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Zero-Bias Deep Learning for Accurate Identification
of Internet-of-Things (IoT) Devices

Yongxin Liu ", Jian Wang ~, Jiangiang Li

Abstract—The Internet of Things (IoT) provides applications
and services that would otherwise not be possible. However, the
open nature of IoT makes it vulnerable to cybersecurity threats.
Especially, identity spoofing attacks, where an adversary pas-
sively listens to the existing radio communications and then
mimic the identity of legitimate devices to conduct malicious
activities. Existing solutions employ cryptographic signatures to
verify the trustworthiness of received information. In prevalent
IoT, secret keys for cryptography can potentially be disclosed and
disable the verification mechanism. Noncryptographic device ver-
ification is needed to ensure trustworthy IoT. In this article, we
propose an enhanced deep learning framework for IoT device
identification using physical-layer signals. Specifically, we enable
our framework to report unseen IoT devices and introduce the
zero-bias layer to deep neural networks to increase robustness
and interpretability. We have evaluated the effectiveness of the
proposed framework using real data from automatic dependent
surveillance-broadcast (ADS-B), an application of IoT in avia-
tion. The proposed framework has the potential to be applied
to the accurate identification of IoT devices in a variety of IoT
applications and services.

Index Terms—Big data analytics, cybersecurity, deep learning,
Internet of Things (IoT), noncryptographic identification, zero-
bias neural network.

I. INTRODUCTION

HE Internet of Things (IoT) is characterized by the
Tinterconnection and interaction of smart objects (objects
or devices with embedded sensors, onboard data processing
capability, and a means of communication) to provide appli-
cations and services that would otherwise not be possible [1].
The convergence of sensor, actuator, information, and com-
munication technologies in IoT produces massive amounts of
data that need to be sifted through to facilitate reasonably
accurate decision-making and control [2]. Big data analytics
has the potential to enable the move from IoT to real-time
control [3]. However, due to the open nature of IoT, IoT is
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subject to cybersecurity threats [4], [5]. One typical cyberse-
curity threat is identity spoofing attacks where an adversary
passively collects information and then mimic the identity of
legitimate devices to send fake information or conduct other
malicious activities. Such attacks can be extremely dangerous
when appear in critical infrastructures [6].

Conventional approaches to prevent identity spoofing
attacks employ cryptographic algorithms to verify that a
trusted source generates a message. However, the crypto-
graphic approaches depend on the secrecy of encryption keys
and encounter challenges from the open and heterogeneous
ecosystems of IoT. For example, a number of commer-
cially successful IoT systems, which do not operate with
cryptographic keys, require a huge investment to become cryp-
tographically secure [7]. Therefore, there is a need for non-
cryptographic solutions to verify the identity of IoT devices,
thus ensuring trustworthy IoT.

Noncryptographic IoT device identification is inspired by
the signal identification technology in speech and acoustic sig-
nal processing [8]. The assumption is that each signal source
modulate its unique features into the propagated signals.
Comparably, in noncryptographic IoT device identification,
we assume that each wireless transmitter randomly picks up
certain types of imperfectness (also known as, radiometric fin-
gerprint) during their manufacture [9] and could be reflected in
the demodulated signals. Existing works on noncryptographic
device identification can be classified into two categories:
1) specific feature recognition and 2) deep learning. Specific
feature-based approaches focus on deriving distinctive fea-
tures (also known as, transmitter fingerprints) from received
signals [10], [11] to recognize known devices. Deep-learning-
based approaches do not require knowing devices’ radiometric
characteristics and show even higher accuracy [12], [13].
However, the challenge of applying deep learning approaches
for TIoT device identification lies in two aspects: 1) unseen
device recognition and 2) model interpretability. The first chal-
lenge requires deep neural networks (DNNs) to report unseen
devices rather than erroneously associating them with known
ones. The second challenge requires that the behaviors of
neural networks to be interpretable.

