

Integrative and Com parative Biology

Inttg,ratiw **AM** Comparatiw Biolog, pp. 1-12 doi:10.109 3Jicb/icaal37

Society for Integrative and Comparative Biology

SYMPOSIUM

The Evolutionary Continuum of Functional Homodonty to Heterodonty in the Dentition of *Halichoeers* Wrasses

Karly E. Cohen, ""t.1 Hannah I. Weller,* Mark W. Westneat§ and Adam P. Summers t

• Department of Biology, University of Washington, Seattle, WA 98195, USA; 'Friday Harbor Labs, University of Washington, Friday Har bor, WA 98250, USA; *Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USAs; o epartment of Organismal Biology and Anatomy, University of Qiicago, Qiicago, IL 60637, USA

From the symposium "Biology at the Cusp: Teeth as a Model Phenotype for Integrating Developmental Gfflomics, Biomechanics, and Ecology" presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3-7, 2020 at Austin, Texas.

'E-mail: kecohen@uw.edu

Synopsis Vertebrate dentitions are often collapsed into a few discrete categories, obscuring both potentially important functional differences between them and insight into their evolution. The terms homodonty and heterodonty typically conflate tooth morphology with tooth function, and require context-dependent subcategories to take on any specific meaning. Qualifiers like incipient, transient, or phylogenetic hornodon ty attempt to provide a more rigorous definition but instead highlight the difficulties in categorizing dentitions. To address these issues, we recently proposed a method lor quantifying the function of dental batteries based on the estimated stress of each tooth (inferred using surface area) standardized lor jaw out -lever (inferred using tooth position). This method reveals a homodonty-heterodontyfunctional continuum where small and large teeth ...,rk together to transmit fon:es to a prey item. Morphological homodonty or heterodonty refers to morphology, whereas functional homodonty or heterodonty refers to transmission of stress. In this study, we use Halichoeres wrasses to explore how a functional continuum can be used in phylogenetic analyses by generating two continuous metrics from the functional homodonty- heterodonty continuum. Here "" show that functionally heterodont teeth have evolved at least 3 times in *Halichoeres* wrasses. There are more functionally heterodont teeth on upper jaws than on lower jaws, but functionally heterodont teeth on the lower jaws bear significantly more stress. These nuance>s which have functional c.onseguence>s would be missed by binning entire dentitions into discrete categories. This analysis points out areas worth taking a closer look at from a mechanical and developmental point of view with respect to the distribution and type of heterodonty seen in different jaws and different areas of jaws. These dat>a on a small group of wrasses, suggest continuous dental variables can be a rich source of insight into the evolution of fish feeding mechanisms across a wider variety of species.

Introduction

Vertebrates are spectacularly diverse in their ecology, behavior, and morphology, yet most vertebrates rely on the same structures to capture food: jaws and teeth (Estes and Williams 1984; Massare 1987; Davit-Beal et al. 2007; Jones 2009). The constraints and opportunities generated by, and from these structures, have been generated with both physical and mathematical modeling (Lucas and Luke 1984; Evans and Sanson 1998; Shergold and Fleck 2005;

Anderson and LaBarbera 2008 Un r 201)4 Predictions based on tooth shape alone produce incomplete anecdotes of functional diversity in the same dentition. The dentition of ambush predators such as *Ophiodon elongatr,s* are a great example; these fishes rely on a large tooth surrounded by many smaller teeth to maximize the damage delivered to a prey item (Gallowayet al. 2016; Mihalitsis and Bellwood 2019). The conical shape of their teeth does not matter as much for function as their

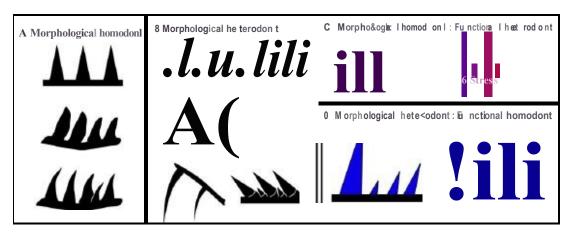


Fig. 1 Mo rphological versus functional hornodo. (A) Morphologically hornodo dentitional lettethare similar in shape or size compared to (B) morphologically heterodont dentition have some sort of regionalizational shape or size. A morphological cut off is hard to come by as slightficant changes it tooth shape are biased by our niterpretation of delitions. Functional homodont and heterodonty (C and D) uses changes in so-ess to draw an unambiguous line between tooth shape and tooth Luction.

position. Generating a biomechanical framework for how particular tooth shapes and dentitions function is essential lo understanding how they evolve (Evans and Sanson 1998; Lucas 2004; Evans and Sanson 2005; Anderson and Labarbera 2008).

Teeth represent an information-rich opportunity to explore tendencies in developmental transitions, functional divergence, and even sexual selection For example, the unilateral tooth replacement in pacus and piranhas is a synapomorphy for the clade and represents a constructional constraint in maintaining an interlocked dentition (Berkovitz 1975, 1980; Kolmann el al. 2019). The morphology of the dentine in fossils of shark teeth provides new synapomorphies across orders and even pushes us to reconsider the origin of particular groups (Jambura el al 2020). Characterizing the entire dental battery as either homodonl or heterodonl has been used as a tool lo understand dental evolution for nearly a century (Cope 1888; Simpson 1936; Keene 1991; Schwartz 2013; Bertrand 2014; Conway el al. 2015; D'Amore 2015; Cullen and Marshall 2019). Most bony fishes are considered morphologically homodont and have a battery of similarly shaped and sized teeth (i.e., Fig. IA; Kenne 1991; 2014; Berkovitz and Shellis Morphological heterodonty is reserved for dentitions that have noticeable differences in shape or size (i.e., Fig. IB; Kenne 1991). For example, pacu, the herbivorous relatives of piranhas, have both incisiform and molariform teeth that are used lo distinguish genera (Berkovitz 1980; Kolmann el al 2019). The evolution of morphological heterodonty is consistently used in systematics often lo infer differences in prey processing (Kenne 1991; Becerra el al 2018). We explicitly do not assume that size and shape are the same as

function-instead, we pose the question: do teeth that look alike actually function in the same way (Mihalitsis and Bellwood 2019; Cohen el al. 2020; Hulsey el al 2020)1

