THIS ARTICLE OUTLINES HOW
modern first-principle calculations can
adequately address the need for ever-

higher levels of numerical accuracy and
high performance in large-scale electron-

. u u
ic structure simulations as well as pio-
neer the fundamental study of quantum -
many-body effects in a large number of

emerging nanomaterials.

-
ADVANCES IN FIRST-PRINCIPLE
CALCULATIONS

The technology for electronic devices

has been on a rapidly rising trajectory - -
since the 1960s. The main factor in
this development has been the ability

to fabricate ever-smaller silicon CMOS
devices (“Moore’s law”), with today’s

- -
device sizes in the nanometer range.
The ability to control electronic materi-
als and understand their properties has

been a driving force for technologi-
cal breakthroughs. The emergence of
new nanoscale materials and devic-

il on s s, st A review of the NESSIE project.

JAMES KESTYN AND ERIC POLIZZI

Digital Object Identifier 10.1109/MNANO.2020.3024387
Date of current version: 13 October 2020

52 | IEEE NANOTECHNOLOGY MAGAZINE | DECEMBER 2020 1942-7808/20©20201EEE
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 07,2020 at 22:05:22 UTC from IEEE Xplore. Restrictions apply.



fundamental and comprehensive under-
standing of the nanoscale physics of systems.

First-principle calculations offer a
unique approach to study materials that
start directly from the mathematical equa-
tions describing the physical laws and
do not require any empirical parameters
aside from fundamental constants. They
are known as electronic structure calculn-
tions when applied to the configuration
of electrons in a molecule or solid, which
determine most of the physical properties
of matter through chemical bonding.

The fundamental laws govern-
ing physics have been known since the
beginning of the 20th century with the
development of quantum mechanics. The
difficulty, then, does not lie in formulat-
ing the problem but actually solving it.
Atom-by-atom, large-scale, first-principle
calculations have become critical for sup-
plementing the experimental investiga-
tions and obtaining detailed electronic
structure properties and reliable charac-
terizations of emerging nanomaterials.
These simulations are essential to assist
the everyday work of numerous engineers
and scientists and can universally impact
a wide range of disciplines (engineer-
ing, physics, chemistry, and biology) that
span the technological fields of comput-
ing, sensing, and energy.

In spite of the enormous prog-
ress that has been made in the last
few decades, the room for improve-
ment in first-principle calculations is
still significant. Traditional numerical
and modeling techniques are, indeed,
largely inadequate to cope with the new
generation of challenges encountered
in large-scale nanoengineering appli-
cations, including systems with many
thousands of atoms. Atomistic simula-
tions must adapt to leverage the cur-
rent needs in scalability by capitalizing
on the massively parallel capabilities of
modern high-performance computing
(HPC) platforms.

Additionally, well-established public
or commercial software packages were
originally intended to investigate the
basic electronic structure properties of
materials using ground-state calculations.
They possess only limited capabilities
for performing excited-state calculations
that can efficiently model and predict
quantum many-body effects in emerg-
ing nanomaterials. The ability to capture
these fundamental nanophysics effects is
increasingly important for exploring and
prototyping new, revolutionary, function-
al materials in nanotechnology.

There is an urgent need in nano-
engineering for new, quantum-based,

transformative solutions that will play a
key role in future electronics, including
plasmonics, phononics, and excitonics.
Future breakthroughs could enable dis-
ruptive technologies to compete directly
with CMOS or be integrated into exist-
ing systems to increase throughput and
decrease power dissipation. To this end,
new 1D and 2D nanostructures [e.g.,
graphene, carbon nanotubes (CNTs),
molybdenum disulfide (MoS:), and lay-
ered transition metal dichalcogenides]
have been the center of large research
efforts, with first-principle atomistic
simulations playing a significant role.
Plasmonic devices, which rely on collec-
tive many-body effects, have also shown
promise as high-frequency analog sensors
to be used in biomedical applications and
telecommunications.

This article presents the entire com-
putational process needed to bring fun-
damental first-principle calculations up
to the level where they can significantly
impact innovations in nanoengineering.
As depicted in Figure 1, modern first-
principle calculations must be capable of
1) achieving both accuracy and scalabili-
ty, 2) allowing for the study of emerging
many-body functionality, and 3) fully
taking advantage of recent advances in
algorithm development for HPC.

Accuracy

Requirements in

Modern First-Principle

Absorption Spectrum

Many-Body Functionality

Response

Calculations

FIGURE 1 The requirements in modern first-principle calculations at a glance.
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In spite of the enormous progress that

has been made in the last few decades,

the room for improvement in first-principle
calculations is still significant.

FIRST-PRINCIPLE MODELING:

FROM PHYSICS TO ALGORITHMS

The field of first-principle modeling can
be broadly separated into three categories:
¢ Dhysical models reduce the com-
plexity of the full many-body solu-
tion while keeping much of the
important physics. The choice of a
physical model is often motivated
by the objectives of the simulations.
¢ Discretization and mathematical
models can transform physical
equations into the language of
linear algebra.
¢ Computing and numerical algo-
rithms are used to solve the
resulting problems.
To improve on current software imple-
mentation by fully capitalizing on mod-
ern HPC computing platforms, it is
essential to revisit all of the various stages
of the electronic structure modeling pro-
cess, which are briefly summarized in the
following sections.

PHYSICAL MODELING

A direct numerical treatment of a full
many-body Schrédinger equation leads
to a deceptively simple linear eigenval-
ue problem, which is well known to be
intractable because of its exponentially
growing dimension with the number
of particles. This limitation has histori-
cally motivated the need for lower levels
of sophistication in the description of
the electronic structure using a single-
electron picture approximation, where
the dimension of the Hamiltonian oper-
ator ends up scaling linearly with the
number of electrons. First-principle elec-
tronic structure calculations are usually
performed within the single-electron pic-
ture [1], [2] using either quantum chem-
istry (i.e., post-Hartree—Fock) methods
or, as an alternative to wave function-
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based methods, density functional theory
(DFT) associated with the Kohn-Sham
equations [3], [4].

Although DFT does not allow for
systematic accuracy as traditional quan-
tum chemistry techniques would, it is
the method of choice when dealing with
moderate-sized systems containing more
than a handful of atoms. DFT has been
widely used in computational material
science for decades, since it provides (in
principle) an exact method for calculat-
ing the ground-state density and energy
of a system of interacting electrons using
a nonlinear, single-electron, Schroding-
er-like equation associated with ex-
change-correlation (XC) functionals.

In practice, the reliability of DFT
depends on the numerical approximations
used for the XC terms that range from
the simplest local density approxima-
tion (LDA) or the generalized gradient
approximation (GGA) to more advanced
(hybrid) schemes, which are still the
subject of active research efforts [5]-[8].
Solutions of the DFT/Kohn—Sham prob-
lem are routinely used in the calculations
of many ground-state properties, includ-
ing total energy and ionization poten-
tial, crystal-atomic structure, ionic forces,
vibrational frequencies, and phonon band
structure via perturbation theory.