In this article, we propose an enhanced deep learning
framework for accurate and interpretable identification of IoT
devices with mathematically assured performance. We pro-
pose a zero-bias dense layer for DNNss to jointly verify known
devices and identify unknown ones. The effectiveness of the
proposed framework in handling massive signal recognition

2327-4662 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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and improving the performance of traditional neural networks
has been demonstrated. The contributions of this article are as
follows.

1) We provide a novel enhancement, the zero-bias layer,
to replace the last dense layer in conventional neural
networks to increase its interpretability without losing
accuracy.

2) We provide a novel technique to characterize how well
a neural network can distinguish from different classes.

3) We enable our framework to automatically report
unknown devices rather than erroneously associating
them with known ones.

Our research offers not only a solution to accurate identi-
fication of IoT devices, thus useful in promoting trustworthy
IoT but also a deep learning framework for intrusion detection.
In addition, the introduction of the zero-bias layer in DNNs
represents an advance in deep learning, thus leveraging deep
learning to enable the move from IoT to real-time control.

The remainder of this article is organized as follows.
A literature review of noncryptographic device identifica-
tion is presented in Section II. We formulate our problem
in Section III with methodology presented in Section IV.
Performance evaluation is presented in Section V with con-
clusions in Section VI.

II. RELATED WORKS

Noncryptographic device identification is emerging as a
solution to physical-layer security of IoT. Coresponding meth-
ods can be classified into two categories: 1) specific feature
based and 2) deep learning based.

A. Specific Feature-Based Approaches

The specific feature-based approaches require human efforts
to discover distinctive features for device identification. The
methods rely on the fact that there are various manufac-
turing imperfectnesses in wireless devices’ RF frontends.
These imperfectnesses do not degrade the communication
quality but can be exploited to identify each transmitter
uniquely. Those features are named physical unclonable fea-
tures (PUFs) [14], [15]. There are two categories of PUFs:
1) error pattern and 2) transient patterns.

In error pattern approaches, it is assumed that the statistical
properties of received symbols’ noise could uniquely profile
wireless devices. Azarmehr et al. [16] showed that phrase error
of phase lock loop (PLL) in transmitters can provide promis-
ing results even with the low signal-to-noise ratio (SNR).
Zhuang et al. [17] used the difference between received sig-
nals and theoretical templates to construct error vectors. Error
vectors’ statistics and time-frequency features are combined
as fingerprints for transmitter identification. Peng et al. [18]
employed differential constellation trace figure (DCTF) to cap-
ture the time-varying modulation error of ZigBee devices.
They then develop their low-overhead classifier to identify 54
ZigBee devices.

In transient pattern approaches, it is assumed that a mali-
cious entity cannot forge the transient response characteristic
of wireless transmitters [19]. Transient patterns are commonly

IEEE INTERNET OF THINGS JOURNAL

seen at the beginning and end of wireless packet transmission.
In [20], nonlinear in-band distortion and spectral regrowth
of the signals are utilized to distinguish the masquerade
emitter. Kose er al. [21] employed the transient energy spec-
trum on transmitters’ turn-on amplitude envelops to identify,
and they showed that frequency-domain features outperform
time-domain features.

Feature-based approaches require efforts to manually
extract features or high-order statistics for different scenario.
Therefore, more effortless and versatile methods are required.

B. Deep Neural Network-Based Approaches

DNNs are frequently used as a general-purpose BlackBox
for pattern recognition. Naturally, they are applied to perform
device-specific identification.

A typical DNN-enabled wireless device identification
system employs convolutional layers to extract latent features.
Convolutional layers apply filters (also known as, kernels) to
obtain helpful information automatically. Such benefit reduces
the hardship of manual feature discovery. Yu er al. [22]
provided a novel method that perform the signal denoising
and emitter identification simultaneously using an autoen-
coder and a convolution neural network (CNN). Their solution
shows promising results even with low SNR. Similar work
in [23] employs stacked denoising autoencoder and show
similar results. DNNs perform well even on raw signals.
Riyaz et al. [24] provided an optimized deep convolutional
neural network to classify software-defined radio (SDR)-based
emitters in 802.11AC channels, they show that, even by using
raw signals without feature engineering, CNN surpasses the
best performance of conventional statistical learning methods.
In [25], neural networks were trained on raw IQ samples
using the open data set! from CorteXlab. Their work also
show similar results. Compared with the specific feature-
based approach, DNNs dramatically reduce the requirement
of domain knowledge and the quality of fingerprints.

