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Abstract—The Internet of Things (IoT) provides applications1

and services that would otherwise not be possible. However, the2

open nature of IoT makes it vulnerable to cybersecurity threats.3

Especially, identity spoofing attacks, where an adversary pas-4

sively listens to the existing radio communications and then5

mimic the identity of legitimate devices to conduct malicious6

activities. Existing solutions employ cryptographic signatures to7

verify the trustworthiness of received information. In prevalent8

IoT, secret keys for cryptography can potentially be disclosed and9

disable the verification mechanism. Noncryptographic device ver-10

ification is needed to ensure trustworthy IoT. In this article, we11

propose an enhanced deep learning framework for IoT device12

identification using physical-layer signals. Specifically, we enable13

our framework to report unseen IoT devices and introduce the14

zero-bias layer to deep neural networks to increase robustness15

and interpretability. We have evaluated the effectiveness of the16

proposed framework using real data from automatic dependent17

surveillance-broadcast (ADS-B), an application of IoT in avia-18

tion. The proposed framework has the potential to be applied19

to the accurate identification of IoT devices in a variety of IoT20

applications and services.21

Index Terms—Big data analytics, cybersecurity, deep learning,22

Internet of Things (IoT), noncryptographic identification, zero-23

bias neural network.24

I. INTRODUCTION25

THE Internet of Things (IoT) is characterized by the26

interconnection and interaction of smart objects (objects27

or devices with embedded sensors, onboard data processing28

capability, and a means of communication) to provide appli-29

cations and services that would otherwise not be possible [1].30

The convergence of sensor, actuator, information, and com-31

munication technologies in IoT produces massive amounts of32

data that need to be sifted through to facilitate reasonably33

accurate decision-making and control [2]. Big data analytics34

has the potential to enable the move from IoT to real-time35

control [3]. However, due to the open nature of IoT, IoT is36
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subject to cybersecurity threats [4], [5]. One typical cyberse- 37

curity threat is identity spoofing attacks where an adversary 38

passively collects information and then mimic the identity of 39

legitimate devices to send fake information or conduct other 40

malicious activities. Such attacks can be extremely dangerous 41

when appear in critical infrastructures [6]. 42

Conventional approaches to prevent identity spoofing 43

attacks employ cryptographic algorithms to verify that a 44

trusted source generates a message. However, the crypto- 45

graphic approaches depend on the secrecy of encryption keys 46

and encounter challenges from the open and heterogeneous 47

ecosystems of IoT. For example, a number of commer- 48

cially successful IoT systems, which do not operate with 49

cryptographic keys, require a huge investment to become cryp- 50

tographically secure [7]. Therefore, there is a need for non- 51

cryptographic solutions to verify the identity of IoT devices, 52

thus ensuring trustworthy IoT. 53

Noncryptographic IoT device identification is inspired by 54

the signal identification technology in speech and acoustic sig- 55

nal processing [8]. The assumption is that each signal source 56

modulate its unique features into the propagated signals. 57

Comparably, in noncryptographic IoT device identification, 58

we assume that each wireless transmitter randomly picks up 59

certain types of imperfectness (also known as, radiometric fin- 60

gerprint) during their manufacture [9] and could be reflected in 61

the demodulated signals. Existing works on noncryptographic 62

device identification can be classified into two categories: 63

1) specific feature recognition and 2) deep learning. Specific 64

feature-based approaches focus on deriving distinctive fea- 65

tures (also known as, transmitter fingerprints) from received 66

signals [10], [11] to recognize known devices. Deep-learning- 67

based approaches do not require knowing devices’ radiometric 68

characteristics and show even higher accuracy [12], [13]. 69

However, the challenge of applying deep learning approaches 70

for IoT device identification lies in two aspects: 1) unseen 71

device recognition and 2) model interpretability. The first chal- 72

lenge requires deep neural networks (DNNs) to report unseen 73

devices rather than erroneously associating them with known 74

ones. The second challenge requires that the behaviors of 75

neural networks to be interpretable. 76

In this article, we propose an enhanced deep learning 77

framework for accurate and interpretable identification of IoT 78

devices with mathematically assured performance. We pro- 79

pose a zero-bias dense layer for DNNs to jointly verify known 80

devices and identify unknown ones. The effectiveness of the 81

proposed framework in handling massive signal recognition 82
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and improving the performance of traditional neural networks83

