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ARTICLE INFO ABSTRACT

Keywords: The utility of sheer volumes of very high spatial resolution (VHSR) commercial imagery in mapping the Arctic

Arctic region is new and actively evolving. Commercial satellite sensors typically record image data in low-resolution

Commer_dal satellite imagery multispectral (MS) and high-resolution panchromatic (PAN) mode. Spatial resolution is needed to accurately

BZZ’ fll;::;ng describe feature shapes and textural patterns, such as ice-wedge polygons (IWPs) that are rapidly transforming

Ice-wedge polygon surface features due to degrading permafrost, while spectral resolution allows capturing of land-use and land-

Permafrost cover types. Data fusion, the process of combining PAN and MS images with complementary characteristics
often serves as an integral component of remote sensing mapping workflows. The fusion process generates
spectral and spatial artifacts that may affect the classification accuracies of subsequent automated image analysis
algorithms, such as deep learning (DL) convolutional neural nets (CNN). We employed a detailed multidimen-
sional assessment to understand the performances of an array of eight application-oriented data fusion algo-
rithms when applied to VHSR image scenes for DLCNN-based mapping of ice-wedge polygons. Our findings
revealed the scene dependency of data fusion algorithms and emphasized the need for careful selection of the
proper algorithm. Results suggested that the fusion algorithms that preserve spatial character of original PAN
imagery favor the DLCNN model performances. The choice of fusion approach needs to be considered of equal
importance to the required training dataset for successful applications using DLCNN on VHRS imagery in order to
enable an accurate mapping effort of permafrost thaw across the Arctic region.

1. Introduction

Permafrost is defined as Earth materials that remain at or below 0 °C
for at least two consecutive years (van Everdingen, 1998). Approxi-
mately 24% of the exposed land surface of the northern hemisphere is
affected by permafrost (Brown et al., 1997), which pose challenges to
infrastructure (Hjort et al., 2018) and is an integral component of what
makes the Arctic natural environment unique, and especially, the re-
gion’s response to climate change (Shur and Jorgenson, 2007). Thawing
permafrost increases lateral exports of biogeochemical fluxes (Abbott
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etal., 2015, Coch et al., 2018, Levenstein et al., 2018) and alters coastal
marine ecosystems, tundra geomorphology (Farquharson et al., 2019,
Lewkowicz and Way 2019; Jones et al., 2019), vegetation (see Schuur
and Mack 2018), and hydrology (see Lafreniere and Lamoreux, 2019).
Permafrost landscapes are confronting socioeconomic development
(Melvin et al., 2017; van der Sluijs et al., 2018, Raynolds et al., 2014)
and rapid transition catalyzed by climate warming thawing ice-rich
ground (Hinzman et al., 2005), which is challenging geosystem and
ecosystem services (Vincent et al., 2017).

Ice wedges are a common permafrost subsurface feature that is
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developed by repeated frost cracking and ice-vein growth over centuries
to millennia (Leffingwell 1915; Black, 1982; Mackay 1984). The growth
of these wedge-shaped ice bodies is responsible for creating polygonised
land surface features, i.e. ice-wedge polygons (IWPs). There are two
major types of ice-wedge polygons: low-centered and high-centered
(Black 1954; Britton, 1957; Hussey and Michelson, 1966; Péwé, 1975;
Billings and Peterson, 1980; Everett, 1980; French, 2018). Low- and
high-centered polygons have very distinctive features that can be rela-
tively easily detected on satellite imagery and aerial photos. Low-
centered polygons are framed by elevated rims that develop above
actively growing ice wedges; sometimes they contain intrapolygonal
ponds. High-centered polygons have elevated centers and well-
developed troughs over ice wedges, often filled with water. The diam-
eter of IWPs typically ranges from 5 m to 30 m and the associated
microtopographic features, such as troughs or rims, are in sub-meter to
~1-meter scale (Black, 1982; Kanevskiy et al., 2017). Vegetation and
geology maps suggest that about two-thirds or more of the Arctic
landscape is occupied by polygonal ground (Raynolds et al., 2019), but
the exact extent and the prevailing types of IWPs are largely unknown.
The microtopography associated with IWPs affects the Arctic ecosystem
from local to regional scales due to the impacts on the flow and storage
of water (Liljedahl et al., 2016), vegetation and carbon (Hugelius et al.,
2013; Lara et al., 2015). Over the recent decades, ice-wedge degradation
has been documented at several locations across the Arctic tundra in the
field and through remote sensing techniques (Jorgenson et al., 2006,
Jones et al., 2015; Liljedahl et al., 2016; Steedman et al., 2017; Frost
et al., 2018). Degradation of ice wedges is a quasi-cyclic process with
degradation often occurring over a shorter time scale than aggradation,
which tend to accumulate more organic soil (Jorgenson et al., 2015;
Kanevskiy et al., 2017). The lack of knowledge on the larger
geographical extent and successional stage of IWPs introduce un-
certainties to regional and pan-Arctic estimates of carbon, water, and
energy fluxes (Liljedahl et al., 2016; Nitze et al., 2018; Turetsky et al.,
2019).

Explosion of very high spatial resolution (VHSR) commercial sensors
unlocks transformational opportunities to observe, map, and document
the microtopgraphic transitions associated with IWPs at multiple spatial
and temporal frequencies. The entire Arctic has been imaged in 0.5 m (or
even finer, 31 cm) resolution by Maxar Technologies Inc. (previously
known as DigitalGlobe, Inc.) owned commercial satellite sensors on
average four times in the last six years, accumulating over two petabytes
of pan-Arctic image data. While these ‘big’ imagery repositories are
freely accessible to Arctic researchers under the U.S. National Science
Foundation’s Office of Polar Program research awards, the imagery are
still largely underutilized and derived Arctic science products are rare
beyond the well-known ArcticDEM. The uses have been limited to field
reconnaissance and small-scale manual/semi-automated analysis (Jones
etal., 2011; Skurikhin et al., 2013, Ulrich et al., 2011, Chen et al., 2017).
Both site-scale analysis based on high-resolution data (Jones et al.,
2018) and landscape-scale analysis based on coarse-resolution data
(Nitze et al., 2018) limit our capacity to elucidate the effect of sub-meter
scale IWP degradations on regional, to pan-Arctic, to global scale pro-
cesses, such as permafrost carbon climate feedback projections
(Pachauri et al., 2014).

Discovery through artificial intelligence (AI), big VHSR imagery, and
high performance computational (HPC) resources is just starting to be
realized in Arctic science. Traditional remote sensing image classifica-
tion methods fail to grapple with the sheer data volumes and inherent
scene complexities involved with sub-meter spatial resolution imagery
(Blaschke et al., 2014). Increasing spectral heterogeneity in VHSR im-
agery leads to less class variances of the conventional per-pixel based
algorithms, which make difficult to accurately resolve fine-scale
microtopographic features, such as IWPs (Chen et al., 2017; Abolt
et al., 2019). While the geographic object-based image analysis (GEO-
BIA) (Blaschke 2010) competent in handling scene complexities, it is has
now been flanked by the upsurge of ‘big’ imagery in large-scale
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deployments (Witharana and Lynch 2016; Lang et al., 2018; Sudmanns
et al., 2019). Over the recent years, deep learning (DL) convolutional
neural nets (CNNs) have secured an unprecedented dominance on
computer vision applications (LeCun et al., 2015). Owing to its success
in everyday image understanding, DLCNNs have now rapidly been
adapted in VHSR remote sensing image analysis while superseding
contemporary paradigms like GEOBIA (Zhang et al., 2016; Zhang et al.,
2018; Ma et al., 2019).