Although DFT cannot fundamentally
provide information on excited states and
many-body properties, the Kohn-Sham
eigenvectors are often needed by more
advanced techniques: e.g., either Green’s
function-based [9] (e.g., GW, Bethe—Sal-
peter) or time-dependent, density-based
[i.e., time-dependent density functional
theory (TDDEFT) [10], [11]] approaches.
The pros and cons of these approaches
are discussed in [12].

TDDFT, proposed by Runge and
Gross [13], continues to gain popularity

as one of the most numerically afford-
able many-body techniques capable of
providing fairly accurate results. TDDFT
has been successfully applied to calculate
many physical observables of the time-
dependent Hamiltonian, such as excita-
tion energies and complex permittivities
as well as nonlinear phenomena. It is
often used to obtain the absorption spec-
tra of complex molecular systems. While
the design of advanced time-dependent
XC functionals is still a challenging task
[14], adiabatic LDA (ALDA) for TDDFT
has been found to perform extremely
well on a wide variety of systems by cap-
turing many nanoscopic effects (such as
plasmonic effects) that, in turn, can be
quantitatively compared with the experi-
mental data.

TDDFT calculations can be per-
formed in the frequency or real-time
domains. The real-time TDDFT tech-
nique is a relatively recent approach intro-
duced by Yabana and Bertsch in [15] and
[16], and it has become an important
focus of TDDEFT research activities. It has
notably been integrated into the software
packages Octopus [17], [18], NWChem
[19], and GPAW [20] for the study of
molecular systems. In essence, spec-
troscopic information can be obtained
using the standard formalism of dipole
time response from weak short-polarized
impulses in any given direction of the
system; this requires all of the occupied
single-electron wave functions to be prop-
agated (nonlinearly) in time.

The imaginary part of the dipole’s
Fourier transform provides the dipole
strength function. The absorption spec-
trum is then obtained along with the
expected “true many-body” excited ener-
gy levels. In contrast to the numerical
models derived from the TDDFT linear
response theory in the frequency domain
[10], [21]-[23], the real-time TDDFT
approach is better suited for achieving
linear parallel scalability, and it can also
address any form of nonlinear responses,
including ion dynamics [24].

MATHEMATICAL MODELING AND
DISCRETIZATION

Although first-principle calculations
have provided a practical (i.e., numerical
tractable) path for solving the electronic
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structure problem, they have also intro-
duced new numerical challenges. Within
the single-electron picture, the resulting
cigenvalue problem becomes fully non-
linear since the Hamiltonian operator
depends on all of the occupied eigen-
functions [i.e., H({w})w = Ey].

In practice, this nonlinear eigenvec-
tor problem is commonly addressed
using direct minimization schemes or
self-consistent field (SCF) methods
wherein a series of linear eigenvalue
problems (i.e., Hy = Ey) needs to be
solved iteratively until convergence.
Computing the electron density at a
given iteration step becomes one of the
most time-consuming and challenging
parts of the DFT electronic structure
calculations. Successfully reaching con-
vergence by performing SCF iterations
is of paramount importance to first-
principle electronic structure calculation
software. Real-time TDDFT also comes
with its own set of mathematical and
numerical challenges for performing the
time propagation; these are discussed
further in the “First-Principle Calcula-
tions Using NESSIE” section.

To perform the numerical calcula-
tions, the mathematical models need first
to be discretized by expanding the wave
functions over a set of basis functions.
One can identify three main discretiza-
tion techniques that have been widely
used over the past four decades by both
the quantum chemistry and solid-state
physics communities [1]:

¢ the linear combination of atomic

orbitals (LCAO) (along with the
dominant use of Gaussian local
basis sets)

¢ the plane wave expansion scheme

¢ real-space mesh techniques [25]—

[37] (also loosely called numerical
grids) based on the finite differ-
ence, finite element (FEM), spec-
tral element, or wavelets methods.

Each of these approaches has pros
and cons.

¢ Plane waves have traditionally

been used within the solid-state
physics community because their
natural periodic nature can be
easily applied to crystal structures.
However, this can be cumber-
some when dealing with finite

To perform the numerical calculations,

the mathematical models need first to be
discretized by expanding the wave functions
over a set of basis functions.

systems where the computation-
al domain must be made much
larger than the molecular size to
ensure that interactions due to
periodicity are negligible. Addi-
tionally, they often make use of
pseudopotentials to mimic the
effects of core electrons, which do
not directly participate in chemi-
cal bonding and would otherwise
necessitate a very large number
of plane waves due to their high-
frequency variations.

¢ LCAO benefits from a large col-
lection of local basis sets that
has been improved and refined
throughout the years by the
quantum chemistry community
to obtain a high level of accuracy
in simulations. However, LCAO
bases may suffer from numerical
truncation errors of finite expan-
sions, and the solutions cannot
be universally and systematically
improved toward convergence.

¢ Real-space mesh techniques pro-
vide a natural way of quantifying
atomic information by employ-
ing universal local mathematical
approximations. They can eas-
ily handle the treatment of vari-
ous boundary conditions, such as
Dirichlet (for the confined direc-
tions), periodic, or absorbing (for
transport simulations). Similar to
plane wave schemes, however, the
high level of refinement needed
to capture the core electrons may
be problematic.

In all cases, the level of approxima-
tion in the discretization stage is bound-
ed by the capabilities of the numerical
algorithms for solving the resulting sys-
tem matrices. In modern nanoelectronic
applications, one aims at fully utilizing

the power of modern HPC architectures
to tackle large-scale, finite systems by
exploiting parallelism at multiple levels.
In this context, real-space mesh tech-
niques offer the most significant advan-
tages. They produce very sparse matrices
that can take advantage of recent advanc-
es in linear scaling O(N) methods and
domain-decomposition (DD) techniques.

COMPUTING

Much of the progress in this field is
directly tied to advancements in algorith-
mic research allowing larger and more
complex systems to be simulated. Within
the SCE-DFT procedure, computing the
electron density by solving the linear and
symmetric eigenvalue problem at each
iteration becomes the major computa-
tional challenge. The characterization of
complex systems and the nanostructures
of current technological interests requires
the repeated computations of many tens
of thousands of eigenvectors for eigen-
value systems that can have sizes in the
tens of millions.

It is important to mention that Green’s
function-based formalism can alternatively
be used to directly compute the electron
density (using efficient evaluations of the
diagonal elements of the Green’s function
along a complex contour, e.g., [38]-[40]).
However, this method gives rise to dif-
ficulties in algorithmic complexity [i.e.,
O(N2) for 3D systems], parallel scalability,
and accuracy. In that regard, it is diffi-
cult to bypass the wave function formal-
ism, and progress in large-scale electronic
structure calculations can then be tied
together with advances in numerical algo-
rithms for addressing the eigenvalue prob-
lem in particular.