A lack of size or shape morphological diversity in a dental battery does not necessarily indicate a lack of functional diversity (Gregory 1933; Evans and Sanson 1998; Whitenack and Gottfried 2010: Anderson and Rayfeild 2012; Schwaru 2013; Mihalitsis and Bellwood 2019; Cohen el al. 2020). The morphologically homodonl dentition of piscivorous coral-reef fishes does not appear functionally diverse, but there is room for important functional decoupling in the jaws (Mihalitsis and Bellwood 2019). A fang al the front of the jaw moves al high velocity and ensures prey capture, and the large forces al the posterior fangs do the most damage (Mihalitsis and Bellwood 2019). Here, two similarly shaped teeth are functionally very different, owing to their position along the jaw. Morphological homodonty conceals phenotypic variation by only considering the dental battery in terms of shape and size. But if you care about dental function then stress is the important parameter, because stress predicts how much damage a tooth can do lo a prey item (Fraz.zetla 1988; Freeman and Weins 1997; Shimizu el al. 2005; Dean el al 2008; Clark and Summers 2012; Smits and Evans 2012; Schofield el al. 2016; Bergman el al. 2017, Marcus el al. 2017, Mihalitsis and Bellwood 2019; Cohen el al 2020). If stress is critical for understanding dental function, then il should also be critical for understanding the evolution of dental batteries. To address this problem, we need lo understand that broad dental characterization misses critical information in evolutionary comparisons, and we need a tooth by tooth metric that

Table 1 Specimm table: tist of species represe ed il ttiis study

Species	Museum	Cat. number	M orp hos ou rce DOI	Sea.no ire faci lity
Hokhoeres orgus	FMN H	FMNH 124452	da: 10.17602/M2/M57770	Kare4F. Liem Bioimaging center
Hokhoeres binotopsis	FMN H	FMNH 75982	da: 10.17602M2M 820	Kare4 F. Liem Bioimaging center
Hokhoeres &sp/us	FMN H	FMN H n 29	da : 1 0. 1 7 602/M2/M56335	Kare4F. Liem Bioimaging center
Ho&ichoeres hortzfek!ii	FMN H	FMN H 11 070 1	da : 10.17602M2M57 28	Kare4F. Liem Bioimaging center
Hokhoeres hortulonus	FMN H	FMNH 12686	da:10.17602/M2/M58197	Kare4F. Liem Bioimaging center
Hokhoeres Jeucurus	FMN H	FMNH 126976	da: 10.1 7602/M2/M58195	Kare4F. Liem Bioimaging center
Ho&ichoeres mo aw/)inno	FMN H	FMNH 65217	da: 10.17602/M2/M56339	Kare4F. Liem Bioimaging center
Hokhoeres mefonochir	FMN H	FMNH 126991	da: 10.17602/M2/M58200	Kare4F. Liem Bioimaging center
Hokhoeres po&s,;gmo	FMN H	FMNH 110 709	da: 10.17602/M2/M57006	Kare4F. Liem Bioimaging center
Ho&ichoeres prosepeon	FMN H	FMN H 1 20 1 60	da: 1 0.1 7 602/M2/M57775	Kare4F. Liem Bioimaging center
Hokhoeres rdvn M&	<u>EMN H</u>	FMNH 12 1 20	da:10.17602/M2/M57772	Kare4 F. Li = Bic.;;:naq;,q cte,

All CT scans are free to download from morphosotrce.org and represented here by DOI. FMN H (fi eCd Museum of Natural Histo.-y, ChicagQ IL. USA).

incorporates stress into our quantification of dentitions.

Qualitative categori2ations of dental characters, such as morphological homodont, macrodont, or edentulate, do not capture functional variation in dentitions (Ruber et al. 1999; Shimada 2002; Sansom 2016). Discrete categori2ations summarize and discard information in an effort to simplify den-titions for comparative analysis. Continuous characters allow finer scale comparison among continuous environmen tal, ecological, and gene expression data than can be achieved with categorical functional characters (Garamszegi 2014; Adams and Collyer 2018). The concept of functional homodonty can transform anatomical measures of individual teeth into a quantitative metric of dental battery function. A morphological homodont has teeth of "similar" shape and size, but functionally homodont teeth exert similar stresses regardless of shape or size. Where morphological heterodonty captures shape regionalitation across individual teeth, functional heterodonty highlights teeth with stresses that exceed a threshold across a dentition (Cohen et al. 2020). Functional hornodonty is a biomechanical description of the dentition that has the potential to be combined with phylogenetic information to reveal evolution of specific dentitions or feeding strategies. To demonstrate that functional homodonty-h eterodonty continuum provides meaningful insight into the evolution of dentitions, we applied the method to 11 of the ~80 species of *Halichoeres* wrasses(fam-ily I.abridae). In this study, we use three metrics to summarize the functional homodonty method We calculate (I) the proportion of functionally homodont to functionally heterodont teeth to identify

individuals with the most potential for function

diversity across their dental battery, (2) the average squared residual of functional homodonty as a measure of functional diversity in the dental battery, and (3) we compare the average squared residual off unctional homodonty to the proportion of functionally heterodont teeth to highlight different types of heterodonty. Our goal is to lay the groundwork for the further exploration of a biomechanical metric that can be extended to other taxa and detect functional diversity that is otherwise lost in discrete categori2ations of dentitions.