has been demonstrated. The contributions of this article are as84

follows.85

1) We provide a novel enhancement, the zero-bias layer,86

to replace the last dense layer in conventional neural87

networks to increase its interpretability without losing88

accuracy.89

2) We provide a novel technique to characterize how well90

a neural network can distinguish from different classes.91

3) We enable our framework to automatically report92

unknown devices rather than erroneously associating93

them with known ones.94

Our research offers not only a solution to accurate identi-95

fication of IoT devices, thus useful in promoting trustworthy96

IoT but also a deep learning framework for intrusion detection.97

In addition, the introduction of the zero-bias layer in DNNs98

represents an advance in deep learning, thus leveraging deep99

learning to enable the move from IoT to real-time control.100

The remainder of this article is organized as follows.101

A literature review of noncryptographic device identifica-102

tion is presented in Section II. We formulate our problem103

in Section III with methodology presented in Section IV.104

Performance evaluation is presented in Section V with con-105

clusions in Section VI.106

II. RELATED WORKS107

Noncryptographic device identification is emerging as a108

solution to physical-layer security of IoT. Coresponding meth-109

ods can be classified into two categories: 1) specific feature110

based and 2) deep learning based.111

A. Specific Feature-Based Approaches112

The specific feature-based approaches require human efforts113

to discover distinctive features for device identification. The114

methods rely on the fact that there are various manufac-115

turing imperfectnesses in wireless devices’ RF frontends.116

These imperfectnesses do not degrade the communication117

quality but can be exploited to identify each transmitter118

uniquely. Those features are named physical unclonable fea-119

tures (PUFs) [14], [15]. There are two categories of PUFs:120

1) error pattern and 2) transient patterns.121

In error pattern approaches, it is assumed that the statistical122

properties of received symbols’ noise could uniquely profile123

wireless devices. Azarmehr et al. [16] showed that phrase error124

of phase lock loop (PLL) in transmitters can provide promis-125

ing results even with the low signal-to-noise ratio (SNR).126

Zhuang et al. [17] used the difference between received sig-127

nals and theoretical templates to construct error vectors. Error128

vectors’ statistics and time-frequency features are combined129

as fingerprints for transmitter identification. Peng et al. [18]130

employed differential constellation trace figure (DCTF) to cap-131

ture the time-varying modulation error of ZigBee devices.132

They then develop their low-overhead classifier to identify 54133

ZigBee devices.134

In transient pattern approaches, it is assumed that a mali-135

cious entity cannot forge the transient response characteristic136

of wireless transmitters [19]. Transient patterns are commonly137

seen at the beginning and end of wireless packet transmission. 138

In [20], nonlinear in-band distortion and spectral regrowth 139

of the signals are utilized to distinguish the masquerade 140

emitter. Köse et al. [21] employed the transient energy spec- 141

trum on transmitters’ turn-on amplitude envelops to identify, 142

and they showed that frequency-domain features outperform 143

time-domain features. 144

Feature-based approaches require efforts to manually 145

extract features or high-order statistics for different scenario. 146

Therefore, more effortless and versatile methods are required. 147

B. Deep Neural Network-Based Approaches 148

DNNs are frequently used as a general-purpose BlackBox 149

for pattern recognition. Naturally, they are applied to perform 150

device-specific identification. 151

A typical DNN-enabled wireless device identification 152

system employs convolutional layers to extract latent features. 153

Convolutional layers apply filters (also known as, kernels) to 154

obtain helpful information automatically. Such benefit reduces 155

the hardship of manual feature discovery. Yu et al. [22] 156

provided a novel method that perform the signal denoising 157

and emitter identification simultaneously using an autoen- 158

coder and a convolution neural network (CNN). Their solution 159

shows promising results even with low SNR. Similar work 160