The traditional methods for solv-
ing the eigenvalue problem (including
the Arnoldi or Lanczos methods as well
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as other Davidson—Jacobi techniques
[41], [42]) and related packages [43] are
largely unable to cope with these chal-
lenges. In particular, they suffer from the
orthogonalization of a very large basis
when many eigenpairs are computed. In
this case, a divide-and-conquer approach
that can compute wanted eigenpairs by
parts becomes mandatory, since “win-
dows” or “slices” of the spectrum can
be computed independently of one
another, and orthogonalization between
eigenvectors in different slices is no lon-
ger necessary.

These issues have motivated the
development of a new family of eigen-
solvers based on contour integration
techniques [44]-[47], such as the
FEAST ecigensolver [48], [49]. FEAST
is an optimal accelerated-subspace, itera-
tive technique for computing interior
eigenpairs, making use of a rational fil-
ter to approximate the spectral projector
[50]. FEAST can be applied for solv-
ing both the standard and generalized
forms of Hermitian or non-Hermitian
problems [72]. Once a given search
interval is selected, FEAST’s main com-
putational task consists of solving a set
of independent linear systems along a
complex contour.

(a)

Not only does the FEAST algorithm
feature some remarkable and robust
convergence properties [50], [51], it can
exploit natural parallelism at three differ-
ent levels (L1, L2, or L3):

@& LI Search intervals can be treated
separately (no overlap).
¢ L2: Linear systems can be solved
independently across the quadra-
ture nodes of the complex contour.
¢ L3: Each complex linear system
with multiple right-hand sides can
be solved in parallel.
Parallel resources can be placed at all
three levels simultaneously to achieve
scalability and optimal use of the com-
puting platform.

FIRST-PRINCIPLE CALCULATIONS
USING NESSIE

A first-principle simulation software
must be capable of addressing all of
the modern challenges summarized in Fig-
ure 1. One of the major goals in modern
first-principle calculations is to develop
numerical algorithms and simulation soft-
ware for electronic structures that can
scale the system size to thousands of atoms
without resorting to additional approxi-
mations beyond the DFT and TDDFT
physical models. The target computing

FIGURE 2 Using a muffin tin DD method, the whole simulation domain is separated into mul-
tiple atom-centered regions (i.e., muffins) and one large interstitial region. (a) A 2D section of
local FEM discretization using a coarse interstitial mesh (represented only partially here) con-
necting all of the atoms of a benzene molecule. (b) A finer mesh for the atomic (muffin) regions
suitable for capturing the highly localized core states around the nuclei.
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architecture is usually composed of thou-
sands of processor cores and contains mul-
tiple hierarchical levels of parallelism.

The NESSIE project [52] is an elec-
tronic structure code that uses a real-space
FEM discretization and DD to perform
all-electron ground-state DFT and real-
time excited-state TDDFT calculations.
NESSIE gets its name from an FEM leg-
acy code for quantum transport [53] that
has evolved over time to include first-prin-
ciple simulations. The code is written to
take advantage of multilevel parallelisms
to target systems containing many distrib-
uted-memory compute nodes. Custom
numerical algorithms have been devel-
oped for the eigenvalue problems and lin-
ear systems representing the major linear
algebra operations within the software.

NESSIE’s capabilities can be sepa-
rated into three main categories:

¢ accurate large-scale, full-core poten-
tial DFT calculations using real-
space FEM discretization and DD
¢ TDDEFT real-time propagation
for efficient spectroscopic calcula-
tions, allowing the study of many-
body effects
¢ massively parallel implementation
on modern high-end computing
platforms using state-of-the-art
parallel algorithms/solvers.
The next sections present a step-by-
step description of NESSIE’s modeling
framework applied to the benzene mol-
ecule as an example.

AN ALL-ELECTRON HPG MUFFIN

TIN FRAMEWORK

In NESSIE, the equations are dis-
cretized using FEM with quadratic (P2)
or cubic (P3) order, along with a muf-
fin tin DD technique. The latter was
proposed as early as the 1930s [54] to
specifically address a multicenter atomic
system. The whole simulation domain
is separated into multiple atom-centered
regions (i.e., muffins) and one large
interstitial region. Without any loss of
generality, Figure 2 illustrates the essence
of the muffin tin DD using FEM and
applied to the benzene molecule.

The 3D finite-element muffin tin
mesh can be built in two steps: 1) a 3D
atom-centered mesh, which is highly
refined around the nucleus to capture
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the core states; and 2) a much coarser
3D interstitial mesh that connects all of
the muffins (generated in NESSIE using
Tetgen software [55], [56]). For the
atom-centered mesh, which is common
to all atoms of the same atomic number,
it is convenient to use successive layers of
polyhedral, similar to the ones proposed
in [37]. This discretization provides both
tetrahedra of good quality and an arbi-
trary level of refinement i.e., the distance
between layers can be arbitrarily refined
while approaching the nucleus (this is
known as an h-refinement for FEM).

The muffin tin decomposition can
bring flexibility in the discretization
step (different basis sets can also be used
independently to describe the different
regions), can reduce the main compu-
tational efforts within the interstitial
region alone, and should also guaranteed
maximum linear parallel scalability per-
formances. It is important to note that,
independent of the type of atoms, the
outer layer of the muffin is consistent-
ly providing the same (relatively small)
number of connectivity nodes 7 with the
interstitial mesh at the muffin edges (i.e.,
n = 98, or 218 nodes, respectively, using
the quadratic P2 or cubic P3 FEM). Con-
sequently, the size of the system matrix in
the interstitial region stays independent of
the size of the atom-centered regions, and
the approach can then ideally deal with
the full potential (all electrons).

Once the “Schrodinger” eigenvalue
problem (i.e., Hy = Ey ) is reformulated
using DD strategies, the resulting (and
still exact) problem now takes a nonlin-
ear form in the interstitial region [i.e.,
Hi(E)y:1= Eyr, since the boundary
conditions at the interfaces with the muf-
fins are energy dependent]. As original-
ly pointed out by Slater in 1937 while
introducing the muffin tin augmented
plane wave (APW) method, this nonlin-
ear eigenvalue problem gives rise to an
energy-dependent secular equation that
cannot be handled by traditional eigen-
value algorithms.

Although solving such a nonlinear
problem explicitly is not impossible [57],
[58], it remains practically challeng-
ing, and it is still the subject of active
research efforts [59], [60]. Therefore, the
mainstream approaches to all-electron

(i.e., full-potential) electronic struc-
ture calculations in the solid-state
physics community have mostly relied
on approximations, such as direct lin-
earization techniques, which have been
improved throughout the years [e.g., lin-
ear augmented plane wave (LAPW), lin-
ear muffin-tin orbitals (LMTO), and so
on] [61]-[65]. Alternatively, linear eigen-
value problems can be obtained directly
from pseudopotential approximation
techniques [66]-[69] that eliminate the
core states by introducing smooth but
nonlocal potentials in muftin-like, atom-
centered regions.