In general, DNNs are becoming a promising building block
in noncryptographic wireless device identification. DNNs
encounter a challenge in terms of anomaly detection, which
requires that deep learning-enabled identification systems not
only to perform well on trained objects but also can report
unknown objects that it would make a wrong decision.
Furthermore, for dependable machine learning in practical sce-
narios, we need to understand how a neural network associates
an input with a corresponding label. These two aspects are
rarely covered in signal identification, thus motivating our
research.

III. PROBLEM DEFINITION

In this research, we focus on deriving the protocol-agnostic
solution to identify of IoT devices from physical-layer sig-
nals. The reason is that signal features directly correspond to
hardware components and reveals the identities of IoT devices.

We define that an IoT device i transmits specific mes-
sage with corresponding baseband signal m;(r). m;(t) is

1 https://wiki.cortexlab.fr/doku.php?id=tx-id
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modulated into

M;i(1) = Ci[m;(1)] 6]

where C;(x) denotes the frequency band processing chains. At
receiver j, the received signal becomes

2

where S;; denotes the effect of wireless channel between
i and j. This function can incorporate the effect of attenuation
or additive noise. The demodulated signal is

Rij(1) = §;i[M;(1)]

() = ;7! {C]fl[R,,-(r)]]

=57 {7 [sytcitmion] 3)
where Cfl(x) and S]](x) are j’s estimated reverse function
of Ci(x) and S;;, respectively. The estimation can hardly be
idealistic. Therefore, at the receiver side, j, the effect of such
discrepancies are reflected in m;(¢) as

ﬁij(t) =ri(t) + 5j(t) 4

where r;(¢) is directly correlated with m;(¢f) while the resid-
ual, 8;(7), is utilized to recognize a wireless device. As long
as §;(t) is uncorrelated with messages m;(t), the recognition
algorithm is protocol agnostic. Apparently, this is a classifi-
cation problem, to avoid the hardship of feature engineering,
we use DNN and convert [oT device recognition problem into
three subproblems.

1) Given message-related baseband signals from vari-
ous wireless transmitters, how to extract message-
independent components to develop a classifier using
DNNs?

How to enable our classifier to properly respond to
unseen signals?

How can we evaluate the distinguisability between
different devices?

2)

3)

IV. PROPOSED FRAMEWORK

In this section, we first present the feature extraction meth-
ods and then introduce the zero-bias deep learning framework
for accurate and interpretable identification of IoT devices.

25 A. Baseband Demodulation

226

227

228

229

230

231

232

23

@

234

235

236

In this research, we use an independent SDR receivers,
denoted as ', to collect baseband signals from wireless trans-
mitters, denoted as 712 (r). Given input signal x, the quadrature
demodulation function is defined as

Gl =10 +i-0)
= LPF[x - cos(w.t + ¢po) +i - x - sin(wct + ¢o)] (5)

where I(¢) and Q(¢) are inphase and quadrature components,
respectively. w. and ¢q are the center frequency and the phase
offset of the receiver (j'), respectively. i denotes the imaginary
part of the complex function. With PLL, w, and ¢q are sup-
posed to be sufficiently close to RF characteristics of device i.

+ Pesudo noise
— — Baseband signals
Medoids
ch i A R
HAKIN RS RLI RANARL
| | |

50 100 150

(a)

[ Pesudo noise
[ Gaussian noise ~ N(0,1)
0.1 =
w
[a)
o

0.05

200

250 300

-0.4 -0.3

-0.2
Correlation coefficients

(b)

-0.1 0 0.1

Fig. 1. Property of pseudonoise extraction. (a) Noise extraction on typical
signals. (b) Correlation coefficients of pseudonoise.