Methods

Study species

The genus *Halichoeres* is common on rocky or soft reefs in the Indian, Atlantic, and Pacific oceans where they feed primarily on small benthic invertebrates (Randall 1967; Clifton and Motta 1998). They have a full dentition on both upper and lower jaws ranging from 10 to IS teeth, including upper and lower anteriorly pointing fangs, and a pair on the posterior process of the maxilla. The modest size of the group, a well resolved phylogeny, similar habitat, and purported generalist diet make *Halichoeres* a useful group to explore the functional homodonty metric in an evolutionary context

Measurements and scans

All CT *scans* were downloaded from the Scan All Fishes project on Morphosource.org (Table I) these *scans* were origimDy presented in Evans et al. (2019). Each specimen was scanned at Friday Harbor la boratories' Karel F. Uem Memorial Bio-Imaging Facility using a Bruker 1173 SkyScan (Micro Photonics Inc., Allentow n, PA, USA). AD specimens

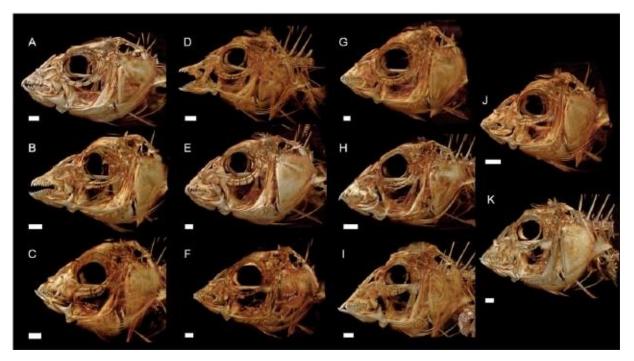


Fig. 1 CT scan re nder-i s of 11 species of *Holichoeres* wrasses represm ti dillerent tooth morphologies. (AJ *H. hortzfeldl* (BJ *H. rlchmond* (CJ *H.* poci,stlgmo, (DJ *H. melonochlr*, (E) *H. dlspilus*. (F) *H. orgus*. (GJ *H. proso loo*. (HJ *H. mo c u lp/Mo*, (IJ *H. hortlllonus*. OJ H. Jeucurus. and (KJ *H.* llrotopsis. Scale bar is set to 1000 μm.

were scanned between 34 and 35.5µm voxel size at 65 kV and 123 uA. A total of II *Halichoeres* wrasse species were chosen for this study representing individuals with varying tooth morphologies across the three *Halichoeres* radiations (Fig. 2). Digital surface models of the jaws and teeth were created in Amira version 5.2.2 (Visage Imaging. Inc., Richmond, VIC, Australia). Surfaces were then exported to Meshlab (Visual Computing la b, ISTI-CNR, Pisa, Italy) where jaw length, tooth height, radius, and tooth positions were measured.

The stress of each tooth was calculated foDowing the principles of simple lever mechanics. Using the surface area of a cone we approximate the surface area of each tooth by measuring tooth height-defined by the total length from tooth tip until the tooth meets the jawbone-and tooth radius (Fig. 3):

Surface area =
$$n r (r + (\underline{Jh'} + r'))$$
 (I)

To establish a basic relationship between surface area and tooth stress we use the entire height of the tooth. Following the guide of puncturing mechanics, stresses should be concentrated at the tip of the tooth; however, our metric is not meant to establish where an individual tooth bears the greatest stress

but instead to identify patterns in stress across teeth in the same dentition Therefore, we ignore expected changes in stress from the tip to the base of each tooth in order to establish a relationship between the variation of tooth morphologies in a dental battery and *stresses* along the jaw. The standardi2.1tion of tooth morphology allowed us to ignore curvature and damage yielding an idealized tooth surface area, which we used to cakulate *stress* under different conditions (Crofts and Summers 2014).

Considering that teeth are on a lever, we had to first establish the amount of force a tooth is predicted to exert based on its position.

$$F_{.,,,} = F_{,:} * sin(a) * (o lt4 lever)$$
 (2)

Our model assumes that the mechanical advantage, and force at the input lever is the same across jaws and that the input muscle force and input lever arm are the same for aU teeth on the jaw. We modeled the upper jaw (premaxilla) with a static bite point assuming that it was in the most retracted position of its sliding position in the anterior jaws linkage (Westneat 2004). The model also assumes a single angle of muscle input force, with jaws in closed position, and no changes in gape were modeled. We simplified our system by assuming that Ftn

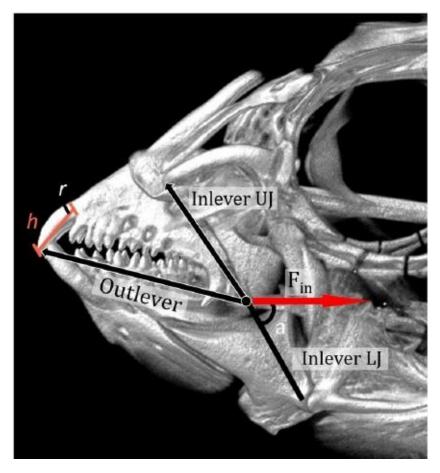


Fig. 3 Measuri'lg so-ess: SkUI of *H. hortzfeldU*, showing tooth morphology and FH calculation protocol Usi'lg tooth su: facearea derived from lilear measurements, meaSlUred from CT scans in Meshlab we calculate the stress of each tooth in the dercal battery considering the force and jaw position. The force equations are derived from levermechanics.

and Fi.,.., ratios were constant in all cak ulations, generating F'''h equation where F'''''' is equivalent to Fi.,., (Equation 3).

$$F_{tooth} = \frac{F_{in} * P_{tooth}}{L_{iaw}}$$
 (3)

where $F'^{o'''''}$ is the force all a particular tooth, Fin is the input force (set to IN in our model), PToom is the position of the tooth in question, and I; w is the length of the jaw. We cakulated the stress all the surface of each tooth by dividing the calculated force on a tooth (F'o'''h) by the surface area (Equation 4).

$$u = -\frac{F\ll > h}{SA\ll > > h}$$
(4)

where u is stress and SA'°"" is the tooth surface area.

We expressed the position of each tooth and the height of each tooth as a percentage of jaw length. We compared the stress al each tooth across jaws,

individuals, and species and compared the stress residuals across teeth. Normalized stresses were inputs for a bootstrap analysis for determining a functional homodonty threshold.