In NESSIE, an exact strategy has been
introduced for performing all-electron
electronic structure calculations within
a parallel computing environment [70],
[71]. The approach relies on the shift-
and-invert capability of eigenvalue algo-
rithms, such as FEAST, which leads to
formulating well-defined linear systems.
DD methods have been well studied and
are a natural framework for addressing
large, sparse linear systems generated from
real-space meshes. They are often associ-
ated with the use of distributed-memory
numerical algorithms to address the data
distribution using the message passing
interface (MPI) paradigm. Consequently,
the solution of FEAST’s linear systems
can be fully parallelized using MPT since
the muffin tin decomposition naturally
allows each muffin to be factorized and
solved independently.

When the muffin tin decomposition
is applied to a given linear system, the
resulting linear system in the interstitial
domain (as well as the Schur complement)
remains linear. The details of the muffin-
DD strategy implementation have been
provided in [70]. In essence, the muffin-
DD linear solver operates in three stages:

1) The atoms are distributed through-
out the MPI processors and factor-
ized at a given energy pivot (i.c., the
shift value provided by FEAST);
the boundary conditions (as well
as self-energy) are then derived at
the interfaces of the muffins.

2) The resulting interstitial linear
system (Schur complement) is
solved in parallel.

3) Knowing the exact solution at
the muffin interfaces, the solu-

tion within each muffin is re-

trieved in parallel.
In comparison with the linearization
techniques discussed previously, the set
of “pivot energies” used to evaluate the
interstitial Hamiltonian system is now
explicitly provided by the FEAST algo-
rithm (i.e., they correspond to quadra-
ture nodes in the complex plane), and it
guarantees global convergence toward
the correct solutions (i.e., no approxima-
tion is needed). Since the complexity of
the interstitial system scales linearly with
the number of atoms while including
nonlocality only at the interfaces with
the muffins, one can also demonstrate
that this all-electron framework is (para-
doxically) capable of better scalability
performances than pseudopotential
approaches on parallel architectures.

The FEAST solver has been recent-
ly significant upgraded to support the
MPI-MPI-MPI distributed parallel
programming model in version 4.0 [36]
(where the last “MPI” refers to the lin-
ear system solves at L3). Furthermore,
NESSIE can take advantage of the first
two MPT levels of parallelism offered by
FEAST assuming that the eigenvalue
spectrum is distributed among the com-
pute nodes. At L2, FEAST can naturally
distribute all of the linear systems associ-
ated with a given search interval (typically
fewer than 10). At L1, FEAST enables
“spectrum slicing,” where all of the inter-
vals of interest are solved in parallel.

The use of spectrum slicing is essen-
tial to address a major bottleneck in
large-scale DFT calculations concerning
the computation and storage of the DFT
wave functions. The storage require-
ment, in particular, keeps increasing lin-
early with the number of electrons in the
nanostructures. Even with a simplified
physical model, such as DFT, it becomes
particularly difficult to scale the elec-
tronic structure problem for systems
containing more than a few hundred
electrons without the ability to perform
spectrum slicing. This technique is illus-
trated for benzene in Figure 3, using
three elliptical contours for FEAST, one
that computes the core states and two
others that compute half of the valence
states. In larger systems, each contour
often contains hundreds of eigenvalues.
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DFT GROUND-STATE CALCULATIONS
AND SCALABILITY
The DFT/Kohn-Sham problem can be
expressed as

h

2
—ﬁv% vis[n](r)|vi= Eiyi,

N,
with z(r) =2 |wi(r)|?, (1)

i-1
where the Kohn-Sham potential, vxs[7] =
v [n]+ vxc[#] + Vex, is composed of
the Hartree potential vy (the solution
of the Poisson equation), the XC poten-
tial, and other external potentials e
including the ionic core potential. The
N. lowest occupied electronic states
{wi}(i=1,...n,) are needed to compute the
electron density (the factor 2 stands for
the electron spin).

Formally, the system (1) forms a
nonlinear eigenvector problem that
is commonly addressed using an SCF
method wherein a series of linear
eigenvalue problems needs to be solved
iteratively until convergence. The naive
approach, which consists of updat-
ing the input electron density at each
SCF iteration directly from the output
electron density, results in large oscil-
lations between SCF iterations. This
approach is very unlikely to converge,
as the initial guess for the density is
usually far from the ground-state solu-
tion. Instead, traditional SCF methods

Core States

employ successive approximation iter-
ates of fixed-point mapping to generate
the new input electron (as well as “mix-
ing” techniques).

DFT CONVERGENCE

Using a mixing technique, two different
electron densities are considered to con-
struct the input density at the (k£ + 1)th
SCF iteration: the input density pf, used
to construct the Kohn-Sham Hamiltoni-
an and the output density p. computed
from the wave functions. With simple
mixing, the input electron density for the
next iteration can be computed as

k1 _
mn -

(1=B)pha+ Boow,  (2)
where the parameter B is usually chosen
as less than one-half. This, however, will
converge very slowly. To increase the con-
vergence rate, more sophisticated methods
have been developed for solving this fixed-
point problem.

Newton methods cannot be used in
electronic structures since it is impracti-
cal to construct the Jacobian matrix.
Other quasi-Newton methods were
developed in the 1960s, notably by
Anderson [73] and Broyden [74], that
do not require the Jacobian or Hessian.
These techniques were later refined in
the 1980s in the context of SCF itera-
tion by Pulay [75], [76] and have since

been expanded upon [77]-[80]. They
are also related to Krylov and gener-
alized minimal residual methods
[81]-[83]. For electronic structure cal-
culations, these iterative techniques are
usually referred to as direct inversion of
the iterative subspace methods. The gen-
eral idea is to build the input electron
density as a linear combination of past
densities. One can then construct the
input mixing density,

~ b+ 1
Pin

3)

= copih+ c1ph+ - + cuph,
and the output mixing density,
Fs(kﬁ\Ttl = fopg\n + flp(lml + -+ Clngut, (4)

from the previous input and output den-
sities. The input for the next iteration is
chosen as a linear combination:

k+1
Pin =

=(1-p)pkt +ppbit,  (5)
where B is, again, referred to as the mix-
ing parameter. This approach can be
truncated to keep the density subspace
size small. The inclusion of more densi-
ties in the mixing subspace can result in
better convergence, but it has diminish-
ing returns. Keeping a history of 10 to
20 input and output densities seems to
be more than sufficient. Better perfor-

mance can be obtained by choosing a

Valence States
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FIGURE 3 Splitting the full search interval into three separate contours for benzene. (a) The lowest energy contour captures the core states, while
(b) the other two target valence electrons. Each half-contour has eight quadrature nodes, shown as circles. Symmetry allows the FEAST algorithm
to perform computations only for the upper half of the contour (solving eight independent linear systems per interval).
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larger value of B, but it may also result
in instability. However, improvement in
convergence can be obtained by progres-
sively increasing the B parameter along
the SCF iterations as the input and out-
put densities become closer.

