints of resolution and field of view, the X-ray CT can only scan a
small specimen. The scanned specimen sizes reported in the literature
were typically 12 mm in diameter and 24 mm in height. Third, process-
ing X-ray CT images is computationally demanding and time-
consuming, requiring high-performance computing resources.
Researchers have developed other techniques that are low-cost and
easy-to-implement to scan 3D particle surface geometries. Kim et al.
[21] developed a laser scanning system to obtain the 3D particle geom-
etries. Zheng and Hryciw [22,23] introduced a low-cost and simple ste-
reophotography system to capture 3D particle geometries. Sun et al.
[24] proposed a structured light system to capture 3D particle geome-
tries. The laser scanning, stereophotography, and structured light sys-
tems can rapidly capture 3D geometries of many particles from
medium sand to gravel sizes. Compared with X-ray CT, these systems
are simple and low-cost and can be easily constructed in common soil
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Fig. 1. Comparisons between complete and half particle geometries.

testing laboratories. However, these systems have limitations: they can
only capture the upper-half particle surfaces exposed to the camera
view or half particle geometries. For example, Fig. 1(a) shows a com-
plete 3D particle geometry scanned by X-ray CT. The same particle
was captured by the structured light system developed by Sun et al.
[24] as shown in Fig. 1(b). The lower-half particle geometry is occluded
from the camera view.

Based on Lee and Chang [25], this paper defines the upper-half par-
ticle geometries captured by the laser scanner, stereophotography, and
structured light as “2.5D” particle geometries in contrast with the full 3D
particle geometries obtained by X-ray CT. Zheng and Hryciw [23] and
Sun et al. [24] have extensively compared the particle size distributions
determined from 2.5D particle geometries with sieve analysis results.
They found excellent agreements, demonstrating that 2.5D particles
provided accurate particle size characterizations. This was somewhat
expected. The 2.5D image geometries yielded accurate results of three
principal dimensions of particles (i.e., length, width, and thickness),
and the particle width and thickness determined the square sieve open-
ings through which the particle can pass [26].

However, it is unknown whether the 2.5D particles can provide ac-
curate particle shape characterizations. Particle shape is commonly
quantified by sphere and roundness as shown in Table 1. Sphericity
quantifies how closely the overall shape of the particle conforms to a
perfect sphere. At the smaller scale level, roundness quantifies the angu-
larity of particles. Many sphericity definitions have been proposed as
shown in Table 1. However, the basic idea of these definitions is

essentially the same. They compare the surface area of a particle with
the surface area of a sphere having the same volume as the particle, or
compare the volume of a particle with the volume of a sphere having
the same surface area as the particle, or compare the length, width,
and thickness of a particle.

In this paper, we evaluate the accuracy of using 2.5D geometries for
determining these eight shape descriptors in Table 1. This paper de-
velops a series of computational geometry algorithms to compute
these shape descriptors from 3D or 2.5D particle geometries. Then,
five coarse sand specimens with a range of particle shapes are captured
by both X-ray CT and structured light to obtain their 3D and 2.5D geom-
etries. The particle shape descriptors from 3D and 2.5D geometries are
computed using the developed computational geometry algorithm,
and the results are compared.

2. Methods

2.1. Computational geometry algorithm for determining sphericity
descriptors

Computations of 3D sphericity descriptors in Table 1 require param-
eters including principal dimensions, volume, surface area, minimum
circumscribed sphere, maximum inscribed sphere, and 3D convex hull.

In computer graphics, the 3D geometries are represented by triangu-
lar face tessellations. For example, the 3D soil particle in Fig. 1
(a) consists of 44,762 triangles and 22,383 vertices. The 2.5D particle

Table 1
Commonly used shape descriptors and their definitions.
Definitions Formula Note
(reference)
Sphericity
Convexity (solidity) [30] c Vv The ratio of the volume of the particle (V) to the volume of the minimum convex hull circumscribing the particle (V).
=
Vc
Circularity [31] c_ 6V The ratio of the volume of the particle (V) to the volume of the sphere having the same surface area (A;) as the particle.
AZ
/s
Intercept sphericity [7] ,[dyds The cubic root of ratio of the product of the width of the particle (d,) and the thickness of the particle (ds) to the square of
Si=y== the length of the particle (d,).
dy
Volume sphericity [32] S Vv The ratio of the volume of the particle (V) to the volume of the smallest circumscribed sphere (V).
=
Vcir
Diameter sphericity [33] S De The ratio of the diameter of a sphere having the same volume as the original particle (D.3) to the diameter of the
D= D, minimum circumscribed sphere (D 3).
Sphere ratio sphericity [34] S D; The ratio of the diameter of the largest inscribing sphere of the particle (D;5) to the smallest circumscribed sphere of the
“~D. particle (Dc3).
Surface area sphericity [35] s Ae The ratio of the surface area of the sphere having the same volume as the particle (A.) to the real surface area of the
A= 7 .
As particle (Ag).