LPF denotes a low-pass filter. Therefore, at j/, demodulated
baseband is

iy (1) = C; ' [Ry (0] (6)

ﬁzj/ () is complex valued, and its instantaneous amplitude,
phase and frequency are ||my (1) || = /I>(t) + Q*(1), Liny (1) =
tan~ ' (Q(r)/I(z)) and fz,-/ (1) = ([dZLmj (1)]/dt), respectively.

Note that discrepancies exist between 71;(t) and 7y (f). Even
if the wireless channel effect at receiver j and ;' are different,
we assume that an SDR receiver could still capture the effect
of each wireless device’s frequency band processing chain,
Ci(x), to recognize them.

B. Feature Extraction

For protocol-agnostic device recognition, we need to remove
message-correlated part 7;(t) from 7 (¢). In this way, we
ensure that our device recognition mechanism is protocol
agnostic. In addition, we only use the first 1024 samples
of 7 (t).

1) Pseudonoise Extraction: Suppose we have derived the
numerical sequence of instantaneous metrics (amplitude,
phase, or frequency), corresponding procedures are as follows.

Step 1: We separate the sequence [denoted as sy (n)] into
several nonoverlap segments, with each segment’s
duration less than one symbol duration.

For each segment, we perform k-medoids algorithm
on signals instantaneous phase or amplitudes with
k = 2. In essence, we use a clustering algorithm to
associate numeric values to their closest medoids
(representative values). Notably, we could only
expect one or two possible choices of amplitudes
or phases.

In each segment, we generate the pseudonoise as

(7

where my; denotes the medoid of sy (n), We subtract
rationale signals from the demodulated baseband
signals directly.

Step 2:

Step 3:

ny(n) = sy (n) — my [sj/ (n)]
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Fig. 2. Deep neural architecture for wireless transmitter identification.

A brief comparison of related signals is in Fig. 1(a).
Medoids could be regarded as a less noisy version of demod-
ulated baseband signals 7 (7).

The distribution of correlation coefficients (derive from
10000 samples) of pseudonoise against corresponding base-
band signals is depicted in Fig. 1(b). The pseudo noise signals
are weakly correlated with original messages.

2) Frequency Domain Features: We subtract the Fourier
transforms of both complex-valued baseband signals 72 (f) and
the reconstructed rationale baseband signals to extract message
uncorrelated residual components in the frequency domain,
formulated as

8j(w) = FFT [y (1)] — FFT[ry (1)] (8)
where 7y (¢) is the reconstructed rational baseband signal. Note
that 711 (1) is complex valued (QPSK) while r;(#) can be real
valued (2FSK, 2PSK, etc.). We convert residual components
into a magnitude sequence (||d;(w)||), namely, Mag.-Freq.
residuals, and a phase sequence (£4;(w)), namely, Phase-Freq.
residuals, respectively.

C. Zero-Bias Deep Learning Framework for Accurate
Identification of IoT Devices

In this section, we present our enhancement to con-
ventional neural networks, which is generalizable to other
neural-classification problems.

The architecture of deep-learning-enabled -classifier for
device identification is given in Fig. 2. Convolutional layers
with skip connections are employed to extract latent features,
we also use a dense layer followed by a softmax layer for final
classification. However, in the last dense layer, we propose a
modified approach.

Suppose we have m-dimension input vectors with batch
size k, we need to convert them into k£ n-dimension outputs. A
conventional dense layer would perform a linear calculation as

(€))

where X, b1, and Wy denote the m by k input matrix, bias neu-
rons, and an n by m weights matrix, respectively. If we break
the regular dense layer into two consecutive parts, depicted in
Fig. 3, a regular dense layer denoted by L; and a dense layer
L, without bias, respectively. Then, (9) becomes

Y1 =WiX + b,

Y = WaY1 = WoWi X + Waby (10)

where W; and by belong to L; and W, belongs to L,
respectively. Note that (10) and (9) are performing equiv-
alent transforms to X and should not degrade the network

