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Introduction

The most fundamental dynamical invariant of a dominant rational self-map f: X --+X
of a smooth projective variety is, arguably, its (first) dynamical degree A(f). It can be

defined, using intersection numbers, as

lim (fn*H.HdimX—l)l/n,

n—0o0
where H is any ample divisor. The limit does not depend on the choice of H, and it is

invariant under birational conjugacy: if h: X’--»X is a birational map, then
fli=h"tofon: X -5 X'

is a dominant rational map with A(f")=A(f).

The dynamical degree is often difficult to compute. If f is algebraically stable in
the sense that f™*=f*" for the induced pullbacks of divisors on X [Sib], then A(f) is
equal to the spectral radius of the Z-linear operator f*:NSg(X)—NSg(X) on the real
Néron-Severi group NSg(X):=NS(X)®zR; hence A(f) is an algebraic integer in that
case. For certain classes of maps, such as birational maps of P? [DF] or polynomial maps
of A% [FJ1], [FJ2], we can achieve algebraic stability after birational conjugation; hence
the dynamical degree is an algebraic integer in these cases. It has been shown, moreover,
that the set of dynamical degrees of all rational maps (algebraically stable or not, and
over all fields) is countable [BF], [Ur].

All of this leads naturally to the question [BIJ+, Conjecture 13.17]: is the dynamical
degree always an algebraic integer, or at least an algebraic number? Surprisingly, the

answer is negative.
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MAIN THEOREM. Let k be a field with char(k)#2. Then, there exists a dominant

rational map f:PZ-->P2 whose dynamical degree is a transcendental number.

Our examples are completely explicit, of the form f=goh, where

l—yi+ys 1+y1—y2)

1,Y2)=—= 1\ — Y1 ) 2
9(u1.22) ( Y I—y1—y2 I—y1—y2

is a fixed birational involution, conjugate by a projective linear map to the standard

Cremona involution (y1, ) (y; ', 95 1), and

h(yr,y2) = (Y55, v Pys)

is a monomial map. We show that, if (a+bi)"¢R for all integers n>0, then A(f) is
transcendental. Favre [Fa] showed that, under the same condition on a+bi, the monomial
map h cannot be birationally conjugated to an algebraically stable map, though A(h)=
|a+bi| is still just a quadratic integer. Rational surface maps, such as f, that preserve
a rational 2-form were considered as a class by the second author and J.-L. Lin in [DL]
(see also [Blal]), where it was shown that failure of stabilizability for h implies the same

for f. Note that the restriction char(k)#2 is needed only to ensure that g is non-trivial.

Strategy of the proof

Our first step toward showing that A(f) is transcendental is to relate degrees of iterates
of h to those of f. Writing d;:=degh/:=(h’*H-H) for j>0, with HCP? being a line,
we show in §1 and §2 that the dynamical degree A=A(f) is the unique positive solution

to the equation
> diaT=1. (*)
j=1

In order to derive (), it is useful to consider the lift of f to various blowups of P2. We use
the language of b-divisors to coordinate information about divisors in different blowups.
These transform naturally and functorially under the maps h and g, so the additional
terminology is convenient for understanding the degree growth of f; see [FJ1], [BFJ],
[Can], [FJ2]. Here, we make use of the additional fact that h and g interact well with the
toric structure of P2. This is of course clear for the monomial map h, but less evident
for the involution g.

One computes by elementary means that d;=Re(y(j)¢?), where (=a+bi and

v(j) € {—2, £2i,1£2i}
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is chosen to be whichever element maximizes the right side. The condition (" ¢R means

that the argument of ( is
Arg(a+bi) =2n0,

for 6€(0, 1) irrational. Were 6 rational, the Gaussian integer v(j) would be periodic in j,
the analytic function
Ap(z):= Z d;z
Jjz1
rational, and A algebraic. However, as Hasselblatt—Propp [HP] observed, when 6 is
irrational, the sequence (d;);>1 does not satisfy any linear recurrence relation.

One therefore suspects that Ap(«) is unlikely to be algebraic for any given alge-
braic number a0 in the domain of convergence for the series; in particular, Ap(1/\)=1
should force A to be transcendental. There are many results of this type in the liter-
ature, see e.g. [N], [FM], [AC1], [AC2], [Beu], [AB1], [AB2], [BBC], but we were not
able to locate one that implies directly that at least one of A and A,(A~!) must be
transcendental. Instead, we present in §3 a proof based on results by Evertse and others
on S-unit equations; see [EG]. These in turn rely on the p-adic subspace theorem by
Schlickewei [Sch]. Our method draws inspiration from earlier work of Corvaja and Zan-
nier [CZ] and Adamczewski and Bugeaud [AB1], [AB2], who used the subspace theorem
to establish transcendence of special values of certain classes of power series.

The idea is that, if m/n is a continued fraction approximant of 4, then (" is nearly
real, the Gaussian integers v(j) are nearly n-periodic in j, and Ay (z) is well approximated

by the rational function

A (2) = (1=2") 13 dyd,
j=1

obtained by assuming the (j) are precisely n-periodic. If the approximations improve
sufficiently quickly with n and « is algebraic, then Agn) () approximates Ay (a) too well
for the latter to also be algebraic. Unfortunately, this seems a little too much to hope
for, without knowing more about how well € agrees with its approximants.

To deal with the possibility that 6 is badly approximable by rational numbers, we
need a more subtle argument, which uses another result on unit equations, this time
by Evertse, Schlickewei and Schmidt [ESS]. In addition, Evertse’s theorem on S-unit
equations does not apply to the rational functions A, (z), and instead we work with

related but slightly more complicated functions; see §3 for details.
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Context

Dynamical degrees play a key role in algebraic, complex and arithmetic dynamics. With

any dominant rational map f: X--+X of a projective variety X over k is in fact as-

dim X
p=1

conjugation; see [DS1], [T], [D]. The dynamical degree above corresponds to p=1.

sociated a sequence (A,(f)) of dynamical degrees, each invariant under birational

Naturally defined in the context of algebraic dynamics, dynamical degrees were first
introduced in complex dynamics by Friedland [Fr], who showed that, when k=C and f
is a morphism, the topological entropy of f is given by log max, A,(f); this generalized
earlier work by Gromov, see [Gr], and was later extended (as an inequality) by Dinh and
Sibony [DS1] to the case of dominant rational maps. Dynamical degrees are furthermore
essential for defining and analyzing natural invariant currents and measures; see for
example [RS], [Gu2], [DS2] and the references therein. Their importance from the point
of view of complexity and integrability has also been exhibited in the physics literature
by Bellon, Viallet and others; see e.g. [BV], [V].

In dimension 2, the only relevant degrees are Ay =X and A (the ‘topological degree’,
equal to the number of preimages of a typical point, if k is algebraically closed of charac-
teristic zero). When k=C, their relationship determines which of two types of dynamical
behavior (saddle or repelling) predominates (see [DDG1]-[DDG3| and [Gul]). The class
of examples we consider here includes both types. If, for instance, (=1+2i, then we
obtain a map f of small topological degree

A2 (f)=Aa(h)=|¢|> =5 < A\ (f) =6.8575574092 ...

as computed numerically from equation (x). Replacing ¢ by (?=-—3+4i, gives a map

with large topological degree
Aa(f)=25> A1 (f)=13.4496076817 ....

In arithmetic dynamics, k is a global field, and the (first) dynamical degree serves
as an upper bound for the asymptotics of the growth of heights along orbits [Sil], [KS],
[Mat]; the question of when equality holds is part of the Kawaguchi-Silverman conjecture,

which recently has attracted a lot of attention.