Roundness
Roundness [33,36,37] ~ Average radius of curvatures of corners

" Radius of the maximum inscribed sphere
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in Fig. 1(b) consists of 26,381 triangles and 12,866 vertices. The surface 2.93 x 10°> mm? and 1.06 x 10* mm?, respectively. For the 2.5D particle
area of a given particle is the sum of areas of all the triangular faces. A in Fig. 1(b), the same approach can be used to compute the surface area
small tetrahedron is formed by connecting three vertices and the and volume, and thus, the results are 3.30 x 10> mm? and 1.22 x 10*
particle's centroid (O) as shown in Fig. 1(c), and the volume of this tet- mm?’, respectively.

rahedron is computed. The volume of the 3D particle (V) can then be de- The maximum inscribing sphere is determined using a 3D Euclidean
termined by the sum of the volumes of all such tetrahedrons. For the 3D distance map as shown in Fig. 2(a). The maximum distance value in the
particle in Fig. 1(a), the computed surface area and volume are 3D Euclidean distance map identifies the radius of the maximum

3D particle geometry 2.5D particle geometry
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Fig. 2. Computational geometry for determining principal dimensions, volume, surface area, minimum circumscribed sphere, maximum inscribed sphere, and 3D convex hull of 3D and
2.5D particle geometries.
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Fig. 4. The structural elements of 3D particle surfaces.
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inscribed sphere of the particle. The coordinates of the maximum dis-
tance value identify the center of the maximum inscribed sphere of
the particle. The computed maximum inscribed sphere is superimposed
within the particle in Fig. 2(c). The same process is used to compute the
maximum inscribed sphere for the 2.5D particle, and results are shown
in Fig. 2(b) and (d).

The principal component analysis (PCA) is used to compute the
length (d,), width (d,), and thickness (ds) of a given particle geometry
[27]. All the vertices of a 3D particle are considered as a point cloud in 3D

(b) Unsatisfactory sphere
extruding particle surface

space. PCA can identify the largest variance of the point cloud, which is
called the first principal component. The length of the first principal
component is the length (d;) of a 3D particle. Subsequently, PCA iden-
tifies the second largest variance, the second principal component,
which is perpendicular to the first principal component and is the
width (d,) of the particle. The third principal component is perpendicu-
lar to both first and second principal components and identifies the
thickness (ds) of the particle. Fig. 2(e) and (f) illustrate the results of a
PCA analysis, and the computed d4, d, and ds values for the 3D and

Ky (mm!)

15

(c) The cross section of

sphere and particle

(d) Computed corner curvatures of 3D particle after
eliminating unsatisfactory spheres

(e) Computed corner curvatures of 2.5D particle after
eliminating unsatisfactory spheres

Fig. 5. Identification of corners and ridges on 3D and 2.5D particles.
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2.5D particles, respectively. The 3D convex hull is determined by com-
puting a minimum bounding surface circumscribing the particle as
shown in Fig. 2(g) and (h). The minimum circumscribing sphere is de-
termined by moving and expanding the previously determined maxi-
mum inscribed sphere until it tightly constraints particle surface as
shown in Fig. 2(i) and (j).

After determining these parameters, the sphericity descriptors for
3D particle are computed as Cx3 = 0.89 (convexity), C3 = 0.71 (circu-
larity), S;3 = 0.75 (intercept sphericity), Sy.3 = 0.31 (volume spheric-
ity), Sps = 0.68 (diameter sphericity), Sc3 = 0.44 (sphere ratio
sphericity), and Sa 3 = 0.69 (surface area sphericity). The sphericity de-
scriptors for 2.5D particle are computed as Cy 3 = 0.87, C3 = 0.75, 55 =
0.74, Sy3 = 033, Sp3 = 0.83, Sc3 = 0.45, and Sx 3 = 0.79. For this par-
ticle, the eight shape descriptors computed from 3D particle geometry
and from 2.5D particle geometry are close to each other.

2.2. Computational geometry algorithm for determining roundness

As shown in Table 1, the computation of roundness requires deter-
mining curvatures of corners and the maximum inscribed sphere. The
maximum inscribed sphere has been determined by the Euclidean dis-
tance algorithm, as shown in Fig. 2(a) to (d). This section focuses on
determining the curvatures of corners.