in [23] employs stacked denoising autoencoder and show 161

similar results. DNNs perform well even on raw signals. 162

Riyaz et al. [24] provided an optimized deep convolutional 163

neural network to classify software-defined radio (SDR)-based 164

emitters in 802.11AC channels, they show that, even by using 165

raw signals without feature engineering, CNN surpasses the 166

best performance of conventional statistical learning methods. 167

In [25], neural networks were trained on raw IQ samples 168

using the open data set1 from CorteXlab. Their work also 169

show similar results. Compared with the specific feature- 170

based approach, DNNs dramatically reduce the requirement 171

of domain knowledge and the quality of fingerprints. 172

In general, DNNs are becoming a promising building block 173

in noncryptographic wireless device identification. DNNs 174

encounter a challenge in terms of anomaly detection, which 175

requires that deep learning-enabled identification systems not 176

only to perform well on trained objects but also can report 177

unknown objects that it would make a wrong decision. 178

Furthermore, for dependable machine learning in practical sce- 179

narios, we need to understand how a neural network associates 180

an input with a corresponding label. These two aspects are 181

rarely covered in signal identification, thus motivating our 182

research. 183

III. PROBLEM DEFINITION 184

In this research, we focus on deriving the protocol-agnostic 185

solution to identify of IoT devices from physical-layer sig- 186

nals. The reason is that signal features directly correspond to 187

hardware components and reveals the identities of IoT devices. 188

We define that an IoT device i transmits specific mes- 189

sage with corresponding baseband signal mi(t). mi(t) is 190

1https://wiki.cortexlab.fr/doku.php?id=tx-id
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modulated into191

Mi(t) = Ci[mi(t)] (1)192

where Ci(x) denotes the frequency band processing chains. At193

receiver j, the received signal becomes194

Rij(t) = Sij[Mi(t)] (2)195

where Sij denotes the effect of wireless channel between196

i and j. This function can incorporate the effect of attenuation197

or additive noise. The demodulated signal is198

m̂i(t) = S−1
j

{
C−1

j

[
Rij(t)

]}
199

= S−1
j

{
C−1

j

[
Sij[Ci[mi(t)]]

]}
(3)200

where C−1
j (x) and S−1

j (x) are j’s estimated reverse function201

of Ci(x) and Sij, respectively. The estimation can hardly be202

idealistic. Therefore, at the receiver side, j, the effect of such203

discrepancies are reflected in m̂i(t) as204

m̂j(t) = ri(t) + δj(t) (4)205

where ri(t) is directly correlated with mi(t) while the resid-206

ual, δj(t), is utilized to recognize a wireless device. As long207

as δj(t) is uncorrelated with messages mi(t), the recognition208

algorithm is protocol agnostic. Apparently, this is a classifi-209

cation problem, to avoid the hardship of feature engineering,210

we use DNN and convert IoT device recognition problem into211

three subproblems.212

1) Given message-related baseband signals from vari-213

ous wireless transmitters, how to extract message-214

independent components to develop a classifier using215

DNNs?216

2) How to enable our classifier to properly respond to217

unseen signals?218

3) How can we evaluate the distinguisability between219

different devices?220

IV. PROPOSED FRAMEWORK221

In this section, we first present the feature extraction meth-222

ods and then introduce the zero-bias deep learning framework223

for accurate and interpretable identification of IoT devices.224

A. Baseband Demodulation225

In this research, we use an independent SDR receivers,226

denoted as j′, to collect baseband signals from wireless trans-227

mitters, denoted as m̂j′(t). Given input signal x, the quadrature228

demodulation function is defined as229

C−1
j′ (x) = I(t) + i · Q(t)230

= LPF[x · cos(ωct + φ0) + i · x · sin(ωct + φ0)] (5)231

where I(t) and Q(t) are inphase and quadrature components,232

respectively. ωc and φ0 are the center frequency and the phase233

offset of the receiver (j′), respectively. i denotes the imaginary234

part of the complex function. With PLL, ωc and φ0 are sup-235

posed to be sufficiently close to RF characteristics of device i.236

(a)

(b)

Fig. 1. Property of pseudonoise extraction. (a) Noise extraction on typical
signals. (b) Correlation coefficients of pseudonoise.