Generating a functional homodonty threshold

In an ideal functional homodont, all teeth experience the exact same stress, regardless of size or position (Cohen el al. 2020; Table 2). This is an unrealistic expectation for real specimens: we are unlikely to calculate identical stress values for each tooth even in a functional homodonl, given biological and technical variance. Instead, for functionally homodonl dentitions, we expect stress values along the jaw to not differ significantly. Our challenge with testing functional homodonty in real oq μ nisms, therefore, is defining reasonable tolerance limits for significant variations in stress.

To do this, we calculated stress residuals for each dentition by subtracting the median stress for a

Table I knportant d efinitions for the functional homo

slty method

Tenn	Oe& ition			
Functiona homodonty method	Method detailed in Cohen et at (2020) for (1) using tooth .u-Elce area aid position to calculate tooth s through the transmission of force and (2) estimating a threshold for fractionally heterodont teeth by strapping stress values rom mu le dentitions.			
Functionaly homodont t eeth	Atl of the teeth ina dentition have statistiQ ly similar stresses that do not exceed a set threshold of stress			
Functionaly heterodont t eeth	One « more of the tee thin a dentition has statistically different stresses that exceed a set threshold of stress from the majority of the dentition			
Ide alized Lnctional homodoot	Atl of the teeth ina dentition bear the exact same media, stress			
lde aliz.ed Lnctional heterodont	Atl of the teeth ina dentition bear stresses that exceed the fmctional heterodonty threshold			
Functiona homodonty- heterodonty cootinwm	A cootinuui, ranging 6-om the ideab e d functional homodont to the idealiz.ed fui ctiONI heterodont onto wtic a ll dentitions GLn be mapped using the fuictiONI homodonty method			

dentition from each stress value and dividing by median stress (i.e., centering and scaling to median stress), allowing for comparison across dentitions. An idealized functional homodont would experience the same stress on each tooth reigndless of size or position, resulting in residuals of O for each tooth in that dentition. To determine a threshold for functional homodonty, we bootstrapped a residual stress distribution per Cohen et al. (2020). Half of the teeth were randomly subsampled without replacement from a dentition and normalized residuals calculated; this procedure was repeated 10,000 times for each dentition. The resulting distribution of residuals was centered around 0, with small clusters of extreme values representing teeth that experienced ~1.8 times or more stress than the median for a given dentition (Fig. 4). The multimodal structure of bootstrapped residuals pointed us to clustering techniques to determine threshold values for functionally homodont/heterodont teeth. Our first implementation of this method (Cohen et al 2020), used k-means to distinguished between high and low residual peaks (Maechler et al 2019). In Halichoeres the wider range of bootstrapped residuals with extreme values resulted in poor fits using k-means. Instead, we used the more robust k-medoids clustering algorithm which uses data points as cluster centers (Maechleret al 2019). Because k-medoids is considerably slower than k-means and could not be run on our entire sample of bootstrapped residuals at once, we performed the k-medoids clustering (with n = 2 clusters) on a random subsample of 5000 residuals 100 times, defining the threshold as the mean of the two resulting cluster centers. The resulting threshold ranged from 1.64 to 1.88 times median stress, with an average of 1.8 times median stress (Fig. 4, inset).

Summary stati stic.s and phylogeny comparison

We generated two metrics from the normalized stress calculations, each designed to emphasize a specific aspect of the dentition: the average squared residual and proportion of functional heterodont teeth. To measure the degree of functional difference among teeth from the same battery, we cakulated the average squared residual (where residuals= stress - median stress) for stress across a jaw. We also calculated the proportion of individual teeth in each battery that differed in function from the majority; unlike the variation in stress, this metric ignores the folddifference of stress but emphasizes regionafuation We visualized these continuous traits on a timecalibrated phylogeny (Aiello et Supplementary Fig. SI) using the contMap function from the phytools R package contMap (Revell 2012). The phylogeny of 340 labrid species was timecalibrated using fossil data (Aiello et al. 2017), pruned down to the local clade containing the set of taxa studied here (Supplementary Fig. SI) and then pruned to the set of species studied here for comparative analysis using the R package ape (Paradis et al 2004).

Re su lts

Functional homodonty method

In 11 species and more than 440 teeth, 17 teeth bear stresses that exceed the homodonty threshold (Fig. 4, dashed line). While all of the 11 species of *Halichoeres* represented in this dataset have at least one tooth that exceeds the functional homodonty threshold, three species had especially high values for at least one of the metrics we cakulated: *Halichoeres dispil,,s, Halichoeres melanochir*, and *Halichoeres maa,lipinna* (Fig. 6). Each have a single

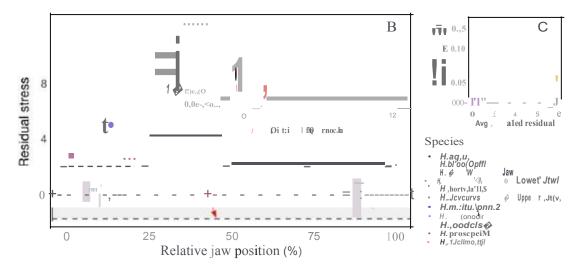


Fig. 4 Functional homodalty metric. (A) teeth from the jaws of 11 Holld>oeres. Teeth above the da<hed lile <!)(ceed the funct kmal homodalty thre<hold (BJ de fned by the bootstrappilg of reskluals. We then use k-mediods to ga,erate a biologically relevant threshold (red dashed lite). (C) Co rison of the proportion of functionally heterodont teeth to the average squared residual il four species of Holichoeres wrasse to highlight the tendencies emerging from this riso n. (1) High proportion hnc tionally heterodont limit low residual. (2) Low propon!oo of heterodalt teeth high residual. and (3) High proportloo of IJnctlonally heterodoot teeth: high residual

