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ABSTRACT

Face in video recognition (FiVR) is widely used in video surveillance and video analytic. Various solutions
have been proposed to improve the performance of face detection, frame selection and face recognition in FiVR
systems. However, all these methods have a common inherent “ceiling”, which is defined by the source video’s
quality. One key factor causing face image quality loss is video compression standards. To address this challenge,
in this paper, first, we analysis and quantify the effects on the FiVR performance due to video compression;
secondly, we propose to use deep learning based model to mitigate artifacts in compressed input video. We
apply the image based convolutional auto-encoder (CAE) to extract the features of input face images and restore
them towards less artifacts. From the experimental results, our approach can mitigate artifacts on face images
extracted from compressed videos and improve the overall face recognition (FR) performance by as much as 50%
in TPR (True Positive Rate) at the same FPR (False Positive Rate) value.
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1. INTRODUCTION

Video compression techniques are widely applied to reduce redundant data in video, make efficient video
storage and live video streaming through network without consuming significant bandwidth,but still keep a
reasonable video quality. Many video compression standards like MPEG-41 and H.2642 use spatial compression
and temporal motion prediction in their algorithm implementation. Even though being able to reduce video size
to fit limited network bandwidth and the capacity of data storage devices, video compression with non-lossless
algorithm will cause trade-offs like video quality reduction, or compression artifacts. The quality loss would be
more obvious if we put a cap on the data-rate or bandwidth, which would result in low visual quality.

Video compression can cause both spatial and temporal artifacts. The most common compression artifacts
are illustrated and categorized in Fig.1. For spatial artifacts, the video compression can cause blocky, blurry and
speckling effects on objects in videos. As for temporal artifacts, the objects in video can be floating or flicking
due to the compression. Sometimes multiple or hybrid artifacts can occur at the same time. For example, on the
right side of Fig.1, the top face image has blocky artifact, which is spatial; the middle image is blurred, which is
spatial; and the bottom one has blurry and floating, which relate to both spatial and temporal artifacts.

Face in video recognition (FiVR) is widely used in video surveillance and video analytic. Various solutions
have been proposed to improve the performance for different stages of FiVR system, from face detection,3,4 to
frame selection5,6 and face recognition (FR) engine.7,8 The work on face detection targets detecting faces of
non-ideal quality and various poses, providing more samples to FR engine. The work on frame selection targets
selecting face images with better quality, such as higher resolution or better pose. As a result, the poor quality
faces can be excluded from down-grading the FR performance. The work on FR engine targets improving the
robustness of FR models and making them capable of handling non-ideal or even low-quality faces while still
output correct and high confidence FR results. But all these methods have a common inherent “ceiling”, which
is defined by the source video’s quality. The compressed video is normally the input to the FiVR system. We can
intuitively speculate the compression artifacts will affect the follow-up processing such as the detected face in
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Figure 1: Video Compression Artifacts

video sequence or downgrade the performance of FR due to quality loss when compared with processing directly
on the uncompressed videos. And the situation could be even worse if we perform FR on the videos with higher
compression ratio.

In this work, we propose to use deep learning based model to mitigate artifacts in compressed input videos,
targeting towards effectively improving the FR performance of FiVR system. This work is novel in applying the
image based convolutional auto-encoder (CAE) to extract the features of input face images and restore them
towards less artifacts. The main contribution of this work is to use the CAE with skip connection as the core of
artifact mitigation engine and integrate it into the FiVR framework.

The rest of the paper is organized as follows: In Section 2, we review related works including image and
video based super-resolution and image-based artifact mitigation. In Section 3, we describe our video-based, face
image targeted artifact mitigation approach. In Section 4, we present experimental results and data analysis of
our approach. We conclude in Section 5.

2. RELATED WORKS

In this section, we first review existing researches that relate to artifact mitigation. Next, we briefly review
related research on machine learning models that can restore images with noise or artifacts. Then, we discuss
the difference between our work with the existing works.