Outlook

As already mentioned, the set of all possible dynamical degrees is countable, and our main
theorem shows that it contains transcendental numbers. It would obviously be interesting
to say more about it. Note that the set of dynamical degrees of birational surface maps
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is much better understood; see e.g. [BK1], [McM], [Ue], [BC]. It would be interesting
to know (see e.g. [V, p.1379)) if a birational map f:P*—P* can have transcendental
dynamical degree when k>3. We intend to address this in a future article, though the
number theoretic details seem more complicated. See [CX], [DF] for some other results
about degree growth of rational maps in higher dimensions.

It would also be interesting to study the complex and arithmetic dynamics of the
rational map f=f; considered here. For example, does f admit a unique measure of
maximal entropy, and is the topological entropy equal to log A(f)? The fact that f is
defined over Q may be useful, see e.g. [JR], where it is shown that (complex) birational
surface maps defined over Q always admit a measure of maximal entropy log A(f). On
the arithmetic side, one may ask whether the Kawaguchi-Silverman conjecture holds:
does every point with Zariski dense orbit have arithmetic degree equal to A(f)? Note
that what we call the Kawaguchi-Silverman conjecture is part (d) of [KS, Conjecture 6].
Given our main theorem, the existence of a point as above would in fact contradict
part (b); see also [LS].
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final form of the present collaboration originated at the Simons Symposium in Complex,
Algebraic, and Arithmetic Dynamical Systems in May 2019; we are very grateful to the

Simons Foundation for its generous support.

1. Dominant rational maps of the projective plane

In this section we study dominant rational self-maps of P? using the induced action on
b-divisor classes. The exposition largely follows [BFJ] and [DL](!) but with particular
attention paid to the structure of P? as a toric variety. We work over a field k of
characteristic different from 2. Since degrees of rational maps are invariant under ground
field extension, we may and will assume that k is algebraically closed. The assumption
that chark#2 will be used in §2.

(1) Both of these articles were written for surfaces defined over C, but the results we use from
them work with proofs unchanged over any algebraically closed field.
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1.1. Setup

Fix homogeneous coordinates [zg:71:22] on P? and use affine coordinates

(Y1, 92) = (ﬂ @>

$07.’£0

on the affine chart {zo#0}~A?. Recall that P? is a toric surface with torus
T = G?n = {1’0.’E1$2 75 0},

and torus-invariant prime divisors being the coordinate lines {z;=0}, j=0,1,2.

1.2. Rational maps and their degrees

A dominant rational self-map of P? is given in homogeneous coordinates by

filzo 21 za] — [fo(zo, 21, 22) : f1(xo, 21, 22) : fo(zo, 21, x2)],

where fy, f1 and f; are homogeneous polynomials of the same degree d>1, and with no
factor in common. The integer deg f:=d is called the degree of f; see also equation (1.4).

The sequence (deg f™),>1 is submultiplicative, i.e.
deg f™*" <deg f™-deg f™;
hence, the limit

A(f) = lim (deg f*)'/" =inf(deg f")!/" €1, 00)

n—oo

exists and is equal to the dynamical degree of f as defined in the introduction.

1.3. Monomial maps

Any 2x2 matrix A=(a;x);, with integer coefficients and non-zero determinant defines

a dominant rational self-map ha:P?--+P2, which in affine coordinates is given by

az1 , 022 )

hoa: (Y1, y2) — (Y7 ys 2 y1> s

Such rational maps are called monomial maps; they correspond to surjective endomor-
phisms of the algebraic group T.
Note that ha,a,=ha,°ha,. The degree of a monomial map is given by

deg hp =max{0, a11 +a12, a2 +asa} +max{0, —a11, —ai2} +max{0, —as1, —as2};
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2Imz y=—2i
Rez+2Imz y=1-2%

—2Rez — y=-2

Rez—2Imz y=1+21
—2Imz y=21

Figure 1. The left picture shows the piecewise R-linear function 1: C—R3( defined by equa-
tion (1.1). The right picture shows the element y€T'g that realizes the maximum in the
definition of 1. Note that the angles that the rays make with the positive real axis are all
integer multiples of iw.

see [HP], [BK2].
We can view A as a linear self-map of Z2 or R?. Now, identify R? with C and assume
that A is given by multiplication with a Gaussian integer ¢ €Z[i], that is,

Re( Img>

A:ACZ(Img Re(

In this case, we write h¢=hy . Note that h¢, oh¢,=h¢,¢,. We have
deg h¢ =max{0,Re (—Im ¢, Re (+Im (} +max{0, — Re {,Im (} +max{0, — Re {, —Im(}.

which we can rewrite as deg h¢=1((), where ¢: C—Rx¢ is a convex piecewise R-linear

function given by

¥(z) :=maxRe(vz), where I'y:={-2,£2i,1+2i}; (1.1)

Y€l

see Figure 1.

One checks that v is comparable to the Euclidean norm on C; specifically,
2| <4p(2) < V5|2
Since h=h¢n for n>1, it follows that the dynamical degree of h¢ is
: ny\l/n _
Jim o (¢") " =]

We will be interested in the case when ("¢R for all n>>1. This is equivalent to
not being an integer multiple of 1, ¢ or 144; see e.g. [Cal, main lemma]. In this case,
there is, for every n>1, a unique element v(n)€Tl such that ¥ (¢™)=Re(y(n)(").
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1.4. Blowups

By a blowup of P2 we mean a birational morphism m: X, —P?, where X, is a smooth pro-
jective surface. Up to isomorphism, 7 is then a finite composition of point blowups [Sha,
Theorem 4.10]. If 7 and 7" are blowups of P2, then

W= o’ X --2 X

is a birational map; we say that ' dominates 7, written 7’ >, if u is a morphism. Any
two blowups can be dominated by a third one, as follows by applying [Sha, Theorem 4.9]
to the birational map pu above. It follows that the set Bl of isomorphism classes of

blowups is a directed set.

1.5. Primes over the projective plane

We will say that prime divisors EC X, and E’C X, in different blowups are equivalent
if there is a blowup 7#”"=mou=n"oy’ dominating both 7 and 7', and a prime divisor
E"CX,» such that E=p(E"”) and E'=p/'(E"”). We let P denote the set of all the
resulting equivalence classes and call each E€P a prime over P2.

We say that a blowup m expresses a prime Fe€P, if E is represented by a prime
divisor in X that we call then the center of F on X,. Slightly abusively, we use the
same letter to denote the center, writing £ C X.

If a blowup 7 does not express a prime E, then we can choose a further blowup
7' =mopu>m such that E is represented by a prime divisor on X,/. The image under u of
this prime divisor is a point in X, which does not depend on the choice of 7’ and which

we call the center of £ on X.

1.6. The group of b-divisors

For any blowup 7 of P2, denote by Pic(X,) the Picard group on X, i.e. the set of linear
equivalence classes of (Cartier) divisors on X,;. When 7' >7, the birational morphism
p: X — X, induces an injective homomorphism p*: Pic(X,)—Pic(X,/). The group of

b-divisor classes on P? is defined as the direct limit

C:= lim Pic(X,).
TeBI

Concretely, an element of C is an element of Pic(X,) for some blowup m, where two
elements A€Pic(X,) and A’'€Pic(X,) are identified if and only if they pull back to
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the same class on some blowup dominating both m and «’. A class in the image of
Pic(X,)—C is said to be determined on X . We let

H:O]pz(l)ec

denote the class determined by a line in P2,

Remark 1.1. The ‘b’ in ‘b-divisor’ stands for birational, following Shokurov. In [BFJ],
the elements of C were referred to as Cartier classes on the Riemann-Zariski space of P2.
The space C appears earlier in [Man], where it is denoted Z*(P?). Note that since each

surface X, is rational, the Picard group Pic(X) coincides with the Néron—Severi group
NS(X).

