Zero-Bias Deep Learning for Accurate Identification of Internet-of-Things (IoT) Devices

Yongxin Liu[®], Jian Wang[®], Jianqiang Li[®], *Member, IEEE*, Houbing Song[®], *Senior Member, IEEE*, Thomas Yang, *Senior Member, IEEE*, Shuteng Niu, and Zhong Ming[®], *Member, IEEE*

Abstract—The Internet of Things (IoT) provides applications 2 and services that would otherwise not be possible. However, the 3 open nature of IoT makes it vulnerable to cybersecurity threats. 4 Especially, identity spoofing attacks, where an adversary pas-5 sively listens to the existing radio communications and then 6 mimic the identity of legitimate devices to conduct malicious 7 activities. Existing solutions employ cryptographic signatures to 8 verify the trustworthiness of received information. In prevalent 9 IoT, secret keys for cryptography can potentially be disclosed and 10 disable the verification mechanism. Noncryptographic device ver-11 ification is needed to ensure trustworthy IoT. In this article, we 12 propose an enhanced deep learning framework for IoT device 13 identification using physical-layer signals. Specifically, we enable 14 our framework to report unseen IoT devices and introduce the 15 zero-bias layer to deep neural networks to increase robustness 16 and interpretability. We have evaluated the effectiveness of the 17 proposed framework using real data from automatic dependent 18 surveillance-broadcast (ADS-B), an application of IoT in avia-19 tion. The proposed framework has the potential to be applied 20 to the accurate identification of IoT devices in a variety of IoT 21 applications and services.

22 Index Terms—Big data analytics, cybersecurity, deep learning, 23 Internet of Things (IoT), noncryptographic identification, zero-24 bias neural network.

I. INTRODUCTION

THE Internet of Things (IoT) is characterized by the interconnection and interaction of smart objects (objects or devices with embedded sensors, onboard data processing capability, and a means of communication) to provide applications and services that would otherwise not be possible [1]. The convergence of sensor, actuator, information, and communication technologies in IoT produces massive amounts of data that need to be sifted through to facilitate reasonably accurate decision-making and control [2]. Big data analytics has the potential to enable the move from IoT to real-time control [3]. However, due to the open nature of IoT, IoT is

Manuscript received May 3, 2020; revised July 19, 2020; accepted August 19, 2020. This work was supported in part by the Embry-Riddle Aeronautical University's Faculty Innovative Research in Science and Technology Program and in part by the National Science Foundation under Grant 1956193. (Corresponding authors: Jianqiang Li; Houbing Song.)

Yongxin Liu, Jian Wang, Houbing Song, Thomas Yang, and Shuteng Niu are with the Department of Electrical Engineering and Computer Science, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114 USA (e-mail: h.song@ieee.org).

Jianqiang Li and Zhong Ming are with the College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China (e-mail: lijq@szu.edu.cn).

Digital Object Identifier 10.1109/JIOT.2020.3018677

subject to cybersecurity threats [4], [5]. One typical cybersecurity threat is identity spoofing attacks where an adversary passively collects information and then mimic the identity of legitimate devices to send fake information or conduct other malicious activities. Such attacks can be extremely dangerous when appear in critical infrastructures [6].

Conventional approaches to prevent identity spoofing 43 attacks employ cryptographic algorithms to verify that a 44 trusted source generates a message. However, the cryptographic approaches depend on the secrecy of encryption keys 46 and encounter challenges from the open and heterogeneous 47 ecosystems of IoT. For example, a number of commercially successful IoT systems, which do not operate with 49 cryptographic keys, require a huge investment to become cryptographically secure [7]. Therefore, there is a need for non-cryptographic solutions to verify the identity of IoT devices, 52 thus ensuring trustworthy IoT.

Noncryptographic IoT device identification is inspired by the signal identification technology in speech and acoustic signal processing [8]. The assumption is that each signal source modulate its unique features into the propagated signals. Comparably, in noncryptographic IoT device identification, we assume that each wireless transmitter randomly picks up certain types of imperfectness (also known as, radiometric fingerprint) during their manufacture [9] and could be reflected in the demodulated signals. Existing works on noncryptographic device identification can be classified into two categories: 1) specific feature recognition and 2) deep learning. Specific feature-based approaches focus on deriving distinctive features (also known as, transmitter fingerprints) from received signals [10], [11] to recognize known devices. Deep-learningbased approaches do not require knowing devices' radiometric characteristics and show even higher accuracy [12], [13]. However, the challenge of applying deep learning approaches for IoT device identification lies in two aspects: 1) unseen 71 device recognition and 2) model interpretability. The first challenge requires deep neural networks (DNNs) to report unseen devices rather than erroneously associating them with known ones. The second challenge requires that the behaviors of neural networks to be interpretable.

In this article, we propose an enhanced deep learning framework for accurate and interpretable identification of IoT devices with mathematically assured performance. We propose a zero-bias dense layer for DNNs to jointly verify known devices and identify unknown ones. The effectiveness of the proposed framework in handling massive signal recognition 82

AQ2

AO1

2 IEEE INTERNET OF THINGS JOURNAL

83 and improving the performance of traditional neural networks 84 has been demonstrated. The contributions of this article are as

86

87

88

89

90

91

92

93

94

95

107

- 1) We provide a novel enhancement, the zero-bias layer, to replace the last dense layer in conventional neural networks to increase its interpretability without losing accuracy.
- 2) We provide a novel technique to characterize how well a neural network can distinguish from different classes.
- 3) We enable our framework to automatically report unknown devices rather than erroneously associating them with known ones.