The potentials of adapting cutting-edge DLCNNs from computer
vision applications to remote sensing image understanding problems
have been successfully demonstrated in automated mapping of shrubs
(Guirado et al., 2017), whales (Guirado et al., 2019), seals (Goncalves
et al., 2020), and also IWPs (Zhang et al., 2018; Abolt et al., 2019) from
VHSR imagery. DL approaches are being adapted to finely classify Arctic
permafrost features from high-resolution remote sensing imagery,
imagery-derived digital elevation models (DEMs), and LiDAR-based
DEMs. For example, Zhang et al. (2018) demonstrated the applica-
bility of DLCNNs to map IWPs from high-resolution aerial imagery.
Abolt et al (2019) practiced a deep learning approach to extract IWPs
from LiDAR-based terrain models. Jiang (2019) developed a CNN to
classify Arctic wetlands from both CubeSat satellite imagery and the
ArcticDEM. Huang et al (2020) have made a successful attempt to map
retrogressive thaw slumps in Tibetan Plateau from CubeSat satellite
imagery. Accurate delineation and classification of IWPs directly pivo-
ted to the spatial resolution of multispectral satellite imagery (Chen
et al.,, 2017; Zhang et al., 2018; Abolt et al., 2019). Based on a
comparative analysis, Muster et al (2012) emphasized the necessity of
spatial details to accurately detect and characterize IWPs and their
associative microtopograpic elements, such as trough and rim. However,
spectral responses of IWP features are typically poorly pronounced in
imagery. Accurate detection of IWPs therefore mainly depends on
multispectral imagery with high spatial (i.e. structural) details (Skur-
ikhin et al., 2013).

Despite the palpable success and rapid adaptation of DL in remote
sensing image classification, there has been very little attention paid on
the possible dependency of DL model predictions on the key pre-
processing steps involved in remote sensing image processing work-
flows. Compared to computer vision applications, in VHSR satellite
image analysis, DL model predictions accuracies largely depend on the
quality of the input imagery. High-level meanings (semantics) we pursue
could potentially spur depending on the amount of spatial details
embedded in the image (Vannucci et al., 2001). A single VHSR image
scene typically covers a sizeable geographic area (~400 km?) with
highly heterogeneous semantically-complex surficial features. One of
the critical pre-processing steps that is sandwiched between raw imag-
ery and analysis-ready imagery is data fusion or commonly known as
pansharpening (Witharana et al., 2014, 2016). In order to overcome
technical limitations, such as saving onboard storage and optimizing the
signal-to-noise ratio of incoming radiation energy, VHSR commercial
satellite sensors acquire image data in a low-resolution multispectral
(MS) mode and high-resolution panchromatic (PAN) mode (Ghassemian
2016; Shahdoosti and Ghassemian 2016; Li et al., 2017; Meng et al.,
2019). High spatial resolution is essential to accurately describe feature
shapes and textural patterns, while high spectral resolution is needed to
classify thematically-detailed land-use and land-cover types (Ehlers
et al., 2010; Witharana et al., 2016). Blending complementary infor-
mation from PAN and MS images via pansharpening facilitates a better
representation of the observed area (Wald, 2000; Ranchin et al., 2003).
From a classification point of view, data fusion serves as an integral step
in the processing of remotely-sensed imagery for earth and environ-
mental applications. This is particularly true in mapping microtopo-
graphic features, such as ice-wedge polygons and their feature
associations (e.g. trough, rim) (Jorgenson and Grosse 2016) that are
seen in permafrost-affected landscapes, where manual and automated
feature extraction hinge on the spatial details present in the imagery
(Mora et al., 2015).
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The central objective of this exploratory study is to systematically
gauge how the spectral and spatial artifacts of the data fusion process
influence the prediction accuracies of DLCNN models. Our analysis
entailed a multidimensional assessment to gauge the spectral and spatial
fidelities of an array of application-oriented data fusion algorithms when
applied to VHSR image scenes of ice-wedge polygonal tundra. We are
here presenting results from the mapping application for permafrost
land environments (MAPLE, (Witharana et al., 2018; Bhuiyan et al.,
2019)) framework, which is developed to extract information from big
satellite imagery for Arctic science applications. MAPLE couples DLCNN
algorithms with the HPC resources from the extreme science and engi-
neering discovery environment (XSEDE, (Towns et al., 2014). The cur-
rent analysis could unravel the potential predisposition of the DLCNN
model to data fusion quality and landscape heterogeneity to refine
automated IWP mapping at regional scales.
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2. Methods
2.1. Data and study area

We selected study sites comprising sedge, barren, and tussock tundra
dominant landscapes, primarily from coastal tundra region of Canada
(Site 1, 25 km?) and Wrangler Island of Russia (Site 2, 25 km?) (Fig. 1).
The candidate sites provide a substantial landscape heterogeneity for
fusion algorithms to cater in the pansharpening process. The Polar
Geospatial Center (PGC) at University of Minnesota provided the
radiometrically corrected, orthorectified imagery, which were acquired
in August 2010 by the Worldview-2 (WV2) commercial satellite sensor.
The WV2 hyperspatial sensor records the panchromatic (PAN) and the
eight multispectral (MS) bands with a ground sampling distance of ~
0.46 m and ~ 1.84 m at nadir, respectively, with 11 bit radiometric
resolution. Test site 1, a sedge tundra dominant wetland landscape,
harbors low-centered ice wedge polygons where the polygon center is
characterized typically by water impoundment. This image scene also
has moist tundra, which is dominated by tussock cottongrass

Fig. 1. Geographical setting of test study sites (a). Candidate image scenes (black hollow box) overlain by the tundra vegetation map for Site 1(b) and Site 2(c).
Zoomed-in views of the candidate image scenes (d and e) as false-color composites. Tundra vegetation map and the legend are adapted from Raynold et al. 2019.

Satellite imagery Copyright DigitalGlobe, Inc.
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(Eriophorum vaginatum) and dwarf shrubs (<40 cm tall) (Raynolds et al.,
2019). The WV02 scene from Wrangel Island largely encompasses the
land cover class of Graminoid prostrate dwarf-shrub, forb tundra (Ray-
nolds et al., 2019). The landscape is characterized by moist to dry tun-
dra, with open to continuous plant cover and prostrate shrubs (<5 cm
tall). The area holds cryogenic form of nano- and micro-relief, where
different polygonal and spotty shapes are dominated.