LPF denotes a low-pass filter. Therefore, at j′, demodulated 237

baseband is 238

m̂j′(t) = C−1
j′

[
Rij′(t)

]
(6) 239

m̂j′(t) is complex valued, and its instantaneous amplitude, 240

phase and frequency are ‖m̂j′(t)‖ = √
I2(t) + Q2(t), ∠m̂j′(t) = 241

tan−1(Q(t)/I(t)) and �̂j′(t) = ([d∠m̂j′(t)]/dt), respectively. 242

Note that discrepancies exist between m̂j(t) and m̂j′(t). Even 243

if the wireless channel effect at receiver j and j′ are different, 244

we assume that an SDR receiver could still capture the effect 245

of each wireless device’s frequency band processing chain, 246

Ci(x), to recognize them. 247

B. Feature Extraction 248

For protocol-agnostic device recognition, we need to remove 249

message-correlated part ri(t) from m̂j′(t). In this way, we 250

ensure that our device recognition mechanism is protocol 251

agnostic. In addition, we only use the first 1 024 samples 252

of m̂j′(t). 253

1) Pseudonoise Extraction: Suppose we have derived the 254

numerical sequence of instantaneous metrics (amplitude, 255

phase, or frequency), corresponding procedures are as follows. 256

Step 1: We separate the sequence [denoted as sj′(n)] into 257

several nonoverlap segments, with each segment’s 258

duration less than one symbol duration. 259

Step 2: For each segment, we perform k-medoids algorithm 260

on signals instantaneous phase or amplitudes with 261

k = 2. In essence, we use a clustering algorithm to 262

associate numeric values to their closest medoids 263

(representative values). Notably, we could only 264

expect one or two possible choices of amplitudes 265

or phases. 266

Step 3: In each segment, we generate the pseudonoise as 267

nj′(n) = sj′(n) − mk
[
sj′(n)

]
(7) 268

where mk denotes the medoid of sj′(n), We subtract 269

rationale signals from the demodulated baseband 270

signals directly. 271
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Fig. 2. Deep neural architecture for wireless transmitter identification.

A brief comparison of related signals is in Fig. 1(a).272

Medoids could be regarded as a less noisy version of demod-273

ulated baseband signals m̂j′(t).274

The distribution of correlation coefficients (derive from275

10 000 samples) of pseudonoise against corresponding base-276

band signals is depicted in Fig. 1(b). The pseudo noise signals277

are weakly correlated with original messages.278

2) Frequency Domain Features: We subtract the Fourier279

transforms of both complex-valued baseband signals m̂j′(t) and280

the reconstructed rationale baseband signals to extract message281

uncorrelated residual components in the frequency domain,282

formulated as283

δj(ω) = FFT
[
m̂j′(t)

] − FFT
[
rj′(t)

]
(8)284

where rj′(t) is the reconstructed rational baseband signal. Note285

that m̂j′(t) is complex valued (QPSK) while rj′(t) can be real286

valued (2FSK, 2PSK, etc.). We convert residual components287

into a magnitude sequence (‖δj(ω)‖), namely, Mag.-Freq.288

residuals, and a phase sequence (∠δj(ω)), namely, Phase-Freq.289

residuals, respectively.290

C. Zero-Bias Deep Learning Framework for Accurate291

Identification of IoT Devices292

In this section, we present our enhancement to con-293

ventional neural networks, which is generalizable to other294

neural-classification problems.295

The architecture of deep-learning-enabled classifier for296

device identification is given in Fig. 2. Convolutional layers297

with skip connections are employed to extract latent features,298

we also use a dense layer followed by a softmax layer for final299

classification. However, in the last dense layer, we propose a300

modified approach.301

Suppose we have m-dimension input vectors with batch302

size k, we need to convert them into k n-dimension outputs. A303

conventional dense layer would perform a linear calculation as304

Y1 = W1X + b1 (9)305

where X, b1, and W1 denote the m by k input matrix, bias neu-306

rons, and an n by m weights matrix, respectively. If we break307

the regular dense layer into two consecutive parts, depicted in308

Fig. 3, a regular dense layer denoted by L1 and a dense layer309

L2 without bias, respectively. Then, (9) becomes310

Y2 = W2Y1 = W2W1X + W2b1 (10)311

where W1 and b1 belong to L1 and W2 belongs to L2,312

respectively. Note that (10) and (9) are performing equiv-313

alent transforms to X and should not degrade the network314

Fig. 3. Data flow of the zero-bias dense layer.