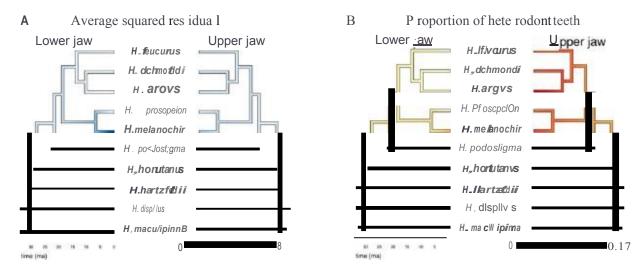


Fig. 5 Phylogeny co ri'lg the upper and lower jctNs in 11 species of *Hc1ktloeres*. There are more functionally heterodont teeth in the i.pper jaws than the lower jaws, represented by a greater number of heterodo teeth (A). But Lnctionally heterodont teeth in the lower jaws have a bigger ct and are represented by a larger residual (8). No te, *H.bJropt.J\$1\$* is removed from the logate tic c risons as stresses were only calculated if the lower jaw.

tooth on the lower jaw that bears 12 times the median stress of that dentition, far exceeding the functioml homodonty threshold of 1.8 times median stress. While *H. mactllipinna* had no teeth bearing stresses that high, the specimen we amlyzed had 2 of 12 teeth on the upper jaw exceed the functional homodonty threshold, the highest proportion of any of the dentitions we measured (Fig. 4A). The upper and lower jaw fangs of *H. macclllipinna* occlude far beyond the anterior end of the jaws with hardly any

curvature. The species *H. melanochir* most closely resembles a morphological homodont and *H. dispil11s* has two sets of large canines that extend far beyond the end of the premaxilla or dentary while the rest of their teeth are similar in *size* (Fig. 2C-E).

Across all 11 species, functionally heterodont teeth were more frequent on the upper jaws. While fewer teeth on the lower jaws exceeded our functional heterodonty threshold, those that did typically had much higher residuals, in some cases bearing up to

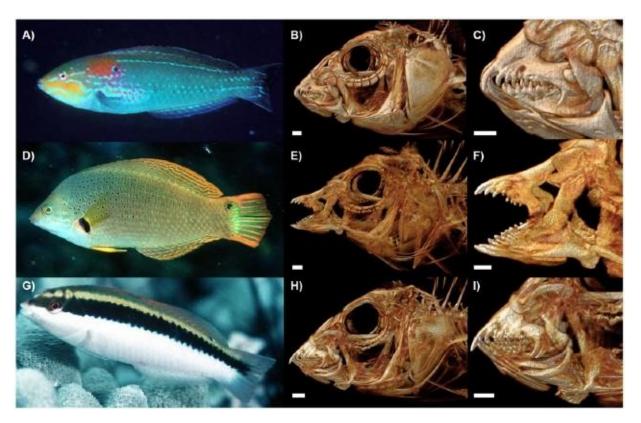


Fig. 6 f u>ctlooally heterodalt species of *Hollcho<ro* (A-<:) *H. dlspilus*. (D-F) *H. molenochlr*, (G- H. poci,S!Jgmo. Live photos for all three species downloaded from AshBa.se.org and provided by J.E. Randall Sca le bar is set to 1000 μm.

twice the stress of the teeth on the upper jaw of the same fish (Figs. 4C and 5, especially *H. dispillls* and *H. melanochir*).

There are differences in the magnitude of functionally heterodont teeth across all 11 species. For instance, *H. podostigma* has a singular functionally heterodont tooth on its lower jaw that barely exceeds the heterodonty threshold. This tooth bears 2.4 times the median *stress* of the rest of the dentition. By comparison, *H. melanochir* has several teeth that bear between 4 and 12 times the stress of functionally homodont teeth in the same dentition.

Proportion versus average squared residual of **functionally heterodontteeth**

Ancestral state reconstruction suggests the ancestral *Halichoeres* had a small number of functionily heterodont teeth, and these were more likely on the upper jaw than the lower. The three species with high numbers of heterodont teeth or high average squared residuals were in two of the three *Halichoeres* clades. Along the continuum of functional homodonty to heterodonty, we find three tendencies (Fig. 5). First, some taxa departed from functional homodonty because of one or two exceptional teeth in a battery of otherwise functionally

homodont teeth. This is represented by large residuals and a small proportion of functionally heterodont teeth (H. *dispil11s*). Next, are fishes with regionali2.1tion of function, these have small residuals but a high proportion of functionally heterodont teeth (*H. maculippina*). Finally, a dental battery could have large and small teeth interspersed evenly across the jaws as in *H. melanochir* (Fi g. 4Aand C) which leads to a high proportion of functionally heterodont teeth combined with high residuals.

Discussion

The biomechanical function of teeth is largely dependent on tooth morphology, orientation, position along the jaw lever from front to back, and the dynamic forces of the jaw muscles driving them into a prey item (Bare! 1982; Westneat 2003; Anderson et al 2016). Here we present a way to calculate the biomechanical function of teeth in jaws of labrid fishes from the perspective of their geometry and the relative bite stresses they exert Our central conclusion is that *Halichoeres* wrasses have a wide diversity of tooth arrangements that lend to functional homodonty. However, some species have strikingly functionally heterodont teeth-either a few teeth or

regions of teeth with disparate function. There will always be some level of heterodonty at the tips of the teeth across any dentition, but our metric draws a clear line between functional homodonty and functional heterodonty.

There are dentitions that have distinct regionalization, where many teeth are quite similar to one another, but patches are performing very different tasks (Cohen et al 2020; Mihalitsis and Bellwood 2019). In contrast, there are dentitions where one or a few teeth are radically different from the rest of the dental battery. In the first case, there will be a large number of functionally heterodont teeth, but a low average squared residual, and in the second case there will be a few functionally heterodont teeth, but they will have a very high squared residual. In Halichoeres wrasses two species have extremely functiomlly heterodont teeth, and they arrive at heterodonty by different means. In *H. melanochir*, the teeth are strongly regionaliud with a high proportion of functionally heterodont teeth, whereas in H. dispilus just two large canines in the upper jaw dictate functioml heterodonty leading to high residuals (Figs. 4A