2.2. Image fusion

Image fusion can occur at three different processing levels (pixel,
feature, and decision) depending on the stage at which the fusion takes
place (Pohl and van Genderen 1998; Alparone et al., 2007). While there
is no universal way to classify fusion algorithms, studies have reported
several ways to group fusion algorithms based on their design and
implementation. Pohl and Van Genderen (1998) classified fusion algo-
rithms into color-related methods and statistical/ numerical methods.
Ehlers et al. (2010) considered the latter as two distinct classes (i.e.
statistical and numerical) and discussed different fusion techniques
under three groups as color related methods, statistical methods, and
numerical methods. Ranchin and Wald (2000) and Wald (2002) pro-
posed three ways to classify fusion algorithms: (1) the projection and
substitution methods, (2) the relative spectral contribution, and (3) the
method relevant to the ARSIS (a French acronym: Amélioration de la
Résolution Spatiale par Injection de Structures, which means spatial
improvement by injection structures) concept. Gangkofner et al. (2008)
mainly considered the information used in a pansharpening procedure
as a cursor of categorizing fusion algorithms. Their classification consists
of three classes: 1) spectral substitution methods, 2) arithmetic merging,
and 3) spatial-domain methods. The classification of Yakhdani and Azizi
(2010) is an extension of Pohl and Van Genderen (1998), in which they
identified three classes as 1) color-related techniques, 2) statistical/nu-
merical methods, 3) Pyramid-based methods, and 4) hybrid methods.

We used eight fusion algorithms (Table 1) that are commonly
encountered in the literature and incorporated into commercial remote
sensing image processing software packages (e.g., ERDAS Imagine 2015)
and/or open source libraries (GDAL). While providing a brief overview
of candidate fusion algorithms, we encourage readers to the references
listed in Table 1 for detailed descriptions on mathematical formulation
and implementation of the candidate algorithms. The Brovey transform
(BRV) is a straightforward spectral substitution method, which is less
time- and processor-intense. Augmented versions of Brovey transform

Table 1
Candidate data fusion algorithms.

Algorithm Implementation Selected references

Brovey transform (BRV) ERDAS Imagine Nikolakopoulos
(2008),

Padwick et al., 2010;
ERDAS Imagine 2015,
Gangkofner et al.,
2008; Witharana et al.,
2016

Goforth 1998;
Karathanassi et al.,
2007

Lindgren and Kilston,
1996; ERDAS Imagine
2015,

Ashraf et al., 2012;
Yang et al., 2012
Amro et al., 2011;
Gharbia et al., 2014

Hyperspherical color space
(HCS)
High-pass filter (HPF)

ERDAS Imagine

ERDAS Imagine

Principal component analysis
(PCA)

ERDAS Imagine

Projective resolution merge
(PRM)

ERDAS Imagine

Subtractive resolution merge
(SUB)

Modified version of Weighted
Brovey transform used by
Polar Geospatial Center
(PGC)

Wavelet Transform (WVL)

ERDAS Imagine

Embedded in Polar
Geospatial Center’s pre-
processing pipeline
ERDAS Imagine Pradhan et al., 2006;
Yakhdani and Azizi,
2010
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exist, such as the weighted Brovey fusion, which is the standard algo-
rithm used by the Polar Geospatial Center (PGC) at University of Min-
nesota in their image pre-processing pipelines. Both algorithms fall into
the first taxa (i.e. spectral substitution) of Gangkofner et al. (2008). The
hyperspherical color fusion is a spectral component substitution fusion
method. This is specifically designed for enhancing WorldView-2 im-
agery, though it is capable of fusing any multispectral imagery of three
or more spectral channels. The high-pass filter (HPF) fusion is a spatial
domain method (Gangkofner et al., 2008) that employs a convolution
using a high-pass filter on the high resolution PAN image and then
combining the filtered frequencies with the lower resolution MS image.
The HPF is comparatively computationally intensive than BRV fusion.
The principal component analysis (PCA) is a statistical method that
transforms a multivariate dataset of correlated variables into a dataset of
uncorrelated linear combinations of the original variables. The PCA
methods fall into the component substitution class. The projective res-
olution merge (PRM) method combines high-resolution panchromatic
images with lower resolution multispectral images while retaining the
projective geometry used by the panchromatic data. The subtractive
(SUB) fusion uses the subtractive algorithm to resolution enhance the
MS image. While the SUB fusion specifically designed for IKONOS and
QuickBird satellite sensors, it can be generalized to other commercial
sensors as well (Ashraf et al., 2012). Both PRM and SUB fusion algo-
rithms can be grouped into the projection and substitution taxa of
Ranchin and Wald (2000). The wavelet transform (WVL) fusion, a
spatial domain fusion method, extracts the high-frequency detail co-
efficients from the high spatial resolution PAN image and combines it
with the spectral information obtained from the MS image using a
combination model. All fusion algorithms were performed at their
default settings to preclude the effect of the parameter optimization
process on individual algorithms and to ensure an unbiased quality
assessment.

2.3. Image fusion quality evaluation

A fusion algorithm that preserves the spectral properties of the MS
data and the spatial properties of the PAN data would be ideal, but there
is always compromise (Witharana and Civco 2012). We corroborated
both objective and subjective assessment strategies to benchmark the
spectral and spatial congruency of fused products to their parent im-
agery (Fig. 2).

Objective quality assessments can be performed either using a direct
approach or an indirect approach. The direct approach gauges the
quality of the fused imagery itself. The indirect approach assesses the
quality of products extracted from the fused imagery (Witharana et al.,
2016). We tasked the direct approach, which involves spectral and
spatial quality metrics, to gauge the quality of fused products. In our
indirect approach, we used classification accuracy metrics to assess the
deep learning model predictions. Tables 2 depicts the quality metrics
that we used in the direct approach. Seven spectral and five spatial
metrics constitute to the error budget. The most widely used metrics for
evaluating spectral fidelity include; band-wise correlation (Band-CC),
deviation index, peak-signal-to-noise ratio (PSNR), entropy, and mean
structural similarity index (MSSIM) (Karathanassi et al., 2007, Ehlers
et al., 2010; Yakhdani and Azizi 2010; Witharana et al., 2013, 2016).
The MSSIM models any distortions as a combination of loss of correla-
tion, luminance distortion, and contrast distortion. Wald (2000) pro-
posed the ERGAS metric (from its French acronym: erreur relative
globale adimensionnelle de synthese, i.e relative dimensionless global
error in synthesis), which aims to provide a quick but accurate measure
of the overall quality of a fused product. The spectral angle mapper
(SAM) was utilized to assess the overall spectral quality of fused images
(Witharana et al., 2016). Excluding two spectral metrics (ERGAS and
SAM), all other metrics were calculated in band-wise manner. Our
spatial fidelity metrics (Table 2) encompassed high-pass correlation
(HP-CC) and edge detection using filters Canny (Canny edge CC), Sobel
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Fig. 2. A schematic of the fusion quality evaluation workflow.

(Sobel-edge RMSE), correlation between PAN and fused bands (PAN-
CC), and correlation between phase congruency images of the original
PAN and fused bands (Ehlers et al., 2010; Gangkofner et al., 2008;
Yakhdani and Azizi 2010). Detailed discussion of an array fusion quality
metrics including the ones used in this study can be found in the in-
clusive studies conducted by Witharana and Civco (2012), Witharana
et al. (2014), Witharana et al. (2016).