Our research offers not only a solution to accurate identi-96 fication of IoT devices, thus useful in promoting trustworthy 97 IoT but also a deep learning framework for intrusion detection. 98 In addition, the introduction of the zero-bias layer in DNNs 99 represents an advance in deep learning, thus leveraging deep 100 learning to enable the move from IoT to real-time control.

The remainder of this article is organized as follows. 101 102 A literature review of noncryptographic device identifica-103 tion is presented in Section II. We formulate our problem in Section III with methodology presented in Section IV. 105 Performance evaluation is presented in Section V with con-106 clusions in Section VI.

II. RELATED WORKS

Noncryptographic device identification is emerging as a 109 solution to physical-layer security of IoT. Coresponding meth-110 ods can be classified into two categories: 1) specific feature 111 based and 2) deep learning based.

112 A. Specific Feature-Based Approaches

The specific feature-based approaches require human efforts discover distinctive features for device identification. The 115 methods rely on the fact that there are various manufac-116 turing imperfectnesses in wireless devices' RF frontends. 117 These imperfectnesses do not degrade the communication 118 quality but can be exploited to identify each transmitter 119 uniquely. Those features are named physical unclonable fea-120 tures (PUFs) [14], [15]. There are two categories of PUFs: 1) error pattern and 2) transient patterns. 121

In error pattern approaches, it is assumed that the statistical 123 properties of received symbols' noise could uniquely profile wireless devices. Azarmehr et al. [16] showed that phrase error 125 of phase lock loop (PLL) in transmitters can provide promis-126 ing results even with the low signal-to-noise ratio (SNR). 127 Zhuang et al. [17] used the difference between received sig-128 nals and theoretical templates to construct error vectors. Error 129 vectors' statistics and time-frequency features are combined 130 as fingerprints for transmitter identification. Peng et al. [18] employed differential constellation trace figure (DCTF) to cap-132 ture the time-varying modulation error of ZigBee devices. 133 They then develop their low-overhead classifier to identify 54 134 ZigBee devices.

In transient pattern approaches, it is assumed that a mali-136 cious entity cannot forge the transient response characteristic of wireless transmitters [19]. Transient patterns are commonly seen at the beginning and end of wireless packet transmission. 138 In [20], nonlinear in-band distortion and spectral regrowth 139 of the signals are utilized to distinguish the masquerade 140 emitter. Köse et al. [21] employed the transient energy spec- 141 trum on transmitters' turn-on amplitude envelops to identify, 142 and they showed that frequency-domain features outperform 143 time-domain features.

Feature-based approaches require efforts to manually 145 extract features or high-order statistics for different scenario. 146 Therefore, more effortless and versatile methods are required. 147

B. Deep Neural Network-Based Approaches

DNNs are frequently used as a general-purpose BlackBox 149 for pattern recognition. Naturally, they are applied to perform 150 device-specific identification.

151

183

184

A typical DNN-enabled wireless device identification 152 system employs convolutional layers to extract latent features. 153 Convolutional layers apply filters (also known as, kernels) to 154 obtain helpful information automatically. Such benefit reduces 155 the hardship of manual feature discovery. Yu et al. [22] 156 provided a novel method that perform the signal denoising 157 and emitter identification simultaneously using an autoen- 158 coder and a convolution neural network (CNN). Their solution 159 shows promising results even with low SNR. Similar work 160 in [23] employs stacked denoising autoencoder and show 161 similar results. DNNs perform well even on raw signals. 162 Riyaz et al. [24] provided an optimized deep convolutional 163 neural network to classify software-defined radio (SDR)-based 164 emitters in 802.11AC channels, they show that, even by using 165 raw signals without feature engineering, CNN surpasses the 166 best performance of conventional statistical learning methods. 167 In [25], neural networks were trained on raw IQ samples 168 using the open data set¹ from CorteXlab. Their work also 169 show similar results. Compared with the specific feature- 170 based approach, DNNs dramatically reduce the requirement 171 of domain knowledge and the quality of fingerprints.

In general, DNNs are becoming a promising building block 173 in noncryptographic wireless device identification. DNNs 174 encounter a challenge in terms of anomaly detection, which 175 requires that deep learning-enabled identification systems not 176 only to perform well on trained objects but also can report 177 unknown objects that it would make a wrong decision. 178 Furthermore, for dependable machine learning in practical sce- 179 narios, we need to understand how a neural network associates 180 an input with a corresponding label. These two aspects are 181 rarely covered in signal identification, thus motivating our 182 research.

III. PROBLEM DEFINITION

In this research, we focus on deriving the protocol-agnostic 185 solution to identify of IoT devices from physical-layer sig- 186 nals. The reason is that signal features directly correspond to 187 hardware components and reveals the identities of IoT devices. 188

We define that an IoT device i transmits specific mes- 189 sage with corresponding baseband signal $m_i(t)$. $m_i(t)$ is 190

https://wiki.cortexlab.fr/doku.php?id=tx-id

247

267

191 modulated into

$$M_i(t) = C_i[m_i(t)] \tag{1}$$

where $C_i(x)$ denotes the frequency band processing chains. At 194 receiver j, the received signal becomes

$$R_{ii}(t) = S_{ii}[M_i(t)] \tag{2}$$

where S_{ij} denotes the effect of wireless channel between 197 i and j. This function can incorporate the effect of attenuation 198 or additive noise. The demodulated signal is