The coefficients {co,...,c+} of (3) and
(4) are the same for both the input and
output mixing subspaces. They are com-
puted by solving a kX & linear system
with one right-hand side,

Mixkcex1 = 7ex1, (6)

where the ith element of » depends on
the difference between the output and
input densities of the current iteration %
and a previous iteration i,

Vi = /Q Pgut,iu X [Pgut,iu - Péut,in]dQ’ (7)

- » .
where Pout,in = (pgul - pin)) and each ele-
ment M;; of matrix M takes into account
the densities at iterations 7 and 7:

Mij = js; [Pﬁut,in - P(ium,iu]
X [pgm,in - p{;m,m]dﬂ. (8)

In NESSIE, the mixing scheme can
take advantage of one important feature
of the FEAST eigensolver. As the density
begins to converge, the previous eigen-
vector subspace solution can be used as
a very good initial guess for solving the
current eigenvalue problem. Since the
eigenvalue convergence criteria are set
to only slightly exceed the current SCF
convergence, FEAST must perform only
a single subspace iteration on average
and, with parallelism, solve a single linear
system per diagonalization.

The other major numerical operation
in ground-state DFT is the computation of
the Hartree potential—the potential cor-
responding to a classical charge distribu-
tion—through the solution to the Poisson
equation. Once the Dirichlet boundary
conditions have been determined at the
edge of simulation domain, this amounts
to solving a real symmetric-positive, def-
inite linear system with one right-hand
side. The Poisson equation, then, gives
rise to a much less expensive linear system
than the ones obtained with the eigen-
value computation. The computation of

the boundary conditions for Poisson uses
the integral form of the Poisson equa-
tion and scales as O(N7 /p), where N is
the number of surface nodes (which stays
relatively small using a coarse FEM mesh
far from the atomistic region), and p is the
total number of MPI processes.

Selected DFT/LDA ground-state
simulation results for benzene obtained
using NESSIE and other all-electron
first-principle software programs are
reported in Table 1. The NESSIE results
are in excellent agreement with those of
the other approaches. In addition, a real-
space mesh discretization, such as FEM,
can easily be refined either by adding
more local mesh nodes or by increas-
ing the accuracy of the basis functions.
Consequently, the numerical solutions
can systematically converge toward the
exact solutions at the level of the physical
model (LDA in the example).

DFT SCALABILITY

In Table 1, the NESSIE FEM discretiza-
tion leads to system matrices of size 2,
454 for the atom-centered mesh (i.e., a
single muftin) using P2 or 8, 155 using
P3. The interstitial size matrix varies from
20, 653 for P2 to 69, 305 for P3. These
system matrices can effectively be handled
in parallel using the muftin tin decompo-
sition and spectrum slicing approach pre-
sented in Figures 2 and 3. For example,
using only two search intervals (one for
the core and one for the valence states;
ie., L1 = 2 in FEAST), eight contour
points per interval (so eight linear systems

in total; i.e., L2 = 8 in FEAST), a mol-
ecule like benzene with 12 atoms (i.c.,
L3 = 12 in FEAST) can effectively scale
up to 2X 8 X 12 =192 MPI processes
on HPC platforms.

In general, the three levels of parallel-
ism of FEAST can work together to mini-
mize the time spent in all stages of the
algorithm. L3 can be used to reduce the
memory per node and to decrease the solu-
tion time of both the linear system factor-
ization and solution. L2 has close-to-ideal
scaling and, if fully utilized, can reduce the
algorithmic complexity by solving a single
complex linear system per FEAST itera-
tion. L1, in turn, allows for the computa-
tion of a very large number of eigenvalues
by subdividing the full search interval.

The simulation results obtained in
[86] have demonstrated that NESSIE’s
muffin tin approach associated with the
FEAST eigensolver is ideally suited for
achieving both strong and weak scalability
on high-end HPC platforms. Some results
on weak scalability (i.e., the number of
MPI processes increases proportionally
with the number of atoms) are reported in
Figure 4. These results outline, in particu-
lar, the efficiency of the muffin tin DD
solver in comparison with other “black-
box” sparse parallel direct solvers.

TDDFT EXCITED-STATE CALCULATIONS
In TDDEFT theory, all of the occu-
pied N. ground-state wave function
Y = {y1,ya,...,yx} solutions of the
Kohn-Sham system for the ground-
state problem (1) are used as the initial

The DFT energy results for benzene (including the first core eigenvalue,
the highest occupied molecular orbital level, and total energy) obtained
using different all-electron first-principle software and basis functions,
but the same LDA approach [85], to model the XC term.

METHOD

NWChem 6-311 g* [19]
NWChem cc-pvqgz [19]
P2-FEM [37]

P3-FEM [37]

P4-FEM [37]

FHI-AIMS [37], [84]
NESSIE P2-FEM
NESSIE P3-FEM

ENERGY (eV)

E Enomo Eiat

-266.35 -6.4 —6,262.27
—266.41 —6.52 —6,263.65
—264.66 —6.54 —6,226.57
-266.38 -6.53 -6,262.57
—266.44 —6.53 —6,263.78
—266.44 —6.53 —6,263.83
-266.39 —-7.04 —6,244.45
-266.49 -6.55 -6,263.41

DECEMBER 2020 | IEEE NANOTECHNOLOGY MAGAZINE | 59

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 07,2020 at 22:05:22 UTC from IEEE Xplore. Restrictions apply.



conditions for solving a time-depen-
dent Schrodinger-type equation
(Vi=1,..,N,):

1h%w,-(r, 1)

2
=2V pslal(e,0)|wite, ),

N.
with z(r,8) =2 |yi(r,8) |, (9)
i1

where the electron density of the inter-
acting system can then be obtained at
any given time from the time-depen-
dent Kohn-Sham wave functions. In
principle, TDDFT can be used to calcu-
late any time-dependent observable as

Number of MPls || 9

a functional of the electron density. In
(9), the Kohn—Sham potential becomes a
function of the time-dependent density:

vis(n(r,2)) = vexe(r,2) + v (n(r, 7))
+vxe(n(r,1)),

where it is common practice to consider
a local dependency on time for the XC
potential term vxc (as well as the adia-
batic approximation).

REAL-TIME PROPAGATION

Assuming a constant time step A;, the
integral form of (9) introduces the time-
ordered evolution operator U(z+ Ay, 7),
such that
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Number of Atoms 54
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FIGURE 4 The L3 weak scaling of the (a) factorization and (b) solve stages for a single FEAST
iteration using 16 contour points (L2 = 1 here) and 600 right-hand sides (i.e., a search inter-
val with up to 600 states). The matrix size is increased proportionally with the number of
MPI processes (using 12 cores per MPI of Haswell E5-2680v3—so 492 cores in total for the
246-atom systems). The results show that the muffin-DD solver outperforms both the MKL-
Cluster-PARDISO [87] and MUMPs solvers [88]. The overall timings can be easily reduced by
a factor 16 using L2 = 16 MPI parallelism (using 7,872 cores in total). Finally, the timings can
be further improved by increasing the number of MPI processes for a fixed-atom-size system

(strong scalability).
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Y(t+Ar)= U(t+ Ay t)¥(2),

with U(t+ As )

=Tep[~+ [ acH0)}. (0)

X
nJe
There exist a large number of efficient
numerical methods for solving this real-
time propagation problem [89], which can

broadly be classified into two categories:
1) Partial differential equation-based
techniques, such as the Crank-
Nicolson (CN) scheme [90], can

be used, where

U(t+ A1)
=[1+LaHE+A2)]

x[1- 2 AH(z+ A /2)] (11)

This is an implicit scheme that
requires solving a linear system at
each time step.