2.1 Existing video/image artifact mitigation approaches

The first area relates to our work is super-resolution and artifacts reduction for single frame or static image. Dong
et. al. proposed a Deep Neural Network (DNN) based image super-resolution.9 In this work, the low-resolution
image is first passed through convolutional layer to extract feature maps. Then, a non-linear mapping stage
is performed to match the features extracted from high-resolution image as close as possible. Finally, the last
layer combines re-mapped feature maps to construct the high-resolution image. Kim et. al. proposed a recursive
DNN-based approach.10 They applied a 3-stage structure, which is feature extraction, feature mapping and
reconstruction. But the difference is that they used a recursive structure in feature mapping stage, and achieved
better performance than that of Dong et. al.9 One step further, a couple of other research works11,12 deal with
multiple artifacts like blocky and blurry caused by image compression. In these works, deep convolutional neural
network (CNN) is applied and a feature enhancement stage is added into the feature re-mapping stage.

The second area which more directly relates to our work is video-based super-resolution. Since videos contain
both spatial and temporal information, which is relatively more complex than images, Kappeler et. al. proposed a
CNN-based video super-resolution approach which has spatial fusion architecture.13 In their work, they presented
three different fusion strategies: fusion at feature extraction stage, fusion at feature re-mapping stage and fusion
at final feature combining stage. Caballero et. al. also proposed a video super-resolution approach14 using a
different spatial fusion method, 3-D convolution. The 3-D convolution forces weights of different feature maps



extracted from different frames to be shared temporally. By using 3-D convolution, the spatial and temporal
information can be better shared across different frames, and the computation overhead can also be reduced
since the result from previous frames can be reused. Overall, both methods achieved better performance than
single frame based super-resolution.

2.2 Machine learning models related to image restoration

For machine learning based image processing, researchers normally apply CNN to achieve satisfying perfor-
mance across a variety of tasks such as object classification, face recognition,15,16 object detection,17,18 and
image segmentation.19,20 By applying the philosophy of auto-encoder, researchers came up with convolutional
auto-encoder (CAE) to overcome the challenges like image de-noising, image super-resolution and video super-
resolution. Different from traditional CNN structure which only performs feature extraction, the CAE has
additional de-convolutional structure which performs image reconstruction based on extracted features. Hence,
the convolutional component in CAE acts as encoder that transforms the input image into the latent space.
Then, de-convolutional component acts as decoder which outputs a restored image based on extracted latent
vectors. Besides, Pu et.al.21 applied an image-based variational auto-encoder (VAE), a variation of CAE, and
evaluated their approach with different image-based tasks including classification, labeling and caption creation.
Different from the CAE which only focuses on reconstruction loss between input and output images, the VAE
model has a second focus on the distribution of latent space. In VAE, the input image is first encoded as distri-
bution over a sample point in the latent space; second, a point is sampled from the latent distribution; then, the
reconstruction will be performed based on this sampled point.

2.3 Relationship with our work

From the brief review above, we can see that there are many existing works proposed on whole image/video-frame
based solutions, targeting image quality and improving the Signal to Noise Ratio (SNR). But our application
field is specifically towards FiVR. Technical wise, our work is video-based artifact mitigation, which is different
from image-based super-resolution, image-based artifacts mitigation, or video-based super-resolution. Moreover,
to improve the FiVR performance, we focus on restoring face images with artifacts detected from compressed
videos. Hence, our approach utilizes face features and restores face images based on extracted features, but not
deals with other information included in the whole video frame such as background or object, which are not
related with our face recognition task.

