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A B S T R A C T   

The utility of sheer volumes of very high spatial resolution (VHSR) commercial imagery in mapping the Arctic 
region is new and actively evolving. Commercial satellite sensors typically record image data in low-resolution 
multispectral (MS) and high-resolution panchromatic (PAN) mode. Spatial resolution is needed to accurately 
describe feature shapes and textural patterns, such as ice-wedge polygons (IWPs) that are rapidly transforming 
surface features due to degrading permafrost, while spectral resolution allows capturing of land-use and land- 
cover types. Data fusion, the process of combining PAN and MS images with complementary characteristics 
often serves as an integral component of remote sensing mapping workflows. The fusion process generates 
spectral and spatial artifacts that may affect the classification accuracies of subsequent automated image analysis 
algorithms, such as deep learning (DL) convolutional neural nets (CNN). We employed a detailed multidimen
sional assessment to understand the performances of an array of eight application-oriented data fusion algo
rithms when applied to VHSR image scenes for DLCNN-based mapping of ice-wedge polygons. Our findings 
revealed the scene dependency of data fusion algorithms and emphasized the need for careful selection of the 
proper algorithm. Results suggested that the fusion algorithms that preserve spatial character of original PAN 
imagery favor the DLCNN model performances. The choice of fusion approach needs to be considered of equal 
importance to the required training dataset for successful applications using DLCNN on VHRS imagery in order to 
enable an accurate mapping effort of permafrost thaw across the Arctic region.   

1. Introduction 

Permafrost is defined as Earth materials that remain at or below 0 ◦C 
for at least two consecutive years (van Everdingen, 1998). Approxi
mately 24% of the exposed land surface of the northern hemisphere is 
affected by permafrost (Brown et al., 1997), which pose challenges to 
infrastructure (Hjort et al., 2018) and is an integral component of what 
makes the Arctic natural environment unique, and especially, the re
gion’s response to climate change (Shur and Jorgenson, 2007). Thawing 
permafrost increases lateral exports of biogeochemical fluxes (Abbott 

et al., 2015, Coch et al., 2018, Levenstein et al., 2018) and alters coastal 
marine ecosystems, tundra geomorphology (Farquharson et al., 2019, 
Lewkowicz and Way 2019; Jones et al., 2019), vegetation (see Schuur 
and Mack 2018), and hydrology (see Lafreniere and Lamoreux, 2019). 
Permafrost landscapes are confronting socioeconomic development 
(Melvin et al., 2017; van der Sluijs et al., 2018, Raynolds et al., 2014) 
and rapid transition catalyzed by climate warming thawing ice-rich 
ground (Hinzman et al., 2005), which is challenging geosystem and 
ecosystem services (Vincent et al., 2017). 

Ice wedges are a common permafrost subsurface feature that is 
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developed by repeated frost cracking and ice-vein growth over centuries 
to millennia (Leffingwell 1915; Black, 1982; Mackay 1984). The growth 
of these wedge-shaped ice bodies is responsible for creating polygonised 
land surface features, i.e. ice-wedge polygons (IWPs). There are two 
major types of ice-wedge polygons: low-centered and high-centered 
(Black 1954; Britton, 1957; Hussey and Michelson, 1966; Péwé, 1975; 
Billings and Peterson, 1980; Everett, 1980; French, 2018). Low- and 
high-centered polygons have very distinctive features that can be rela
tively easily detected on satellite imagery and aerial photos. Low- 
centered polygons are framed by elevated rims that develop above 
actively growing ice wedges; sometimes they contain intrapolygonal 
ponds. High-centered polygons have elevated centers and well- 
developed troughs over ice wedges, often filled with water. The diam
eter of IWPs typically ranges from 5 m to 30 m and the associated 
microtopographic features, such as troughs or rims, are in sub-meter to 
~1-meter scale (Black, 1982; Kanevskiy et al., 2017). Vegetation and 
geology maps suggest that about two-thirds or more of the Arctic 
landscape is occupied by polygonal ground (Raynolds et al., 2019), but 
the exact extent and the prevailing types of IWPs are largely unknown. 
The microtopography associated with IWPs affects the Arctic ecosystem 
from local to regional scales due to the impacts on the flow and storage 
of water (Liljedahl et al., 2016), vegetation and carbon (Hugelius et al., 
2013; Lara et al., 2015). Over the recent decades, ice-wedge degradation 
has been documented at several locations across the Arctic tundra in the 
field and through remote sensing techniques (Jorgenson et al., 2006, 
Jones et al., 2015; Liljedahl et al., 2016; Steedman et al., 2017; Frost 
et al., 2018). Degradation of ice wedges is a quasi-cyclic process with 
degradation often occurring over a shorter time scale than aggradation, 
which tend to accumulate more organic soil (Jorgenson et al., 2015; 
Kanevskiy et al., 2017). The lack of knowledge on the larger 
geographical extent and successional stage of IWPs introduce un
certainties to regional and pan-Arctic estimates of carbon, water, and 
energy fluxes (Liljedahl et al., 2016; Nitze et al., 2018; Turetsky et al., 
2019). 

Explosion of very high spatial resolution (VHSR) commercial sensors 
unlocks transformational opportunities to observe, map, and document 
the microtopgraphic transitions associated with IWPs at multiple spatial 
and temporal frequencies. The entire Arctic has been imaged in 0.5 m (or 
even finer, 31 cm) resolution by Maxar Technologies Inc. (previously 
known as DigitalGlobe, Inc.) owned commercial satellite sensors on 
average four times in the last six years, accumulating over two petabytes 
of pan-Arctic image data. While these ‘big’ imagery repositories are 
freely accessible to Arctic researchers under the U.S. National Science 
Foundation’s Office of Polar Program research awards, the imagery are 
still largely underutilized and derived Arctic science products are rare 
beyond the well-known ArcticDEM. The uses have been limited to field 
reconnaissance and small-scale manual/semi-automated analysis (Jones 
et al., 2011; Skurikhin et al., 2013, Ulrich et al., 2011, Chen et al., 2017). 
Both site-scale analysis based on high-resolution data (Jones et al., 
2018) and landscape-scale analysis based on coarse-resolution data 
(Nitze et al., 2018) limit our capacity to elucidate the effect of sub-meter 
scale IWP degradations on regional, to pan-Arctic, to global scale pro
cesses, such as permafrost carbon climate feedback projections 
(Pachauri et al., 2014). 

Discovery through artificial intelligence (AI), big VHSR imagery, and 
high performance computational (HPC) resources is just starting to be 
realized in Arctic science. Traditional remote sensing image classifica
tion methods fail to grapple with the sheer data volumes and inherent 
scene complexities involved with sub-meter spatial resolution imagery 
(Blaschke et al., 2014). Increasing spectral heterogeneity in VHSR im
agery leads to less class variances of the conventional per-pixel based 
algorithms, which make difficult to accurately resolve fine-scale 
microtopographic features, such as IWPs (Chen et al., 2017; Abolt 
et al., 2019). While the geographic object-based image analysis (GEO
BIA) (Blaschke 2010) competent in handling scene complexities, it is has 
now been flanked by the upsurge of ‘big’ imagery in large-scale 

deployments (Witharana and Lynch 2016; Lang et al., 2018; Sudmanns 
et al., 2019). Over the recent years, deep learning (DL) convolutional 
neural nets (CNNs) have secured an unprecedented dominance on 
computer vision applications (LeCun et al., 2015). Owing to its success 
in everyday image understanding, DLCNNs have now rapidly been 
adapted in VHSR remote sensing image analysis while superseding 
contemporary paradigms like GEOBIA (Zhang et al., 2016; Zhang et al., 
2018; Ma et al., 2019). 