199
$$\hat{m}_{i}(t) = S_{j}^{-1} \left\{ C_{j}^{-1} [R_{ij}(t)] \right\}$$

$$= S_{j}^{-1} \left\{ C_{j}^{-1} [S_{ij} [C_{i}[m_{i}(t)]]] \right\}$$
(3)

where $C_j^{-1}(x)$ and $S_j^{-1}(x)$ are j's estimated reverse function 202 of $C_i(x)$ and S_{ij} , respectively. The estimation can hardly be $_{203}$ idealistic. Therefore, at the receiver side, j, the effect of such discrepancies are reflected in $\hat{m}_i(t)$ as

$$\hat{m}_i(t) = r_i(t) + \delta_i(t) \tag{4}$$

where $r_i(t)$ is directly correlated with $m_i(t)$ while the resid-207 ual, $\delta_i(t)$, is utilized to recognize a wireless device. As long 208 as $\delta_i(t)$ is uncorrelated with messages $m_i(t)$, the recognition 209 algorithm is protocol agnostic. Apparently, this is a classifi-210 cation problem, to avoid the hardship of feature engineering, we use DNN and convert IoT device recognition problem into 211 212 three subproblems.

- 1) Given message-related baseband signals from various wireless transmitters, how to extract messageindependent components to develop a classifier using DNNs?
- 2) How to enable our classifier to properly respond to unseen signals?
- 3) How can we evaluate the distinguisability between different devices?

IV. PROPOSED FRAMEWORK

In this section, we first present the feature extraction meth-222 223 ods and then introduce the zero-bias deep learning framework 224 for accurate and interpretable identification of IoT devices.

Baseband Demodulation 225 A.

213

214

215

216

217

218

219

220

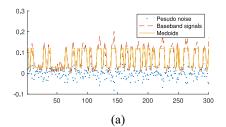
221

In this research, we use an independent SDR receivers, denoted as j', to collect baseband signals from wireless transmitters, denoted as $\hat{m}_{i'}(t)$. Given input signal x, the quadrature 228 229 demodulation function is defined as

230
$$C_{j'}^{-1}(x) = I(t) + \mathbf{i} \cdot Q(t)$$

$$= LPF[x \cdot \cos(\omega_c t + \phi_0) + \mathbf{i} \cdot x \cdot \sin(\omega_c t + \phi_0)] (5)$$

where I(t) and Q(t) are inphase and quadrature components, respectively. ω_c and ϕ_0 are the center frequency and the phase offset of the receiver (j'), respectively. i denotes the imaginary part of the complex function. With PLL, ω_c and ϕ_0 are sup-236 posed to be sufficiently close to RF characteristics of device i.



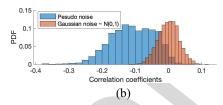


Fig. 1. Property of pseudonoise extraction. (a) Noise extraction on typical signals. (b) Correlation coefficients of pseudonoise.

LPF denotes a low-pass filter. Therefore, at j', demodulated 237 baseband is

$$\hat{m}_{j'}(t) = C_{j'}^{-1} [R_{ij'}(t)]$$
 (6) 239

 $\hat{m}_{i'}(t)$ is complex valued, and its instantaneous amplitude, 240 phase and frequency are $\|\hat{m}_{i'}(t)\| = \sqrt{I^2(t) + Q^2(t)}$, $\angle \hat{m}_{i'}(t) = 241$ $\tan^{-1}(Q(t)/I(t))$ and $\hat{\Omega}_{i'}(t) = ([d\angle \hat{m}_{i'}(t)]/dt)$, respectively.

Note that discrepancies exist between $\hat{m}_i(t)$ and $\hat{m}_{i'}(t)$. Even 243 if the wireless channel effect at receiver j and j' are different, 244 we assume that an SDR receiver could still capture the effect 245 of each wireless device's frequency band processing chain, 246 $C_i(x)$, to recognize them.

B. Feature Extraction

For protocol-agnostic device recognition, we need to remove 249 message-correlated part $r_i(t)$ from $\hat{m}_{i'}(t)$. In this way, we 250 ensure that our device recognition mechanism is protocol 251 agnostic. In addition, we only use the first 1024 samples 252 of $\hat{m}_{i'}(t)$.

1) Pseudonoise Extraction: Suppose we have derived the 254 numerical sequence of instantaneous metrics (amplitude, 255 phase, or frequency), corresponding procedures are as follows. 256

- Step 1: We separate the sequence [denoted as $s_{i'}(n)$] into 257 several nonoverlap segments, with each segment's 258 duration less than one symbol duration.
- Step 2: For each segment, we perform k-medoids algorithm 260 on signals instantaneous phase or amplitudes with 261 k=2. In essence, we use a clustering algorithm to 262 associate numeric values to their closest medoids 263 (representative values). Notably, we could only 264 expect one or two possible choices of amplitudes 265 or phases.

Step 3: In each segment, we generate the pseudonoise as

$$n_{i'}(n) = s_{i'}(n) - m_k [s_{i'}(n)]$$
 (7) 26

where m_k denotes the medoid of $s_{j'}(n)$, We subtract 269 rationale signals from the demodulated baseband 270 signals directly.

IEEE INTERNET OF THINGS JOURNAL 4

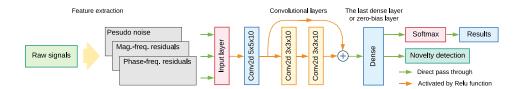


Fig. 2. Deep neural architecture for wireless transmitter identification.

A brief comparison of related signals is in Fig. 1(a). 273 Medoids could be regarded as a less noisy version of demodulated baseband signals $\hat{m}_{i'}(t)$.

The distribution of correlation coefficients (derive from 275 10 000 samples) of pseudonoise against corresponding base-276 277 band signals is depicted in Fig. 1(b). The pseudo noise signals are weakly correlated with original messages.