There is a natural intersection pairing C xC—Z, denoted (A-B) for A, B€C. This
is defined as the intersection number on any blowup X, where A and B are both
determined (see [BFJ, §1.4] or [Man, §34.7]).

1.7. Toric blowups

We call a blowup m: X, —P? toric if X, is also a toric surface and 7 is equivariant with
respect to the torus action. Concretely, m=mo...om,, where each factor m;: X; —X;_; is
a point blowup centered at the intersection of two different torus-invariant prime divisors
in X;_q.

If 7 is a toric blowup of P? and EC X, a torus-invariant prime divisor, then a point
p€eFE is called free if it does not belong to any other torus-invariant prime divisor on X,
i.e. its orbit under the torus action is 1-dimensional.

We will call E€P a toric prime if there is a toric blowup 7 that expresses E as a

torus-invariant prime divisor. Let P*" denote the set of all toric primes.

PROPOSITION 1.2. Any blowup 7 of P2 factors uniquely as m=myorop into a toric
blowup Tior that expresses the same set of toric primes as © and a birational morphism
wXp—X that contracts only non-toric primes.

Ttor

Proof. This follows from [DL, Corollary 5.5] and the fact that the toric primes in
X, are precisely the (simple) poles of the rational 2-form

« dy1 Ndyo
m —.
Y1Y2

With each prime E€P we associate an order of vanishing valuation

ordp: k(P?)* — Z,
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by choosing a blowup 7 such that EC X, and setting ordg () equal to the coefficient of
FE in the divisor of the rational function o7 on X,. We define a ‘tropicalization’” map
trop: P—Z2 by

trop(E) = (ordg(y1), ordp(yz)),

where (y1,y2) are the affine coordinates fixed above. Note that trop(F)=(0,0) for all

non-toric primes ECP?, whereas if we write H;:={z;=0}, j=0,1,2, then
trop(Hp) =(—1,—-1), trop(H;)=(1,0) and trop(Hs)=(0,1). (1.2)

In any blowup 7 of P2, the divisors of the rational functions y;em, j=1,2, have simple
normal crossings support. Hence, if p: X — X is the point blowup at p€ X, then the
prime E’ contracted by p satisfies

trop(E')= > trop(E). (1.3)
ECXr:peEE

We call a non-zero element t€Z? primitive if t¢mZ? for any integer m>2. The next
result follows easily by induction from the discussion above, and is related to the fact

that SLy(Z) acts transitively on primitive elements of Z2.

PROPOSITION 1.3. The map trop restricts to a bijection from P onto the set of

primitive elements tE€Z2.

We will say that elements s,t€Z? are commensurate if s=rt for some positive r€Q.
For each non-zero (but not necessarily primitive) element t€Z2, we let E,€PY" be the

unique toric prime such that trop(E};) is commensurate with ¢.

PROPOSITION 1.4. Let m=Tyorop be a blowup of P2, factored as in Proposition 1.2,
and ECX, be a non-toric prime divisor with t:=trop(E)#(0,0). Then, the following
statements hold:

(1) mior expresses the toric prime Ey, and u(E) is a free point on Ej;

(ii) if E'€P is not expressed in X, and its center on X, is a point p'€E, then

E’ is also non-toric, and trop(E’) is commensurate with t.

Proof. The support of the divisor of the rational function y;om, on Xr, , does not
meet the torus T, for j=1,2, so since E¢P'" and trop(E)#(0,0), we have that u(E) is
a point in X, \T. If p is the intersection of two distinct toric primes expressed by 7oy,

then 7w dominates o op’, where p': X — Xy, is the point blowup at p. This means,

Ttor

however, that i/~ (p) is a toric prime expressed by 7 but not oy, which contradicts the

choice of mor.
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Thus, p is a free point on a prime Es expressed by mior, with s=trop(Fs). The map
trop therefore vanishes along all other primes expressed by 7o, that contain p. Hence,
by factoring u into point blowups and repeatedly applying equation (1.3), we see that
t=trop(F) is commensurate with s. So (i) holds, and we turn to (ii).

By the previous step, any prime that is expressed by m and contains p’ has trop-
icalization equal to a multiple (possibly zero) of ¢t. Hence, we can choose a blowup
7w’ =mou' >m that expresses E’, factor y/ into point blowups and repeatedly apply equa-
tion (1.3) to obtain that trop(E’) is commensurate with ¢. Since E’#Ey, Proposition 1.3
tells us that E’ is not toric. O

The set of toric b-divisor classes Ct°TCC is the direct limit
liAlPic(X,r),

where 7 runs over all toric blowups of P2. Each class in Pic(X,) is represented by a toric
divisor, i.e. a divisor with support equal to a collection of toric primes expressed by 7. In
particular H€C*", and a class in C** is orthogonal to H if and only if it is represented
by a m-exceptional toric divisor on some toric blowup 7 of X. We will use this fact below

in proving Lemma 2.6.

1.8. Action by rational maps on primes and on b-divisor classes

Consider a dominant rational map f:[P?--»P2. For any blowups 7 and 7’ of P? we have
an induced rational map frr:=7"toforn’: X;v--+X,. Given 7, we can choose 7’ such
that frr/ is a morphism, as follows from [Sha, Theorem 4.8]. We now define a group
homomorphism
fc—=¢C

as follows: if AeC is determined on X, pick a blowup 7’ such that fr.: X —X, is a
morphism, and declare f*A€C to be the class determined on X, by f> ,A. This action
is functorial: if f and g are dominant rational maps of P2, then (feg)*=g*f* on C.
When h:P?--sP? is monomial, we have h*C** CC!". The degree of a rational map can

be computed as follows:
deg f=(f*H-H). (1.4)

The rational map f also induces an action f:P—P on the set of all primes over P2
If 7' is a blowup expressing F€P, then as in [BFJ] (see just before Lemma 2.4) there
exists another blowup 7 such that the lift f;,: X --» X, does not contract any curves.
We set

f(E):= frr(E).
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PROPOSITION 1.5. For any monomial map h:P?--sP2, with associated matriz A,
and any prime E€P, the following statements hold:

(i) h(E) is toric if and only if E is;

(ii) trop(h(E)) is commensurate with A(trop(FE)).

Proof. The first conclusion follows from the first conclusion of [DL, Corollary 6.3]
and the fact that

dyi Nd dyi Nd
pe 2 (e p) T2
Y1Yy2 Y1y2
The second conclusion is a (by now) standard computation. O

2. The degree sequence of certain rational maps

We now specialize the considerations above to a particular class of maps that will later
be shown to have transcendental dynamical degrees.

2.1. A volume-preserving involution

As in [DL], we consider the involution(?) g: P2--+P? defined in homogeneous coordinates
by
g: [ro: w1 @) — [xo(x1+22—20) 1 21 (T2 +T0—21) : w2 (To+2T1—T2)].

In affine coordinates
Tr1 T2
(y17y2): (7 7)a

ZL’O,(EO

this becomes

1-y1+y2 1+y1—y2>

y TY2 .
1-y1—y2 l=y1—y2
The projective linear automorphism

9: (Y1, y2) —> (yl

A:[xg:my i xo]— [x1+22— 20 T+ x0—T1 : X0+ X1 — T2
conjugates g to the Cremona involution
AgA™ [ 1 o) — [T120  Too  ToT1 ).