Subjective fusion quality evaluation entailed two remote sensing
analysts with manual image-interpretation skills to inspect the color
preservation and spatial improvement of fused images with respect to
their parent MS and PAN images (Fig. 2). We selected both true color
(blue, green, and red) and false-color composites (green, red, and near
infrared (NIR)) of candidate locations from each of the study sites for
visual analysis. The color composites along with their original images
were inspected by the analysts to identify spectral distortions (e.g.,
brightness reversions, saturation, a complete change of spectral char-
acteristics, unnatural/artificial colors) and spatial improvement in
general context. Analysts were asked to report the best two and the
worst two fusion algorithms based on the spectral and spatial fidelity of
the fused products. When benchmarking pansharpening quality, the
analysts specifically focused on spectral and spatial clarity (e.g. edge
enhancement along troughs) in relation to topographical details in fused
images. Ideally, we would expect the analysts to rank order all the fused
products from the best fusion algorithm to the worst fusion algorithm;
however this approach is not practical because the human brain can
easily discriminate extreme. Because the human brain can easily
discriminate extreme variations and categorize in to limited number of
cohorts (for example, the best and worst fused images) but fails to
distinguish subtle variations among images with similar spectral and
spatial properties (Fernandez and Wilkins 2008).

2.4. Deep learning (DL) convolutional neural net (CNN) model
application

We have already trained, validated, and tested a DLCNN model to
classify ice-wedge polygons from VHSR commercial satellite imagery
(Bhuiyan et al., 2019). Our IWP mapping workflow centers on the Mask
R-CNN model (He et al., 2017), which is an extended method for object
instance segmentation. It has widely been acknowledged as a promising
algorithm in semantic segmentation tasks across a multitude of scientific
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domains (Burke et al., 2019; Cabrera et al., 2019; Danielczuk et al.,
2019; Zhang et al., 2019). The Mask R-CNN architecture is built on the
Faster R-CNN (Ren et al., 2015) architecture with an additional function
to predict the object masks (He et al., 2017). The Mask R-CNN is a two-
stage algorithm. It first generates proposals (i.e., candidate object
bounding boxes) after scanning the image and subsequently the model
predicts the class, bounding box, and binary mask for each region of
interest (ROI) (He et al., 2017). The primary segments of the Mask R-
CNN include; backbone architecture Residual Learning network
(ResNet) (He et al., 2017) for feature extraction, Feature Pyramid
Network (FPN) (Lin et al., 2017) for improving representation of objects
at multiple scales, and other modules, such as Region Proposal Network
(RPN) for generating (Rol), Rol Classifier for class prediction of each
Rol, Bounding Box Regressor (BBR) for refining Rol, and FCN (Long
et al., 2015) with RolAlign (He et al., 2017) and bilinear interpolation
for predicting pixel-accurate mask. A detailed discussion on the Mask R-
CNN algorithm is beyond the scope of this study and we encourage
readers to refer He et al. (2017) for deeper insights on CNN architecture
and the implementation.

We trained DLCCN model using hand-annotated ice-wedge polygon
samples generated based on the image patches that were extracted from
VHSR satellite imagery (Bhuiyan et al., 2019). We utilized ResNet-101
as the backbone of the Mask R-CNN model. The model was trained
with a mini-batch size of 2 image patches (each patch with the dimen-
sion of 200 pxl x 200 x1), 350 steps per epoch, learning rate of 0.001,
learning momentum of 0.9, and weight decay of 0.0001. To minimize
overfitting, data augmentation was applied to introduce variability in
the training data for acceptable estimation accuracy. During calibration,
the weights and biases of each neuron were estimated iteratively by
minimizing a mean squared error cost function using a gradient descent
algorithm with back propagation. We exercised a transfer learning
strategy. Pre-trained Mask RCNN was retrained using approximately
40,000 hand-annotated ice-wedge polygon samples. In the training
schedule, the samples were divided into three categories of training
(80%), validation (10%) and testing (10%).

The VHSR imagery used in the training phase were provided by the
Polar Geospatial Center (PGC) as pansharpened 0.5 m products. The
PGC uses the weighted Brovey transform as the standard data fusion
algorithm in their image pre-processing workflows. In this study, we did
not train the model based on training data from different fused products,
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Table 2
Summary of quantitative spectral and spatial fidelity metrics.

Metric Addressed issue/domain/expected

value

Band correlation coefficient
(Band-CC)

Spectral e Quantifies the spectral
correspondence between the original
MS and fused images.

domain [-1,1]

As close to 1 as possible

Quantifies the normalized absolute
difference of the fused image with the
original MS image.

domain [0,c0)

As close to 0 as possible

Indicates the radiometric distortion of
the fused image compared to the
original MS image.

The highest possible PSNR

Measures the additional information
(spectral and spatial) available in the
fused image compared to the original
MS image.

The smallest possible entropy
difference with the original MS image
Reveals the spectral and structural
similarity between the fused and
original MS image by luminance,
contrast, and structure and applying
to a moving window.

domain [0,1]

As close to 0 as possible

Pixel-wise comparison of fused image
and original MS image. The value

0 indicates low resemblance while 1
indicates a high resemblance.
domain [0,1]

As close to 0 as possible

A global indicator that calculates the
amount of spectral distortion.
domain [0,c0)

Lower value (<3)

Quantifies the correlation between
the HP filtered bands of fused image
and the HP-filtered PAN image.
domain [—-1,1]

as close to 1 as possible

Quantifies the correlation between
the PC bands of fused image and the
PC of PAN image.

domain [-1,1]

as close to 1 as possible

Quantifies the correlation between
the PAN image and the fused MS
image.

domain [—1,1]

as close to 1 as possible

Measure the average amount of
spatial distortion between Sobel
filtered PAN and Sobel-filtered fused
image bands.

domain [,c0)

Lower value

A band-wise comparison of edges
detected in the original PAN and the
fused image. CES measured in
percent.

domain [0,100]%

as close to 100 as possible

Deviation index (DI)

Peak signal-to-noise ratio
(PSNR)

Entropy

Mean structural similarity
index (MSSIM)

Spectral angle mapper
(SAM)

Relative dimensionless
global error in synthesis
(ERGAS)

Spatial High-pass (HP)
Correlation coefficient (HP-

CC)

Phase congruency (PC)
correlation coefficient (PC-
CC)

Panchromatic (PAN)
correlation coefficient (PAN-
CQ)

Root-mean-squared-error
Sobel edge (Sobel-RMSE)

Canny edge correspondence .
(Canny Edge CC)

instead, we directly re-purposed the previously trained DLCNN model
on the candidate fused imagery (Fig. 2). This will allow us to benchmark
the prediction accuracies with respect to a single DLCNN model trained
on a distinct set of hyperparameters. However, the positive or negative
effect on image quality on model inferences can also be gauged with
respect to the algorithm used in the fusion process. The DLCNN model
prediction results from the candidate fused products were evaluated for
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classification accuracy and segmentation quality.
3. Results
3.1. Image fusion quality