The potentials of adapting cutting-edge DLCNNs from computer 
vision applications to remote sensing image understanding problems 
have been successfully demonstrated in automated mapping of shrubs 
(Guirado et al., 2017), whales (Guirado et al., 2019), seals (Gonçalves 
et al., 2020), and also IWPs (Zhang et al., 2018; Abolt et al., 2019) from 
VHSR imagery. DL approaches are being adapted to finely classify Arctic 
permafrost features from high-resolution remote sensing imagery, 
imagery-derived digital elevation models (DEMs), and LiDAR-based 
DEMs. For example, Zhang et al. (2018) demonstrated the applica
bility of DLCNNs to map IWPs from high-resolution aerial imagery. 
Abolt et al (2019) practiced a deep learning approach to extract IWPs 
from LiDAR-based terrain models. Jiang (2019) developed a CNN to 
classify Arctic wetlands from both CubeSat satellite imagery and the 
ArcticDEM. Huang et al (2020) have made a successful attempt to map 
retrogressive thaw slumps in Tibetan Plateau from CubeSat satellite 
imagery. Accurate delineation and classification of IWPs directly pivo
ted to the spatial resolution of multispectral satellite imagery (Chen 
et al., 2017; Zhang et al., 2018; Abolt et al., 2019). Based on a 
comparative analysis, Muster et al (2012) emphasized the necessity of 
spatial details to accurately detect and characterize IWPs and their 
associative microtopograpic elements, such as trough and rim. However, 
spectral responses of IWP features are typically poorly pronounced in 
imagery. Accurate detection of IWPs therefore mainly depends on 
multispectral imagery with high spatial (i.e. structural) details (Skur
ikhin et al., 2013). 

Despite the palpable success and rapid adaptation of DL in remote 
sensing image classification, there has been very little attention paid on 
the possible dependency of DL model predictions on the key pre- 
processing steps involved in remote sensing image processing work
flows. Compared to computer vision applications, in VHSR satellite 
image analysis, DL model predictions accuracies largely depend on the 
quality of the input imagery. High-level meanings (semantics) we pursue 
could potentially spur depending on the amount of spatial details 
embedded in the image (Vannucci et al., 2001). A single VHSR image 
scene typically covers a sizeable geographic area (~400 km2) with 
highly heterogeneous semantically-complex surficial features. One of 
the critical pre-processing steps that is sandwiched between raw imag
ery and analysis-ready imagery is data fusion or commonly known as 
pansharpening (Witharana et al., 2014, 2016). In order to overcome 
technical limitations, such as saving onboard storage and optimizing the 
signal-to-noise ratio of incoming radiation energy, VHSR commercial 
satellite sensors acquire image data in a low-resolution multispectral 
(MS) mode and high-resolution panchromatic (PAN) mode (Ghassemian 
2016; Shahdoosti and Ghassemian 2016; Li et al., 2017; Meng et al., 
2019). High spatial resolution is essential to accurately describe feature 
shapes and textural patterns, while high spectral resolution is needed to 
classify thematically-detailed land-use and land-cover types (Ehlers 
et al., 2010; Witharana et al., 2016). Blending complementary infor
mation from PAN and MS images via pansharpening facilitates a better 
representation of the observed area (Wald, 2000; Ranchin et al., 2003). 
From a classification point of view, data fusion serves as an integral step 
in the processing of remotely-sensed imagery for earth and environ
mental applications. This is particularly true in mapping microtopo
graphic features, such as ice-wedge polygons and their feature 
associations (e.g. trough, rim) (Jorgenson and Grosse 2016) that are 
seen in permafrost-affected landscapes, where manual and automated 
feature extraction hinge on the spatial details present in the imagery 
(Mora et al., 2015). 
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The central objective of this exploratory study is to systematically 
gauge how the spectral and spatial artifacts of the data fusion process 
influence the prediction accuracies of DLCNN models. Our analysis 
entailed a multidimensional assessment to gauge the spectral and spatial 
fidelities of an array of application-oriented data fusion algorithms when 
applied to VHSR image scenes of ice-wedge polygonal tundra. We are 
here presenting results from the mapping application for permafrost 
land environments (MAPLE, (Witharana et al., 2018; Bhuiyan et al., 
2019)) framework, which is developed to extract information from big 
satellite imagery for Arctic science applications. MAPLE couples DLCNN 
algorithms with the HPC resources from the extreme science and engi
neering discovery environment (XSEDE, (Towns et al., 2014). The cur
rent analysis could unravel the potential predisposition of the DLCNN 
model to data fusion quality and landscape heterogeneity to refine 
automated IWP mapping at regional scales. 

2. Methods 

2.1. Data and study area 

We selected study sites comprising sedge, barren, and tussock tundra 
dominant landscapes, primarily from coastal tundra region of Canada 
(Site 1, 25 km2) and Wrangler Island of Russia (Site 2, 25 km2) (Fig. 1). 
The candidate sites provide a substantial landscape heterogeneity for 
fusion algorithms to cater in the pansharpening process. The Polar 
Geospatial Center (PGC) at University of Minnesota provided the 
radiometrically corrected, orthorectified imagery, which were acquired 
in August 2010 by the Worldview-2 (WV2) commercial satellite sensor. 
The WV2 hyperspatial sensor records the panchromatic (PAN) and the 
eight multispectral (MS) bands with a ground sampling distance of ~ 
0.46 m and ~ 1.84 m at nadir, respectively, with 11 bit radiometric 
resolution. Test site 1, a sedge tundra dominant wetland landscape, 
harbors low-centered ice wedge polygons where the polygon center is 
characterized typically by water impoundment. This image scene also 
has moist tundra, which is dominated by tussock cottongrass 

Fig. 1. Geographical setting of test study sites (a). Candidate image scenes (black hollow box) overlain by the tundra vegetation map for Site 1(b) and Site 2(c). 
Zoomed-in views of the candidate image scenes (d and e) as false-color composites. Tundra vegetation map and the legend are adapted from Raynold et al. 2019. 
Satellite imagery Copyright DigitalGlobe, Inc. 
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(Eriophorum vaginatum) and dwarf shrubs (<40 cm tall) (Raynolds et al., 
2019). The WV02 scene from Wrangel Island largely encompasses the 
land cover class of Graminoid prostrate dwarf-shrub, forb tundra (Ray
nolds et al., 2019). The landscape is characterized by moist to dry tun
dra, with open to continuous plant cover and prostrate shrubs (<5 cm 
tall). The area holds cryogenic form of nano- and micro-relief, where 
different polygonal and spotty shapes are dominated. 

2.2. Image fusion 

Image fusion can occur at three different processing levels (pixel, 
feature, and decision) depending on the stage at which the fusion takes 
place (Pohl and van Genderen 1998; Alparone et al., 2007). While there 
is no universal way to classify fusion algorithms, studies have reported 
several ways to group fusion algorithms based on their design and 
implementation. Pohl and Van Genderen (1998) classified fusion algo
rithms into color-related methods and statistical/ numerical methods. 
Ehlers et al. (2010) considered the latter as two distinct classes (i.e. 
statistical and numerical) and discussed different fusion techniques 
under three groups as color related methods, statistical methods, and 
numerical methods. Ranchin and Wald (2000) and Wald (2002) pro
posed three ways to classify fusion algorithms: (1) the projection and 
substitution methods, (2) the relative spectral contribution, and (3) the 
method relevant to the ARSIS (a French acronym: Amélioration de la 
Résolution Spatiale par Injection de Structures, which means spatial 
improvement by injection structures) concept. Gangkofner et al. (2008) 
mainly considered the information used in a pansharpening procedure 
as a cursor of categorizing fusion algorithms. Their classification consists 
of three classes: 1) spectral substitution methods, 2) arithmetic merging, 
and 3) spatial-domain methods. The classification of Yakhdani and Azizi 
(2010) is an extension of Pohl and Van Genderen (1998), in which they 
identified three classes as 1) color-related techniques, 2) statistical/nu
merical methods, 3) Pyramid-based methods, and 4) hybrid methods. 