IEEE INTERNET OF THINGS JOURNAL

Convolutional layers The last dense layer

or zero-bias layer

Novelty detection

Direct pass through

@

Conv2d 3x3x10
Conv2d 3x3x10
Dense

Activated by Relu function

The last
dense layer

Intermediate

layers Results

: ‘

——————————————————
I 1
- | |
Intermediate X Y1 Outputs

w1 w2

- o
1 1
I 1
I 1

Activated by Relu function Direct pass through

Fig. 3. Data flow of the zero-bias dense layer.

performance. Moreover, in L, we can rewrite the matrix
calculation into vectors

(1)

where wag, . . ., W2, are row vectors corresponding to n output
classes, y1x is one of the k column vectors in batch, and Y2 [y1x]
is the output vector. The process in (11) can be rewritten using
cosine similarity

Yalyu] = [war - yie. w22 - Yiko - Wan - Y1

won - Y1k = [W2nll - Iyl - cos(Wan, y1x)- 12)

If L, is followed by a softmax layer and we take way, ..., w2,
as fingerprints of classes 1 to n, we conclude that L, actually
calculates a scaled version of cosine similarities among input
against fingerprints of target classes.

Moreover, we can safely generalize this discovery to under-
stand the behavior of last dense layers in neural networks.

Remark 1 (Property of Dense Layers): If an output vec-
tor of a dense layer represent the degrees of confidence
of corresponding class/position against an input, then each
confidence degree is jointly controlled by the magnitude of
the class/position-related fingerprint, the fingerprint’s cosine
similarity to the input, and the bias neuron of this class.

Although the magnitude of an input feature vector |lyix||
seems to take effect as in (12), but in the consecutive softmax
layer, the magnitude ||y1x| only contributes to a common base
number as

exp Iyl - W2nll - cos(Wan, y1x) ]
> exp[lIyikll - wanll - cosWan, yix) ]

where the base number, exp ||y1x| only controls the steepness
of the monotonic mapping curve. According to Remark 1, we
can derive another important remark.

Remark 2 (Neural Networks’ Partiality): As long as prior
layers do not converge to constant functions, A neural
network’s partiality to specific classes is encoded in its last
dense layer before softmax, and the bias is jointly controlled
by the magnitude of class-related fingerprint vector and the
bias neuron of the corresponding class.

class =

13)
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Class A features Fingerprint A
~» Class B features —® Fingerprint B
—®  Class x features —® Fingerprint X

Fig. 4. Relation of fingerprint vectors and feature vectors.

In our proposed paradigm of dense layer without bias
neurons, we can derive more specific corollaries.

Corollary 1 (Fingerprints’ Magnitude): If the variance of
the magnitude of fingerprints vectors is small, the layer L,
has less bias to specific classes.

Currently, we have two approaches to remove the unwanted
effects of fingerprint vectors’ magnitudes.

1) We can use regularization to eliminate the variance of

fingerprints, we make their values relative close.

2) We can replace (11) with the following equation:

| owa Wan
==
V%21 VWan

Moreover, we can eliminate the side effects of feature
vectors’ magnitude at the same time

T
Y, .- oyw]. (14

T
w1 w3 11 1%
Y, =2A\ e, " J ,...,y
[ 2 2 [ 2 [ 2
Y21 Won Y1 Y1k

5)

where A is a trainable value to provide the freedom of
controlling the steepness of the mapping curve in the
softmax layer. Please be noted that Y,s are differen-
tiable in these two scenarios and (14) is still equivalent
to linear operations.

We eliminate the classifiers’ partiality or bias. We treat the
possibility of each class equally and its the essence of “zero-
bias” dense layer. With the zero-bias enhancement, we have
Corollary 2.

Corollary 2 (Fingerprints’ Mutual Distances): Fingerprints
in the zero bias dense layer (L,) act as angular representatives
of corresponding classes and should have sufficiently small
mutual cosine similarities.

A simplified example of Corollary 2 is given in Fig. 4,
suppose we have three classes (A, B, and X) for a DNN to dis-
tinguish from, the fingerprint vector of each class only captures
a representative direction. With this property, we only need
to insert or remove fingerprints in L, to register or remove
corresponding classes.