3.1.1. Visual analysis

Figs. 3 and 5 depict examples for the representative test areas that
were used in the visual evaluation. Two analysts reported the best two
and the worst two fusion algorithms based on the spectral and spatial
fidelity of the fused products. Tables 3 and 4 summarizes the manual
benchmarking of fused imagery. With respect to spectral quality, ana-
lysts documented the HCS and WVL fusion algorithms as the best two
algorithms for study sites 1 and 2. The PRM fusion reported worst
spectral fidelity for both study sites, whereas the HPF and PCA fusions
reported worst spectral results for the study site 1 and study site 2,
respectively. Spatial quality benchmarking partly exhibited the opposite
of spectral rankings. The HPF fusion showed the best spatial improve-
ment in both study areas along with the SUB and HCS fusion algorithms.
The worst spectral fidelity was shown by the WVL and PCA fusion
methods. Despite the spatial details, serious color reversion can be seen
in PRM fused products (Figs. 3(h) and 4(h)). In terms of spatial
improvement, while the PCA (Figs. 3(f) and 4(f)) and WVL (Figs. 3(j) and
4(j)) methods maintained high degree of spectral agreement with the
corresponding original MS imagery (Figs. 3(b) and 4(b)), they showed
hardly any spatial improvement. Despite the resulting high contrast
images show some spectral degradation, the spatial improvement of the
HPF-fused imagery compensates for the losses in color fidelity. The HPF
product is more visually efficient than its main contender (the HCS
fusion algorithm) since it expediently signals rich visual cues to the
observer to easily follow the microtopographic segmentations and un-
dulations resulting from underlying ice-wedge network. Comparatively
the HCS and SUB fusion exhibited mediocre visual quality (Figs. 3 and
4). Both BRV products showed spectral artefacts, especially over the
water bodies (Fig. 3(c) and (g)).

3.1.2. Quantitative analysis

The visual evaluation was corroborated with a quantitative fusion
quality budget consisting of an array of spectral and spatial indices.
Figs. 8-10 and Figs. 11-13 correspond to the summarization of objective
quality budget from the candidate site 1 and 2, respectively. In relation
to fused imagery from study site 1, the basic spectral metric (Fig. 8) -
correlation coefficient (CC) - reports the best scores for the HCS, PCA,
and SUB fusion algorithms indicating discernible band-wise agreement
between fused and original MS imagery. The fused product from PGC
reported the lowest CC with high variability. The HPF algorithm showed
CC results comparable to standard BRV fusion method. In terms of de-
viation index (DI) (Fig. 8), The PCA showed the worst scores with high
variability. While the HCS reported the lowest DI, the HPF, PGC, and
SUB fused products showed low and akin results. With respect to the
peak signal-to-noise ratio (PSNR), the SUB fusion algorithm reflected the
best scores followed by HCS and HPF fusion algorithms. The highest
radiometric distortion was shown by the fused product from the PGC
and it was comparable to the PSNR scores of standard BRV algorithm
(Fig. 8). The best scores for Entropy was reported by the WVL fusion
algorithm, while the highest Entropy difference was shown by the BRV
fusion algorithm. Comparatively, the HCS algorithm had low entropy
difference, indicating the radiometric similarity to the original MS
image. The HPF methods had the least and greatest radiometric distor-
tions, respectively. The standard BRV fusion reported the worst scores
for the structural similarity measure (MSSIM) (Fig. 8). The low MSSIM
indicates the loss of illumination, radiometric alteration, and contrast
distortion between the fused and the original MS images. The HCS, SUB,
and PGC fused products manifested high scores for the MSSIM. Ac-
cording to the two global measures (Fig. 8) — spectral angle mapper
(SAM) and relative dimensionless global error in synthesis (ERGAS) -,
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Fig. 3. Visual inspection of WV2 scene from site-1 for spectral and spatial fidelity of fused products. Original MS and fused products are shown as true color
composites. (a) PAN image, (b) MS image, (c) Brovey fusion, (d) Hyperspherical color transform fusion, (e) High-pass fusion, (f) Principal component analysis fusion,
(g) Fused product from PGC, (h) Projective resolution merge, (i) Subtractive resolution merge, (j) and Wavelet fusion. Satellite imagery Copyright DigitalGlobe, Inc.

Table 3
Visual benchmarking of spectral fidelity.

Test area Spectral fidelity
Best Worst
Site 1 WVL, HCS PRM, HPF
Site 2 WVL, HCS PRM, PCA
Table 4

Visual benchmarking of spatial fidelity.

Test area Spatial fidelity

Best Worst
Site 1 HPF, SUB WVL, PCA
Site 2 HPF, HCS WVL, PCA

the PRM fusion had the worst score for SAM and third worst score for the
ERGAS. The BRV, PGC, PRM, and PCA fused products exhibited
noticeably high scores for ERGAS, questioning the spectral authenticity

of the fused imagery with respect to the original MS image. The HCS,
HPF, and SUB yielded very healthy scores for the ERGAS. Both the SAM
and ERGAS have disqualified BRV, PCA, PGC, and PRM products. Figs. 9
and 10 illustrate the spatial quality plots for the fused imagery from site
1. The best spatial agreement (PAN-CC) between the original PAN image
and the fused product was shown by the PRM fusion algorithm. While
the SUB and HCS reported the highest mean PAN-CC scores, the HPF had
the third best outcome (Fig. 9). The PGC scored the worst for the PAN-CC
indicating the inability of the underlying fusion algorithm to inject high
frequency information from the PAN to the MS image. Likewise PAN-CC,
the PGC and WVL showed the worst agreement with respect to the phase
congruency (PC-CC) imagery of fused bands and the original PAN
(Fig. 9). The HPF reported the highest score for PC-CC testifying its
ability to maintain the same level of spatial details in the fused product.
While the SUB algorithm had the best score for the high-pass filter
correlation (HP-CC), the PGC product showed the worst metric values.
In general, majority of fusion algorithms were able to maintain a healthy
Canny edge correspondence between fused bands and original PAN
image. The HPF fusion shown to be the best contender with low vari-
ability. In contrast to the Canny edge measure, the RMSE of the Sobel
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Fig. 4. Visual inspection of WV2 scene from site-2 for spectral and spatial fidelity of fused products. Original MS and fused products are shown as true color
composites. (a) PAN image, (b) MS image, (c) Brovey fusion, (d) Hyperspherical color transform fusion, (e) High-pass fusion, (f) Principal component analysis fusion,
(g) Fused product from PGC, (h) Projective resolution merge, (i) Subtractive resolution merge, and (j) Wavelet fusion. Satellite imagery Copyright DigitalGlobe, Inc.

edge detector has been able to accent the spatial fidelity of fused
products. Evidently, the PGC product showed the worst spatial
improvement whereas PRM and BRV appeared to be the promising fused
products. Fig. 10 depicts a band-wise comparison of PC-CC and HP-CC
for a selected subset of algorithms. This selection was based on the vi-
sual benchmarking (Table 4) of the fused imagery for the spatial quality.
With respect to the PC-CC metric, the HPF showed the highest and
consistent agreement across all fused bands against the original PAN
image. The second best contender is the SUB fusion algorithm. Switching
of ranking of HPF and SUB can be observed in relation to the HP-CC
metric. Yet, the HPF fused product appeared to be the most consistent
one across all bands. The worst band-wise results were reported by the
PGC fused product, which was clearly inferior to even the WVL fusion
algorithm.