2) Frequency Domain Features: We subtract the Fourier transforms of both complex-valued baseband signals $\hat{m}_{i'}(t)$ and 281 the reconstructed rationale baseband signals to extract message 282 uncorrelated residual components in the frequency domain. 283 formulated as

$$\delta_{i}(\omega) = \text{FFT}[\hat{m}_{i'}(t)] - \text{FFT}[r_{i'}(t)]$$
 (8)

where $r_{j'}(t)$ is the reconstructed rational baseband signal. Note that $\hat{m}_{i'}(t)$ is complex valued (QPSK) while $r_{i'}(t)$ can be real valued (2FSK, 2PSK, etc.). We convert residual components into a magnitude sequence ($\|\delta_i(\omega)\|$), namely, Mag.-Freq. residuals, and a phase sequence ($\angle \delta_i(\omega)$), namely, Phase-Freq. 290 residuals, respectively.

291 C. Zero-Bias Deep Learning Framework for Accurate Identification of IoT Devices 292

In this section, we present our enhancement to con-293 ventional neural networks, which is generalizable to other 295 neural-classification problems.

The architecture of deep-learning-enabled classifier for device identification is given in Fig. 2. Convolutional layers 297 with skip connections are employed to extract latent features, we also use a dense layer followed by a softmax layer for final 300 classification. However, in the last dense layer, we propose a modified approach. 301

Suppose we have *m*-dimension input vectors with batch size k, we need to convert them into k n-dimension outputs. A 304 conventional dense layer would perform a linear calculation as

$$Y_1 = W_1 X + b_1 (9)$$

where X, b_1 , and W_1 denote the m by k input matrix, bias neu-307 rons, and an n by m weights matrix, respectively. If we break 308 the regular dense layer into two consecutive parts, depicted in $_{309}$ Fig. 3, a regular dense layer denoted by L_1 and a dense layer $_{310}$ L_2 without bias, respectively. Then, (9) becomes

$$Y_2 = W_2 Y_1 = W_2 W_1 X + W_2 b_1 \tag{10}$$

where W_1 and b_1 belong to L_1 and W_2 belongs to L_2 , 313 respectively. Note that (10) and (9) are performing equiv-314 alent transforms to X and should not degrade the network

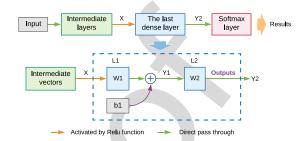


Fig. 3. Data flow of the zero-bias dense layer.

performance. Moreover, in L_2 , we can rewrite the matrix 315 calculation into vectors

$$Y_2[y_{1k}] = [w_{21} \cdot y_{1k}, w_{22} \cdot y_{1k}, \dots, w_{2n} \cdot y_{1k}]$$
 (11) 317

where w_{21}, \ldots, w_{2n} are row vectors corresponding to n output 318 classes, y_{1k} is one of the k column vectors in batch, and $Y_2[y_{1k}]$ 319 is the output vector. The process in (11) can be rewritten using 320 cosine similarity

$$w_{2n} \cdot y_{1k} = ||w_{2n}|| \cdot ||y_{1k}|| \cdot \cos(w_{2n}, y_{1k}). \tag{12}$$

321

338

If L_2 is followed by a softmax layer and we take w_{21}, \ldots, w_{2n} 323 as fingerprints of classes 1 to n, we conclude that L_2 actually 324 calculates a scaled version of cosine similarities among input 325 against fingerprints of target classes.

Moreover, we can safely generalize this discovery to understand the behavior of last dense layers in neural networks.

Remark 1 (Property of Dense Layers): If an output vec- 329 tor of a dense layer represent the degrees of confidence 330 of corresponding class/position against an input, then each 331 confidence degree is jointly controlled by the magnitude of 332 the class/position-related fingerprint, the fingerprint's cosine 333 similarity to the input, and the bias neuron of this class.

Although the magnitude of an input feature vector $||y_{1k}||$ 335 seems to take effect as in (12), but in the consecutive softmax 336 layer, the magnitude $||y_{1k}||$ only contributes to a common base 337 number as

class =
$$\frac{\exp[\|y_{1k}\| \cdot \|w_{2n}\| \cdot \cos(w_{2n}, y_{1k})]}{\sum_{n} \exp[\|y_{1k}\| \cdot \|w_{2n}\| \cdot \cos(w_{2n}, y_{1k})]}$$
(13) 339

where the base number, $\exp \|y_{1k}\|$ only controls the steepness 340 of the monotonic mapping curve. According to Remark 1, we 341 can derive another important remark.

Remark 2 (Neural Networks' Partiality): As long as prior 343 layers do not converge to constant functions, A neural 344 network's partiality to specific classes is encoded in its last 345 dense layer before softmax, and the bias is jointly controlled 346 by the magnitude of class-related fingerprint vector and the 347 bias neuron of the corresponding class.

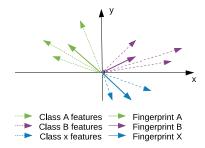


Fig. 4. Relation of fingerprint vectors and feature vectors.

356

357

359

360

361

364

365

366

367

369

In our proposed paradigm of dense layer without bias 350 neurons, we can derive more specific corollaries.

Corollary 1 (Fingerprints' Magnitude): If the variance of 351 352 the magnitude of fingerprints vectors is small, the layer L_2 353 has less bias to specific classes.

Currently, we have two approaches to remove the unwanted 355 effects of fingerprint vectors' magnitudes.