Another benefit is to evaluate how well different classes are
mutually distinguishable from each other. We can construct a

1

o oo AN
o
o

Fig. 5. FD matrix of Minst example. (a) After 1 epoch. (b) After 10 epochs.

fingerprint distance (FD) matrix as
cos(wy, w1)
FD =

cos(Wn, w1)

cos(W1, Wn)
: (16)
cos(Wy, wy)

This matrix can directly reflect how well different classes are
separated in the latent space. We replace the last dense layer
with the zero-bias dense layer (contains both L; and L) in the
MNIST example [26] and plot the FD matrices when training
accuracy reaches 60.2% and 95.8%, respectively. As in Fig. 5,
fingerprints are distantly separated with higher accuracy.

In this section, we propose a new scheme of creating zero-
bias neural networks and a thorough analysis of the mechanism
of dense layers. A summary of our enhancement is given as
follows.

Remark 3 (Zero-Bias Layer Enhancement): We replace the
last dense layer of a neural network with a consecutive struc-
ture consisting of a regular dense layer (L;) and a zero-bias
similarity comparing layer (L).

We note that some researches directly employ (15) as cosine
similarity [27], [28] in deep learning, we differentiate from
them as: 1) we provided a mathematically equivalent trans-
form, by using another regular fully connected layer L; and
2) our experiments show that directly applying cosine similarity
without L; dramatically increases the difficulty of training.

D. Novel Device Identification

A wireless device identification system needs to identify
anomalous signals from novel devices. In a conventional neu-
ral network, the softmax layer associates labels to the largest
activation. Such behavior would result in wrong answers given
falsified signals from unknown devices. Suppose that the zero-
bias layer enhancement in (15) is applied, the output of
the layer directly represent cosine similarities. We define the
concept Similarity Response as follows.

Definition 1 (Similarity Response): For input, the maximum
value in the output vector after zero-bias or regular dense layer
is defined as its similarity response.

An unknown device with the false identity can be detected if
its signals’ similarity responses are below a reasonable thresh-
old. For example, if the similarity response of known devices
follows a Gaussian distribution, N(my, o), an input with the
highest similarity less than my — oy can be subject to novel or
even spoofing device.

V. PERFORMANCE EVALUATION

Automatic dependent surveillance-broadcast (ADS-B) [29],
which accurately observe and track air traffic, is a fundamental
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Fig. 6. Collection of ADS-B signals.

1 40.3dB

225dB
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Fig. 7. Geographic distribution of aircraft transponders.

48 safety infrastructure modern aviation. This system is designed
420 to be simple and widely adaptable but its extremely vulner-
430 able to identity spoofing attacks. In this section, we present
431 our performance evaluation results using real ADS-B data and
a2 demonstrate how our proposal could be elegantly applied in
433 practical systems.

434 A. Evaluation Data Set

435 Nowadays, Commercial aircraft are equipped with dedi-
43 cate 1090-MHz transponders to broadcast its geocoordinates,
437 velocities, altitudes, headings, as well as their unique identi-
438 fiers, also known as International Civil Aviation Organization
a9 (ICAO) IDs. Such signals provide a great variety of signals
40 from known wireless devices. In our data collection pipeline
441 depicted in Fig. 6, we used a modified gr-adsb library to
42 decode ADS-B messages and store raw baseband digital sig-
43 nals. We collected the ADS-B signal from more than 140
44 aircraft at Daytona Beach international airport (ICAO: DAB)
a5 for 24 h (January 4, 2020) using an SDR receiver (USRP
46 B210). The receiver is configured with a sample rate of 8 MHz.
47 During this period, more than 30000 ADS-B messages are
48 collected with coordinates and SNR (in colors) depicted in
449 Fig. 7.

a0 B. Known Device Verification

41 We first conduct a general performance test of the system
452 (depicted in Fig. 2). As depicted, the deep learning model can
4s3 associate received signals with accuracy greater than 94.3%.
4s4 Furthermore, a brief comparison of DNN with the proposed
455 zero-bias layer, regular dense layer, and only cosine similarity
ss6 before softmax? on the same data set is given in Fig. 8. As
457 depicted, DNNs with the zero-bias layer or regular dense layer
458 reach almost identical performance. However, the zero-bias
459 layer requires more training iterations, and its rising rate of
40 accuracy is lower at the beginning. Interestingly, if we only use

2Similar network architecture with cosine similarity and softmax directly
after convolution filters.
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Fig. 9. Validation accuracy in terms of training data size for each transmitter.

cosine similarity directly after convolutions, the deep learning

system cannot converge.