For a vertex on a 3D corner as shown in Fig. 3(a), the curvature of
this vertex is not a constant value but varies depending on the slicing
directions. Therefore, the maximum and minimum normal curva-
tures k; and K, along with T; and T, directions are defined as princi-
pal curvatures as shown in Fig. 3(a). The T; and T, are called principal
directions.

A quadratic approximation technique was used by this study to de-
termine ~7 and k, values of corners. The 3D corner in Fig. 3(a) is used
as an example to illustrate this technique. This 3D corner is transformed
into the local coordinate system u-v-k in Fig. 3(b). The k axis is the op-
posite direction to the normal vector of h. The u and v axes are two tan-
gent vectors of h and their directions are random. The neighbors of the
vertex h can be classified by “rings” based on their connectivity to the
vertex h as shown in Fig. 3(b). The points directly connecting to h are
defined as the first ring. The points connecting to the first ring are de-
fined as the second ring. Following the same trend, the third and fourth
rings can be found.

As suggested by Gray et al. [28], this paper uses the vertex h and
its neighbors on first, second, and third rings to fit a quadratic function
f(u, v) using a least-square method:

f(u,v):gu2+gv2+Cuv+Du+Ev 1)

For example, the coefficients of f(u, v) are determined as A = 0.0585,
B=0.1318,C=0,D = 0, and E = 0 for this 3D corner. The fitted qua-
dratic surface is superimposed to the original surface in Fig. 3(b). The
Hessian matrix H of f(u, v) are computed as:

S

Pfuv) fwv)
H_ | Oudu oudv
Pfuv) fwv)
ovou ovov

The principal curvatures k; and k; are the eigenvalues of H and the
principal directions T; and T are the eigenvectors of H [28]. In this ex-
ample, the k; and K, are computed as 0.1318 and 0.0585 respectively,
and the T; and T, are computed as (1, 0, 0) and (0, 1, 0), respectively.
Fig. 3(c) and (d) show the cross-sections of T; and T,, respectively. The
f(u, v) fits the surface at h and its neighbors in the first three rings. The
1/k; and 1/k, determines the radii of circles fitted to cross-sections in
T, and T, directions.

The best-fitting sphere to the 3D corner is identified by the max-
imum normal curvatures ~; and its principal direction identified by
T; slice. The radius of the best fitting sphere is 1/k; and the center of
the best sphere Oy, is (0, 0, 1/k7) in the local u-v-k coordinate sys-
tem. The sphere Oy, is transferred back into the global X-Y-Z coordi-
nate system as shown in Fig. 3(e), which fits the 3D corner very
well. This is the process of finding the curvature for a vertex on a
3D corner of particle.

The 2D particle projection of a soil particle has a simple structure,
which only includes three distinctive features: corners, flat particles,
and concave parts as shown in Fig. 4(a). However, a 3D soil particle sur-
face structure is complicated as shown in Fig. 4(b), which includes
concave parts, flat parts, corners, and ridges. The majority of pro-
trusions of a 3D particle surface are ridges. The corners of a 3D par-
ticle surface are essentially the intersections of several ridges.
However, ridges are either occluded or projected as flat parts in
2D particle projections. In 3D particle assembly, the ridges and cor-
ners interlock with each other to create the load-bearing skeleton.
Therefore, ridges can also be considered as “elongated corners”
when evaluating the roundnesses of 3D particles.

The k7 and K, can be used to discriminate the flat part, concave part,
corners, ridges, and saddle-like ridges on the soil particle surface as well.
Both k7 and K, of a flat surface equal zero as shown in Fig. 4(c). For a con-
cave part in Fig. 4(d), the computed ~; and k, values are negative. For
the corner part in Fig. 4(e), both k7 and K, are positive, and they are
close to each other. For the ridge in Fig. 4(f), the ~7 in the bending direc-
tion is positive, while the k; in the non-bending direction is close to
zero. For the saddle ridge in Fig. 4(g), the surface bends in two directions
oppositely. Therefore, k1 and k; have opposite signs. Based on the k7 and
K, values, we can identify the corner and ridge parts on 3D soil particle
surface by selecting vertices that satisfy ;> 0.

The above technique was used to analyze the 3D particle in Fig. 5(a)
to determine K7 and k;, values for each vertex. Out of 22,383 vertices, a
total of 12,630 vertices had ~; > 0. These vertices are colored on particle
surface based on their k; values as shown in Fig. 5(a) in two different
view directions.