- 1) We can use regularization to eliminate the variance of fingerprints, we make their values relative close.
- 2) We can replace (11) with the following equation:

$$Y_2 = \left[\frac{w_{21}}{\sqrt{w_{21}^2}}, \dots, \frac{w_{2n}}{\sqrt{w_{2n}^2}}\right]^T [y_{11}, \dots, y_{1k}]. \quad (14)$$

Moreover, we can eliminate the side effects of feature vectors' magnitude at the same time

$$Y_{2} = \lambda \left[\frac{w_{21}}{\sqrt{w_{21}^{2}}}, \dots, \frac{w_{2n}}{\sqrt{w_{2n}^{2}}} \right]^{T} \left[\frac{y_{11}}{\sqrt{y_{11}^{2}}}, \dots, \frac{y_{1k}}{\sqrt{y_{1k}^{2}}} \right]$$
(15)

where λ is a trainable value to provide the freedom of controlling the steepness of the mapping curve in the softmax layer. Please be noted that Y2s are differentiable in these two scenarios and (14) is still equivalent to linear operations.

We eliminate the classifiers' partiality or bias. We treat the 370 possibility of each class equally and its the essence of "zero-371 bias" dense layer. With the zero-bias enhancement, we have 372 Corollary 2.

Corollary 2 (Fingerprints' Mutual Distances): Fingerprints 374 in the zero bias dense layer (L_2) act as angular representatives 375 of corresponding classes and should have sufficiently small 376 mutual cosine similarities.

A simplified example of Corollary 2 is given in Fig. 4, 377 suppose we have three classes (A, B, and X) for a DNN to dis-379 tinguish from, the fingerprint vector of each class only captures representative direction. With this property, we only need insert or remove fingerprints in L_2 , to register or remove corresponding classes.

Another benefit is to evaluate how well different classes are 384 mutually distinguishable from each other. We can construct a

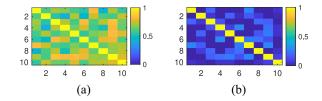


Fig. 5. FD matrix of Minst example. (a) After 1 epoch. (b) After 10 epochs.

fingerprint distance (FD) matrix as

$$FD = \begin{bmatrix} \cos(w_1, w_1) & \dots & \cos(w_1, w_n) \\ \vdots & \ddots & \vdots \\ \cos(w_n, w_1) & \dots & \cos(w_n, w_n) \end{bmatrix}.$$
(16) 386

This matrix can directly reflect how well different classes are 387 separated in the latent space. We replace the last dense layer 388 with the zero-bias dense layer (contains both L_1 and L_2) in the MNIST example [26] and plot the FD matrices when training 390 accuracy reaches 60.2% and 95.8%, respectively. As in Fig. 5, 391 fingerprints are distantly separated with higher accuracy.

In this section, we propose a new scheme of creating zero- 393 bias neural networks and a thorough analysis of the mechanism 394 of dense layers. A summary of our enhancement is given as 395 follows.

Remark 3 (Zero-Bias Layer Enhancement): We replace the 397 last dense layer of a neural network with a consecutive struc- 398 ture consisting of a regular dense layer (L_1) and a zero-bias 399 similarity comparing layer (L_2) .

We note that some researches directly employ (15) as cosine 401 similarity [27], [28] in deep learning, we differentiate from 402 them as: 1) we provided a mathematically equivalent trans- 403 form, by using another regular fully connected layer L_1 and 404 2) our experiments show that directly applying cosine similarity 405 without L_1 dramatically increases the difficulty of training.

D. Novel Device Identification

A wireless device identification system needs to identify 408 anomalous signals from novel devices. In a conventional neu- 409 ral network, the softmax layer associates labels to the largest 410 activation. Such behavior would result in wrong answers given 411 falsified signals from unknown devices. Suppose that the zero- 412 bias layer enhancement in (15) is applied, the output of 413 the layer directly represent cosine similarities. We define the 414 concept Similarity Response as follows.

Definition 1 (Similarity Response): For input, the maximum 416 value in the output vector after zero-bias or regular dense layer 417 is defined as its similarity response.

An unknown device with the false identity can be detected if 419 its signals' similarity responses are below a reasonable thresh- 420 old. For example, if the similarity response of known devices 421 follows a Gaussian distribution, $N(m_k, \sigma_k)$, an input with the 422 highest similarity less than $m_k - \sigma_k$ can be subject to novel or 423 even spoofing device.

V. PERFORMANCE EVALUATION

424

Automatic dependent surveillance-broadcast (ADS-B) [29], 426 which accurately observe and track air traffic, is a fundamental 427

IEEE INTERNET OF THINGS JOURNAL 6

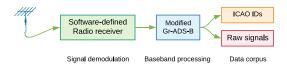


Fig. 6. Collection of ADS-B signals.

Fig. 7. Geographic distribution of aircraft transponders.

428 safety infrastructure modern aviation. This system is designed 429 to be simple and widely adaptable but its extremely vulner-430 able to identity spoofing attacks. In this section, we present 431 our performance evaluation results using real ADS-B data and 432 demonstrate how our proposal could be elegantly applied in 433 practical systems.

A. Evaluation Data Set

Nowadays, Commercial aircraft are equipped with dedi-436 cate 1090-MHz transponders to broadcast its geocoordinates, velocities, altitudes, headings, as well as their unique identi-438 fiers, also known as International Civil Aviation Organization (ICAO) IDs. Such signals provide a great variety of signals 440 from known wireless devices. In our data collection pipeline 441 depicted in Fig. 6, we used a modified gr-adsb library to 442 decode ADS-B messages and store raw baseband digital sig-443 nals. We collected the ADS-B signal from more than 140 444 aircraft at Daytona Beach international airport (ICAO: DAB) 445 for 24 h (January 4, 2020) using an SDR receiver (USRP 446 B210). The receiver is configured with a sample rate of 8 MHz. 447 During this period, more than 30 000 ADS-B messages are 448 collected with coordinates and SNR (in colors) depicted in 449 Fig. 7.

