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Abstract—This paper proposes a decoupling capacitor place-
ment optimization method based on the cavity model and
Lagrange multiplier. The variable conditions associating with
coordinates (x,y) of input impedance expression based on the
cavity model are combined with the Lagrange multiplier method.
The decoupling capacitor optimum placement within a defined
area of the board can be found through the proposed analytical
method. The example of finding an optimum location of the
decoupling capacitor within a defined area of the power delivery
network is exposed, the results are compared to the brute-force
method to prove the effectiveness of the proposed method.

Index Terms—Cavity model, Decoupling capacitors, Lagrange
multiplier method, PDN

I. INTRODUCTION

With rapid technology development, the integrated circuit

(IC) is yielding faster transition. As the switching speeds of

processor clocks rates rise and more functions are embedded

onto the IC, the power consumption is increased dramatically.

The current load can reach over 100 A on a printed circuit

board (PCB) [1]. Therefore, the power noise poses a challenge

for the power delivery network (PDN) design. The impedance

of the PDN with effects of the high transient current can

generate significant noise affecting the functional devices on

the same power rail.

To reduce the PDN noise, a well-designed PDN network

with decoupling capacitors is needed. However, due to the

limits of the geometry, the cost and the performance of the

PCB, the decoupling capacitors need to be placed carefully

to reduce the number of decoupling capacitors and the PDN

noise. Lots of researches have been done to investigate the

placement of decoupling capacitors [2]–[5].

Previous works have developed the input expressions related

to the coordinate of the placement based on the resonant cavity

model [6]. With the multi-port parameters expressed cavity

model, the input impedance expression can be easily obtained.

The semi-analytical method to optimize the placement of the

decoupling capacitor based on the input impedance expression

with respect to the angle and radial distance have been

developed in [4].

However, optimizing the placement in a limited region on

the board is very rare in previous works. Therefore, we propose

a method based on the Lagrange multiplier method with VRM

effect to optimize the placement of the decoupling capacitor

within a dedicated area on the PCB board. The Lagrange
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multiplier method is suitable to optimize multiple variables

system with linear and nonlinear, equality and inequality

conditions [7]. The details and results are discussed in this

paper.

II. PROPOSED SEMI-ANALYTICAL METHOD

DEVELOPMENT

The details of the analytical expression of cavity model

of PDN and Lagrange multiplier methods are expressed.

The mathematical expressions of the proposed method for

decoupling capacitor placement are developed.

A. Input impedance expression with respect to coordinate of

placement

To formulate the problem, a parallel plane with dimen-

sion a, b, and dielectric thickness d is applied. The multi-

port impedance parameters Zij of a parallel plane can be

formulated by representing the standing waves inside the gap

of the planes as an infinite set of trigonometric functions [6].

Zij =
jωμd

ab

∞∑
n=0

∞∑
m=0

·

c2mc2nfp cos kmxi · cos knyi · cos kmxj · cos knyj
k2m + k2n − k2

(1)

Where cm and cn equal to 1 for m,n = 0, and
√
2 for

m,n �= 0; km = mπ/a; kn = nπ/a; (xi, yi) and (xj , yj) are

the coordinates of ports i and j; the fp and the waveguide

number k are shown as follows:

fp = sinc

(
kmWxi

2

)
· sinc

(
knWyi

2

)
·

sinc

(
kmWxj

2

)
· sinc

(
knWyj

2

) (2)

k = ω
√
μdεd ·

(
1− j

(
tan δ +

√
2/ωμcσc/d

2

))
(3)

Where (Wxi,Wyi) and (Wxj ,Wyj) are the dimensions of

ports i and j, respectively.

The impedance matrix of the parallel planes with decoupling

capacitors and VRM can be expressed as in (4) [8], [9]:

Zn×n = (En×n + Zpp ∗YC)
−1 ∗ Zpp (4)

where En×n is an identity matrix with size n which is the

number of the ports; Zpp is the all the multi-port impedance
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parameters Zij of a bare parallel plane; YC is a diagonal

matrix contain the admittance elements of the VRM and

decoupling capacitors. Equation (5) shows an example with

only one decoupling capacitor of YC.

YC =

⎡
⎣0 0 0
0 1/Zvrm 0
0 0 1/ZC

⎤
⎦ (5)

The input impedance Zin = Z11 at the port can be obtained

through (4).