As a consequence, we have the following geometric description. Consider the three points
po=[0:1:1], py=[1:0:1] and po=[1:1:0], and the three lines

L0:{1‘0=$1+$2}, L1:{$1:1‘2+l‘0} and ng{mgzxo—l—xl}

(2) Here, we use that the ground field has characteristic different from 2. Indeed, g is the identity
in characteristic 2.
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b2
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p1

2 LN N
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Hop

Figure 2. The birational involution g contracts the line L; to the point p;, j=0,1,2. It leaves
the coordinate lines H;={x; =0} invariant. The restriction 9|Hj fixes the two points H;NH,
l#3, and sends p; to the point H;NL; (which is not shown).

on P2, Let X° be the blowup of P? at {po,p1,p2}, with exceptional divisors Fy, Fy
and F». Then, g induces an automorphism of X° of order 2 that sends F} to the strict
transform of L;, for j=0,1, 2.

Let 7: X, —P? be a toric blowup. For j=1,2,3, the point pj€P2 is a free point on
the toric prime H;. Hence, its preimage by 7 remains a free point on H;, and we continue
to denote it by p;. We let 7°: X2—P? be the blowup of X along the set {po, p1,p2} C Xr.

LEMMA 2.1. For any toric blowup 7: X —P?2, the induced birational map
i X7 - X7
is a morphism that fizes each toric prime ECX°.

Proof. We have already explained that this is true when X,=P2. Hence, it suffices
by induction to show that if the lemma holds for some toric blowup 7, then it also holds
for the toric blowup 7’ =mopu, where p is the point blowup of the intersection of two toric
primes Fg, E; C X.. But the facts that g fixes both E; and Fy, and that E;NE} is distinct
from pq, p2 and p3 imply that E;NE; remains a point in X2, and that the automorphism
g% fixes it. Hence, g2, , is an automorphism fixing the exceptional prime

E=u Y (E,NE,). O

LEMMA 2.2. The induced map g: P—P is a bijection that fizes the subset Pr
pointwise. If E€P is a prime such that trop(E) is incommensurate with (0,0), (=1, —1),
(1,0) and (0,1), then trop(g(E)) is commensurate with trop(E).
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Though it is not strictly necessary for the proof, we note the related fact that
Dg(qjr)=—1I at each fixed point g;,=H;NHy.

Proof. Set t=trop(F). The first assertion follows from Lemma 2.1. For the second
assertion, we may assume that F is not toric. If m=mio,op is a blowup that expresses F,
decomposed as in Proposition 1.2, then Proposition 1.4 tells us that u(E) is a free point

on the toric prime E;C X, . Since t is incommensurate with (—1,—1), (1,0) and (0, 1),

tor *
we have u(E)¢{p1, p2, ps}; see equation (1.2). So, by Lemma 2.1, the map g, .., iS a
local isomorphism about p(E) and the image gr,. .. (W(E)) is also a free point in Ej.
Thus, g(F) is a non-toric prime over a free point in Fy, and trop(g(F)) is commensurate

with ¢. O

Now, consider a monomial map h=h, associated (as in §1.3) with a Gaussian integer
¢ for which ¢("¢R for all n>1. We will construct a set P’ CP of primes over P? that is
backward invariant under both g and h. As before, we identify R? with C. Define

N':=|J ¢ 7Rso{1,i,—-1—-i} CC.
j=1
Our assumption on ¢ implies that N’ is an infinite set of rays in C, none of which

containing 0, 1, ¢ or —1—1. Let
P :={EeP\P* :trop(E) € N'}.
COROLLARY 2.3. We have g~ *(P')CP’ and h='(P")CP’.

Proof. The first inclusion follows from Lemma 2.2 and the fact that 1, i and —1—3
are not in N’. The second one follows from Proposition 1.5 and the fact that the matrix

A associated with the monomial map h acts on R?~C by multiplication with (. O

Next, we study the action of g and h on the group C of b-divisor classes. Define C'CC
to be the subgroup of classes that can be represented by a divisor D on some blowup of
P2, such that all irreducible components of D lie in P’. Proposition 1.4 implies that C’
is orthogonal to C** and in particular to H=0p2(1).

COROLLARY 2.4. We have g*C'CC’ and h*C'CC’.

Proof. By linearity, it suffices to consider the pullback of a prime divisor EC X,
with trop(E)€N’. If 7’ is a blowup of P? such that g,.: X --+X, is a morphism, then
¢g*E is determined in X by g% ,E. Further, every irreducible component E’ of g% ,FE
satisfies g/ (E')CE. Thus, as elements of P, either g(E’)=F or the center of g(E’) on
X, is a point in E. In the second case, Proposition 1.4 implies that g(E’) is non-toric
with trop(g(E’))€N’. Hence, in either case, Corollary 2.3 yields E'€P’ and therefore
gt EeC’. The proof that h*C'C(C’ is identical. O
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Next, we study the action of g on toric b-divisor classes.
LEMMA 2.5. We have g* H=2H+ R, where ReC satisfies h*Re(C’.

Proof. We use the notation introduced earlier in the subsection. On X°, H is

represented by the divisor %Z?:o(Lj‘f'QFj% so g* H is represented by

2
% (2L;+F;)=2H+R,
7=0

where R:=— Z?:o F;. It only remains to see that h*ReC’. Pick a blowup m: X, —P?
such that h induces a morphism h,: X, —X". Then, h*R is represented by the divisor
Z?:o hiF; on X,. Every irreducible component F'C X, of hiF; satisfies h,(F)CF)}.
Applying Proposition 1.4 if h,(F) is a point, we find that the prime h(F)€P is non-
toric, and trop(h(F')) is commensurate with —1—4, 1 or ¢. Then, Proposition 1.5 implies
that F is a non-toric prime with ¢ trop(h(F)) commensurate with —1—4, 1 or i. We

conclude that FeP’, and h*F;eC’. 0O
LEMMA 2.6. If AeC*" and (A-H)=0, then g*A=A.

Proof. There exists a toric blowup 7: X, —P? such that A is represented by a torus-
invariant m-exceptional divisor on X,. Let LLZXS*)XW be the blowup of X, at pg, p1
and py. Since no irreducible component of A in X, is the proper transform of one of
the coordinate lines Hj, it follows that u*A is still supported on toric primes in X0 By
Lemma 2.1, the birational map g2, : X2--» XY is a morphism, and (g%, )*u*A=p*A in
Pic(X?). This implies that g*A=A in C. O

2.2. Degree sequence

Let g be the involution above, h=h; be the monomial map associated with a Gaussian
integer ¢ such that ("¢R for all n>1, and set

f=geh.

Write
dp,=deg(h™)=(h""H-H) and e,=deg(f")=(f""H-H)

for n>0. In particular, dg=eg=1. Our aim is to prove the following recursion formula.

ProrOSITION 2.7. We have
n—1
Een = dn+z ejdn_j
j=0

for n=0.
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Proof. We will prove the following more precise result by induction on n:

n—1
frH=h"H+Y e;h"*H mod (An)
j=0
g fH=h"H+Y e;h"*H+e,R mod C'. (By)
j=0

Pairing (A4,,) with H implies the desired result, since C’ is orthogonal to H.
Now, (Ap) is trivial, and (B,,) implies (A,1) for n>0, as is seen by applying h*
and using that h*ReC’. It therefore suffices to prove that (A,,) implies (B,,) for n>0.

To this end, we rewrite (A,) as

n—1
[ H=e,H+ (h”*H+Z ejh(”_j)*H—enH> mod C’.