Our method converts a categorical trait, morphological homodonty, into a continuous one, functioml homodonty, creating opportunities for more nuanced analyses and directing phylogenetic and biomechanical hypotheses in new directions Alfaro 2005: (Shimada 2002; Westneat and Kolmann et al. 2019; Hulsey et al. 2020). Adding the perspective of phylogeny bears two different fruits. First, we can identify three apparently independent evolutions of functional heterodonty: H. dispilus, H. melanochir, and H. maculipinna (Fig. 6). Second, our ancestral state reconstruction implies an ancestral *Halichoeres* wrasse had a small number of functionally heterodont teeth, and the proportion of functionally heterodont teeth is variable over evolutionary time. A metric for functional heterodonty also allows us to generate computed derivatives that reveal trends and potentially important information about selective pressures (Linde et al. 2004; Kolmann et al. 2019). The higher proportion of functionally heterodont teeth on upper jaws than lower jaws may be due to the upper jaw being supported by the cranium, while the lower jaw is a cantilever beam (Powlik 1995; Linde et al. 2004; Westneat 2004; Westneat and Alfaro 2005; Grubich et al. 2008; Smits and Evans 2012; Olsen and Westneat 2016). Also, the magnitude of functionally heterodont teeth is larger in the lower jaw than up**per**, perhaps because of mobility in the lower jaw relative to the entire body of the fish (Figs. 4 and

5). How a species arrives at functional heterodonty should point biomechanists in very different directions when asking about the functional consequences of teeth.

We were excited to fmd such disparate dentitions. and three independent derivations of heterodonty, in just 11 species of a genus of wrasse that all occupy similar nearshore, shallow water, coral reef habitats, and have all been assigned the same broad dietary niche (Randall and B(lhlke 1965; Clifton and Motta 1998; Fulton and Bellwood 2002; Jones 2007). Implementing this analysis across a broader phylogenetic and ecological range of wrasses will lead to discovery of further, heretofore cryptic variation in dental function that we expect will inform natural history and diet studies. The Halichoeres radiation may be an intriguing area of the labrid phylogeny to explore in more detail, as the genus is not monophyletic, with 80 species spread across three clades. with other genera such as Macropharyngodon, Thalassoma, and Goris interspersed among them (Westneat and Alfaro 2005). The hogfishes and tuskfishes (Bodianus, Choerodon, and relatives) often have extraordinarily large, recurved canines and regionally specialized teeth, yet their close relatives such as *Pse,idodax* and *Q epric,,s* possess jaws specialized for browsing or planktivory, suggesting an interesting trajectory of tooth evolution. The cheiline wrasses are also diverse in tooth morphology, jaw mechanics and dietary preferences (Westneat 1995) and are the sister-clade to the parrotfishes, offering another area in which to explore the evolution along the functional homdonty-heterodonty continuum.

Even in this small, and not particularly diverse clade of wrasses, there are some examples of dentitions that warrant further examinations. Halichoeres le1u:1m1s is morphologically homodont, but the teeth in the upper and lower jaw occlude with a degree of precision that is not common in fishes (Kolmann et al. 2019). Physical models of teeth, made from highresolution CT scans of actual dentitions, could highlight advantages of this unusual tooth arrangement (Evans and Sanson 2003; Qian et al 2013; Crofts and Summers 2014). There are visually arresting fanged dentitions, such as H. horwlanus, which do not cross the threshold for functional donty, but nevertheless have teeth that suggest some differences in function (Fig. 2A). Careful natural history observations of differences in behavior of species with prominent fangs may reveal how and when these fangs are deployed. Other biomechanical models, such as Mandiblever, take into account tooth angle and its interaction with impe angle across a realistic bite (Westneat 2003). Teeth are, in some

sense, an endpoint in a series of modules which determine function (Evans and Sanson 2003; Lucas 2004; Anderson and Rayfeild 2012; Kolmann et al 2019}- the powerful, subdivided adductor musculature, through tendons and ligaments connecting jaw elements, to the levers and linkages of the jaws, and even the seemingly insignificant dental ligaments securing tooth to jaw combine to ensure that the tip of the tooth transmits sufficient stress to penetrate prey.

Acknowledgm ent s

Special thanks to Dr Kory Evans who CT scanned all specimens represented in this study and uploaded them as free to download in morphosource.org. Special thanks to the facilities provided by the Karl F. Liem imaging center al Friday Harbor Labs, WA, and oVert for open access to CT scans. Thank you to Dr Darrin Hulsey and Dr Gareth Fraser for organizing the associated symposium.

Fundin g

Funding attributed to National Science found ation Division of Biological Infrastructure 1759637 and Division of Environmental Biology 1701665, Friday Harbor Laboratories Research Fellowship Endowment, and the Ragen Friday Harbor Labs Endowed Scholar. A.P.S. was supported by the Seaver Institute. Funding for attendance and participation in the associated symposium was provided by the Society for Integrative and Comparative Biology.

Data availability statement

All CT data used in this study are publicly available and free to download from morphosource.org in the Scan All Fishes project.

Suppl ementary data

Supplementary data available al *ICB* online.

REFERENCES

- Adams DC, Collyer ML. 2018. Multivariate phylo netic comparati methods: evaluations, comparisons, and recommendations. Syst Biol 67:14-31.
- Aiello **BR**, Westneat MW, Hale ME. 2017. Mechanosensation **is evolutionarily tuned to locomotor mechanics. Proc Natl** Acad Sci U S A 114:4459-64.
- Anderson PSL, LaBaroera M. 2008. Functional consequences of tooth design: elkts of blade shape on energetics of cutting. J Exp Biol 211:3619-26.
- Anderson PSL, LaCosse J, Pankow M. 2016. Point of impact: **the effect of** *size* **and** *speed* **on puncture mechanics.** Interlace Focus 6'20150111.

Anderson PSI., Rayfield Ej. 2012. Virtual experiments, physical validation: dental morphology at the in tersection of experiment and theory. J Royal Soc Interface 10:1846-55.