We used eight fusion algorithms (Table 1) that are commonly 
encountered in the literature and incorporated into commercial remote 
sensing image processing software packages (e.g., ERDAS Imagine 2015) 
and/or open source libraries (GDAL). While providing a brief overview 
of candidate fusion algorithms, we encourage readers to the references 
listed in Table 1 for detailed descriptions on mathematical formulation 
and implementation of the candidate algorithms. The Brovey transform 
(BRV) is a straightforward spectral substitution method, which is less 
time- and processor-intense. Augmented versions of Brovey transform 

exist, such as the weighted Brovey fusion, which is the standard algo
rithm used by the Polar Geospatial Center (PGC) at University of Min
nesota in their image pre-processing pipelines. Both algorithms fall into 
the first taxa (i.e. spectral substitution) of Gangkofner et al. (2008). The 
hyperspherical color fusion is a spectral component substitution fusion 
method. This is specifically designed for enhancing WorldView-2 im
agery, though it is capable of fusing any multispectral imagery of three 
or more spectral channels. The high-pass filter (HPF) fusion is a spatial 
domain method (Gangkofner et al., 2008) that employs a convolution 
using a high-pass filter on the high resolution PAN image and then 
combining the filtered frequencies with the lower resolution MS image. 
The HPF is comparatively computationally intensive than BRV fusion. 
The principal component analysis (PCA) is a statistical method that 
transforms a multivariate dataset of correlated variables into a dataset of 
uncorrelated linear combinations of the original variables. The PCA 
methods fall into the component substitution class. The projective res
olution merge (PRM) method combines high-resolution panchromatic 
images with lower resolution multispectral images while retaining the 
projective geometry used by the panchromatic data. The subtractive 
(SUB) fusion uses the subtractive algorithm to resolution enhance the 
MS image. While the SUB fusion specifically designed for IKONOS and 
QuickBird satellite sensors, it can be generalized to other commercial 
sensors as well (Ashraf et al., 2012). Both PRM and SUB fusion algo
rithms can be grouped into the projection and substitution taxa of 
Ranchin and Wald (2000). The wavelet transform (WVL) fusion, a 
spatial domain fusion method, extracts the high-frequency detail co
efficients from the high spatial resolution PAN image and combines it 
with the spectral information obtained from the MS image using a 
combination model. All fusion algorithms were performed at their 
default settings to preclude the effect of the parameter optimization 
process on individual algorithms and to ensure an unbiased quality 
assessment. 

2.3. Image fusion quality evaluation 

A fusion algorithm that preserves the spectral properties of the MS 
data and the spatial properties of the PAN data would be ideal, but there 
is always compromise (Witharana and Civco 2012). We corroborated 
both objective and subjective assessment strategies to benchmark the 
spectral and spatial congruency of fused products to their parent im
agery (Fig. 2). 

Objective quality assessments can be performed either using a direct 
approach or an indirect approach. The direct approach gauges the 
quality of the fused imagery itself. The indirect approach assesses the 
quality of products extracted from the fused imagery (Witharana et al., 
2016). We tasked the direct approach, which involves spectral and 
spatial quality metrics, to gauge the quality of fused products. In our 
indirect approach, we used classification accuracy metrics to assess the 
deep learning model predictions. Tables 2 depicts the quality metrics 
that we used in the direct approach. Seven spectral and five spatial 
metrics constitute to the error budget. The most widely used metrics for 
evaluating spectral fidelity include; band-wise correlation (Band-CC), 
deviation index, peak-signal-to-noise ratio (PSNR), entropy, and mean 
structural similarity index (MSSIM) (Karathanassi et al., 2007, Ehlers 
et al., 2010; Yakhdani and Azizi 2010; Witharana et al., 2013, 2016). 
The MSSIM models any distortions as a combination of loss of correla
tion, luminance distortion, and contrast distortion. Wald (2000) pro
posed the ERGAS metric (from its French acronym: erreur relative 
globale adimensionnelle de synthese, i.e relative dimensionless global 
error in synthesis), which aims to provide a quick but accurate measure 
of the overall quality of a fused product. The spectral angle mapper 
(SAM) was utilized to assess the overall spectral quality of fused images 
(Witharana et al., 2016). Excluding two spectral metrics (ERGAS and 
SAM), all other metrics were calculated in band-wise manner. Our 
spatial fidelity metrics (Table 2) encompassed high-pass correlation 
(HP-CC) and edge detection using filters Canny (Canny edge CC), Sobel 

Table 1 
Candidate data fusion algorithms.  

Algorithm Implementation Selected references 

Brovey transform (BRV) ERDAS Imagine Nikolakopoulos 
(2008), 

Hyperspherical color space 
(HCS) 

ERDAS Imagine Padwick et al., 2010; 
ERDAS Imagine 2015, 

High-pass filter (HPF) ERDAS Imagine Gangkofner et al., 
2008; Witharana et al., 
2016 

Principal component analysis 
(PCA) 

ERDAS Imagine Goforth 1998; 
Karathanassi et al., 
2007 

Projective resolution merge 
(PRM) 

ERDAS Imagine Lindgren and Kilston, 
1996; ERDAS Imagine 
2015, 

Subtractive resolution merge 
(SUB) 

ERDAS Imagine Ashraf et al., 2012; 
Yang et al., 2012 

Modified version of Weighted 
Brovey transform used by 
Polar Geospatial Center 
(PGC) 

Embedded in Polar 
Geospatial Center’s pre- 
processing pipeline 

Amro et al., 2011; 
Gharbia et al., 2014 

Wavelet Transform (WVL) ERDAS Imagine Pradhan et al., 2006; 
Yakhdani and Azizi, 
2010  
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(Sobel-edge RMSE), correlation between PAN and fused bands (PAN- 
CC), and correlation between phase congruency images of the original 
PAN and fused bands (Ehlers et al., 2010; Gangkofner et al., 2008; 
Yakhdani and Azizi 2010). Detailed discussion of an array fusion quality 
metrics including the ones used in this study can be found in the in
clusive studies conducted by Witharana and Civco (2012), Witharana 
et al. (2014), Witharana et al. (2016). 

Subjective fusion quality evaluation entailed two remote sensing 
analysts with manual image-interpretation skills to inspect the color 
preservation and spatial improvement of fused images with respect to 
their parent MS and PAN images (Fig. 2). We selected both true color 
(blue, green, and red) and false-color composites (green, red, and near 
infrared (NIR)) of candidate locations from each of the study sites for 
visual analysis. The color composites along with their original images 
were inspected by the analysts to identify spectral distortions (e.g., 
brightness reversions, saturation, a complete change of spectral char
acteristics, unnatural/artificial colors) and spatial improvement in 
general context. Analysts were asked to report the best two and the 
worst two fusion algorithms based on the spectral and spatial fidelity of 
the fused products. When benchmarking pansharpening quality, the 
analysts specifically focused on spectral and spatial clarity (e.g. edge 
enhancement along troughs) in relation to topographical details in fused 
images. Ideally, we would expect the analysts to rank order all the fused 
products from the best fusion algorithm to the worst fusion algorithm; 
however this approach is not practical because the human brain can 
easily discriminate extreme. Because the human brain can easily 
discriminate extreme variations and categorize in to limited number of 
cohorts (for example, the best and worst fused images) but fails to 
distinguish subtle variations among images with similar spectral and 
spatial properties (Fernandez and Wilkins 2008). 