450 B. Known Device Verification

We first conduct a general performance test of the system 451 452 (depicted in Fig. 2). As depicted, the deep learning model can associate received signals with accuracy greater than 94.3%. 454 Furthermore, a brief comparison of DNN with the proposed 455 zero-bias layer, regular dense layer, and only cosine similarity 456 before softmax² on the same data set is given in Fig. 8. As 457 depicted, DNNs with the zero-bias layer or regular dense layer 458 reach almost identical performance. However, the zero-bias 459 layer requires more training iterations, and its rising rate of 460 accuracy is lower at the beginning. Interestingly, if we only use

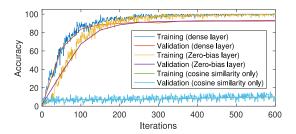


Fig. 8. Comparison of training performance.

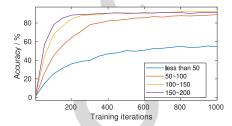


Fig. 9. Validation accuracy in terms of training data size for each transmitter.

cosine similarity directly after convolutions, the deep learning 461 system cannot converge.

To evaluate the deep learning model in terms of training data 463 quantity, we manually limit the number of samples of each 464 transmitter in the training set and use this specially "reduced" 465 training set to train the zero-bias DNN model. As depicted in 466 Fig. 9, the model converges after 800 iterations (40 epochs) 467 and show that we only need 200 samples to recognize each 468 transmitter.

C. Novel Device Identification

We randomly pick ADS-B signals from 30 aircraft to train 471 the neural network and use signals from the remaining 120 472 aircraft as unseen novel devices' signals. We compare the 473 performance of our zero-bias layer, regular dense layer, and 474 one-class support vector machine (SVM), respectively. In this 475 section, we define the optimal decision boundary as

$$\max_{\tau} \| \operatorname{cdf}(P_u(\tau)) - \operatorname{cdf}(P_k(\tau)) \| \tag{17}$$

476

where $P_u(\tau)$ and $P_k(\tau)$ are probability distribution functions 478 of similarity response of unknown and known devices. cdf(·) 479 denotes the cumulative density function.

1) Zero-Bias and Regular Dense Layer: We employ the 481 zero-bias layer [use (15)] for final output. The probability 482 distribution and decision thresholds are given in Fig. 10(a) 483 and (d), respectively. Fig. 10(a) demonstrates that the similar- 484 ities response of unknown signals are higher than unknown 485 signals in most cases. Fig. 10(d) shows that we can eas- 486 ily select an optimum separation threshold to maximize the 487 decision boundary of the anomaly detection algorithm. In 488 our application, we choose the median value of similarity 489 responses on known signals minus its standard deviation as 490 a decision threshold.

We train the identical neural network but with the zero- 492 bias layer replaced by the regular dense layer. But the 493 anomaly detection performances are much worse, as depicted 494

²Similar network architecture with cosine similarity and softmax directly after convolution filters.

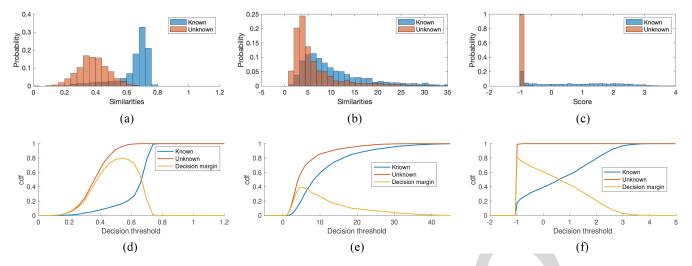


Fig. 10. Performance of Threshold-based anomaly detections. (a) Zero-bias DNN. (b) Regular DNN. (c) One-class SVM. (d) Zero-bias DNN. (e) Regular DNN. (f) One-class SVM.

495 in Fig. 10(b) and (e), the similarity response of regular dense 496 layer on known and unknown data are severely overlapped. The optimal decision boundary in this scenario is small.

2) One-Class SVM: We use the feature vectors in training 499 signals (directly produce by convolutional layers) of zero-bias 500 DNN to train a one-class SVM model, we then use feature vectors from the validation set as unseen signals to test the 502 performance of one-class SVM. We collect the prediction 503 scores on both known signals and unknown signals with statistic results presented in Fig. 10(c) and (f), respectively. The 505 result indicates that the prediction scores of known devices' 506 signal occupy a much wider area (larger variance), which 507 may cause difficulty for choosing the right threshold. The fact indicates that the performance of the zero-bias layer-enabled DNN in anomaly detection is comparable with one-class SVM. However, in our experiment, the one-class SVM model ultimately stores more than 5000 support vectors, while the zero-bias layer only stores directional fingerprints of known aircraft transponders (less than 200). Therefore, we believe our solution is more adaptable for real-time machine learning.