- Barel C. 1982. Towards a Constructional Morphologyof Cichlid Fishes (Teleostei, Perciformes). Neth J Zool 33:357-424.
- Bece1Ta MG, Pol D, ROSsner GE, Rauhut OWM. 2018. Heterodonty and double occlusion in *Manidens* condorensis: a unique adaptation in an f.ady Jurassic ornith.ischian improving masticatory efficiency. Sci Nat 105:41.
- Bergman JN, Lajeunesse MJ, Motta Pj. 2017. Teeth penetration fon:e of the tirshtaGaleorerdo cuvier and sandbar shark *Carcharhinus plumbeu*, shark tooth penetration force. J Fish Biol 91:460-n.
- Berkovitt BK, Shellis RP. 2016. The Teeth of Non-Mammalian Vertebrates. *1st* ed. London: Academic Press.
- Berkovitt BKB. 1975. Observations on tooth replacement in piranhas (Characidae). Arch O ral Biol 20:53-7.
- Berkovitt BKB. 1980. The effect of age on tooth replacement patterns in piranhas (Pisces: Characidae). An:h Oral Biol 25:833-5.
- Bertrand NG. 2014. Distribution and evolution of heterodonry in the ray-fanned fishes (Actinopterygii). (Unpublished Master's thesis(. T exas: Texas A&M University.
- Clark AJ, Summem AP. 2012. Ontogenetic scaling of the morpholo gy and biomechanics of the feeding apparatm in the Pacific hag6sh *Epkltretus tt ouoi*. J Fish Biol 80:86-99
- Clifton KB, Motta PJ. 1998. Feeding morp hology, diet, and ecomorpholo gical relationships among 6ve Caribbean Labrids (Teleostei, Labrid ae). Copeia 1998:953-U.
- Cohen KE, Weller HI, Summem AP. 2020. Not }"ur father's homodont}'--stress, tooth shape, and the functional homodont. J Anat 237:837.
- Conway KW, Bertrand NG, Browning 2, Lancon T W, Clubb FJ. 2015. Heterodon ry in the new world: an SEM in,,.stigation of oral Jaw dentition in the clingfishes of the subfamily gobiesocinae (Teleostei: Gobiesocidae). Copeia 103:973-98.
- Cope ED. 1888. On the triruben:ular molar in human dentition. J Morphol 2:7-23.
- Crom SB, Summem AP. 2014. How to best smash a snail: the effect of tooth shape on crmhing load. J Royal Soc Interlace 11:20131053.
- Cullen JA, Marshall CD. 2019. Do sharks exhibit heterodonry by tooth position and over onto nyl A comparison using elliptic Fourier analysis. J Morphol 280:687-700.
- D'Amore DC. 2015. Ul11St rating ontogenetic change in the dentition of the Nile monitor lizard, *Varanus niloticus*: a *case srudy* in the application of geometric morphometric methods lor the quantification of shape-.ize heterodonry. J Anal 226:403-19.
- Davit-Beal T , Chisaka H, Delpd o S, Sire JY. 2007. Amphibian **teeth: current knowledge, unanswered questiom, and some** directions lor future resean:h. Biol Rev 82:49-81.
- Dean MN, Ramsay JB, Schaefer)T. 200& Tooth reorientation affects too th function during prey processing and tooth **ontogeny in the lesser electric ray**, *Narcine bratiliensis*. Zoology 111:123-34.

- Estes R, Williams EE. 1984. Ontogenetic variation in the molariform teeth of li1.arm. J Verteb r Paleontol 4:96-107. Evans AR, Sanson GD. 2003. The tooth of perfection: lunctional and spatial constraints on mammalian tooth shape. Biol J Linn Soc 78:173-91.
- Evans AR, Sanson GD. 2005. Correspondence ben.,een tooth shape and dietary biomechanical properties in insectivorous microchiropterans. Evol Ecol Res 7:453-78.
- Evans AR, Sanson GD. 1998. The effect of tooth shape on the breakdown of insects. J Zool 246:391-400.
- Evans KM, Williams KL, Westneat MW. 2019. Do coral reefs promote morphological diveisifocation? Exploration of habitat *effects* on Labrid pharyn 1 jaw evolution in the era of big data. Integr Comp Biol 59:696-704.
- Frazzetta TH. 1988. The mechanics of cutting and the form of shark teeth *(Chondrichthyes, Elasmobranchi0.* Zoomorphology 108:93-107.
- Freeman PW, Weins WN. 1997. Puncturing ability of bat canine teeth: the tip. Lincoln: University of Nebraska.

 Mammalogy Papers: Uni,, isity of Nebraska State Museum. 9.
- Fulton CJ, Bellwood DR. 2002. Patterns of foraging in labrid fishes. Marine Ecol Prog Ser 226:135-42.
- Galloway KA, Andeison PSI., Wi\:a CD, Summers AP. 2016. Perlormance of teeth of lingcod, *Ophiodon elongatus*, o,,,, ontogeny. J Exp Zool Part A Ecol Genet Physiol 325:99-16.
- Garamszegi L. 2014. Modern phylogenetic comparative method, and their application in evolutionary biology: concepts and practice. Berlin, Gennany: Springer.
- Gregory WK 1933. Fish skuJls; a study of the evolution of natural mechanisms. Malabar, FL: Krieger Publishing Company.
- Grubich JR, Rice AN, Westneat MW. 2008. Functional morphology of bite mechanics in the great barracuda (*Sphyraena barraruda*). Zoology 111:16-29.
- Harmon LJ. 2018. Ph} fo netic comparative methods. 1st ed. Vol. I.
- Hulsey CD, Cohen KE, Johanson 2, Karagic N, Me}" A, Miller Cf, Sadier A, Summers AP, Fraser GJ. 2020. Grand challenges in comparative tooth biology. Integr Comp Biol (docl0.1093/icb/icaa038).
- Jamb ura PL, 11lrtscher J, Kindlimann R, Metscher B, Pfaff C, Stumpf S, Weber GW, Kriwet J. 2QW. Evolutionary trajectories of tooth histology patterns in modem sharks (Chondrichthyes, E/asmobranchii). J Anat 23a753-71.
- Jones KMM. 2007. Distribution of behavious and species interactions within home range contours in five Caribbean reef fish species (Family Lab ridae). Environ Biol Fish 80:35-49.
- Jones MEH. 2009. Dentary tooth shape in Sphenodon and its fossil relatives (*Diapsida: Lepidosauria: Rhynchocephaila*). Comparative dental morpholo gy. Vol. 13. Basel, Switzerland: Kar r Publishers. p. 9-15.
- Keene HJ. 1991. On heterochrony in heterodonty: a review of some problems in tooth morphogenesis and evolution. Am J Phys Anthropo 1 34:251-82.
- Kolmann MA, Cohen KE, Bemis KE, Summeis AP, Irish FJ, Hernandez LP. 2019. Tooth and consequence:sheterodonty and dental replacement in piranhas and pacm (*Serrasa/midae*). Evol Dev 21:247-62.