3. OUR APPROACH

In Fig.2, we present a top-level block diagram of our approach. First of all, we perform face detection from
the input compressed videos which contain artifacts already. Then, we perform the artifact mitigation on the
detected face by using our DNN-based artifact reduction engine. Finally, the face images with reduced artifacts
are forwarded to further processing including face quality assessment and face recognition. One important detail
is that we perform artifact mitigation after face detection, but not performing artifact reduction on the whole
video frame. The reason for this is two-folds. First, we can reduce the computation overhead since we don’t need
to compute over the area of an entire frame, and we don’t need to forward a large size image into the deep neural
network. Second, the artifact mitigation engine would be more “focused” when we use detected face images as
input, as video frame with background information is unrelated to our FR task. As a result, the DNN model
in artifact mitigation engine would only extract useful features of faces, but not the features from other areas
of the video frame, such as non-face objects or background features. Then, the following frame selection and
FR engine will perform the operation on the restored face images, which is the output of the proposed artifact
mitigation engine.

The detailed framework of our face image artifact mitigation engine is presented in Fig.3. The first stage is
face detection, which crops faces from original video frames. Then, the detected face images will be re-scaled to
the input size of the neural network. In this work, we set the input size to be 224 × 224. One reason for this
size setting is that the target of artifact mitigation is to improve the FR performance. Hence, we directly target
the FR DNN and re-scale them to the same input size of FR DNN, so that they can connect seamlessly. Even
though our current backend is VGGNet, our framework can work for other FR DNN models since the input size



Figure 2: Block diagram of our approach

Figure 3: Detailed framework of our artifact mitigation engine

of GoogLenet V1 and ResNet-101/152/50 is also 224 × 224. Please note we also have the option to set the size
to 299 × 299 to adapt to GoogLenet V3-5 versions. In the middle part of our engine, we use an image-based
auto-encoder to extract features of input face image and reconstruct the face images with less artifacts based on
the enhanced features. The left side uses convolutional operations to generate smaller but more feature maps,
while the right side applies de-convolutional operations which rebuild the larger face images based on extracted
feature maps. Lastly, the FR would be performed on restored face images.

The core of our artifact mitigation framework is the DNN with convolutional auto-encoder structure, which
is shown in more detail in Fig.4. The stages shown in orange is the convolution operation which performs feature
extraction on input face image. The stages in green is the de-convolution operation, which rebuilds the face
image based on extracted feature maps. The reason for using convolutional auto-encoder is, the convolution and
de-convolution structure is capable of utilizing useful face features and stops unrelated features or noise caused
by compression artifacts being passed on to the image reconstruction. In other word, if the model is trained
with more iterations, the convolution extracts useful features relate to face structure, shape and details. And the
unrelated features which caused by artifacts would be filtered out. Then, the de-convolution stage can rebuild
the face image based on extracted useful face features. We can also see that the convolution and de-convolution
parts are symmetric in the number of operation stages and feature map sizes at different level. Hence, we further
add the skip connection, which combines the input images or feature maps with the reconstructed images or
feature maps. The benefit of introducing skip connections is that we can keep the useful information in original
input and forward it to reconstruction stage to achieve better performance.

Another detail in model training is that we use the reconstruction loss, which is the mean squared error
(MSE) as the target loss function. As shown in Equation 1, the MSE loss between reconstructed face image
Î(m,n) and input face image I(m,n) is computed as the mean squared difference between each pixel at the same
position (m,n):

LossMSE =
1

MN

M∑
n=1

N∑
m=1

[Î(m,n) − I(m,n)]2 (1)



Figure 4: Convolutional auto-encoder with skip connection

4. EXPERIMENTS

In designing the experiments, we want to quantify the FR performance loss caused by artifacts first to show
the FR performance impact due to video compression. Then, we restore the face images from compressed video
with artifacts, and compare the overall performance between FR on restored face images and on un-restored face
images.

For the evaluation of face in video dataset, we used 1401 videos from stabilized camera set in PaSC dataset,22

and compressed them with H.264 and MPEG4 codec standards. For the training and testing of our artifacts
mitigation engine, we varied different combinations of codec and bit-rate. Then, we examined the FR performance
with ROC and DET curves under different settings. The ROC curve emphasize on the accuracy in terms of
TPR (True Positive Rate) under specific tolerance of error rate in terms of FPR (False Positive Rate). The
DET curve emphasizes on the trade-offs of FPR (False Positive Rate) over FNR (False Negative Rate). For FR
engine, we use VGG Face Descriptor in training and testing. Other details include we use PyTorch 1.1 as the
machine learning framework, Nvidia Titan XP GPU, 64GB system RAM, two Intel Xeon-2650v3 10-core CPUs
and Ubuntu 18.04 64bit as experiment platform.