The spectral quality budget of site 2 (Fig. 11) provides objective
benchmarks for color preservation character of the candidate fused
products. Similar to the observations from site 1, the PGC product re-
ported the worst scores for the band-CC measure. The PCA and PRM had
serious color distortions, which are clearly evinced in their band-CC and
DI plots. Both the BRV and WVL were quality spectrally faithful in terms
of band-CC; however, the BRV fusion showed high deviations scores for
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the DI measure. In terms of radiometric distortions, the HPF, HCS, WVL,
and SUB reported high and healthy scores for the PSNR. In contrast, the
PGC and BRV performed poorly. The highest structure similarity
(MSSIM) between the fused and the original MS was shown by the PCA
algorithm while BRV and PRM showed poor results. The SAM and
ERGAS provide a global picture of all the fusion contenders. The PGC
fused product performed poorly compared to the rest of the pan-
sharpened products. The HPF, HCS, and SUB showed promising metric
values for the both SAM and ERGAS. The summarization of spectral
quality measures for the site 2 are shown in Figs. 12 and 13. The worst
results for the PAN-CC were shown by the PCA and PGC fused products.
The PRM shown to be the best algorithm with respect to PAN-CC
(Fig. 12). The comparison results from PC-CC manifest that the HPF
and SUB fusion algorithms were able to maintain high degree of spatial
agreement between the fused and PAN images. Obviously, WVL and the
PGC fused products provided poor-quality results. The HP-CC metric has
reiterated the benchmarking of PC-CC for the PGC, PCA, and WVL fused
products (Fig. 12). The HPF and SUB fusion algorithms elected to be the
best contenders in terms of HP-CC. As seen in the site 1, except the PRM,
all others produced high and comparable results for the Canny edge
metric without providing much clues on the spatial efficacy of
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Fig. 5. Zoomed-in views from Site-1 showing edge-filtered (Canny edge de-
tector and Sobel edge detector) images and deep learning model predictions
that are shown in cyan outline on true color composites of fused imagery. (a)
PAN image, (b) MS image, (c) Canny edge filtered PAN image, (d) Sobel edge
filtered PAN image, (e) Canny edge filtered MS image, (f) Sobel edge filtered MS
image. Edge detection and model prediction of fused products are arranged into
columns with three panels for each fused product: (g) Brovey fusion, (h)
Hyperspherical color transform fusion, (i) High-pass fusion, (j) Principal
component analysis fusion, (k) Fused product from PGC, (1) Projective resolu-
tion merge, (m) Subtractive resolution merge, and (n) Wavelet fusion. Yellow
arrows indicates example polygons seen on the image. Satellite imagery
Copyright DigitalGlobe, Inc.

underlying fusion algorithms. The Sobel edge detector has testified for
the poor spatial improvement associated with the PGC fused imagery
(Fig. 12). As discussed under site 1, we have a selected subset of fused
products based on the visual benchmarkings (Table 4) to do a band-wise
comparison of PC-CC and HP-CC metrics (Fig. 13). All fused bands of the
HPF fusion algorithm exhibited high and stable scores for the PC-CC and
the HP -CC metrics. In contrast the PGC and WVL showed inferior
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results. The HP-CC values of PCA algorithm show a serious fusion arti-
fact associated with the NIR band.

3.2. Deep learning model predictions

We applied the trained Mask-RCNN model on the fused imagery from
both study sites. The model-inferred imagery were subjected to careful
visual inspections and standard accuracy assessments. Figs. 5, 6, and 7
and Tables 5 and 6 pertain to the results from the qualitative and
quantitative evaluations. Fig. 5 shows an example area from site 1 for
the detailed visual analysis. The figure consists of original PAN and MS
imagery and their edge maps based on Canny and Sobel edge detectors.
Fused images are superimposed with model predictions (blue outline).
Canny and Sobel edge maps are also provided for all the fused products.
It should be noted that the edge maps for the fused and original MS
imagery are based on the red band only. Evidently, the MS image
(Fig. 5b) provides insufficient spatial details to resolve ice-wedge poly-
gon boundaries when compared to the PAN image (Fig. 5a). The Canny
and Sobel edge maps (Fig. 5c and f) of MS image further attest the ne-
cessity for the injection of high-frequency information from the PAN to
the MS for an accurate outlining of ice-wedge polygons. Considering the
example area, fused products of BRV, PCA, PGC, SUB, and WVL (Fig. 5
(g, j, k, m, n, respectively) have not been able to produce successful
model predictions. In contrast, the HPF fused product (Fig. 5(i)) pro-
duced the best prediction results (see blue outlines). A close inspection
of HCS and HPF (see yellow arrows on Fig. 5 (h and i) fused images
reveal that the edge enhancement of the HPF clearly lead the DL model
to conveniently locate the microtopographic discontinuity between two
ice wedge polygons. However, in the HCS-fused image, the DL model
was unable to resolve two polygons, instead, it ran into an under-
segmentation scenario. Comparison of Sobel and Canny edge detection
of fused imagery against those of PAN demonstrates the poor edge
correspondence in WVL and PCA fusion methods. Similar to the site 1
(Fig. 5), a quick appraisal of PAN and MS imagery from site 2 (Fig. 6a
and b) reveals the need for the edge enhancement of MS image for an
accurate detection of ice wedge polygons. Successful DL model pre-
dictions were seen in the fused products of HCS, HPF, and SUB algo-
rithms. The HPF fusion has provided substantial spatial details to the DL
model to resolve trough network and connected ice-wedge polygons.
This has actually prevented potential under-segmentation as seen in the
HCS fused product (see yellow arrows in Fig. 6h and i). In general, BRV,
PGC, and PRM exhibited poor classification results (Fig. 6g, k, 1),
respectively). The poor spatial improvement of the WVL and PCA fusion
methods results zero detection of ice-wedge polygons. A close inspection
of Canny and Sobel edge maps against those of the PAN image prompts
the spatial authenticity of fused products. For example, the WVL and
PCA have clearly missed the edge information from the original PAN
image. While the fused products of the BRV and PGC do show some level
of edge correspondence to the original PAN image; they lack the spatial
arrangement of edges that is necessary for the DL model to follow in the
prediction stage.