§=0
The expression in parentheses lies in C*** and is orthogonal to H. Lemmas 2.5 and 2.6
therefore give

n—1
g f"*H =2e,H+e, R+ (h"*HJrZ ejh("j)*H—enH> mod C’
j=0

=h"H+Y e;h"*H+e,R mod C',

=0

which completes the proof. O

2.3. Dynamical degree
Set - -
Ap(z):= Z d;jz? and Ap(z):= Z ejz.
j=1

=1
These are power series with radii of convergence equal to |[¢|™! and A, respectively,

where A is the dynamical degree of f. Proposition 2.7 shows that
(2+A4(2))(1-An(2)) =2 (2.2)

for |z|<min{A~1, [¢|71}.

PROPOSITION 2.8. The dynamical degree A=A(f) satisfies \>|(|, and X\ is the

unique positive solution to the equation Zjoil djATI =1, where d;=degh’.
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Proof. By submultiplicativity, we have
¢| = lim '/’ =infd}/;
joo J i 7
hence d;>|¢|7 for all j. Thus, Ay (t) is positive and strictly increases from 0 to oo on the

interval (0, [¢|™!). Similarly, Af(¢) increases from 0 to oo on (0, |A|~!). The equation

2—|—Af(t):71_§h(t)

therefore implies that t=|A\|~! is the unique element of (0, [¢|~1) for which A, (t)=1. O

Now, recall from §1.3 that djzz/)(gj)7 where v is a convex, non-negative and piece-

wise R-linear function on C given by equation (1.1) and illustrated in Figure 1. Set
a=\"1¢ (2.3)
Then |a|<1, and « is a solution to the equation
1=Re®(a), (2.4)

where @ is a complex analytic function on the unit disk given by

and where the coefficient v(j) is the unique element y€T'y for which Re(ya?), or equiv-

alently Re(y¢7), is maximized; see Figure 1. If we write

6= % arg(a) = % arg(¢) € (0, 1)\Q,

it follows that (j) only depends on the image of j# in R mod Z, and more specifically
which interval (%kz, %(kz—i—l)) contains j6 mod 1.

3. Proof of transcendence

We will spend the remainder of this article proving by contradiction that the number
« in equation (2.3), and therefore the dynamical degree A(f), is transcendental. All
that really matters going forward is that |a|<1, that #=arg /27 is irrational, and that
Re ®(a)=1, where ®(z) is given by equation (2.5). Our arguments will be purely number
theoretic, making no further use of algebraic geometry or dynamics.
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3.1. Setup

Since 6¢Q, the sequence (v(j))j>1 is aperiodic. Nevertheless, as we will make precise
below, it comes close to being n-periodic when n is chosen to be the denominator in some
continued fraction approximant m/n of 6. For such n, it will be illuminating to compare

the analytic function ®(z) with approximations by rational functions of the form

u(2)i=(1-2")"" 3 A() = ),

1<isn jz1
where 7, (j) denotes the n-periodic extension of the initial sequence (1), ..., y(n).
LEMMA 3.1. For any sufficiently large n€N, we have 0<Re @, () <1.

Proof. By definition, we have

1-Re®, (@) = Re(® ()~ 8, (a)) = 3 Re((7(j) —7a (7).

Since |a| <1 and Toy={—2, £2i, 14+2¢} is finite, the right-hand side tends to zero as n— oo;
in particular, Re ®,(a)>0 for large n. Now, for each j, v(j) maximizes Re(ya?) over
v€Tlg, so Re((7(4)—vn(4))a?)=0. Thus, Re®,(a)<1, and to see that the inequality
is strict, it suffices to find a single j such that Re((y(j)—7n(j))a?)#0. Since 0¢Q, we
can find p>1 such that pﬂe(%, 1) mod 1. Assume n>p, and pick m>1 such that, if
j=mn+p, then jOe (0, é) mod 1. Then, from Figure 1, we see that

V()= (5) =7()—v(p) = (1-2i) = (142i) = —4i.
Since arg(ad)€ (0, {7), it follows that Re(—4ia’)>0. O

Lemma 3.1 tells us that 0<Re(®(a)—®,(a))<1 for large n. To obtain better

bounds, we clear the denominator in the definition of ®,,(z), setting

U, (2): =2|1—2"]* Re(P(2) — D, (2))

—9Re ((1—z”)( 3 (I—Z")v(j)zj—iV(j)sz

=2Re <(1—z")( |

Jj=n+1 Jj=
—2e((1-5") 3 () =9G-m)= ).
j=n+1

Since |a|<1, we have that 0<¥,,(«)<1 for large n. The final expression for ¥,, makes
the following terminology convenient.
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Definition 3.2. We say that an index j>n is n-regular if v(j)=~(j—n), and that it

is n-irreqular otherwise.

Since 6 is irrational, there are infinitely many n-irregular indices, but they never-
theless form a rather sparse subset of N, as will be explored below. Our arguments will
depend on how well 6 can be approximated by rational numbers. Recall (from e.g. [HW,
Chapters X and XIJ) that any irrational number t€R admits an infinite sequence of con-
tinued fraction approximants m;/n;, with n; strictly increasing, m; coprime to n;, and
|njt—m;|<1/n; for all jeN.

PROPOSITION 3.3. Let teR be an irrational number with continued fraction approx-
imants mj/n;, jEN. Then, the following are equivalent:

(i) there exists k>0 such that |njt—m;|>k/n; for all jEN;

(i) there exists k>0 such that |nt—m|>=r/n for all m,n€Z with n>0;

(ili) there exists A such that nj1<An; for all jEN;

(iv) the coefficients in the continued fraction expansion of t are uniformly bounded.

Proof. Suppose first that (i) holds. As a consequence of [Bug, Corollary 1.4], for
each j we have |n;jt—m;|<1/n;i1, and hence x/n;<1/n;;1, which gives that (iii) holds
with A=k~1. Next, suppose that (iii) holds. If ay, is the kth coefficient in the continued
fraction of ¢, then n;ii1=aj;1n;+n;_1 for j>2 [Bug, Theorem 1.3], and so aj;1<A
for all j>2, which gives (iv). Finally, Bugeaud [Bug, Theorem 1.9 and Definition 1.3]
gives that (iv) implies (ii), and it is immediate that (ii) implies (i). This completes the

proof. O

We follow common convention, saying that ¢ is badly approzimable if it satisfies
conditions (i)—(iv) in Proposition 3.3. Because of (iv), which we do not directly use here,
badly approximable ¢t are sometimes called irrational numbers of bounded type.

Our proof that « is transcendental is substantially simpler if 6 is well (i.e. not badly)
approximable. Since the set of all badly approximable numbers is small, having e.g. zero

Lebesgue measure in R [HW, Theorem 196], it is reasonable to pose the following.

Question 3.4. Does there exist a Gaussian integer ¢ with argument 276 for §€R
irrational and well approximable?

Unfortunately, the answer is not (as far as we are aware) presently known. So, our

arguments will deal with the possibility that 6 is badly approximable, too.

3.2. A theorem of Evertse

We now introduce one of our two main technical tools for estimating ¥, (a). Let K be a
number field of degree d:=[K:Q]. Let M (K) denote the set of places of K. Recall (from
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e.g. [EG]) that M(K) is the disjoint union of the set Min¢(K) of infinite places and the
set Mg, (K) of finite places of K. A place ve€ M (K) determines a normalized absolute
value | - [,: K —[0,00) as follows.