VI. CONCLUSION

515

In this article, we propose a novel deep learning framework 516 517 for IoT device identification. Different from existing works, we 518 focus on how to enable deep learning to be practically usable 519 and dependable. Our contributions are as follows. First, we 520 analyze the mathematical essence of IoT device identification 521 and use residual signals to identify real-world ADS-B trans-522 mitters. We got a promising recognition rate of 94% among more than 130 airborne transponders. Second, we thoroughly 524 analyze the behavior of the last fully connected layer in DNNs 525 and propose our improvement, the zero-bias layer, for inter-526 pretable and dependable machine learning in IoT. Experiments 527 show that we obtain equivalent accuracy compared to the reg-528 ular DNN, but obtain much better performances in terms of 529 anomaly detection. Therefore, we believe the zero-bias layer 530 can be generalized to other domains, such as virus detec-531 tion or unsupervised intrusion detection. In the future, we will

focus on how to efficiently discover reusable function blocks 532 in pretrained networks and apply them to new domains.

REFERENCES

- [1] S. Jeschke, C. Brecher, H. Song, and D. Rawat, Industrial Internet of Things: Cybermanufacturing Systems. Cham, Switzerland: Springer, 536 2017.
- [2] G. Dartmann, H. Song, and A. Schmeink, Big Data Analytics for Cyber-Physical Systems: Machine Learning for the Internet of Things. 539 Amsterdam, The Netherlands: Elsevier, 2019.
- Y. Sun, H. Song, A. J. Jara, and R. Bie, "Internet of Things and big data 541 analytics for smart and connected communities," IEEE Access, vol. 4, pp. 766-773, 2016.
- I. Butun, P. Österberg, and H. Song, "Security of the Internet of Things: Vulnerabilities, attacks, and countermeasures," IEEE Commun. Surveys Tuts., vol. 22, no. 1, pp. 616-644, 1st Quart., 2020.
- [5] Y. Liu, J. Li, Z. Ming, H. Song, X. Weng, and J. Wang, "Domain-specific 547 data mining for residents' transit pattern retrieval from incomplete information," J. Netw. Comput. Appl., vol. 134, pp. 62-71, May 2019.
- [6] A. F. Skarmeta, J. L. Hernandez-Ramos, and M. V. Moreno, "A decentralized approach for security and privacy challenges in the Internet of 551 Things," in Proc. IEEE World Forum Internet Things (WF-IoT), Seoul, South Korea, 2014, pp. 67-72.
- [7] J. Wang et al., "Fountain code enabled ADS-B for aviation security and safety enhancement," in Proc. IEEE 37th Int. Perform. Comput. Commun. Conf. (IPCCC), Orlando, FL, USA, 2018, pp. 1-7.
- X. Yue, Y. Liu, J. Wang, H. Song, and H. Cao, "Software defined radio and wireless acoustic networking for amateur drone surveillance," IEEE Commun. Mag., vol. 56, no. 4, pp. 90-97, Apr. 2018.
- [9] W. Wang, Z. Sun, S. Piao, B. Zhu, and K. Ren, "Wireless physical- 560 layer identification: Modeling and validation," IEEE Trans. Inf. Forensics 561 Security, vol. 11, no. 9, pp. 2091-2106, Sep. 2016.
- [10] J. Wang, N. Juarez, E. Kohm, Y. Liu, J. Yuan, and H. Song, "Integration 563 of SDR and UAS for malicious Wi-Fi hotspots detection," in Proc. IEEE Integr. Commun. Navig. Surveillance Conf. (ICNS), Herndon, VA, USA, 2019, pp. 1–8.
- [11] Y. Zou, Y. Wang, S. Ye, K. Wu, and L. M. Ni, "TagFree: Passive object 567 differentiation via physical layer radiometric signatures," in Proc. IEEE Int. Conf. Pervasive Comput. Commun. (PerCom), Kona, HI, USA, 2017, pp. 237-246.
- [12] S. Chen, S. Zheng, L. Yang, and X. Yang, "Deep learning for largescale real-world ACARS and ADS-B radio signal classification," 2019. [Online]. Available: arXiv:1904.09425.
- Restuccia et al., "DeepRadioid: Real-time channel-resilient optimization of deep learning-based radio fingerprinting algorithms," 2019. [Online]. Available: arXiv:1904.07623.
- B. Chatterjee, D. Das, S. Maity, and S. Sen, "RF-PUF: Enhancing iot 577 security through authentication of wireless nodes using in-situ machine 578 learning," IEEE Internet Things J., vol. 6, no. 1, pp. 388–398, Feb. 2019. 579