Knowing k; values of these 12,630 vertices, the radii and centers of
the 12,630 best fitting spheres are determined following the
pseudocode:

Step 1. Select a vertex e on the particle surface, and the k; value of
vertex e is Ky e,

Step 2. Determine the normal of this vertex e.

100 T r
== 3D particle
== 2.5D particle

60

201

Number percentage smaller (%)

0 . .
2 1.5 1

#; (mm)

Fig. 6. The curvature distributions of vertices on 3D and 2.5D particles.
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3D particles 2.5D particles

Riyp = 0.32 R,s5 = 0.36

Ryp = 0.69 Ryen =0.73

Fig. 7. The roundness computational results for some 3D and 2.5D particles.
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(a) Crushed limestone (b) Crushed granite

(c)Agsco sand

(d) Griffin sand

(e) Brady sand

Fig. 8. Five coarse sand specimens scanned by X-ray CT.

Step 3. Along the normal, identify a point O and the distance be-
tween O and e is 1/K1e.

Step 4. The point O is the center of the best fitting sphere to e, and the
radius of the best fitting sphere is 1/k7 e.

The best-fitting spheres locally fit the vertices and their neighbors in
the first three rings. Some spheres may not fit vertices of other parts of
the 3D particle surface, and therefore, may extrude the particle surface.
For example, in Fig. 5(b), the best fitting sphere at the vertex A extrudes
particle surface. An algorithm is developed to address this issue.

The minimum distance between the center of each best fitting
spheres and the particle surface is computed as dy;,. For example, for
vertex A, the minimum distance between center O, and particle surface
is computed as dp,i; = 3.2 mm in Fig. 5(c). Then, the d,y;, is compared to
sphere radius . If dinin < 74 as shown in Fig. 5(c), the fitted sphere ex-
trudes particle surface and the best sphere at the vertex A should be
eliminated. If dn, = r, the best fitting sphere of this vertex is
satisfactory. In practice, it is rare that dp;, is exactly equal to r due to
computational round-off. In fact, we found d,;,/r > 0.99 is accurate
enough.

The vertices with their best fitting spheres satisfying d,,i,/r > 0.99 are
kept for the next step. Other vertices are eliminated from 12,630

vertices. After this operation, a total of 6842 points are kept for the par-
ticle, which are plotted on the particle surface and colored based on
their K, values as shown in Fig. 5(d). These 6842 points identify the cur-
vatures of corners and ridges on the 3D particle surface. Therefore, the
average radius of curvatures of corners in the roundness definition in
Table 1 can be further derived as:

3)

. 1N 1

Average radius of curvatures of corners = —Z—
N &Ky

Where the N is the number of vertices on corners and ridges, 1/k7; is
the radius of curvature at the i-th vertex on corners and ridges. The

computed average radius of curvatures of corners for this 3D particle
is 3.97 mm.

The roundness are computed as:

(a) Crushed limestone

(b) Crushed granite

(d) Griffin sand

(f) Brady sand

Fig. 9. The 2.5D particles by the structured light technique developed by Sun et al. [24].
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Where ry, is the radius of the maximum inscribed sphere, which are
computed using the Euclidean distance map. As shown in Fig. 2(a), the
I'in is computed as 8.83 mm for this 3D particle. Therefore, the R is com-
puted as 0.45.

For the 2.5D particles, the occluded parts are perpendicular to the
table surface. Based on this property, we can identify occluded parts of
2.5D particles. Then, the occluded parts are excluded in analysis. The
proposed computational geometry approach is used to identify corners
and ridges on 2.5D particles and compute their curvatures. The results
are shown in Fig. 5(e). The computed average radius of curvatures of
corners for this 2.5D particle is 4.25 mm. As shown in Fig. 2(b), the i,
is computed as 8.82 mm. Therefore, the computed R is 0.48.

The computed k; distributions of 3D and 2.5D particles are com-
pared in Fig. 6. Although the 2.5D geometry only contains half particle
geometry, the 2.5D geometry successfully captures the representative
curvatures of the 3D geometry. Therefore, the computed R values are
very close between 2.5D and 3D geometries.

The above computational geometry algorithm is used to analyze five
other 3D particles and their 2.5D particles in Fig. 7. The developed algo-
rithm successfully analyzes particles from angular to well-rounded. The
computed R values are also superimposed in the image. The R values
computed from 3D and 2.5D particles agree well with each other, with
a divergence of within 0.05.