performance. Moreover, in L2, we can rewrite the matrix 315

calculation into vectors 316

Y2
[
y1k

] = [
w21 · y1k, w22 · y1k, . . . , w2n · y1k

]
(11) 317

where w21, . . . , w2n are row vectors corresponding to n output 318

classes, y1k is one of the k column vectors in batch, and Y2[y1k] 319

is the output vector. The process in (11) can be rewritten using 320

cosine similarity 321

w2n · y1k = ‖w2n‖ · ‖y1k‖ · cos(w2n, y1k). (12) 322

If L2 is followed by a softmax layer and we take w21, . . . , w2n 323

as fingerprints of classes 1 to n, we conclude that L2 actually 324

calculates a scaled version of cosine similarities among input 325

against fingerprints of target classes. 326

Moreover, we can safely generalize this discovery to under- 327

stand the behavior of last dense layers in neural networks. 328

Remark 1 (Property of Dense Layers): If an output vec- 329

tor of a dense layer represent the degrees of confidence 330

of corresponding class/position against an input, then each 331

confidence degree is jointly controlled by the magnitude of 332

the class/position-related fingerprint, the fingerprint’s cosine 333

similarity to the input, and the bias neuron of this class. 334

Although the magnitude of an input feature vector ‖y1k‖ 335

seems to take effect as in (12), but in the consecutive softmax 336

layer, the magnitude ‖y1k‖ only contributes to a common base 337

number as 338

class = exp
[‖y1k‖ · ‖w2n‖ · cos(w2n, y1k)

]
∑

n exp
[‖y1k‖ · ‖w2n‖ · cos(w2n, y1k)

] (13) 339

where the base number, exp ‖y1k‖ only controls the steepness 340

of the monotonic mapping curve. According to Remark 1, we 341

can derive another important remark. 342

Remark 2 (Neural Networks’ Partiality): As long as prior 343

layers do not converge to constant functions, A neural 344

network’s partiality to specific classes is encoded in its last 345

dense layer before softmax, and the bias is jointly controlled 346

by the magnitude of class-related fingerprint vector and the 347

bias neuron of the corresponding class. 348
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Fig. 4. Relation of fingerprint vectors and feature vectors.

In our proposed paradigm of dense layer without bias349

neurons, we can derive more specific corollaries.350

Corollary 1 (Fingerprints’ Magnitude): If the variance of351

the magnitude of fingerprints vectors is small, the layer L2352

has less bias to specific classes.353

Currently, we have two approaches to remove the unwanted354

effects of fingerprint vectors’ magnitudes.355

1) We can use regularization to eliminate the variance of356

fingerprints, we make their values relative close.357

2) We can replace (11) with the following equation:358

Y2 =
⎡
⎣ w21√

w2
21

, . . . ,
w2n√
w2

2n

⎤
⎦

T
[
y11, . . . , y1k

]
. (14)359

Moreover, we can eliminate the side effects of feature360

vectors’ magnitude at the same time361

Y2 = λ

⎡
⎣ w21√

w2
21

, . . . ,
w2n√
w2

2n

⎤
⎦

T⎡
⎣ y11√

y2
11

, . . . ,
y1k√
y2

1k

⎤
⎦362

(15)363

where λ is a trainable value to provide the freedom of364

controlling the steepness of the mapping curve in the365

softmax layer. Please be noted that Y2s are differen-366

tiable in these two scenarios and (14) is still equivalent367

to linear operations.368

We eliminate the classifiers’ partiality or bias. We treat the369

possibility of each class equally and its the essence of “zero-370

bias” dense layer. With the zero-bias enhancement, we have371

Corollary 2.372

Corollary 2 (Fingerprints’ Mutual Distances): Fingerprints373

in the zero bias dense layer (L2) act as angular representatives374

of corresponding classes and should have sufficiently small375

mutual cosine similarities.376

A simplified example of Corollary 2 is given in Fig. 4,377

suppose we have three classes (A, B, and X) for a DNN to dis-378

tinguish from, the fingerprint vector of each class only captures379

a representative direction. With this property, we only need380

to insert or remove fingerprints in L2, to register or remove381

corresponding classes.382

Another benefit is to evaluate how well different classes are383

mutually distinguishable from each other. We can construct a384

(a) (b)

Fig. 5. FD matrix of Minst example. (a) After 1 epoch. (b) After 10 epochs.

fingerprint distance (FD) matrix as 385

FD =
⎡
⎢⎣

cos(w1, w1) . . . cos(w1, wn)
...