If ve My, (K) is finite, corresponding to a prime ideal p of the ring of integers O
of K, then the order ord, x of x€O is the largest power m>0 such that x€p™. For
general z€ K™ one sets

ord, x :=ord, a—ordy b,

where a,be Ok satisfy x=a/b. Then,

0, ifx=0
‘JZ|U = — ord, (x) :
N(p)~ @), if 240,

where N(p) is the cardinality of the finite field Ok /p. If v€ M, (K) is an infinite place,
then v is either real or compler. In the first case, v corresponds to a real embedding
7: K —R, and we take |z|,=|7(x)|, where |-| is the ordinary absolute value on R. In the
second case, v corresponds to a conjugate pair 7,7: K—C of complex embeddings, and

we take

2], = |7(2)]* = |7(x)|*.
A non-zero element x€ K has the property that |z|,=1 for all but finitely many
places. With the above normalizations, the following product formula holds:
II lzlo=1 forzek>. (3.2)
veEM(K)

If SCM(K) is a finite set of places containing all infinite places, then we call
Ok,s:={a€K:|a|], <1 for all ve M(K)\S}

the ring of S-integers in K. Note that, if S=Miu(K), then Ox,s=0f is just the usual

ring of integers. Given a vector x=(z1, ..., T, ) EOR g, We set

Hs(x) = [ [ max{|z1l, ..o, [2mlv}-

veS

The following general result of Evertse [E] (also see [EG, Proposition 6.2.1]) on unit
equations plays a central role in the sequel.

THEOREM 3.5. Let SCM(K) be a finite set of places of K containing all infinite
places, m>2 be an integer, and £>0. There is a constant c=c(K, S, m,e)>0 such that, if
X=(1, 0y ) EOR g and Yy 71,70 for every non-empty subset 1C{1,2,...,m}, then,

for any vo€S,
max{|Z1]vg; s | Tmlve }

Hs(x)* [ 1,5 [Thmr [2nlo

|Z1+ . AT, =€
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We refer to any quantity of the form , ; xy, with IC{1,...,m} non-empty, as a
non-trivial subsum of x1+...+x,,. The assumption that no non-trivial subsum vanishes

implies among other things that z;#0 for all k.

3.3. Initial choices and estimates

From now on, we assume that « is an algebraic number, our final goal being to reach a
contradiction. We fix the number field in the previous subsection to be a(n embedded)
Galois extension K CC of Q that contains «, @ and i. Any other embedding K<—C
restricts to either the identity or z+—Z on Q(i). Hence, every infinite place v of K is
complex, and the restriction of | - |, to Q(%) is the same for all infinite places v € Min¢(K).
We take v € Mins(K) to be the infinite place corresponding to the given embedding; i.e.
la]y, :=|a|?, where |-| is the restriction to K of the usual absolute value on C.

We let I'=4TzU([g—T). Then, I' contains all coefficients () in the series defining
®(z), as well as all differences v(j)—~v(j—n), j>n. Specifically, T' is the set of the
following 25 Gaussian integers:

= {0, £2, £2i, £1£2i, +4, +4i, £244i, £3+2i, +1-+£44}.
Note for later estimates that, if y€I'\{0} and v€ Min¢(K), then
A< 7l = ey = 111 < 20. (3.3)
Finally, we fix SCM(K) to be the set of all infinite places of K together with all finite

places v such that |z|,#1 for some z€{a, a}UT.

LEMMA 3.6. There is a positive constant R (depending on T’ and «) such that, for

any positive integer n and any degree-n polynomial

P(z,w)= Z vk wk

0<j+k<n

with coefficients v, €T, the quantity x=P(c, &) satisfies

H ||, < H max{|z|,,1} <R".
ves veM(K)
The number z in this lemma is an S-integer by construction. Though the polynomial
P used to define z need not be unique, we will be somewhat imprecise and say that x
is a polynomial of degree n in « and & with coefficients in I'. Whenever we apply
Theorem 3.5, it will be to a vector (z1, ..., Z,,) whose components are all polynomials of
this sort.
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Proof. Pick a positive integer b such that bI', baw and b are all contained in Og.

Then,
b= " (by) (ba)! ()" R € Ok
0<j+k<n
Thus, [p"*],<1 and [b"*1z],<1 for every place v€ Mg, (K), so
[[ ma{ilzly< JI "= T »COVL=0""1
v€ Msin (K) vE Miin (K) V€ Mine (K)

where we used the product formula (3.2) and the fact that the degree d of K is twice
the number of (complex) infinite places. Let Ry be the maximum among 1 and the
quantities |o(«)|, as o ranges over elements of the Galois group Gal(K:Q). Then, for
any v€ Mine(K), we have

|], < (n+1)4R3" max [v]o = 2O(n+1)4R8”
YyE

and
H max{1, |z|,} <20%%(n+1)%Rd",
VE Mint (K)

Putting the estimates for finite and infinite places together then gives

[Tlelo< TT moax{Llal,} < (V20 (nt1)2R5) "0+ 0 < R”

veS veEM(K)
for R (depending on Ry, b and d) large enough and all n>1. O
COROLLARY 3.7. If x1, ...,z are polynomials as in Lemma 3.6 and
Z deg xi, <n,
k=1

then
Hs(x1, ..., xm) < R™.

Proof. Let ny=degxi. Then, by Lemma 3.6,

m m
Hg(x1, o) = [ [ max{|afo, o [zmlo} < ] [ max{1, [zxlo} <[] R™ <R" O
veS veS k=1 k=1

We conclude by noting that the left-hand estimate in Lemma 3.6 can be strengthened

when z is a monomial.
LEMMA 3.8. If z=ya?a" for some non-zero y€T, then [],cq |zlo=1.
Proof. This follows from the product formula (3.2) and the fact that
2l = lo al? [l =1

for all places v¢S. O
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3.4. The well-approximable case

From now on, we let m;/n;, j€N denote the continued fraction approximants of 6. In
this section we complete the proof that « is transcendental under the assumption that 6

is well approximable.

PROPOSITION 3.9. Suppose that 6 is well approzimable. Then, for any C>1, there

are arbitrarily large n€N such that all indices j€(n,Cn] are n-regular.

Proof. Let e=1/16(C+1). Since 6 is well approximable, Proposition 3.3 (i) says that
there exist infinitely many n such that [nf—m|<e/n for some meN coprime to n. We
claim that any such n will do.

To see this, fix j€(n,Cn] and let k be the integer closest to 856. If ‘jﬁf%k|><€/n,
then either j# and (j—n)# are both equivalent, mod 1, to elements of (%(kfl), %k), or
both are equivalent to elements of (gk, §(k+1)). Hence (see Figure 1) v(j6)=~((j —n)0),
i.e. j is n-regular. If instead |j97§k|<€/n, then

k j 1
|8mj—kn| < 8‘j(m—n9)+n(j9—8> ’ < 85(24—1) <8(C+1)= 3

Hence, 8mj=kn, and since ged(m,n)=1, it follows that j:%k’n, where k'=k/me(8,8C]

is an integer. Then, we have on the one hand that
j0—3k= 3k (nf—m),
but on subtracting nf —m from both sides, we also obtain
(j—n)0—%(k—8m) =% (k' —8)(nf—m).