To evaluate the deep learning model in terms of training data
quantity, we manually limit the number of samples of each

transmitter in the training set and use this specially “reduced”

training set to train the zero-bias DNN model. As depicted in

Fig. 9, the model converges after 800 iterations (40 epochs)

and show that we only need 200 samples to recognize each

transmitter.

C. Novel Device Ildentification

We randomly pick ADS-B signals from 30 aircraft to train
the neural network and use signals from the remaining 120
aircraft as unseen novel devices’ signals. We compare the
performance of our zero-bias layer, regular dense layer, and
one-class support vector machine (SVM), respectively. In this

section, we define the optimal decision boundary as

max||edf(Py (7)) — edf(Px(D)) |

a7

where P,(t) and Pi(t) are probability distribution functions
of similarity response of unknown and known devices. cdf(-)

denotes the cumulative density function.

1) Zero-Bias and Regular Dense Layer: We employ the
zero-bias layer [use (15)] for final output. The probability
distribution and decision thresholds are given in Fig. 10(a)
and (d), respectively. Fig. 10(a) demonstrates that the similar-
ities response of unknown signals are higher than unknown
signals in most cases. Fig. 10(d) shows that we can eas-
ily select an optimum separation threshold to maximize the
decision boundary of the anomaly detection algorithm. In
our application, we choose the median value of similarity
responses on known signals minus its standard deviation as

a decision threshold.

We train the identical neural network but with the zero-
bias layer replaced by the regular dense layer. But the
anomaly detection performances are much worse, as depicted
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(f) One-class SVM.

495 in Fig. 10(b) and (e), the similarity response of regular dense
496 layer on known and unknown data are severely overlapped.
497 The optimal decision boundary in this scenario is small.

2) One-Class SVM: We use the feature vectors in training
signals (directly produce by convolutional layers) of zero-bias
DNN to train a one-class SVM model, we then use feature
vectors from the validation set as unseen signals to test the
performance of one-class SVM. We collect the prediction
s03 scores on both known signals and unknown signals with statis-
4 tic results presented in Fig. 10(c) and (f), respectively. The
result indicates that the prediction scores of known devices’
signal occupy a much wider area (larger variance), which
may cause difficulty for choosing the right threshold. The fact
indicates that the performance of the zero-bias layer-enabled
DNN in anomaly detection is comparable with one-class SVM.
However, in our experiment, the one-class SVM model ulti-
mately stores more than 5000 support vectors, while the
si2 zero-bias layer only stores directional fingerprints of known
s aircraft transponders (less than 200). Therefore, we believe
our solution is more adaptable for real-time machine learning.
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515 VI. CONCLUSION

In this article, we propose a novel deep learning framework
s17 for IoT device identification. Different from existing works, we
s18 focus on how to enable deep learning to be practically usable
s19 and dependable. Our contributions are as follows. First, we
s20 analyze the mathematical essence of IoT device identification
and use residual signals to identify real-world ADS-B trans-
mitters. We got a promising recognition rate of 94% among
s2s more than 130 airborne transponders. Second, we thoroughly
s2« analyze the behavior of the last fully connected layer in DNNs
s2s and propose our improvement, the zero-bias layer, for inter-
s26 pretable and dependable machine learning in IoT. Experiments
s27 show that we obtain equivalent accuracy compared to the reg-
s2s ular DNN, but obtain much better performances in terms of
s29 anomaly detection. Therefore, we believe the zero-bias layer
s can be generalized to other domains, such as virus detec-
tion or unsupervised intrusion detection. In the future, we will
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focus on how to efficiently discover reusable function blocks
in pretrained networks and apply them to new domains.
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