In order to understand how spatial details along with the color in-
formation guide the manual delineation of ice-wedge polygons, we
asked two analysts to benchmark the fused products on the premise of
comfort of discriminating the targets of interest from the background
objects. Akin to fusion quality evaluation, the visual evaluation quan-
tized fused products to the benchmarks of best and worst (Table 5). In
both candidate scenes, the HPF fusion algorithm elected to be the best
where as WVL along with PCA and PRM were identified as the worst
fused products. Both the SUB and PGC stood as successful contenders to
the HPF fusion algorithm. Fig. 7 shows one of the example areas that
were used to gauge the quality manual delineations. To capture the two
ends of the spectrum, outlines are provided for the best (HPF and PGC)
and worst (PCA and WVL) fused products (Fig. 3b and c¢). The PAN image
is provided as a reference (Fig. 3a) to visualize manual boundary out-
lining discrepancies. Direct comparison of HPF and PGC based outlines
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Fig. 6. Zoomed-in views of Site-2 showing edge-
filtered (Canny edge detector and Sobel edge detec-
tor) images and deep learning model predictions that
are shown in cyan outline on true color composites of
fused imagery. (a) PAN image, (b) MS image, (c)
Canny edge filtered PAN image, (d) Sobel edge
filtered PAN image, (e) Canny edge filtered MS image,
(f) Sobel edge filtered MS image. Edge detection and
model prediction of fused products are arranged into
columns with three panels for each fused product: (g)
Brovey fusion, (h) Hyperspherical color transform
fusion, (i) High-pass fusion, (j) Principal component
analysis fusion, (k) Fused product from PGC, (1) Pro-
jective resolution merge, (m) Subtractive resolution
merge, and (n) Wavelet fusion. Yellow arrows in-
dicates example polygons seen on the image. Satellite
imagery Copyright DigitalGlobe, Inc.
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Fig. 7. Manual delineation of ice wedge polygons based on four fused products. (a) Zoomed-in view of PAN image, (b) Manual delineation based on HPF fusion (red
outline) and PGC fusion (blue outline), (c) Manual delineation based on PCA fusion (green outline) and WVL fusion (magenta outline). Satellite imagery Copyright

DigitalGlobe, Inc.
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Fig. 8. Spectral quality plots for the fused imagery products of site-1. In each plot, the x and y axes depict the value of the quality metric and the candidate fusion
algorithms, respectively. BRV — Brovey fusion, HCS- Hyperspherical color transform fusion, HPF- High-pass fusion, PCA- Principal component analysis fusion, PGC -
Fused product from Polar Geospatial Center, PRM - Projective resolution merge, SUB - Subtractive resolution merge, and WVL — Wavelet fusion. Error bars +/- 1 SD.

(red and blue respectively) show overall agreement; however, the PGC
product has misled the interpreter towards over predictions due to the
synthetic ambiguity in trough network posed by fusion artefacts. Manual
delineation of PCA and WVL (green and blue outlines, respectively)
obviously signals the fact that the interpreter has missed spatial details
in the image. Predicted boundaries are largely driven by the legacy
spatial details from the MS image. Table 6 summarizes the overall
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accuracy of DL model predictions with respect to the fused products. In
both sites, the HPF fusion has been able to maintain comparatively high
accuracies. The SUB and HCS showed an upswing in their accuracies
moving from site 1 to 2. The PGC maintained low and stable accuracies.
In agreement with fusion quality and manual detectability, both PCA
and WVL lead to worst accuracies in the group.
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Fig. 9. Spatial quality plots for the fused products of site-1. In each plot, the x and y axes depict the value of the quality metric and the candidate fusion algorithms,
respectively. BRV — Brovey fusion, HCS- Hyperspherical color transform fusion, HPF- High-pass fusion, PCA- Principal component analysis fusion, PGC - Fused
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Fig. 10. A band-wise comparison for site-1. Correlation of fused and original PAN imagery for two spatial metrics; phase congruency and high-pass filtering. In each
plot, the x and y axes depict the value of the quality metric and the candidate fusion algorithms, respectively. BRV — Brovey fusion, HCS- Hyperspherical color
transform fusion, HPF- High-pass fusion, PCA- Principal component analysis fusion, PGC - Fused product from Polar Geospatial Center, PRM - Projective resolution
merge, SUB - Subtractive resolution merge, and WVL - Wavelet fusion.

4. Discussion overlooked, but yet important aspect that is relevant to the successful
adaptation of deep learning convolutional neural net (DLCNN) in very
Here we report the first exploratory study probing into an high spatial resolution (VHSR) satellite image analysis. Scene
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Fig. 11. Spectral quality plots for the fused imagery products of site-2. In each plot, the x and y axes depict the value of the quality metric and the candidate fusion
algorithms, respectively. BRV — Brovey fusion, HCS- Hyperspherical color transform fusion, HPF- High-pass fusion, PCA- Principal component analysis fusion, PGC -
Fused product from Polar Geospatial Center, PRM - Projective resolution merge, SUB - Subtractive resolution merge, and WVL — Wavelet fusion. Error bars +/- 1 SD.

dependency of fusion algorithms impedes the transferability of the
knowledge on their performances across application domains. This is
especially true for synthesis of imagery across large geographic areas (e.
g. circumpolar mapping applications) where landscape heterogeneity
can steer the performances of fusion algorithms.

The fundamental trait of imagery that unlocks the permafrost fea-
tures like ice-wedge polygons is the high-spatial frequencies recorded in
the PAN imagery. As seen in close-up views (Figs. 3-6), the MS imagery
alone just provide a broader context but fail to morphometrically pro-
nounce the polygonal landscape into individual units. Vice versa, the
PAN imagery alone are deficient to capture nuance spectral character-
istics among different ice wedge polygon types. This demands for a
delicate blending of high frequencies from PAN with MS imagery.
Comprehensive quantitative evaluation in conjunction with visual
gauging of fusion algorithms is therefore necessary to identify those
techniques that are optimal with respect to the practical implementa-
tion. Visual assessment of fusion results confer that not all fusion algo-
rithms behave consistently across landscape variations. For example,
presence of low-centered ice-wedge polygon with water impoundments
in polygon centers (sedge tundra) influence the performances of fusion
algorithms compared to dry tundra regions. Landscape dependency of
fusion algorithms is important to consider in pan-Arctic scale ice-wedge
polygon mapping applications. The HPF fusion algorithm exhibited
degraded spectral quality in site 1, which is dominated by water sur-
faces. In contrast, the HCS fusion algorithm was able to preserve the
spectral characters of the MS imagery while substantially improving the
spatial details in both study sites. From the viewpoints of both subjective
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and objective evaluations, no single algorithm was able to produce su-
perior results by simultaneously preserving spectral and spatial prop-
erties of the original MS and PAN images. Visual rating of fusion quality
agrees with the quantitative quality budget. Despite their promising
spectral quality budget, algorithms such as WVL, PCA, BRV, performed
poorly with respect to spatial metrics. For instance, the WVL fusion re-
ported competitive scores for the measures like PSNR, Entropy, and
ERGAS (Figs. 8 and 9) at the serious expense of spatial fidelity. This
elucidates the fact that the modelled image has gained almost zero
benefit from the high-frequencies of the PAN image. These observations
are comparable with the previous studies, such as Ehlers et al (2010),
Kim et al (2011), and Witharana et al. (2013). Besides obtaining an
overall picture on the performances of fusion algorithms in relation to
permafrost mapping applications, we also wanted to eventuate potential
challenges associated with the types of pansharpening approach used for
image products, such as the weighted Brovey fusion algorithm. Based on
our analysis, the current Brovey algorithm based products from the PGC
is in acceptable quality for general image analysis purpose, such as
manual interpretations and more localized semi/automated analysis.
However, the spectral and spatial authenticity and, most importantly,
the impact on proceeding analysis steps are questionable. Our quanti-
tative spectral and spatial quality budget with DLCNN approaches
(Figs. 8-13) places the PGC'’s fused product in a low rank. The Brovey
fusion algorithm taxonomically falls into the category of simple spectral
substitution, which generally yield good visual quality at the expense of
degraded radiometric and spatial distortions (Klonus and Ehlers, 2007;
Karathanassi et al., 2007; Gangkofner et al., 2008). Due to the spectral
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Fig. 13. A band-wise comparison for site-2. Correlation of fused and original PAN imagery for two spatial metrics; phase congruency and high-pass filtering. In each
plot, the x and y axes depict the value of the quality metric and the candidate fusion algorithms, respectively. BRV — Brovey fusion, HCS- Hyperspherical color
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merge, SUB - Subtractive resolution merge, and WVL - Wavelet fusion.
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Table 5
Visual evaluation of the manual detectability ice-wedge polygons.
Test area Detectability
Best Worst
Site 1 HPF > SUB PRM > WVL
Site 2 HPF > PGC PCA > WVL
Table 6

Summary of deep learning classification accuracy with respect to fused imagery.