542 544

537

538

- 580 [15] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, "Physical unclonable functions and applications: A tutorial," Proc. IEEE, vol. 102, no. 8, 581 582 pp. 1126-1141, Aug. 2014.
- 583 [16] M. Azarmehr, A. Mehta, and R. Rashidzadeh, "Wireless device identification using oscillator control voltage as RF fingerprint," in Proc. IEEE 584 585 30th Can. Conf. Elect. Comput. Eng. (CCECE), Windsor, ON, Canada, 2017, pp. 1-4. 586
- Z. Zhuang et al., "FBSleuth: Fake base station forensics via radio 587 [17] frequency fingerprinting," in Proc. Asia Conf. Comput. Commun. 588 Security, 2018, pp. 261-272. 589
- 590 [18] L. Peng, J. Zhang, M. Liu, and A. Hu, "Deep learning based RF fingerprint identification using differential constellation trace figure," IEEE 591 Trans. Veh. Technol., vol. 69, no. 1, pp. 1091-1095, Jan. 2020. 592
- 593 [19] B. Danev, H. Luecken, S. Capkun, and K. El Defrawy, "Attacks on physical-layer identification," in Proc. 3rd ACM Conf. Wireless Netw. 594 595 Security, 2010, pp. 89-98.
- 596 [20] A. C. Polak and D. L. Goeckel, "Identification of wireless devices of users who actively fake their RF fingerprints with artificial data distor-597 598 tion," IEEE Trans. Wireless Commun., vol. 14, no. 11, pp. 5889-5899, Nov. 2015. 599
- M. Köse, S. Taşcioğlu, and Z. Telatar, "RF fingerprinting of IoT 600 [21] devices based on transient energy spectrum," IEEE Access, vol. 7, 601 pp. 18715-18726, 2019. 602
- 603 [22] J. Yu et al., "Radio frequency fingerprint identification based on denoising autoencoders," 2019. [Online]. Available: arXiv:1907.08809. 604
- 605 [23] J. Huang, Y. Lei, and X. Liao, "Communication transmitter individual feature extraction method based on stacked denoising autoencoders 606 under small sample prerequisite," in Proc. 7th IEEE Int. Conf. Electron. 607 Inf. Emerg. Commun. (ICEIEC), Macau, China, 2017, pp. 132-135. 608
- 609 [24] S. Riyaz, K. Sankhe, S. Ioannidis, and K. Chowdhury, "Deep learning convolutional neural networks for radio identification," IEEE Commun. 610 Mag., vol. 56, no. 9, pp. 146-152, Sep. 2018. 611
- C. Morin, L. Cardoso, J. Hoydis, J.-M. Gorce, and T. Vial, "Transmitter 612 [25] classification with supervised deep learning," 2019. [Online]. Available: 613 arXiv:1905.07923. 614
- 615 [26] Create Simple Deep Learning Network for Classification, MathWorks, Natick, MA, USA, May 2018. https://www.mathworks.com 616 /help/deeplearning/ug/create-simple-deep-learning-network-for-classific 617 618 ation.html
- S. Gidaris and N. Komodakis, "Dynamic few-shot visual learning with-619 [27] out forgetting," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 620 Salt Lake City, UT, USA, 2018, pp. 4367-4375. 621
- C. Luo, J. Zhan, X. Xue, L. Wang, R. Ren, and Q. Yang, "Cosine 622 [28] 623 normalization: Using cosine similarity instead of dot product in neural networks," in Proc. Int. Conf. Artif. Neural Netw., 2018, pp. 382-391. 624
- 625 [29] J. Sun. (May 2017). An Open-Access Book About Decoding Mode-S and ADS-B Data. [Online]. Available: https://mode-s.org/ 626

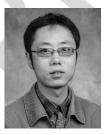
Jianqiang Li (Member, IEEE) received the B.S. and 649 Ph.D. degrees from the South China University of 650 Technology, Guangzhou, China, in 2003 and 2008, 651 respectively.

He is a Professor with the College of Computer 653 and Software Engineering, Shenzhen University, 654 Shenzhen, China. His major research interests 655 include Internet of Things, robotic, hybrid systems, 656 and embedded systems.

Houbing Song (Senior Member, IEEE) received 658 the Ph.D. degree in electrical engineering from the 659 University of Virginia, Charlottesville, VA, USA, in 660 2012.

In August 2017, he joined the Department 662 of Electrical Engineering and Computer Science, 663 Embry-Riddle Aeronautical University, Daytona 664 Beach, FL, USA, where he is currently an Assistant 665 Professor and the Director of the Security and 666 Optimization for Networked Globe Laboratory (www.SONGLab.us).

Dr. Song serves as an Associate Technical Editor for IEEE Communications 669 Magazine and an Associate Editor for the IEEE INTERNET OF THINGS 670 JOURNAL.



Thomas Yang (Senior Member, IEEE) received 672 the Ph.D. degree in electrical engineering from the 673 University of Central Florida, Orlando, FL, USA, 674 in 2004.

He is currently a Full Professor of electri- 676 cal and computer engineering with Embry-Riddle 677 Aeronautical University, Daytona Beach, FL, USA. 678 His research interests include signal processing 679 for wireless communication, autonomous multiagent 680 systems, and machine learning.

AO4

Yongxin Liu received the first Ph.D. degree from the South China University of Technology, Guangzhou, China. He is currently pursuing the second Ph.D. degree with the Department of Electrical Engineering and Computer Science, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA.

His major research interests include data mining, wireless networks, the Internet of Things, and unmanned aerial vehicles.

Shuteng Niu received the M.S. degree from 682 Embry-Riddle Aeronautical University, Daytona 683 Beach, FL, USA, in 2018, where he is currently pursuing the Ph.D. degree with the Department of 685 Electrical Engineering and Computer Science.

He is a Graduate Research Assistant with the 687 Security and Optimization for Networked Globe 688 Laboratory (www.SONGLab.us), Embry-Riddle 689 Aeronautical University. His research interests 690 include machine learning, data mining, and signal processing.

Jian Wang received the M.S. degree from South China Agricultural University, Guangzhou, China, in 2017. He is currently pursuing the Ph.D. degree with the Department of Electrical Engineering and Computer Science, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA.

He is a Graduate Research Assistant with the Security and Optimization for Networked Globe Laboratory (www.SONGLab.us), Embry-Riddle Aeronautical University. His research interests include wireless networks, unmanned

648 systems, and machine learning.

Zhong Ming (Member, IEEE) is a Professor with 693 AQ5 the College of Computer and Software Engineering, 694 Shenzhen University, Shenzhen, China. He led three 695 projects of the National Natural Science Foundation, 696 and two projects of the Natural Science Foundation 697 of Guangdong Province, China. His major research 698 interests include home networks, Internet of Things, and cloud computing.

Prof. Ming is a Senior Member of the Chinese 701 Computer Federation.

699 700

691

692

667

668

671

702