2) Integral-based methods act
directly on the evolution opera-
tor, such as the midpoint expo-
nential rule, i.e.,

U(t+Ant) =
exp(—iAH(t+ A, /2)). (12)

This represents the starting point
for splitting methods [91], Mag-
nus expansion [92], or other spec-
tral decompositions [93], [94].

If A; is small enough, one can usu-
ally assume that H(z+ A, /2) ~ H(?).
Alternatively, corrector-—predictor schemes
can be used to evaluate the Hamiltoni-
an at (¢+A,/2). The nonlinear nature
of the time propagation arises from the
Kohn-Sham vgs potential that needs
to be re-evaluated at each time step to
form the new Hamiltonian. The Hartree
potential vz and exchange and correla-
tion potential vxc are both functionals
of the electron density. The time-depen-
dent Hartree potential is the solution of
the Poisson equation, while the XC term
can be computed with the time-instanta-
neous electron density (using the adiabatic
approximation), and the same approxima-
tion used in the ground-state calculations
(such as LDA or GGA).

The CN scheme for TDDEFT is par-
ticularly effective within the NESSIE
framework, since the linear system solved
along the time steps in (11) can take



advantage of the highly scalable muffin
tin real-space DD approach (Figure 2).
As a result, the approach can be paral-
lelized at two different MPT levels: 1) by
propagating independent chunks of the
occupied wavefunctions along A, and 2)
by solving the linear system in parallel.

Spectral-based schemes for the inte-
gral approach (12) are known to be
robust and accurate, permitting larger
time steps than the other usual integra-
tion schemes. They are, however, rarely
used in practice for large-scale simula-
tions since a direct diagonalization of the
evolution operator (12) would require
solving hundreds to thousands of eigen-
value problems along the time domain
(i.e., one large-scale eigenvalue prob-
lem per time step). In addition to CN,
NESSIE includes an efficient spectral-
based approach that relies on the effi-
ciency of the FEAST eigensolver [93].

First, good approximations of the
exponential in (12) can be obtained with
a partial spectral decomposition using an
eigenvector subspace four to five times
the number of propagated states v;.
Since the latter are low-energy states, this
truncated spectral basis is typically suf-
ficient to accurately expand the solutions.
Second, FEAST can reuse the eigenvec-
tor subspace computed in the current
time step as a very good initial guess for
the next one. As a result, only one or two
subspace iterations are usually sufficient
to obtain convergence.

While the linear systems arising in
CN need to be solved one after anoth-
er along small time intervals, a parallel
FEAST implementation permits the solu-
tion of a single linear system by larger
time intervals. Although the FEAST lin-
ear system is notably more computation-
ally demanding, i.e., including a lot of
extended states, linear parallel scalability
can still be naturally achieved using mul-
tiple search intervals and more parallel
computing power.

It is worth mentioning that the same
strategy would not be possible with
the techniques used in TDDFT linear
response theory in the frequency domain
(e.g., using the Casida equation [10]),
where the demand in extended states is
even higher and represents the bottle-
neck of their cubic arithmetic complexity.

In general, the three levels of parallelism of
FEAST can work together to minimize the time
spent in all stages of the algorithm.

Consequently, if one can keep up with
the demand in parallel computing power,
direct diagonalizations for the real-
time TDDFT formalism using FEAST
become a viable high-performance alter-
native to other schemes, potentially capa-
ble of both higher scalability and better
accuracy for obtaining linear and nonlin-
€ar responses.

DIPOLE-TIME RESPONSE

In principle, all time-dependent observ-
ables are functionals of the density; how-
ever, in practice, the functional form
is rarely known. A very useful case of
TDDET is related to spectroscopy, where
the absorption and emission spectra cor-
responding to electronic excitations can
be derived directly from the induced
dipole moment 4(z). The latter is relat-
ed to the response of the system to an
applied electric field E:

dt)= | " a(t=1)E(s)dr', (13)
where « is defined as the dynamic polar-
izability. In general, E and 4 are vectors
quantities with &, y, and z components,
and o is a tensor. In computational
spectroscopy, one often considers the
response of the system in a given direc-
tion p (e.g., x, % or 2) associated with an
excitation polarized in the same direc-
tion. The induced dipole moment in (13)
can be calculated as a measure of how
far the electron density #(7, ¢) has moved
away from its ground-state value 7o along
a given direction p [17], [95], [96]:

Au(r) =
— (= m)(n(r,0) — mo()dr, (14)

where 7o stands for the molecular cen-
ter of mass. As a result, for an isotropic
material, it is possible to compute the
dynamic polarizability by inverting (13).

In the frequency domain (after the Fou-
rier transform), the expression becomes

d(w)
E(o)”

a(w) = (15)
In practice, it is necessary to introduce an
artificial damping signal into the com-
puted dipole moment before taking its
Fourier transform:

(@) =]0'T(d<r)>< ) dr, (16)

where v is a damping coefficient. This
damping term is used to mimic the sys-
tem relaxation effect since the TDDFT
simulations presented here do not explic-
itly account for energy dissipation (i.e., a
system would physically emit energy as
photons and relax back to the ground
state after being excited).

In time-dependent simulations, any
external electric field E(z) may be con-
sidered. It is common practice, however,
to use either a step potential #(¢) or an
impulse excitation §(z), both along a
given direction [16]. Table 2 presents
the resulting expressions for the dynamic
polarizability o(w) after Fourier trans-
forms of these particular electric fields.

Finally, the imaginary part of the
dynamic polarizability provides the pho-
toabsorption cross section [97], which is
related to the probability that a photon
passing through the atomistic system is

The polarizability for
excitations in the form of
an impulse potential and a
step potential.

E(t) o (@)

Eox 8(f) —d(w)/Eo
Eox u(f) —lw x d(@)/Eo
Eo stands for the amplitude of the electric
field.
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absorbed. A measure of the strength of
this interaction (as well as the oscilla-
tor strength) can be computed from the
polarizability as follows [98], [99]:

o(w)= 4”—wi‘s(ot(a))).

z (17)

Once the oscillator strength (@) is plot-
ted as a function of the frequency w (or,
equivalently, the absorption energy), it
provides the absorption spectrum of the
system. As an example, Figure 5 shows
the variations of the induced dipole
moment for benzene obtained after three

distinct impulse excitations polarized in
the &, y, and z directions as well as the
corresponding three absorption spectra.

RESONANCES AND

RESPONSE DENSITY

The peaks in the absorption spectrum
correspond to specific quantum many-
body excitations (such as plasmon,
band-band, and so on). The electron
dynamics for a specific peak can be
investigated further by computing and
then visualizing the response density in
4D. Such simulations aim at providing

more details on the electron dynamics of
the particular resonances with relevant
information about their nature.