3. Results

Five sand specimens were used in this study, including crushed
limestone (very angular particles), crushed granite (very angular to an-
gular particles), Agsco sand (angular to sub-angular particles), Agsco
sand (subangular to sub-rounded particles), Griffin sand (sub-rounded
to well-rounded particles), and Ottawa sand (rounded to well-
rounded particles). For each sand, we manually picked 200 particles in
size range of #6 sieve (3.35 mm) to #8 sieve (2.36 mm). These particles
were funneled into a plastic cylinder to generate specimens.

A high-resolution X-ray CT was used to scan the soil specimen with a
spatial resolution of 12 pm/voxel. Having obtained 3D volumetric im-
ages, individual soil particles were identified by image segmentation
techniques. The first step was to use image thresholding techniques
[29] to segment air and particles. This resulted in a binary image, in
which the soil particles had a voxel value of ones (white color), and
the air had a voxel value of zeros (black color). In this binary image,
the soil particles were contacting with each other. Therefore, the second
step was to use an improved watershed analysis technique proposed by
Sun et al. [27] to segment contacting particles. The results are shown in
Fig. 8. After segmentation, 200 particles were identified for each sand,
which was the same as the number of used particles during specimen
preparation.

After X-ray CT scan, each specimen was spread on a flat plane and
captured by the structured light system developed by Sun et al. [24].
The contacting particles can also be segmented by the improved water-
shed analysis [27]. The results are shown in Fig. 9.

The eight particle shape descriptors in Table 1 are computed for all
the 3D and 2.5 particles using the computational geometry technique
developed by this study. The results are shown in Fig. 10. The Cx (con-
vexity), Sp (diameter sphericity), and S, (surface area sphericity) com-
puted from 2.5D particles overestimate these values computed from
3D particles as shown in Fig. 10(a), (e), and (g). The C (circularity)
and Sy (volume sphericity) computed from 2.5D particles agree well
with these values computed from 3D particles with a divergence of
within £0.10 as shown in Fig. 10(b) and (d). The S; (intercept spheric-
ity), Sc (sphere ratio sphericity), and R (roundness) agree excellently
with these values computed from 3D particles with a divergence of
within £0.05 as shown in Fig. 10(c), (f), and (h).

The following correction factors are developed to correct the convex-
ity, diameter sphericity, and surface area sphericity computed from 2.5D
particles to better estimate these values computed from 3D particles:

Corrected Cyy5 = Cyxa5 — 0.30 (5)
Corrected SD‘ZAS = SD‘2_5 — 0.60 (6)
Corrected SA‘2_5 = SA'2_5 —0.28 (7)

The corrected convexity, diameter sphericity, and surface area sphe-
ricity are plotted against these values computed from 3D particles in
Fig. 11. Good agreements are observed. The divergence of 2.5D and 3D
convexity is within 40.025. The divergence of 2.5D and 3D diameter
sphericity is within 4-0.05. The divergence of 2.5D and 3D surface area
sphericity is w%tl(l)i(r)l +0.010.
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4. Conclusion

Many 3D imaging techniques used by geotechnical engineers can
only capture half particle geometries, such as stereophotography, laser
scanner, and structured light. These imaging systems can capture
upper-half particle surface geometry visible to the camera view but can-
not capture the lower-half particle surface geometry occluded from the
camera view.

This paper evaluated the accuracy of using upper-half particle geom-
etries, which was defined as 2.5D images, to characterize particle shapes
of the complete 3D particle geometries. Eight commonly used particle
shape descriptors were considered in this research, including convexity,
circularity, intercept sphericity, volume sphericity, diameter sphericity,
sphere ratio sphericity, surface area sphericity, and roundness. A series
of 3D computational geometry techniques were developed to compute
these shape descriptors.

Five coarse sand specimens were scanned by X-ray CT and struc-
tured lighted to generate 3D and 2.5D particle geometries. The 3D com-
putational geometry technique was used to compute eight shape
descriptors for these particles. The results of 3D and 2.5D geometries
were compared. The convexity, diameter sphericity, and surface area
sphericity computed from 2.5D particles overestimated these values
computed from 3D particles. The circularity and volume sphericity com-
puted from 2.5D particles agreed well with these values computed from
3D particles with a divergence of within +0.10. The intercept sphericity,
sphere ratio sphericity, and roundness agreed excellently with these
values computed from 3D particles with a divergence of within 40.05.

Three equations were developed to correct the convexity, diameter
sphericity, and surface area sphericity computed from 2.5D particles.
After correction, these values well matched the values computed from
3D particles. The divergence of 2.5D and 3D convexity is within +
0.025. The divergence of 2.5D and 3D diameter sphericity is within +
0.05. The divergence of 2.5D and 3D surface area sphericity is within
+0.010.
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