2.4. Deep learning (DL) convolutional neural net (CNN) model 
application 

We have already trained, validated, and tested a DLCNN model to 
classify ice-wedge polygons from VHSR commercial satellite imagery 
(Bhuiyan et al., 2019). Our IWP mapping workflow centers on the Mask 
R-CNN model (He et al., 2017), which is an extended method for object 
instance segmentation. It has widely been acknowledged as a promising 
algorithm in semantic segmentation tasks across a multitude of scientific 

domains (Burke et al., 2019; Cabrera et al., 2019; Danielczuk et al., 
2019; Zhang et al., 2019). The Mask R-CNN architecture is built on the 
Faster R-CNN (Ren et al., 2015) architecture with an additional function 
to predict the object masks (He et al., 2017). The Mask R-CNN is a two- 
stage algorithm. It first generates proposals (i.e., candidate object 
bounding boxes) after scanning the image and subsequently the model 
predicts the class, bounding box, and binary mask for each region of 
interest (ROI) (He et al., 2017). The primary segments of the Mask R- 
CNN include; backbone architecture Residual Learning network 
(ResNet) (He et al., 2017) for feature extraction, Feature Pyramid 
Network (FPN) (Lin et al., 2017) for improving representation of objects 
at multiple scales, and other modules, such as Region Proposal Network 
(RPN) for generating (RoI), RoI Classifier for class prediction of each 
RoI, Bounding Box Regressor (BBR) for refining RoI, and FCN (Long 
et al., 2015) with RoIAlign (He et al., 2017) and bilinear interpolation 
for predicting pixel-accurate mask. A detailed discussion on the Mask R- 
CNN algorithm is beyond the scope of this study and we encourage 
readers to refer He et al. (2017) for deeper insights on CNN architecture 
and the implementation. 

We trained DLCCN model using hand-annotated ice-wedge polygon 
samples generated based on the image patches that were extracted from 
VHSR satellite imagery (Bhuiyan et al., 2019). We utilized ResNet-101 
as the backbone of the Mask R-CNN model. The model was trained 
with a mini-batch size of 2 image patches (each patch with the dimen
sion of 200 pxl × 200 xl), 350 steps per epoch, learning rate of 0.001, 
learning momentum of 0.9, and weight decay of 0.0001. To minimize 
overfitting, data augmentation was applied to introduce variability in 
the training data for acceptable estimation accuracy. During calibration, 
the weights and biases of each neuron were estimated iteratively by 
minimizing a mean squared error cost function using a gradient descent 
algorithm with back propagation. We exercised a transfer learning 
strategy. Pre-trained Mask RCNN was retrained using approximately 
40,000 hand-annotated ice-wedge polygon samples. In the training 
schedule, the samples were divided into three categories of training 
(80%), validation (10%) and testing (10%). 

The VHSR imagery used in the training phase were provided by the 
Polar Geospatial Center (PGC) as pansharpened 0.5 m products. The 
PGC uses the weighted Brovey transform as the standard data fusion 
algorithm in their image pre-processing workflows. In this study, we did 
not train the model based on training data from different fused products, 

Fig. 2. A schematic of the fusion quality evaluation workflow.  
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instead, we directly re-purposed the previously trained DLCNN model 
on the candidate fused imagery (Fig. 2). This will allow us to benchmark 
the prediction accuracies with respect to a single DLCNN model trained 
on a distinct set of hyperparameters. However, the positive or negative 
effect on image quality on model inferences can also be gauged with 
respect to the algorithm used in the fusion process. The DLCNN model 
prediction results from the candidate fused products were evaluated for 

classification accuracy and segmentation quality. 

3. Results 

3.1. Image fusion quality 

3.1.1. Visual analysis 
Figs. 3 and 5 depict examples for the representative test areas that 

were used in the visual evaluation. Two analysts reported the best two 
and the worst two fusion algorithms based on the spectral and spatial 
fidelity of the fused products. Tables 3 and 4 summarizes the manual 
benchmarking of fused imagery. With respect to spectral quality, ana
lysts documented the HCS and WVL fusion algorithms as the best two 
algorithms for study sites 1 and 2. The PRM fusion reported worst 
spectral fidelity for both study sites, whereas the HPF and PCA fusions 
reported worst spectral results for the study site 1 and study site 2, 
respectively. Spatial quality benchmarking partly exhibited the opposite 
of spectral rankings. The HPF fusion showed the best spatial improve
ment in both study areas along with the SUB and HCS fusion algorithms. 
The worst spectral fidelity was shown by the WVL and PCA fusion 
methods. Despite the spatial details, serious color reversion can be seen 
in PRM fused products (Figs. 3(h) and 4(h)). In terms of spatial 
improvement, while the PCA (Figs. 3(f) and 4(f)) and WVL (Figs. 3(j) and 
4(j)) methods maintained high degree of spectral agreement with the 
corresponding original MS imagery (Figs. 3(b) and 4(b)), they showed 
hardly any spatial improvement. Despite the resulting high contrast 
images show some spectral degradation, the spatial improvement of the 
HPF-fused imagery compensates for the losses in color fidelity. The HPF 
product is more visually efficient than its main contender (the HCS 
fusion algorithm) since it expediently signals rich visual cues to the 
observer to easily follow the microtopographic segmentations and un
dulations resulting from underlying ice-wedge network. Comparatively 
the HCS and SUB fusion exhibited mediocre visual quality (Figs. 3 and 
4). Both BRV products showed spectral artefacts, especially over the 
water bodies (Fig. 3(c) and (g)). 

3.1.2. Quantitative analysis 
The visual evaluation was corroborated with a quantitative fusion 

quality budget consisting of an array of spectral and spatial indices. 
Figs. 8–10 and Figs. 11–13 correspond to the summarization of objective 
quality budget from the candidate site 1 and 2, respectively. In relation 
to fused imagery from study site 1, the basic spectral metric (Fig. 8) - 
correlation coefficient (CC) - reports the best scores for the HCS, PCA, 
and SUB fusion algorithms indicating discernible band-wise agreement 
between fused and original MS imagery. The fused product from PGC 
reported the lowest CC with high variability. The HPF algorithm showed 
CC results comparable to standard BRV fusion method. In terms of de
viation index (DI) (Fig. 8), The PCA showed the worst scores with high 
variability. While the HCS reported the lowest DI, the HPF, PGC, and 
SUB fused products showed low and akin results. With respect to the 
peak signal-to-noise ratio (PSNR), the SUB fusion algorithm reflected the 
best scores followed by HCS and HPF fusion algorithms. The highest 
radiometric distortion was shown by the fused product from the PGC 
and it was comparable to the PSNR scores of standard BRV algorithm 
(Fig. 8). The best scores for Entropy was reported by the WVL fusion 
algorithm, while the highest Entropy difference was shown by the BRV 
fusion algorithm. Comparatively, the HCS algorithm had low entropy 
difference, indicating the radiometric similarity to the original MS 
image. The HPF methods had the least and greatest radiometric distor
tions, respectively. The standard BRV fusion reported the worst scores 
for the structural similarity measure (MSSIM) (Fig. 8). The low MSSIM 
indicates the loss of illumination, radiometric alteration, and contrast 
distortion between the fused and the original MS images. The HCS, SUB, 
and PGC fused products manifested high scores for the MSSIM. Ac
cording to the two global measures (Fig. 8) – spectral angle mapper 
(SAM) and relative dimensionless global error in synthesis (ERGAS) - , 

Table 2 
Summary of quantitative spectral and spatial fidelity metrics.  

Metric Addressed issue/domain/expected 
value 

Spectral Band correlation coefficient 
(Band-CC)  

• Quantifies the spectral 
correspondence between the original 
MS and fused images.  