- Linde M, Palmer M, Gomez-Zurita J. 200< Differential correlates of diet and phylogeny on the shape of the premaxilla and anterior tooth in sparid fishes (*Perciformes: Sparidae*). J Evol Biol 17:941-52.
- Locas PW. 2004. Dental functional morphology: how teeth -.wk. Cambridge: Camb ridge University Press.
- 1.ocas PW, Luke DA. 1984. Chewing it over: basic principles of food breakdown. In: Chivers DJ, Wood BA, Bilsborough A, editors. Food acquisition and processing in primates. Boston (MA): Springer . p. 283-301.
- Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K 2019. Cluster: cluster analysis basics and extensions. R Package Veision 2.1.0.
- Marcus MA, Amini S, Stifler CA, Sun CY, Tamura N, Bechtel HA, Parkinson DY, Barnard HS, Zhang XXX, Chua JQI, et al. 2017. Parrotfosh teeth: stiff biominerals whose microstructure makes them tough and abrasion-esistant to bite stony corals. ACS Nano 11:11856-65.
- Massare JA. 1987. Tooth morphology and prey preference of Mesozoic marine reptiles. J Vertebr Paleontol 7:121-37.
- Mihalitsis M, Bellwood D. 2019. Functional implications of dentition-based morphotypes in pisci, 'Orous 6sh es. R Soc Open Sci 6:190040.
- Olsen AM, Westneat MW. 2016. Linkage mechanisms in the vertebrate skull: Structure and lunction of three-dimensional, parallel transmission systems. J Morphol 2n:1570-83.
- Paradis E, Claude J, Strimmer K. 2004. APF.: Analyses of **Ph}fogenetics and Evolution in R langual?** . Bioinformatics 20:289-90.
- Powlik J) . 1995. On the ometry and mechanics of tooth position in the white shark, *Carcharodon carcharias*. J Morphol 226:2n-88.
- Qian Y, Zhou X, Yang J. 2013. Correlation b en...en cuspal inclination and tooth cracked syndrome: a three-dimensional reconstruction measurement and finite *ele*ment analysis. Dent Trau matol 29:226-33.
- Randall JE. 1967. Food habits of reef 6shes of the West Indies. Stud Trap Oceanogr 5:665-847.
- Randall JE, BOhlke JE. 1965. Review of the Atlantic Lab rid fishes of the genm Halichoeres. Proc Acad Nat Sci Philadelphia 117:235-59.
- Re,"11 l.j . 2012. Ph}tools: an R package for ph}fogenetic comparative biology (and other things): ph}tools: r packa . Method Ecol Evol 3:217-23.
- Ruber I., Verheyen E, Meyer A. 1999. Replicated e\'Olution of trophic speciali7.ations in an endemic cichlid fosh linea from Lake Tanganyika. Proc Natl Acad Sci U S A 96:10230-35.
- Sansom RS, Wills MA, Williams T. 2016. Dental dataperlorm relati,,..ly poorly in reconstructing mammal ph}logenies: morpholo gical partitions evaluated with molecular benchmarks. Syst Biol 66:813-822.
- Schofield RMS, Choi S, Coon JJ, Goggans MS, Kreisman TF, Silver DM, Nesson MH. 2016. Is fracture a bigger problem for smaller animals? Force and fracture scaling for a simple model of cutting, puncture and crushing. Inteiface Focm 6:20160002.
- Schwartt JH. 2013. Emerpce ofshape. Biol Theory 8:209-10. Shergold OA, Fleck NA.2005. Experimental investigation into the deep penetration of soft solid, by sharp and blunt

punches, with application to the piercing of skin. J Biomech Eng 127:83&-48.

- Shimada **K**. 2002. Dental homologies in lamnilonn sharks (*Chondrichthyes: E/asmobranchii*). J Morphol 251:38-n.
- Shimizu D, Macho GA, Speara IR. 2005. Effect of prismorientation and loading direction on contact stresses in prismatic enamel of primates: implications i>r interpreting wear patterns. Am J Phys Anthropol 126:427-34.
- Simpson GG. 19 Studies of the earliest mammalian dentitions. Dent Cosmos 78:791-800.
- Sm.its PD, Evans AR. 2012. Functional constraints on tooth morpho logy in carnivorous mammals. BMC Em 1 Biol 12:146.
- Ungar PS. 2014. Teeth: a ""Y short introduction. Oxlonl: Oxfonl University Press.

- Westneat MW. 1995. Feeding, function, **and** ph}fogeny. analysis of his tor ical biomechanics in labrid fishes using comparati,, methods. Syst Biol 44:361-383.
- Westneat MW. 2003. A biom echanical model for analysis of muscle force p0\\<er output and lower jaw motion in fishes.

 J Theor Biol 223:269--281.
- Westneat MW. 2004. Evolution of 1.,,.,. and linkages in the feeding mechanisms of fishes. Integr Compar Biol 44:378-89. Westneat MW, Allaro ME. 2005. Ph}l ogenetic relation.ships and evolutionary history of the reef fish family Labridae. Mol Ph}fogenet Evol 36:370-90.
- Whitenack LB, Gott&ied MD. 2010. A morp hometric approach for addressing tooth-based *species* delimitation in fossil make sharks, /turns (E/asmobranchii: Lamniofrmes). J Verteb r Paleontol 30:17-25.