4.1 Impact of Video Compression

To clearly show the impact on FR performance caused by video compression, we compressed 2802 test videos
from PaSC dataset using H.264 and MPEG4 standards with different compression bit-rates. In ROC and DET
curves below, we can see that video compression causes notable FR performance loss, especially under low bit
rates. For example, in the ROC curve of Fig.5, there is an 18% performance loss for TPR at FPR of 0.2
between uncompressed and H.264 512kpbs compression, which is observable and cannot be ignored. The AUC is
decreased as well. For example, the AUC of H.264 with 512kbps is 8% lower compared with that of uncompressed
case. In DET curve, we can see an obvious FNR and FPR increase due to compression. The curve of FR on
uncompressed video, which is the solid curve, has a lower than 0.5 FNR and lower than 0.6 FPR. But if the
videos are compressed with H.264 at 512kbps, the FNR increases by 20% and the FPR increases even higher.
On a side note, we can observe that at the same bit-rate, the AUC of H.264 is higher than that of MPEG4, and
the DET curve of H.264 is also lower, indicating H.264 compression standard causes less performance loss than
using MPEG-4 standard. To sum up, it is evident that compression has a significant impact on the performance
of FiVR.

4.2 Result of Artifacts Mitigation

First, we compared the performance across different auto-encoder structures for our artifact mitigation engine in
Fig.6. For the model training we used compressed videos with H.264 standard at 2048kbps bit-rate and applied
L1 loss as the performance metric. From this figure we can see that the convolutional auto-encoder (CAE)
with skip connection has the lowest L1 absolute loss, compared with other three representative auto-encoder
structures. Specifically, CAE L1 loss is around 50% lower than that of adversarial auto-encoder, and around
30% lower than that of convolutional auto-encoder without skip connection. This is because the skip connection
passes information from feature extraction layers and makes de-convolution layers being able to combine original
features with reconstructed features and achieve lower loss.



Figure 5: Comparison on FR performance loss due to compression (ROC curves on the left and DET curves on
the right)

Figure 6: Comparison of L1 loss of different model structures

Next, we present a cross comparison study using two video compression standards (H.264 and MPEG4) at two
different bit-rate (2048kbps and 1024kpbs) to examine different training and testing combinations, the results of
which can be found in Fig.7. First of all, we can observe four working combinations labeled as green, i.e., if we
train our model with H.264 compressed videos and test on MPEG4 compressed videos, we can achieve positive
mitigation effect. Actually, under the same bit-rate, H.264 standard has been shown to be able to keep higher
video quality and being a more efficient standard than MPEG4.23 Hence, if we train our mitigation engine with
better compression standard, the model can learn more face features and being able to restore faces in videos
compressed with less efficient compression standard. This even applies to the case when we train the model with
H.264 at lower data-rate, we can still improve the performance of MPEG4 video at higher data-rate.

Secondly, there are six red blocks on the upright of Fig.7 where we have negative mitigation effect. Actually,
training on videos compressed with less efficient standard such as MPEG4 and test on videos compressed with
better standard like H.264 will not achieve the artifact mitigation effect we desire, across different bit rates. The
same scenario happens on using the model trained on videos with lower bit rate and applying towards videos
with higher bit rate in hope of achieve mitigation effect, with the same compression standard. Hence, these
configurations mean the model can’t learn enough features with poorer video. Lastly, if we train the mitigation
engine using the same compression standard at the same bit rate as the testing video, we do not achieve obvious
FR performance improvement across the board. We speculate those videos for training and testing have similar
level of details, as a result, the model couldn’t learning more details to restore faces from compressed videos.