. . .
...

cos(wn, w1) . . . cos(wn, wn)

⎤
⎥⎦. (16) 386

This matrix can directly reflect how well different classes are 387

separated in the latent space. We replace the last dense layer 388

with the zero-bias dense layer (contains both L1 and L2) in the 389

MNIST example [26] and plot the FD matrices when training 390

accuracy reaches 60.2% and 95.8%, respectively. As in Fig. 5, 391

fingerprints are distantly separated with higher accuracy. 392

In this section, we propose a new scheme of creating zero- 393

bias neural networks and a thorough analysis of the mechanism 394

of dense layers. A summary of our enhancement is given as 395

follows. 396

Remark 3 (Zero-Bias Layer Enhancement): We replace the 397

last dense layer of a neural network with a consecutive struc- 398

ture consisting of a regular dense layer (L1) and a zero-bias 399

similarity comparing layer (L2). 400

We note that some researches directly employ (15) as cosine 401

similarity [27], [28] in deep learning, we differentiate from 402

them as: 1) we provided a mathematically equivalent trans- 403

form, by using another regular fully connected layer L1 and 404

2) our experiments show that directly applying cosine similarity 405

without L1 dramatically increases the difficulty of training. 406

D. Novel Device Identification 407

A wireless device identification system needs to identify 408

anomalous signals from novel devices. In a conventional neu- 409

ral network, the softmax layer associates labels to the largest 410

activation. Such behavior would result in wrong answers given 411

falsified signals from unknown devices. Suppose that the zero- 412

bias layer enhancement in (15) is applied, the output of 413

the layer directly represent cosine similarities. We define the 414

concept Similarity Response as follows. 415

Definition 1 (Similarity Response): For input, the maximum 416

value in the output vector after zero-bias or regular dense layer 417

is defined as its similarity response. 418

An unknown device with the false identity can be detected if 419

its signals’ similarity responses are below a reasonable thresh- 420

old. For example, if the similarity response of known devices 421

follows a Gaussian distribution, N(mk, σk), an input with the 422

highest similarity less than mk −σk can be subject to novel or 423

even spoofing device. 424

V. PERFORMANCE EVALUATION 425

Automatic dependent surveillance-broadcast (ADS-B) [29], 426

which accurately observe and track air traffic, is a fundamental 427



IEE
E P

ro
of

6 IEEE INTERNET OF THINGS JOURNAL

Fig. 6. Collection of ADS-B signals.

Fig. 7. Geographic distribution of aircraft transponders.

safety infrastructure modern aviation. This system is designed428

to be simple and widely adaptable but its extremely vulner-429

able to identity spoofing attacks. In this section, we present430

our performance evaluation results using real ADS-B data and431

demonstrate how our proposal could be elegantly applied in432

practical systems.433

A. Evaluation Data Set434

Nowadays, Commercial aircraft are equipped with dedi-435

cate 1090-MHz transponders to broadcast its geocoordinates,436

velocities, altitudes, headings, as well as their unique identi-437

fiers, also known as International Civil Aviation Organization438

(ICAO) IDs. Such signals provide a great variety of signals439

from known wireless devices. In our data collection pipeline440

depicted in Fig. 6, we used a modified gr-adsb library to441

decode ADS-B messages and store raw baseband digital sig-442

nals. We collected the ADS-B signal from more than 140443

aircraft at Daytona Beach international airport (ICAO: DAB)444

for 24 h (January 4, 2020) using an SDR receiver (USRP445

B210). The receiver is configured with a sample rate of 8 MHz.446

During this period, more than 30 000 ADS-B messages are447

collected with coordinates and SNR (in colors) depicted in448

Fig. 7.449

B. Known Device Verification450

We first conduct a general performance test of the system451

(depicted in Fig. 2). As depicted, the deep learning model can452

associate received signals with accuracy greater than 94.3%.453

Furthermore, a brief comparison of DNN with the proposed454

zero-bias layer, regular dense layer, and only cosine similarity455

before softmax2 on the same data set is given in Fig. 8. As456

depicted, DNNs with the zero-bias layer or regular dense layer457

reach almost identical performance. However, the zero-bias458

layer requires more training iterations, and its rising rate of459

accuracy is lower at the beginning. Interestingly, if we only use460

2Similar network architecture with cosine similarity and softmax directly
after convolution filters.