The response density §z(w,7) is the
change in electron density due to an exci-
tation at frequency o (i.e., charge oscilla-
tions at @). One possible way to visualize
Sn(w,r) is by applying a sinusoidal exci-
tation at a given frequency of interest,
waiting for the induced dipole moment
to reach a steady state where it oscillates
at o, and plotting the 4D data when
the dipole reaches a maximum and a
minimum [100]. Another more efficient
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FIGURE 5 (a) The relative orientation of the benzene molecule if the applied electric field was polarized from left to right. (b) The induced dipole
moment for benzene after an impulse excitation polarized in the x (top), y (middle), and z (bottom) directions (time steps of 5 attoseconds are

used). (c) The corresponding absorption spectra.
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approach consists of computing &7 (w,7)
directly following the same procedure
used for deriving the dipole moment in
(14) and (16), which leads to

Sn(r,w) =

fOT(n(V,t)— no(r))e )™ dr. (18)

In practice, there is no need to store all
of the »(r, #) functions, which would be
prohibitive. Once the peaks/resonances
of interests (i.e., {@;}) have been iden-
tified in the absorption spectrum (for
a given polarized excitation), one can
proceed by running a new time-depen-
dent TDDFT calculation to compute the
response density 67 (7,w;) (all frequency
{w;} at once) using an on-the-fly Fourier
transform of the time-varying electron
density. The results from this approach
are shown in Figure 6 for a few selected
peaks in the absorption spectrum of ben-
zene when the molecule is excited with
an impulse electric field polarized in the
z direction (as shown in Figure 5).

TDDFT ACCURACY AND RELIABILITY

The direction-independent absorption
spectrum, which is computed as the
average of the spectra in the «, ¥, and z
directions, can be directly and quanti-
tatively compared with the experimental
data, if available. Figure 7 compares
the experimental absorption spectra of
various molecules with NESSIE’s first-
principle simulation results (obtained
at T = OK). In general, the TDDFT sim-
ulation results compare remarkably well
with the experimental data for a large
number of atomistic systems.

While the choice of the XC function-
al can significantly impact the reliability
of the DFT ground-state results, a sim-
ple ALDA approximation for TDDFT
appears to be sufficient for a wide variety
of systems. Using NESSIE, it is also
interesting to note that the choice of P2
versus P3 FEM basis functions has only
a minimal impact on the accuracy of the
absorption spectrum [71]. This is clearly
not the case for DFT ground-state cal-
culations as reported in Table 1, where
good accuracy would require an appro-
priate level of refinement for FEM (using
at least cubic P3 FEM). As a result, the
real-time TDDFT framework appears

The computing challenges end up being very
similar between ground-state DFT and
excited-state, real-time TDDFT calculations.

to be resilient to some approximations
(such as the choice of XC term or basis
functions) as long as they are not too far
off and stay consistent throughout the
time propagation.

In addition to the opportunity to per-
form X-ray spectroscopy, there are many
other advantages of considering a full
real-space, all-electron treatment in sim-
ulations. In contrast to other approaches,
a full-core, real-space potential offers
numerical consistency while performing
simulations in the time domain. Trans-
ferability issues are, indeed, likely to hap-
pen with the use of pseudopotentials
that are generated for time-independent
calculations or, in turn, with the use of
an LCAOQO basis, which cannot offer the
same reliability in capturing both the
confined and extended states (although
LCAO bases can be “augmented” in
time-dependent simulations).

Comparisons between the NESSIE
and LCAO approaches are reported in
Table 3. Although NESSIE is using both
a low level of real-space approximation
(P2 FEM) and a rather simple XC term
(LDA), the results compare relatively
well with the experimental data. These
results are actually, on average, much
better than the ones obtained with the
NWChem software.

(a) (®) () ()

LARGE-SCALE, REAL-TIME TDDFT
SIMULATIONS

The computing challenges end up being
very similar between ground-state DFT
and excited-state, real-time TDDFT
calculations. There are only two main
operations to consider: 1) solving a Ham-
iltonian linear system with multiple right-
hand sides using, in particular, the muffin
tin technique and 2) solving a linear sys-
tem for the Poisson equation (using the
local XC). For DFT, these two steps have
to be repeated self-consistently until con-
vergence, while, for TDDFT] they need
to be repeated at each time step of the
time propagation (using either a CN or a
spectral decomposition scheme).

In comparison to other approaches,
the muffin tin solver has demonstrated
great efficiency in achieving strong and
weak scalability [86] (see Figure 4). The
scalability bottleneck of the muffin tin
solver would eventually come from solv-
ing the interstitial Hamiltonian system
in parallel using MPI (the Schur comple-
ment discussed in the “An All-Electron
HPC Muffin Tin Framework” section).
In practice, our strong and weak scalabil-
ity results show that, up to 1,000 atoms
(corresponding to an interstitial matrix
with a size of ~1 million), this system
can be efficiently solved using a standard

FIGURE 6 The 4D isosurface plots of the response electron density for four different peaks
chosen from the absorption spectrum of z-polarized excited benzene (electric field going from
left to right). Four frequency w values are represented: (a) 6.91, (b) 10.04, (c) 13.61, and

(d) 16.20 eV.
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FIGURE 7 A comparison among the computed absorption spectra for various molecules using NESSIE (with ALDA and P2 FEM) and multiple sets
of experimental values for (a) Hz (experiments A [101], B [102], C [103], and D [104]), (b) CO [105], (c) H20 (experiments A [106], B [107], C [108],
and D [109]), (d) CHa (experiments A [110] and B [111]), (e) SiH4 [112], (f) and CeHs (experiments A [113] and B [114]).

A comparison of real-time TDDFT NESSIE and NWChem simulation results,
with the experimental data for the lowest excitation energies (in eV), as

reported in [115].

and it already offers numerous applications
to electronics and photonics. In the visible
and near-infrared (IR) range, nanoanten-
nas [118] and nanoparticles have provided
drastically enhanced coupling to electro-

METHOD Hz CHa co CeHe
NWChem-ccpvtz/LDA 1231 1029 828 71 magnetic waves [119], [120]. A 2008
NWChem-ccpvtz/B3LYP 1290 1075 855 718 comment in Nazure Nanotechmology [118]
stated, “Molecular components promise to
NESSIE-P2/LDA 11.19 9.4 8.4 6.9 5 . .
_ revolutionize the electronics industry, but
Experiment 119 970 8.55 6.9 the vision of devices built from quantum

NWChem uses the ccpvtz basis function and LDA or more advanced B3LYP XC functional.

wires and other nanostructures remains
beyond present-day technology. Making

direct “black-box™ parallel sparse system
solver (such as the cluster version of the
Pardiso solver available in Intel’s Math
Kernel Library [87]). Reaching the mile-
stone of 10,000 atoms and beyond is still
the subject of active research efforts that
investigate new directions in numerical
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linear algebra, such as the use of hybrid
parallel solvers with customized low-
communication preconditioners.