Since k’'>8, the right-hand sides of the last two equations have the same sign; and their
magnitudes are each bounded above by £k'|nf—m|=|j6— k|< 5, because of our choice
of k. So, if nf—m>0, then joe 3k, $(k+1)) and (j—n)0€(tk—m, §(k+1)—m); and,
if nf—m<0, then joe(i(k—1),1k) and (j—n)0c(i(k—1)—m, ik—m). Either way,

v(j)=7(j—n), i.e. j is n-regular. .
Now, let (1‘1,1‘2):(_2|1_a"‘2’2|1_an|2 Re ‘Pn(a))

COROLLARY 3.10. If 6 is well approximable, then, for any C' =1, there are arbitrarily
large neN such that

Cn
|x1+x2|<M.
1—laf
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Proof. From equation (3.1) and Re ®(a)=1, one sees that

> (G) —(G—n))a? > (v6) =G —n))e?

i>n i>Cn

12| = |0 () < 4 —4

for any n large enough that Proposition 3.9 holds. The estimate in the corollary now

follows from the fact that no element of I' has magnitude larger than /20. O

We may apply Theorem 3.5 to get a complementary bound for |z1+xz2|. Take vy
and S as in the beginning of §3.3. Note that

r1==-2(1-a")(1-a") and zy=(1-a" 27 Yol +(1—a™ Z'y & (3.4)

j=1
are polynomials in a and @ with degree 2n and coefficients in I'. Further7 non-trivial
subsums of 21 +x2 do not vanish: |z1|>1 for large n because |«| <1, and Lemma 3.1 tells
us that 270 and x1+x27#0 for large n. Hence, Theorem 3.5, together with Lemma 3.6
and Corollary 3.7, says, for any £>0, that

HlaX{|’J)1|2, |$2‘2} c 7CR74n(1+6)
> = .
Hs(.’lﬁl,xg)‘g HUGS |l‘1‘v |$2|U Rden. Rin

|1 JrClCQ|2 =|z1+x2|y, =c

If 6 is well approximable, then we can compare this lower bound for |z;+4xz2| with the

upper bound from Corollary 3.10, obtaining that

|a|Cn > clRf2n(1+5)

for any C'>1, £>0 fixed, some constant ¢'=c'(¢)>0 and arbitrarily large n€N. Taking

e=1 and C large enough, e.g.
log R

“loglal

we arrive at a contradiction. So, if # is well approximable, then « is transcendental.

3.5. Unit equations

We need a little extra machinery from the theory of unit equations to deal with the
possibility that 6 is badly approximable. Specifically, we need the following result due to
Evertse, Schlickewei and Schmidt; see [ESS, Theorem 1.1] and also [EG, Theorem 6.1.3].
To state the theorem, we recall that, if a1, ..., a,,, €L are (non-zero) elements of a field L,

then a solution yq, ..., ym €L of
ay1+...+amym =1

is called non-degenerate if non-trivial subsums of the left-hand side do not vanish. And
a multiplicative subgroup H C (L*)™ is said to have rank r<oo, if there is a free abelian
subgroup H’ of rank r such that H/H' is finite.
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THEOREM 3.11. Let L be a field of characteristic zero, let ay,...,an €L*, and let
HC(L*)™ be a subgroup of finite rank. Then, there are only finitely many non-degenerate
solutions (y1,...,ym)EH of the equation a1y1+...+amym=1.

Note that, while [EG, Theorem 6.1.3] is only stated for m>2, it is also valid (trivially)
when m=1. To apply the theorem, let K and I" be as in §3.3.

LEMMA 3.12. The numbers « and & generate a free multiplicative subgroup of C*.

Proof. We have arg(a)=276, so if a’a¥=1, then j=k, as 6 is irrational. But then

ala*=|a|?, and hence j=k=0 since |a|<1. O

COROLLARY 3.13. For any integer m>=1, there exists N=N(m)€EN such that
vt @R 4 4y admakn £0,

whenever vy, ..., Ym €L are not all zero, and |jn—ji|+|kn—ki|=N for all h#£l.

Proof. We may assume that m>2. Since I' is a finite set, it suffices to consider a
fixed vector (1, ..., Ym ), and we may further assume (after schrinking m, if necessary) that
v, #0 for all k. By Lemma 3.12, it therefore suffices to prove that, for any (v1,...,vm)€
(I'\{0})™, there are only finitely many non-degenerate solutions (adia*, ..., a/m-1a*m-1)
to the equation

-/ ’ =/ 7’
7104]1 ak FotYmoradm—1 aFm—1 +Ym =0.

This follows from Theorem 3.11 with L=C, m—1 in place of m, ar=—v%/Ym, and
H=G™ !, where GCCX is the multiplicative group generated by o and a. O

Theorem 3.5 now allows us to render Corollary 3.13 effective.

COROLLARY 3.14. Given 0,p>0, C>1 and an integer m>1, the following is true
for n large enough. Suppose ji,k1, ..., Jm, km =0 are integers satisfying

e jnt+kn<Cn for all h,

o |jin—Jil+lkn—Fki|=dn for all h#£L,
and suppose that ¥1,...,ym €L do not all vanish. Then,

|71aj107k1 + o ymadm e, | > |a|minmh¢o(jh+kh,)+pn > |a|(C+p)n_ (3.5)

Proof. Suppose without loss of generality that no 7y, vanishes. Corollary 3.13 tells
us that no non-trivial subsum of the sum on the left vanishes. Let SCM(K) and vg€S
be as in the beginning of §3.3, and (z1, ..., 7,,) be the vector of monomials zj, =vj,a" a*".

Lemma 3.8 tells us that [],.q [[)— |#n|o=1. Further,

max{|z1|%, ..., [T,]?} = max Iynadh akn |2 > 4] q)? mine(Gatkn)
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using |a|<1 and equation (3.3), and Corollary 3.7 gives
Hg(xy, ... xp) < RE™™,

for R>0 as in Lemma 3.6. Theorem 3.5 therefore yields

) 4C|a|2minh,(jh,+kh)
|Z14 x| =21+ AT oy =

RCmnE

Choosing £>0 small enough that R=¢™>|a|?’ guarantees that the first inequality of
equation (3.5) holds for large n, completing the proof. O

3.6. The badly approximable case

It remains to treat the case when 6 is badly approximable. We recall (see [HW, The-
orems 167 and 171]) that the continued fraction approximants of an irrational number
alternate between over- and under-approximating, i.e. if the approximants m;/n; of 6
are indexed so that ng=1, then we have for any odd index j that

M=t g™

nj-1 nj

The next result serves as an alternative to Proposition 3.9.

PropPOSITION 3.15. Suppose that 6 is badly approximable. Then, there exist B>0,
0>0 and arbitrarily large n€N such that the following statements hold:

(i) j—n=dn for any n-irreqular index j>n;

(ii) |j—7'|=dn for any distinct n-irreqular indices j, j' >n;

(iii) |j—4 —n|=dn for any n-irregular indices j,j’ >n such that j#j +n;

(iv) for any C>1, there are at most C/d n-irregular indices in the interval (n,Cn],

and at least one n-irreqular index in the interval (Cn, BCn].

Proof. By hypothesis (see Proposition 3.3), there exists x>0 such that [nf—m|>k/n
for any integers m,n with n>0. In what follows, we take m=m;, and n=ny,, with h odd.
Suppose that j>n is n-irregular, and let k& be the integer closest to 8j6. Since m/n
is a continued fraction approximant of 8, we have |[nf—m|<1/n. So, one can argue as in

the second paragraph of the proof of Proposition 3.9 to show that |j9— ék‘ <1/n. Hence,

1
<180 —n)0— (k—8m)| < 8‘j0—:’+8|n9—m| < Zﬁ

8(j—n)
So, j—n>%lm. And, if j'>n is another n-irregular index, then ’j’&—%k’|<1/n for
some k'€N. Hence, if j'#7,
k/

./9_7
TP

16
< —.
n

R

k
7< S _ r_ < n_ Y
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So, |j’fj|>ﬁnn. Similarly, if j'4+n#j, then }ij%kL |j’0fék’| and [nf—m| are all
less than 1/n, so now the triangle inequality gives

S < BT = (b 8| < 2
i.e. [j—j'—n|>1szkn. All told, statements (i)-(iii) hold with §= gz ~.