• domain [−1,1]  
• As close to 1 as possible 

Deviation index (DI)  • Quantifies the normalized absolute 
difference of the fused image with the 
original MS image.  

• domain [0,∞)  
• As close to 0 as possible 

Peak signal-to-noise ratio 
(PSNR)  

• Indicates the radiometric distortion of 
the fused image compared to the 
original MS image.  

• The highest possible PSNR 
Entropy  • Measures the additional information 

(spectral and spatial) available in the 
fused image compared to the original 
MS image.  

• The smallest possible entropy 
difference with the original MS image 

Mean structural similarity 
index (MSSIM)  

• Reveals the spectral and structural 
similarity between the fused and 
original MS image by luminance, 
contrast, and structure and applying 
to a moving window.  

• domain [0,1]  
• As close to 0 as possible 

Spectral angle mapper 
(SAM)  

• Pixel-wise comparison of fused image 
and original MS image. The value 
0 indicates low resemblance while 1 
indicates a high resemblance.  

• domain [0,1]  
• As close to 0 as possible 

Relative dimensionless 
global error in synthesis 
(ERGAS)  

• A global indicator that calculates the 
amount of spectral distortion.  

• domain [0,∞)  
• Lower value (<3) 

Spatial High-pass (HP) 
Correlation coefficient (HP- 
CC)  

• Quantifies the correlation between 
the HP filtered bands of fused image 
and the HP-filtered PAN image.  

• domain [−1,1]  
• as close to 1 as possible 

Phase congruency (PC) 
correlation coefficient (PC- 
CC)  

• Quantifies the correlation between 
the PC bands of fused image and the 
PC of PAN image.  

• domain [−1,1]  
• as close to 1 as possible 

Panchromatic (PAN) 
correlation coefficient (PAN- 
CC)  

• Quantifies the correlation between 
the PAN image and the fused MS 
image.  

• domain [−1,1]  
• as close to 1 as possible 

Root-mean-squared-error 
Sobel edge (Sobel-RMSE)  

• Measure the average amount of 
spatial distortion between Sobel 
filtered PAN and Sobel-filtered fused 
image bands.  

• domain [,∞)  
• Lower value 

Canny edge correspondence 
(Canny Edge CC)  

• A band-wise comparison of edges 
detected in the original PAN and the 
fused image. CES measured in 
percent.  

• domain [0,100]%  
• as close to 100 as possible  
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the PRM fusion had the worst score for SAM and third worst score for the 
ERGAS. The BRV, PGC, PRM, and PCA fused products exhibited 
noticeably high scores for ERGAS, questioning the spectral authenticity 

of the fused imagery with respect to the original MS image. The HCS, 
HPF, and SUB yielded very healthy scores for the ERGAS. Both the SAM 
and ERGAS have disqualified BRV, PCA, PGC, and PRM products. Figs. 9 
and 10 illustrate the spatial quality plots for the fused imagery from site 
1. The best spatial agreement (PAN-CC) between the original PAN image 
and the fused product was shown by the PRM fusion algorithm. While 
the SUB and HCS reported the highest mean PAN-CC scores, the HPF had 
the third best outcome (Fig. 9). The PGC scored the worst for the PAN-CC 
indicating the inability of the underlying fusion algorithm to inject high 
frequency information from the PAN to the MS image. Likewise PAN-CC, 
the PGC and WVL showed the worst agreement with respect to the phase 
congruency (PC-CC) imagery of fused bands and the original PAN 
(Fig. 9). The HPF reported the highest score for PC-CC testifying its 
ability to maintain the same level of spatial details in the fused product. 
While the SUB algorithm had the best score for the high-pass filter 
correlation (HP-CC), the PGC product showed the worst metric values. 
In general, majority of fusion algorithms were able to maintain a healthy 
Canny edge correspondence between fused bands and original PAN 
image. The HPF fusion shown to be the best contender with low vari
ability. In contrast to the Canny edge measure, the RMSE of the Sobel 

Fig. 3. Visual inspection of WV2 scene from site-1 for spectral and spatial fidelity of fused products. Original MS and fused products are shown as true color 
composites. (a) PAN image, (b) MS image, (c) Brovey fusion, (d) Hyperspherical color transform fusion, (e) High-pass fusion, (f) Principal component analysis fusion, 
(g) Fused product from PGC, (h) Projective resolution merge, (i) Subtractive resolution merge, (j) and Wavelet fusion. Satellite imagery Copyright DigitalGlobe, Inc. 

Table 3 
Visual benchmarking of spectral fidelity.  

Test area Spectral fidelity 

Best Worst 

Site 1 WVL, HCS PRM, HPF 
Site 2 WVL, HCS PRM, PCA  

Table 4 
Visual benchmarking of spatial fidelity.  

Test area Spatial fidelity 

Best Worst 

Site 1 HPF, SUB WVL, PCA 
Site 2 HPF, HCS WVL, PCA  
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edge detector has been able to accent the spatial fidelity of fused 
products. Evidently, the PGC product showed the worst spatial 
improvement whereas PRM and BRV appeared to be the promising fused 
products. Fig. 10 depicts a band-wise comparison of PC-CC and HP-CC 
for a selected subset of algorithms. This selection was based on the vi
sual benchmarking (Table 4) of the fused imagery for the spatial quality. 
With respect to the PC-CC metric, the HPF showed the highest and 
consistent agreement across all fused bands against the original PAN 
image. The second best contender is the SUB fusion algorithm. Switching 
of ranking of HPF and SUB can be observed in relation to the HP-CC 
metric. Yet, the HPF fused product appeared to be the most consistent 
one across all bands. The worst band-wise results were reported by the 
PGC fused product, which was clearly inferior to even the WVL fusion 
algorithm. 

The spectral quality budget of site 2 (Fig. 11) provides objective 
benchmarks for color preservation character of the candidate fused 
products. Similar to the observations from site 1, the PGC product re
ported the worst scores for the band-CC measure. The PCA and PRM had 
serious color distortions, which are clearly evinced in their band-CC and 
DI plots. Both the BRV and WVL were quality spectrally faithful in terms 
of band-CC; however, the BRV fusion showed high deviations scores for 

the DI measure. In terms of radiometric distortions, the HPF, HCS, WVL, 
and SUB reported high and healthy scores for the PSNR. In contrast, the 
PGC and BRV performed poorly. The highest structure similarity 
(MSSIM) between the fused and the original MS was shown by the PCA 
algorithm while BRV and PRM showed poor results. The SAM and 
ERGAS provide a global picture of all the fusion contenders. The PGC 
fused product performed poorly compared to the rest of the pan
sharpened products. The HPF, HCS, and SUB showed promising metric 
values for the both SAM and ERGAS. The summarization of spectral 
quality measures for the site 2 are shown in Figs. 12 and 13. The worst 
results for the PAN-CC were shown by the PCA and PGC fused products. 
The PRM shown to be the best algorithm with respect to PAN-CC 
(Fig. 12). The comparison results from PC-CC manifest that the HPF 
and SUB fusion algorithms were able to maintain high degree of spatial 
agreement between the fused and PAN images. Obviously, WVL and the 
PGC fused products provided poor-quality results. The HP-CC metric has 
reiterated the benchmarking of PC-CC for the PGC, PCA, and WVL fused 
products (Fig. 12). The HPF and SUB fusion algorithms elected to be the 
best contenders in terms of HP-CC. As seen in the site 1, except the PRM, 
all others produced high and comparable results for the Canny edge 
metric without providing much clues on the spatial efficacy of 

(a)  (b) (c) (d)  (e) 

 (f) (g)  (h)  (i) (j) 
Fig. 4. Visual inspection of WV2 scene from site-2 for spectral and spatial fidelity of fused products. Original MS and fused products are shown as true color 
composites. (a) PAN image, (b) MS image, (c) Brovey fusion, (d) Hyperspherical color transform fusion, (e) High-pass fusion, (f) Principal component analysis fusion, 
(g) Fused product from PGC, (h) Projective resolution merge, (i) Subtractive resolution merge, and (j) Wavelet fusion. Satellite imagery Copyright DigitalGlobe, Inc. 
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underlying fusion algorithms. The Sobel edge detector has testified for 
the poor spatial improvement associated with the PGC fused imagery 
(Fig. 12). As discussed under site 1, we have a selected subset of fused 
products based on the visual benchmarkings (Table 4) to do a band-wise 
comparison of PC-CC and HP-CC metrics (Fig. 13). All fused bands of the 
HPF fusion algorithm exhibited high and stable scores for the PC-CC and 
the HP –CC metrics. In contrast the PGC and WVL showed inferior 

results. The HP-CC values of PCA algorithm show a serious fusion arti
fact associated with the NIR band. 