NANOPLASMONIC APPLICATIONS

Nanoplasmonics is a field that has grown
rapidly in the last few years [116], [117],

such devices will require an extremely
detailed knowledge of the properties of
these components, such as the dynamics of
charge carriers, electron spins, and various
excitations, on nanometer-length scales
and subpicosecond timescales at very high
(up to THz [terahertz]) frequencies.”



Reference [118] points out that sin-
gle-wall CNT resonators would consti-
tute a unique terahertz ultracompact
circuit element, which might, for exam-
ple, be used to control a terahertz oscilla-
tor source. Similar opportunities exist in
the IR and visible ranges. One concludes
that the discovery of new plasmonic
materials is mandatory for the future
expansion of the field of nanoplasmonics.

In [100], NESSIE was used to pro-
vide evidence of the plasmon resonances
(collective electron excitations) in a num-
ber of representative short, 1D, finite
carbon-based nanostructures using real-
time TDDFT simulations. The simulated
systems ranged from small molecules,

particular, it was shown that metallic
1D CNTs can be well described with
the Tomonaga-Luttinger theory. The
plasmon velocity is expected to reach
an asymptotic value (up to three to five
times the single-particle Fermi veloc-
ity) when the simulations are extended
to tens of unit cells, such as very long
CNTs, that become relevant for tera-
hertz spectroscopy.

Since the reported preliminary work
on short CNTs [100] (about five unit
cells), NESSIE has been upgraded to sim-
ulate large-scale atomistic systems by tak-
ing advantage of new HPC techniques,
such as the muftin-DD solver presented
and discussed in the “An All-Electron

i.e., Ep, fp) keeps shifting with longer
CNTs. The corresponding absorption
spectra are provided in Figure 8.

In Table 4, the plasmon velocity is
obtained with the reasonable assump-
tion that the plasmon (collective electron
cloud) must travel back and forth the full
length L of the nanotube to complete a
single oscillation (i.e., v, = 2Lf;). This
is further supported by the 4D isosurface
plots of the response density 8z (a,7)
(18) in Figure 8, which have been calcu-
lated for the specific plasmon resonances.
The plasmon velocity increases to 2.54
times the Fermi velocity (= 10° m/s)
for the 40 unit cells (3,3)-CNT, and it is
expected to level off if we keep increasing

such as CaHa, to various carbon nano- HPC Muffin Tin Framework” section. the length of the CNT.
structures that are equivalent to 1D con- This all-electron, real-space and real-
ductors with finite lengths, including time TDDFT framework is now capable CONCLUSION

carbon chains, narrow armchair and zig-
zag graphene nanoribbons [i.e., acenes
and poly(p-phenylene)], and short CNTs.

The NESSIE all-electron TDDFT/
ALDA model was able to accurately
capture the bright components of the
spectra, which account for the plas-
monic excitation. The chief signature
of 1D plasmons is a high-frequency
excitation that is inversely proportion-
al to the length of the conductor. In

of simulating very large structures (up
to tens of unit cells for CNTs—from
100 atoms to a few thousand), leading
to more relevant predicted data of the
plasmonic effects for 1D systems. As an
example, Table 4 summarizes the main
NESSIE parameters and simulation
results while considering increasingly lon-
ger (3,3)-CNTs. These results show that
the position of the plasmon excitation
peak (lowest excitation energy/frequency,

Modern first-principle calculations aim
at bringing computational activities up
to the level where they can significantly
impact innovations in electronic nanoma-
terial and device research. Nanostructures
with many atoms and electrons can be
treated only by addressing the efficiency
and scalability of the algorithms on mod-
ern computing platforms with multiple
hierarchical levels of parallelism. These
goals can be achieved using an efficient

L0 V: IR YN NESSIE’s main parameters and simulation results obtained using the all-electron/DFT/TDDFT/ALDA framework applied to

increasingly longer (3,3)-CNTs.

SIMULATION COMPONENTS SIMULATION DATA 5-CNT 10-CNT 20-CNT 40-CNT
System Length (nm) 1.26 2.49 499 9.99
Number of atoms 78 138 258 498
Number of electrons 408 768 1,488 2,928
Mesh Size muffin 2,065 2,065 2,065 2,065
Size interstitial 149,499 126,431 233,696 446,559
Size total 302,925 397,877 741,182 142,6125
DFT Ei (eV) —267.73 —268.05 -268.07 -268.28
Evomo (V) -4.996 —4.823 =B —4.955
Eiot (eV) 67,713 —128,825 -251,351 -496,359
RT-CN A (fs) 0.01 0.01 0.01 0.01
Total T (fs) 15 30 45 65
Number of time steps 1,500 3,000 4,500 6,500
TDDFT Ey (eV) 1.62 1.24 0.82 0.525
fo (THz) 394.13 299.83 198.27 126.94
Vo (108 m/s) 0.98 1.49 1.98 2.54
'(Ehe r(iall;;[é?ce mesh uses a P2-FEM discretization, while the real-time approach uses a CN (RT-CN) propagation scheme. The simulations were executed on XSEDE-
ome .
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modeling framework that can perform
real-space DFT ground-state calculations
and real-time TDDFT excited-state cal-
culations. The latter can be used to study
various relevant quantum many-body
effects (such as plasmonic effects) by per-
forming electronic spectroscopy.

Spectroscopic techniques are among
the most fundamental probes of matter:
incoming radiation perturbs the sample,
and the response to this perturbation
is measured. The system is inherently
excited in this process, and, hence, a
calculation of ground-state properties is
insufficient to interpret the response of
the system. TDDFT has had consider-
able success modeling the interaction of
electromagnetic fields with matter and
obtaining spectroscopic information with
absorption and emission spectra.

The article discussed the NESSIE
software, which has been fundamentally
designed to take advantage of parallel
optimization at various levels of the entire
modeling process. NESSIE benefits from
the linear scaling capabilities of real-space
mesh techniques and DD methods to

perform all-electron (full-core potential)
calculations. The modeling approach is
tailored to optimally take advantage of
the full capability of the state-of-the-art
FEAST eigensolver, which can achieve
significant parallel scalability on modern
HPC architectures. With the success in
meeting these challenges, NESSIE is cur-
rently able to extend the first-principle
simulations to very large atomistic struc-
tures (i.e., many thousands of electrons at
the level of all-electron/DFT/TDDFT/
ALDA theory).

The modeling framework opens new
perspectives for addressing the numeri-
cal challenges in TDDFT excited-state
calculations to operate the full range of
electronic spectroscopy and study the
nanoscopic many-body effects in arbi-
trary complex molecules and finite-size,
large-scale nanostructures. It is expected
that the NESSIE software and associ-
ated numerical components can become
a new valuable new tool for the scien-
tific community to investigate the funda-
mental electronic properties of numerous

nanostructured materials.

T
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FIGURE 8 The (a) 4D isosurface plots and (b) computed absorption spectra for three (3,3)-
CNTs presented in Table 4 (10, 20, and 40 unit cells). The selected energy range outlines the
lowest excitation peak, which keeps shifting left (red shift) with longer nanostructures. The
corresponding 4D isosurface plots of the response electron density provide visual information

about the dynamic of these plasmonic excitations.
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