The first part of (iv) follows immediately from (ii). To prove the second part, pick
m’ /n’=mys /np to be the continued fraction approximant of § with minimal even index
h' such that nj, >Cn. Since 6 is badly approximable, we have n’ <A2Cn, where A is the
constant in the third condition of Proposition 3.3. Since h is odd and h'>h is even, we

also have m’/n’ <@ <m/n. Thus,
1
0<n'0—m' <m—-nl< =,
n

where the middle inequality comes from the fact that continued fraction approximants
of § improve as the denominators n<n’ increase. Assuming n>8, we infer that n’f is

equivalent, mod 1, to an element of (0, §). The inequalities above give
1
< (n'+n)0—(m'+m) <0,

so that (n'+n)f is equivalent, mod 1 to an element of (Z,1). Then, y(n')=1-2i and

~v(n+n’')=1+2i (see Figure 1), so the index j=n'+n is n-irregular. Since
Cn<j<(A2CH1)n,
we may take B=A%+1 to conclude the proof. O
We define 3; x(n)€l for j, k€N by (see equation (3.1))

() =2Re((1-2) (00 (k=) ) = T Gpt, (30)
k>n jt+k>n

noting that Sji(n)=pk;(n) is non-zero if and only if one of the indices j or k is n-
irregular (hence >n) and the other is equal to zero or n. Proposition 3.15 implies that,

for suitable n, the indices of non-vanishing f3;,(n) are well separated.

COROLLARY 3.16. Suppose that 0 is badly approximable, and let 6>0 be as in Propo-
sition 3.15. Then, for every C>16, there exists an integer r€[0,4C/0) such that the
following assertions hold for infinitely many n:

(1) if 7,5, k, K €N are such that S5 (n)#0 and Bji (n)#0, then

(a) (J,k)=("K") or |j—j'|+|k—K'|>bn, and
(b) j+k=j'+k or [(j+k)—(i'+K)|Zdn;
(ii) precisely r of the coefficients B, (n) with j+ke(n,Cn] are non-vanishing.
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Proof. Let B>0 be as in Proposition 3.15, and let ZCN be an infinite subset such
that all the assertions of that proposition hold for all ne Z.

Then (a) follows from Proposition 3.15 (i)—(ii). Similarly, (b) follows from Proposi-
tion 3.15 (i)—(iii): indeed, we may assume, without loss of generality, that k& and k" are
irregular, and in this case j—j'€{0,n, —n}.

To prove (b), set

rn=#{(j, k) : Bjx(n) #0 and j+k € (n,Cn|}

for any neZ. In each pair (j, k) being counted, one component is n-irregular and the
other is equal to either zero or n. So, Proposition 3.15 (iv) implies that r, <4C/é for all
n€Z. Hence, we can take r=liminf,,_,,, 7, to be the smallest value of r,, that occurs for

infinitely many n. O

Continuing to suppose that 6 is badly approximable, we let § >0 be as in Proposi-
tion 3.15, and fix C>max{1, ié} (to be specified more precisely below). Let r>0 and n
be as in Corollary 3.16. Pick p€(0,0). We will apply Theorem 3.5 to the vector

_ r42
X= (xlana "'5$T+2) € OK)SH

where
1 =—211—-a"?, zy=2[1—-a"]*Re®,(a),

and 3, ..., 4o are the non-vanishing terms 8;,(n)a’/a® with j+k<Cn in formula (3.6)
for ¥,,(v). From equation (3.1) and Re ®(«a)=1, we get

r14+20 =2|1—a"|*(Re @, (a)—1) =21 —a"|* Re(®,,(a) = P(r)) = =T, ().
Together with equation (3.6), this gives

X1+t Tpio=— Z ﬁjk(n)ajak.
j+k>Cn

Let p(n) denote the maximum value of j+k such that §;;(n)#0 and j+k<Cn. Let
g(n) denote the minimum value of j+k such that 8;,(n)#0 and j+k>Cn. By Corol-
lary 3.16 (b), we have q(n)>p(n)+dn.

Recall that, if 8;5(n)#0, then the smaller of the indices j and k& must equal either
zero or n. Therefore, for fixed n and [, there are at most four non-zero B;x(n) with
j+k=I. So, from the previous equality, we estimate

42

] 8v/5 o q(n)
S X nmllaptt<aval el =S @)
h=1 j+k>Cn 12q(n)

where the second inequality uses that 8;;(n)€l’, and hence |5;x(n)|<v20.
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LEMMA 3.17. If IC{1,2,...,r+2} is non-empty, then Y, _; x4 7#0.

Proof. We argue by contradiction, so suppose ), ;z,=0. By Corollaries 3.13
and 3.16, we cannot have IC{3,...,7+2}. On the other hand, for large n, |z1]|>1 because
|a] <1, and |z2|>1 because (additionally) Re ®,,(a)—1. Finally, Lemma 3.1 tells us that
2142270 when n is large. So, we cannot have I C{1,2} either.

Since |r3+...4+2 12| <V207|a|? <1<|21], |z2|, both 1 and 2 belong to I when n is
large. If the complement J={1,...,r+2}\IC{3,...,7+2} is non-empty, then Corollar-
ies 3.14 and 3.16 imply that

r+2
E :l'h _ E :xh >‘a|p(n)+pn7
h=1 heJ

which contradicts equation (3.7) for large n, since p(n)<g(n)—dn and p<Jd.
Thus, I={1,...,r+2}, which gives

r+2

0=—> zn= > BumdaF= > Bim)da*+ > Bi(n)lak,
h=1

j+k>Cn jt+k=q(n) j+k=q(n)+don

where, in the last equality, we have used Corollary 3.16 (b). Hence, the two sums on the
right-hand side have the same magnitude. Further, ¢(n)<BCn by Proposition 3.15 (iv),
so Corollary 3.14 implies that

8\/5 |a‘q(n)+5n

q(n)+pn <

Z Bix(n)a’a@"

J+k=q(n)

Z Bik(n)a?a®| <

N
j+k=q(n)+6n

where the first inequality follows from Corollary 3.14 and Corollary 3.16 (i), and the
second inequality is obtained in the same way as equation (3.7). Since p<Jd, this is a

contradiction for large n. O

We are ready to invoke Theorem 3.5 one last time, with SCM(K) and vg€S, as in

the beginning of §3.3. From Lemma 3.8, and then Lemma 3.6, we obtain

H |x1|v |xr+2|v = H |x1|'u |x2|'u < R4n7
veS veES

since 3, ..., T,42 are monomials in o and @, and z; and z are polynomials of degree 2n;

see equation (3.4). Further, x3, ..., z,+2 have degree at most Cn, so Corollary 3.7 gives

HS(X) g R(CT+4)’IL.
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Lemma 3.17 says that non-trivial subsums of x1+...+2,12 do not vanish. So, for
fixed €>0, Theorem 3.5 yields

2 max{|z1[%, ..., [£r42|*} ¢ —(4+(Cr+4)e)n
“en > =
|$1+ +xr+2‘ = CHS(X)E Hves ;;_,’:_21 |xh|v = R(CT+4)TLE_R4n cR )

for large n, since |z1|>1. Using the bound in the other direction from equation (3.7), we

infer that, if n€N is as in Corollary 3.16 and is large enough, then

|a|2Cn > ‘a|2q(n) > CIR_(4+(CT+4)E)n,

for some constant ¢’=c'(C,e)>0. So, if above we fix C'>1 such that |a|“<R™3, and
then set e=1/(Cr+4), we obtain R~5">¢'R™5" for arbitrarily large n, which is a con-

tradiction. We conclude that, if 6 is badly approximable, « is transcendental.

This completes the proof of the main theorem in the introduction.
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