3.2. Deep learning model predictions 

We applied the trained Mask-RCNN model on the fused imagery from 
both study sites. The model-inferred imagery were subjected to careful 
visual inspections and standard accuracy assessments. Figs. 5, 6, and 7 
and Tables 5 and 6 pertain to the results from the qualitative and 
quantitative evaluations. Fig. 5 shows an example area from site 1 for 
the detailed visual analysis. The figure consists of original PAN and MS 
imagery and their edge maps based on Canny and Sobel edge detectors. 
Fused images are superimposed with model predictions (blue outline). 
Canny and Sobel edge maps are also provided for all the fused products. 
It should be noted that the edge maps for the fused and original MS 
imagery are based on the red band only. Evidently, the MS image 
(Fig. 5b) provides insufficient spatial details to resolve ice-wedge poly
gon boundaries when compared to the PAN image (Fig. 5a). The Canny 
and Sobel edge maps (Fig. 5c and f) of MS image further attest the ne
cessity for the injection of high-frequency information from the PAN to 
the MS for an accurate outlining of ice-wedge polygons. Considering the 
example area, fused products of BRV, PCA, PGC, SUB, and WVL (Fig. 5 
(g, j, k, m, n, respectively) have not been able to produce successful 
model predictions. In contrast, the HPF fused product (Fig. 5(i)) pro
duced the best prediction results (see blue outlines). A close inspection 
of HCS and HPF (see yellow arrows on Fig. 5 (h and i) fused images 
reveal that the edge enhancement of the HPF clearly lead the DL model 
to conveniently locate the microtopographic discontinuity between two 
ice wedge polygons. However, in the HCS-fused image, the DL model 
was unable to resolve two polygons, instead, it ran into an under- 
segmentation scenario. Comparison of Sobel and Canny edge detection 
of fused imagery against those of PAN demonstrates the poor edge 
correspondence in WVL and PCA fusion methods. Similar to the site 1 
(Fig. 5), a quick appraisal of PAN and MS imagery from site 2 (Fig. 6a 
and b) reveals the need for the edge enhancement of MS image for an 
accurate detection of ice wedge polygons. Successful DL model pre
dictions were seen in the fused products of HCS, HPF, and SUB algo
rithms. The HPF fusion has provided substantial spatial details to the DL 
model to resolve trough network and connected ice-wedge polygons. 
This has actually prevented potential under-segmentation as seen in the 
HCS fused product (see yellow arrows in Fig. 6h and i). In general, BRV, 
PGC, and PRM exhibited poor classification results (Fig. 6g, k, l), 
respectively). The poor spatial improvement of the WVL and PCA fusion 
methods results zero detection of ice-wedge polygons. A close inspection 
of Canny and Sobel edge maps against those of the PAN image prompts 
the spatial authenticity of fused products. For example, the WVL and 
PCA have clearly missed the edge information from the original PAN 
image. While the fused products of the BRV and PGC do show some level 
of edge correspondence to the original PAN image; they lack the spatial 
arrangement of edges that is necessary for the DL model to follow in the 
prediction stage. 

In order to understand how spatial details along with the color in
formation guide the manual delineation of ice-wedge polygons, we 
asked two analysts to benchmark the fused products on the premise of 
comfort of discriminating the targets of interest from the background 
objects. Akin to fusion quality evaluation, the visual evaluation quan
tized fused products to the benchmarks of best and worst (Table 5). In 
both candidate scenes, the HPF fusion algorithm elected to be the best 
where as WVL along with PCA and PRM were identified as the worst 
fused products. Both the SUB and PGC stood as successful contenders to 
the HPF fusion algorithm. Fig. 7 shows one of the example areas that 
were used to gauge the quality manual delineations. To capture the two 
ends of the spectrum, outlines are provided for the best (HPF and PGC) 
and worst (PCA and WVL) fused products (Fig. 3b and c). The PAN image 
is provided as a reference (Fig. 3a) to visualize manual boundary out
lining discrepancies. Direct comparison of HPF and PGC based outlines 

Fig. 5. Zoomed-in views from Site-1 showing edge-filtered (Canny edge de
tector and Sobel edge detector) images and deep learning model predictions 
that are shown in cyan outline on true color composites of fused imagery. (a) 
PAN image, (b) MS image, (c) Canny edge filtered PAN image, (d) Sobel edge 
filtered PAN image, (e) Canny edge filtered MS image, (f) Sobel edge filtered MS 
image. Edge detection and model prediction of fused products are arranged into 
columns with three panels for each fused product: (g) Brovey fusion, (h) 
Hyperspherical color transform fusion, (i) High-pass fusion, (j) Principal 
component analysis fusion, (k) Fused product from PGC, (l) Projective resolu
tion merge, (m) Subtractive resolution merge, and (n) Wavelet fusion. Yellow 
arrows indicates example polygons seen on the image. Satellite imagery 
Copyright DigitalGlobe, Inc. 
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Fig. 6. Zoomed-in views of Site-2 showing edge- 
filtered (Canny edge detector and Sobel edge detec
tor) images and deep learning model predictions that 
are shown in cyan outline on true color composites of 
fused imagery. (a) PAN image, (b) MS image, (c) 
Canny edge filtered PAN image, (d) Sobel edge 
filtered PAN image, (e) Canny edge filtered MS image, 
(f) Sobel edge filtered MS image. Edge detection and 
model prediction of fused products are arranged into 
columns with three panels for each fused product: (g) 
Brovey fusion, (h) Hyperspherical color transform 
fusion, (i) High-pass fusion, (j) Principal component 
analysis fusion, (k) Fused product from PGC, (l) Pro
jective resolution merge, (m) Subtractive resolution 
merge, and (n) Wavelet fusion. Yellow arrows in
dicates example polygons seen on the image. Satellite 
imagery Copyright DigitalGlobe, Inc.   
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(red and blue respectively) show overall agreement; however, the PGC 
product has misled the interpreter towards over predictions due to the 
synthetic ambiguity in trough network posed by fusion artefacts. Manual 
delineation of PCA and WVL (green and blue outlines, respectively) 
obviously signals the fact that the interpreter has missed spatial details 
in the image. Predicted boundaries are largely driven by the legacy 
spatial details from the MS image. Table 6 summarizes the overall 

accuracy of DL model predictions with respect to the fused products. In 
both sites, the HPF fusion has been able to maintain comparatively high 
accuracies. The SUB and HCS showed an upswing in their accuracies 
moving from site 1 to 2. The PGC maintained low and stable accuracies. 
In agreement with fusion quality and manual detectability, both PCA 
and WVL lead to worst accuracies in the group. 