Fig. 8. Comparison of training performance.

Fig. 9. Validation accuracy in terms of training data size for each transmitter.

cosine similarity directly after convolutions, the deep learning 461

system cannot converge. 462

To evaluate the deep learning model in terms of training data 463

quantity, we manually limit the number of samples of each 464

transmitter in the training set and use this specially “reduced” 465

training set to train the zero-bias DNN model. As depicted in 466

Fig. 9, the model converges after 800 iterations (40 epochs) 467

and show that we only need 200 samples to recognize each 468

transmitter. 469

C. Novel Device Identification 470

We randomly pick ADS-B signals from 30 aircraft to train 471

the neural network and use signals from the remaining 120 472

aircraft as unseen novel devices’ signals. We compare the 473

performance of our zero-bias layer, regular dense layer, and 474

one-class support vector machine (SVM), respectively. In this 475

section, we define the optimal decision boundary as 476

max
τ

‖cdf(Pu(τ )) − cdf(Pk(τ ))‖ (17) 477

where Pu(τ ) and Pk(τ ) are probability distribution functions 478

of similarity response of unknown and known devices. cdf(·) 479

denotes the cumulative density function. 480

1) Zero-Bias and Regular Dense Layer: We employ the 481

zero-bias layer [use (15)] for final output. The probability 482

distribution and decision thresholds are given in Fig. 10(a) 483

and (d), respectively. Fig. 10(a) demonstrates that the similar- 484

ities response of unknown signals are higher than unknown 485

signals in most cases. Fig. 10(d) shows that we can eas- 486

ily select an optimum separation threshold to maximize the 487

decision boundary of the anomaly detection algorithm. In 488

our application, we choose the median value of similarity 489

responses on known signals minus its standard deviation as 490

a decision threshold. 491

We train the identical neural network but with the zero- 492

bias layer replaced by the regular dense layer. But the 493

anomaly detection performances are much worse, as depicted 494
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Fig. 10. Performance of Threshold-based anomaly detections. (a) Zero-bias DNN. (b) Regular DNN. (c) One-class SVM. (d) Zero-bias DNN. (e) Regular DNN.
(f) One-class SVM.

in Fig. 10(b) and (e), the similarity response of regular dense495

layer on known and unknown data are severely overlapped.496

The optimal decision boundary in this scenario is small.497

2) One-Class SVM: We use the feature vectors in training498

signals (directly produce by convolutional layers) of zero-bias499

DNN to train a one-class SVM model, we then use feature500

vectors from the validation set as unseen signals to test the501

performance of one-class SVM. We collect the prediction502

scores on both known signals and unknown signals with statis-503

tic results presented in Fig. 10(c) and (f), respectively. The504

result indicates that the prediction scores of known devices’505

signal occupy a much wider area (larger variance), which506

may cause difficulty for choosing the right threshold. The fact507

indicates that the performance of the zero-bias layer-enabled508

DNN in anomaly detection is comparable with one-class SVM.509

However, in our experiment, the one-class SVM model ulti-510

mately stores more than 5000 support vectors, while the511

zero-bias layer only stores directional fingerprints of known512

aircraft transponders (less than 200). Therefore, we believe513

our solution is more adaptable for real-time machine learning.514

VI. CONCLUSION515

In this article, we propose a novel deep learning framework516

for IoT device identification. Different from existing works, we517

focus on how to enable deep learning to be practically usable518

and dependable. Our contributions are as follows. First, we519

analyze the mathematical essence of IoT device identification520

and use residual signals to identify real-world ADS-B trans-521

mitters. We got a promising recognition rate of 94% among522

more than 130 airborne transponders. Second, we thoroughly523

analyze the behavior of the last fully connected layer in DNNs524

and propose our improvement, the zero-bias layer, for inter-525

pretable and dependable machine learning in IoT. Experiments526

show that we obtain equivalent accuracy compared to the reg-527

ular DNN, but obtain much better performances in terms of528

anomaly detection. Therefore, we believe the zero-bias layer529

can be generalized to other domains, such as virus detec-530

tion or unsupervised intrusion detection. In the future, we will531

focus on how to efficiently discover reusable function blocks 532

in pretrained networks and apply them to new domains. 533
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