In Fig.8, we present the results of FR performance improvement by applying compression artifact mitigation.



Figure 7: Training and testing configuration selection

Based on the study from Fig.7, the mitigation model is trained with higher quality video of H.264 at 2048kbps,
and tested with MPEG videos at 2048kbps and 1024kbps, separately. From the ROC curve we can see that the
video compression downgrades the FR performance. From Fig.8a, the compression at 2048kbps causes a 4% loss
in AUC compare with that of FR on original video. And in Fig.8b, this loss in AUC is further increased to 5%
at a lower bit rate. And a more obvious loss can be seen in TPR value at 1% FPR, where the 2048kpbs case has
a TPR of 0.2 and 1024kbps case falls much below 0.2 to close to 0.1, which means a nearly 50% performance
loss. But with our artifacts mitigation engine, the FR performance is restored to very close to the performance
from uncompressed video, especially in low FPR area. For example, at the same 1% FPR location, both ROC
curves in blue has a close to 20% TPR, which means our mitigation engine largely restores the FR performance.
Furthermore, to show the performance improvement more clearly, we compared the absolute TPR values in Fig.9
for compressed, restored and original videos under 0.01 and 0.1 FPR, respectively. We can clearly see that the
artifact mitigation engine improves the video quality and makes the FR performance higher than performing
FR on original compressed video, and even getting close to FR on original uncompressed video. In Fig.10, we
present the result of performance comparison in DET curves. We can see that the video compression can bring
more trade-offs in FPR and FNR, especially at lower bit rate. But with our artifacts mitigation engine, the FPR
and FNR are both reduced.

What’s more, we tested our artifact mitigation engine with MPEG4 compressed videos at an even lower
bit-rate of 512kbps. From the Fig.11 below, we can clearly see that the compression artifacts mitigation engine
works on even worse quality videos, as well as on MPEG4-2048kbps and MPEG4-1024kps compressed videos.
Even though the AUC metric of our approach downgrades as the video quality deteriorates, the dropping trend
of AUC value for performing FR on restored videos is less sharp than that of performing FR on compressed
videos, which indicates that our approach is capable of handling low quality videos with even higher compression
ratio.

Lastly, we present the visual effect of compression artifacts mitigation, where the face samples are also from
PaSC dataset. In Fig.12, we can see the face images in compressed video are very blocky and vague. But with
our artifacts mitigation, the face images in restored video are much less blocky and closer in quality to faces in
original uncompressed video. What’s more, we use a face quality assessment (FQA) engine from our previous
research6 to quantify the quality of the face samples. The score is normalized to 0.0 to 1.0, from low to high.
For the most left face in red box, the face from compressed video has a quality score of 0.52, and the restored
one has a quality score of 0.69, which is much closer to the original face’s quality score of 0.76.



(a) MPEG 2048k video (b) MPEG 1024k video

Figure 8: ROC curve of test on compressed video

Figure 9: Comparison of absolute performance value

5. CONCLUSION

In this work, we introduce an artifact mitigation engine targeting face in video recognition (FiVR) system.
First, from the quantitative study on the effect of video compression on the performance of face recognition (FR),
we can see that the compression can make the overall FR performance lower comparing with performing FR
on uncompressed videos. Secondly, we propose a deep learning model which applies convolutional auto-encoder
(CAE) with skip connections to restore face images detected from compressed videos. From the experimental
results we can see that our approach can restore the quality of face from highly compressed video streams with
low visual quality, hence effectively mitigate the compression artifacts on faces and improve the overall FR
performance. For future works, we plan on continuing to improve the model to utilize temporal information
cross multiple video frames.
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(a) MPEG 2048k video (b) MPEG 1024k video

Figure 10: DET curve of test on compressed video

Figure 11: Comparison of AUC values across three different MPEG4 bit-rates

Figure 12: Visual effects of compression artifacts mitigation
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