Fig. 7. Manual delineation of ice wedge polygons based on four fused products. (a) Zoomed-in view of PAN image, (b) Manual delineation based on HPF fusion (red 
outline) and PGC fusion (blue outline), (c) Manual delineation based on PCA fusion (green outline) and WVL fusion (magenta outline). Satellite imagery Copyright 
DigitalGlobe, Inc. 

Fig. 8. Spectral quality plots for the fused imagery products of site-1. In each plot, the x and y axes depict the value of the quality metric and the candidate fusion 
algorithms, respectively. BRV – Brovey fusion, HCS- Hyperspherical color transform fusion, HPF- High-pass fusion, PCA- Principal component analysis fusion, PGC - 
Fused product from Polar Geospatial Center, PRM - Projective resolution merge, SUB - Subtractive resolution merge, and WVL – Wavelet fusion. Error bars +/- 1 SD. 
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4. Discussion 

Here we report the first exploratory study probing into an 

overlooked, but yet important aspect that is relevant to the successful 
adaptation of deep learning convolutional neural net (DLCNN) in very 
high spatial resolution (VHSR) satellite image analysis. Scene 

Fig. 9. Spatial quality plots for the fused products of site-1. In each plot, the x and y axes depict the value of the quality metric and the candidate fusion algorithms, 
respectively. BRV – Brovey fusion, HCS- Hyperspherical color transform fusion, HPF- High-pass fusion, PCA- Principal component analysis fusion, PGC - Fused 
product from Polar Geospatial Center, PRM - Projective resolution merge, SUB - Subtractive resolution merge, and WVL - Wavelet fusion. Error bars +/- 1 SD. 

Fig. 10. A band-wise comparison for site-1. Correlation of fused and original PAN imagery for two spatial metrics; phase congruency and high-pass filtering. In each 
plot, the x and y axes depict the value of the quality metric and the candidate fusion algorithms, respectively. BRV – Brovey fusion, HCS- Hyperspherical color 
transform fusion, HPF- High-pass fusion, PCA- Principal component analysis fusion, PGC - Fused product from Polar Geospatial Center, PRM - Projective resolution 
merge, SUB - Subtractive resolution merge, and WVL - Wavelet fusion. 
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dependency of fusion algorithms impedes the transferability of the 
knowledge on their performances across application domains. This is 
especially true for synthesis of imagery across large geographic areas (e. 
g. circumpolar mapping applications) where landscape heterogeneity 
can steer the performances of fusion algorithms. 

The fundamental trait of imagery that unlocks the permafrost fea
tures like ice-wedge polygons is the high-spatial frequencies recorded in 
the PAN imagery. As seen in close-up views (Figs. 3–6), the MS imagery 
alone just provide a broader context but fail to morphometrically pro
nounce the polygonal landscape into individual units. Vice versa, the 
PAN imagery alone are deficient to capture nuance spectral character
istics among different ice wedge polygon types. This demands for a 
delicate blending of high frequencies from PAN with MS imagery. 
Comprehensive quantitative evaluation in conjunction with visual 
gauging of fusion algorithms is therefore necessary to identify those 
techniques that are optimal with respect to the practical implementa
tion. Visual assessment of fusion results confer that not all fusion algo
rithms behave consistently across landscape variations. For example, 
presence of low-centered ice-wedge polygon with water impoundments 
in polygon centers (sedge tundra) influence the performances of fusion 
algorithms compared to dry tundra regions. Landscape dependency of 
fusion algorithms is important to consider in pan-Arctic scale ice-wedge 
polygon mapping applications. The HPF fusion algorithm exhibited 
degraded spectral quality in site 1, which is dominated by water sur
faces. In contrast, the HCS fusion algorithm was able to preserve the 
spectral characters of the MS imagery while substantially improving the 
spatial details in both study sites. From the viewpoints of both subjective 

and objective evaluations, no single algorithm was able to produce su
perior results by simultaneously preserving spectral and spatial prop
erties of the original MS and PAN images. Visual rating of fusion quality 
agrees with the quantitative quality budget. Despite their promising 
spectral quality budget, algorithms such as WVL, PCA, BRV, performed 
poorly with respect to spatial metrics. For instance, the WVL fusion re
ported competitive scores for the measures like PSNR, Entropy, and 
ERGAS (Figs. 8 and 9) at the serious expense of spatial fidelity. This 
elucidates the fact that the modelled image has gained almost zero 
benefit from the high-frequencies of the PAN image. These observations 
are comparable with the previous studies, such as Ehlers et al (2010), 
Kim et al (2011), and Witharana et al. (2013). Besides obtaining an 
overall picture on the performances of fusion algorithms in relation to 
permafrost mapping applications, we also wanted to eventuate potential 
challenges associated with the types of pansharpening approach used for 
image products, such as the weighted Brovey fusion algorithm. Based on 
our analysis, the current Brovey algorithm based products from the PGC 
is in acceptable quality for general image analysis purpose, such as 
manual interpretations and more localized semi/automated analysis. 
However, the spectral and spatial authenticity and, most importantly, 
the impact on proceeding analysis steps are questionable. Our quanti
tative spectral and spatial quality budget with DLCNN approaches 
(Figs. 8–13) places the PGC’s fused product in a low rank. The Brovey 
fusion algorithm taxonomically falls into the category of simple spectral 
substitution, which generally yield good visual quality at the expense of 
degraded radiometric and spatial distortions (Klonus and Ehlers, 2007; 
Karathanassi et al., 2007; Gangkofner et al., 2008). Due to the spectral 

Fig. 11. Spectral quality plots for the fused imagery products of site-2. In each plot, the x and y axes depict the value of the quality metric and the candidate fusion 
algorithms, respectively. BRV – Brovey fusion, HCS- Hyperspherical color transform fusion, HPF- High-pass fusion, PCA- Principal component analysis fusion, PGC - 
Fused product from Polar Geospatial Center, PRM - Projective resolution merge, SUB - Subtractive resolution merge, and WVL – Wavelet fusion. Error bars +/- 1 SD. 
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Fig. 12. Spatial quality plots for the fused products of site-2. In each plot, the x and y axes depict the value of the quality metric and the candidate fusion algorithms, 
respectively. BRV – Brovey fusion, HCS- Hyperspherical color transform fusion, HPF- High-pass fusion, PCA- Principal component analysis fusion, PGC - Fused 
product from Polar Geospatial Center, PRM - Projective resolution merge, SUB - Subtractive resolution merge, and WVL - Wavelet fusion. Error bars +/- 1 SD. 

Fig. 13. A band-wise comparison for site-2. Correlation of fused and original PAN imagery for two spatial metrics; phase congruency and high-pass filtering. In each 
plot, the x and y axes depict the value of the quality metric and the candidate fusion algorithms, respectively. BRV – Brovey fusion, HCS- Hyperspherical color 
transform fusion, HPF- High-pass fusion, PCA- Principal component analysis fusion, PGC - Fused product from Polar Geospatial Center, PRM - Projective resolution 
merge, SUB - Subtractive resolution merge, and WVL - Wavelet fusion. 
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normalization step in BRV-based approaches, the brightness values can 
be changed substantially affecting the histograms of the image bands 
(Vijayaraj et al., 2006). Our contention is that regional-scale mapping 
applications that sits on deep learning or other automated methods 
would benefit from multiple data fusion techniques. Overall, the HPF, 
HCS, SUB exhibited superior performances than Brovey. Despite of the 
subjectivity of visual analysis, our premise is that the human perception 
inherits the most integrated mechanisms that include spectral and 
spatial criteria for benchmarking fusion results. The visual inspections 
have elected the HPF method as one of the best contenders for manual 
delineation of ice-wedge polygons, while the objective metrics report 
noticeable disturbances to the spectral response. Visibility of important 
information and information saliency are the key ingredients in the 
manual quality assessment (Garcia et al., 2012). The HPF-pansharpened 
images provided the optimal visual grammar (Aksoy and Cinbis 2010) to 
accurately extract the ice-wedge polygons from the fuzzy background. 
Barten (2003) noted that in the human visual system, objects can 
generally be better distinguished in image from each other or from their 
background, especially, if the difference in luminance (or the contrast) is 
large. Ascending ranking of HPF, HCS, and SUB fusion algorithms, it is 
apparent that the HPF resorts the highest contrast for the ice-wedge 
polygons. Detailed psychophysical and psychological studies, such as 
O’Shea et al (1994); Tsushima et al. (2014), and Tsushima et al. (2016) 
report that spatial resolution greatly correlates with depth sensation and 
higher resolution enables stronger depth sensation, via that sense the 
realness of the image. When translating these findings to our experi
mental results, analysts favored the high-contrast fused products since 
those provided the key visual grammar - depth sensation - associated 
with the microtopography. 