Fusion algorithm Overall accuracy

Site 1 Site 2

BRV 0 185
HCS 43.3 70.3
HPF 80.0 74.1
PCA 0 0

PGC 36.7 33.3
PRM 70 66.7
SUB 43.3 62.9
WVL 0 0

normalization step in BRV-based approaches, the brightness values can
be changed substantially affecting the histograms of the image bands
(Vijayaraj et al., 2006). Our contention is that regional-scale mapping
applications that sits on deep learning or other automated methods
would benefit from multiple data fusion techniques. Overall, the HPF,
HCS, SUB exhibited superior performances than Brovey. Despite of the
subjectivity of visual analysis, our premise is that the human perception
inherits the most integrated mechanisms that include spectral and
spatial criteria for benchmarking fusion results. The visual inspections
have elected the HPF method as one of the best contenders for manual
delineation of ice-wedge polygons, while the objective metrics report
noticeable disturbances to the spectral response. Visibility of important
information and information saliency are the key ingredients in the
manual quality assessment (Garcia et al., 2012). The HPF-pansharpened
images provided the optimal visual grammar (Aksoy and Cinbis 2010) to
accurately extract the ice-wedge polygons from the fuzzy background.
Barten (2003) noted that in the human visual system, objects can
generally be better distinguished in image from each other or from their
background, especially, if the difference in luminance (or the contrast) is
large. Ascending ranking of HPF, HCS, and SUB fusion algorithms, it is
apparent that the HPF resorts the highest contrast for the ice-wedge
polygons. Detailed psychophysical and psychological studies, such as
O’Shea et al (1994); Tsushima et al. (2014), and Tsushima et al. (2016)
report that spatial resolution greatly correlates with depth sensation and
higher resolution enables stronger depth sensation, via that sense the
realness of the image. When translating these findings to our experi-
mental results, analysts favored the high-contrast fused products since
those provided the key visual grammar - depth sensation - associated
with the microtopography.

An important facet of our experiment is to assess how the quality of
data fusion affect the DLCNN model predictions. Given the success of
DLCNN in computer vision applications one could argue that, by design,
deep networks are able to handle image quality variations since the
hidden layers can digest the higher-level abstractions progressively from
the low-level motifs (LeCun et al., 2015). Moreover, additional data
augmentation procedure, such as mirroring, synthetic noise, and rota-
tions can leverage the DLCNN model’s immunity to image perturba-
tions. We remit the point that providing good quality images could
potentially improve the efficacy of the DLCNN classifications. Alter-
ations originating from the fusion process directly disturb the quality of
the imagery funneling to the DLCCN model. Visual evaluations and
quantitative assessments assert the link between fusion quality and
DLCCN model predictions (Tables 5 and 6, Figs. 4 and 5). The DLCNN
model was trained based on the hand annotated training samples are
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based on the pansharpened imagery of the Brovey fusion algorithm. This
can spontaneously trigger the notion that better classification results
should come from fused products of Brovey fusion algorithm than those
of either HPC or HCS fusion algorithms. However, improved spatial
resolution with preserved spectral details lead the DLCNN to accurately
resolve ice-wedge polygons from the fused images of HPF and HCS. One
reason behind the low immunity of the DLCNN model to landscape
variations could be the quality of the pansharpened imagery. It is
generally expected that the DLCNN model could face difficulties when
moving from one landscape regime to another, for instance from sedge
tundra to tussock dominant or to graminoid tundra, partly because of the
confinement of training samples to certain locale. Expanding the re-
pository of training samples to capture the landscape variability across a
large geographic domain is extremely time and labor prohibitive.
Similarly, leveraging the quality of pansharpened imagery could sub-
stantially improve the DLCNN model’s elasticity to different tundra
units. Although we have tested an array of fusion algorithms, we admit
that there are other fusion methods, such Graham Schmidt fusion (Laben
et al., 2000), University of New Brunswick fusion (Zhang 2002), and
Ehlers fusion (Ehlers et al., 2010), which are proven to be successful in
different application domains (Witharana et al., 2013, 2016) and that
may further improve mapping efforts of IWPs.

Application of VHSR commercial satellite imagery for addressing
transdisciplinary research challenges in Arctic sciences has been gaining
a fast attention over the last few years. Despite the luxury of free access
to sheer volumes of commercial imagery, the best practices and work-
flows for handling VHSR imagery for circumpolar applications are still
at early stages. Rapid uptake of DLCNN approaches in VHSR satellite
image analysis is posing new frontiers in modern remote sensing.
Findings from our systematic analysis posits the scene dependency of
fusion algorithms and the need for careful selection of the appropriate
algorithm for the classification problem in hand, or alternatively,
recommend the use of multiple algorithms for large regional applica-
tions. Such gradation of best mapping practices would be of great in-
terest in other permafrost feature mapping such as frost boils, pingos,
baydzherakhs, retrogressive thaw slumps. Continued consideration of
fusion algorithms and training dataset selection and size can guide
Arctic researchers to more effectively exploit the VHSR commercial
imagery in domain-specific applications.

5. Conclusion

There is an emerging need for establishing best practices and
workflows for handling very high spatial resolution (VHSR) satellite
imagery for pan-Arctic applications. Our study highlights the potential
effects of data fusion algorithms on the deep learning convolutional
neural net (DLCNN) model predictions accuracies for pan-Artic ice-
wedge polygon tundra mapping. In addition to advancing our knowl-
edge on the performances of fusion algorithms in relation to permafrost
mapping applications, another important fact that we wanted to even-
tuate is the potential challenges associated with the pansharpened image
products that are derived from the weight Brovey fusion algorithm.
Based on our analysis, the Brovey algorithm based products, such as
from the Polar Geospatial Center, are in acceptable quality for general
image analysis purpose. However, the spectral and spatial authenticity
and, most importantly, the impact on proceeding analysis steps are
questionable. Overall, our experimental results posit the scene de-
pendency of fusion algorithms and the need for careful selection of the
appropriate algorithm for the classification problem in hand, without
limiting to ice-wedge polygon mapping but also other VHSR imagery
enabled permafrost feature mapping applications.
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