An important facet of our experiment is to assess how the quality of 
data fusion affect the DLCNN model predictions. Given the success of 
DLCNN in computer vision applications one could argue that, by design, 
deep networks are able to handle image quality variations since the 
hidden layers can digest the higher-level abstractions progressively from 
the low-level motifs (LeCun et al., 2015). Moreover, additional data 
augmentation procedure, such as mirroring, synthetic noise, and rota
tions can leverage the DLCNN model’s immunity to image perturba
tions. We remit the point that providing good quality images could 
potentially improve the efficacy of the DLCNN classifications. Alter
ations originating from the fusion process directly disturb the quality of 
the imagery funneling to the DLCCN model. Visual evaluations and 
quantitative assessments assert the link between fusion quality and 
DLCCN model predictions (Tables 5 and 6, Figs. 4 and 5). The DLCNN 
model was trained based on the hand annotated training samples are 

based on the pansharpened imagery of the Brovey fusion algorithm. This 
can spontaneously trigger the notion that better classification results 
should come from fused products of Brovey fusion algorithm than those 
of either HPC or HCS fusion algorithms. However, improved spatial 
resolution with preserved spectral details lead the DLCNN to accurately 
resolve ice-wedge polygons from the fused images of HPF and HCS. One 
reason behind the low immunity of the DLCNN model to landscape 
variations could be the quality of the pansharpened imagery. It is 
generally expected that the DLCNN model could face difficulties when 
moving from one landscape regime to another, for instance from sedge 
tundra to tussock dominant or to graminoid tundra, partly because of the 
confinement of training samples to certain locale. Expanding the re
pository of training samples to capture the landscape variability across a 
large geographic domain is extremely time and labor prohibitive. 
Similarly, leveraging the quality of pansharpened imagery could sub
stantially improve the DLCNN model’s elasticity to different tundra 
units. Although we have tested an array of fusion algorithms, we admit 
that there are other fusion methods, such Graham Schmidt fusion (Laben 
et al., 2000), University of New Brunswick fusion (Zhang 2002), and 
Ehlers fusion (Ehlers et al., 2010), which are proven to be successful in 
different application domains (Witharana et al., 2013, 2016) and that 
may further improve mapping efforts of IWPs. 

Application of VHSR commercial satellite imagery for addressing 
transdisciplinary research challenges in Arctic sciences has been gaining 
a fast attention over the last few years. Despite the luxury of free access 
to sheer volumes of commercial imagery, the best practices and work
flows for handling VHSR imagery for circumpolar applications are still 
at early stages. Rapid uptake of DLCNN approaches in VHSR satellite 
image analysis is posing new frontiers in modern remote sensing. 
Findings from our systematic analysis posits the scene dependency of 
fusion algorithms and the need for careful selection of the appropriate 
algorithm for the classification problem in hand, or alternatively, 
recommend the use of multiple algorithms for large regional applica
tions. Such gradation of best mapping practices would be of great in
terest in other permafrost feature mapping such as frost boils, pingos, 
baydzherakhs, retrogressive thaw slumps. Continued consideration of 
fusion algorithms and training dataset selection and size can guide 
Arctic researchers to more effectively exploit the VHSR commercial 
imagery in domain-specific applications. 

5. Conclusion 

There is an emerging need for establishing best practices and 
workflows for handling very high spatial resolution (VHSR) satellite 
imagery for pan-Arctic applications. Our study highlights the potential 
effects of data fusion algorithms on the deep learning convolutional 
neural net (DLCNN) model predictions accuracies for pan-Artic ice- 
wedge polygon tundra mapping. In addition to advancing our knowl
edge on the performances of fusion algorithms in relation to permafrost 
mapping applications, another important fact that we wanted to even
tuate is the potential challenges associated with the pansharpened image 
products that are derived from the weight Brovey fusion algorithm. 
Based on our analysis, the Brovey algorithm based products, such as 
from the Polar Geospatial Center, are in acceptable quality for general 
image analysis purpose. However, the spectral and spatial authenticity 
and, most importantly, the impact on proceeding analysis steps are 
questionable. Overall, our experimental results posit the scene de
pendency of fusion algorithms and the need for careful selection of the 
appropriate algorithm for the classification problem in hand, without 
limiting to ice-wedge polygon mapping but also other VHSR imagery 
enabled permafrost feature mapping applications. 
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Table 5 
Visual evaluation of the manual detectability ice-wedge polygons.  

Test area Detectability 

Best Worst 

Site 1 HPF > SUB PRM > WVL 
Site 2 HPF > PGC PCA > WVL  

Table 6 
Summary of deep learning classification accuracy with respect to fused imagery.  

Fusion algorithm Overall accuracy 

Site 1 Site 2 

BRV 0 18.5 
HCS 43.3 70.3 
HPF 80.0 74.1 
PCA 0 0 
PGC 36.7 33.3 
PRM 70 66.7 
SUB 43.3 62.9 
WVL 0 0  
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Péwé, T.L., 1975. Quaternary geology of Alaska. US Geol. Surv. Prof. Pap. 835, 145 pp. 
Pohl, C., Van Genderen, J.L., 1998. Multisensor image fusion in remote sensing: 

concepts, methods and applications. Int. J. Remote Sens. 19 (5), 823–854. 
Pradhan, P.S., King, R.L., Younan, N.H., Holcomb, D.W., 2006. Estimation of the Number 

of Decomposition Levels for a Wavelet-Based Multiresolution Multisensor Image 
Fusion. IEEE Trans. Geosci. Remote Sens. 44 (12), 3674–3686. 

Ranchin, T., Wald, L., 2000. Fusion of high spatial and spectral resolution images: the 
ARSIS concept and its implementation. Photogramm. Eng. Remote Sens. 66 (1), 
49e61. 

Ranchin, T., Aiazzi, B., Alparone, L., Baronti, S., Wald, L., 2003. Image fusion–the ARSIS 
concept and some successful implementation schemes. ISPRS J. Photogramm. 
Remote Sens. 58 (1–2), 4–18. 

Raynolds, M.K., Walker, D.A., Ambrosius, K.J., Brown, J., Everett, K.R., Kanevskiy, M., 
Kofinas, G.P., Romanovsky, V.E., Shur, Y., Webber, P.J., 2014. Cumulative 
geoecological effects of 62 years of infrastructure and climate change in ice-rich 
permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Global Change Biol. 20 (4), 
1211–1224. 

Raynolds, M.K., Walker, D.A., Balser, A., Bay, C., Campbell, M., Cherosov, M.M., 
DaniÃ«ls, F.J.A., Eidesen, P.B., Ermokhina, K.A., Frost, G.V., Jedrzejek, B., 
Jorgenson, M.T., Kennedy, B.E., Kholod, S.S., Lavrinenko, I.A., Lavrinenko, O.V., 
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