B. Optimization of decoupling capacitor placement with La-

grange multiplier method

Lagrange multipliers method can transform the optimization

question with m variables and n conditions to the optimization

question of m+n variables without conditions. When applied

to inequality and equality conditions, the following general

forms can be expressed [7]:

minf(x)
s.t hj(x)) = 0, j = 1, 2, 3...n′

gi(x) ≤ 0, i = 1, 2, 3...n
(6)

The minimum solution of the optimization of the question

can be found by adding the Lagrange multipliers and making

its gradient to zero. The optimum location of the decoupling

capacitor can be found by integrating the input impedance

expression and Lagrange multiplier method when the locations

of the VRM and port have been defined. The inequality con-

ditions of the optimization are defined based on the selected

region from point P(x1,y1) to O(x2,y2) on the board as

shown in following equations:

x1 � x � x2

y1 � y � y2
(7)

Therefore, the functions of the inequality condition for the

locations can be written as shown in (8):

g1(x) = x− x1 − s1
2

g2(x) = x2 − x− s2
2

g3(y) = y − y1 − s3
2

g4(y) = y2 − y − s4
2

(8)

where s1,2,3,4 are called the slack variables because they

make up the slack in the inequalities. The revised problem

is: minimize f(x, y) = Zin subject to functions in (8). The

Lagrange multiplier formulation is:

L(x, y, s1,2,3,4, λ1,2,3,4) = f(x, y) + λ1g1(x)+

λ2g2(x) + λ3g3(y) + λ4g4(y)
(9)

where λ1,2,3,4 are the multipliers of inequality g(x) function.

The gradient operation can be performed to have the min-

imum solution of Zin with the inequality constraint of the

coordinates (x, y) as shown in (10):

�L(x, y, s1,2,3,4, λ1,2,3,4) = 0 (10)

The optimization for this multiple variables with inequality

conditions can be transformed to find the minimum solution

within the Karush-Kuhn-Tucker (KTT) conditions. Since the

solutions of �L(x, y, s1,2,3,4, λ1,2,3,4) = 0 will have multiple

results, the KTT can help us to define which result satisfy

the conditions. The gradient of (9) will generate ten equations

shown in (11). (x1, y1) and (x2, y2) are known as the selected

area to place the decoupling capacitor. In addition, these equa-

tions can be manually reduced to six equations. By solving

these equations with ten variables x, y, s1,2,3,4, λ1,2,3,4, the

solutions can be obtained. Then, the KTT conditions can be

applied to find the optimum solution among them. Normally,

equation (9) is nonlinear system equations which is difficult

to have the analytical solutions. However, there are researches

have been done to investigate the numerical solutions with

equality conditions based on Newton’s method [10].⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂x

= ∂f(x,y)
∂x

= ∂Zin

∂x
= 0

∂L
∂y

= ∂f(x,y)
∂y

= ∂Zin

∂y
= 0

∂L
∂λ1

= ∂(λ1g1)
∂λ1

= x− x1 − s21 = 0
∂L
∂λ2

= ∂(λ2g2)
∂λ2

= x2 − x− s22 = 0
∂L
∂λ3

= ∂(λ3g3)
∂λ3

= y − y1 − s23 = 0
∂L
∂λ4

= ∂(λ4g4)
∂λ4

= y2 − y − s24 = 0
∂L
∂s1

= ∂(λ1g1)
∂s1

= −2λ1s1 = 0
∂L
∂s2

= ∂(λ2g2)
∂s2

= −2λ2s2 = 0
∂L
∂s3

= ∂(λ3g3)
∂s3

= −2λ3s3 = 0
∂L
∂s4

= ∂(λ4g4)
∂s4

= −2λ4s4 = 0

(11)

III. RESULTS ANALYSIS

The proof of concept (POC) is defined as Fig. 1 with

the dimension a, b, d are 130 mm, 100 mm and 0.1 mm

respectively. The dielectric constant and loss are 4.4 and 0.02

respectively. The Port 1 is located at (45 mm,10 mm) by

taking the dimension (a, b) as the (x, y) coordinate system.

The VRM with R = 0.1 Ω, L = 1 nH is located at (5 mm,

7 mm) on the plane. To formulate the problem, suppose that

a 1 nF decoupling capacitor with ESR = 0.06 Ω, ESL = 0.04

nH needs to be placed within the highlighted blue region from

point P(52.5 mm, 6 mm) to O(73 mm 26.5 mm) in Fig. 1, we

need to find the optimum location of the decoupling capacitor

in this region. The input impedance Zin of the parallel plate

Fig. 1. Parallel planes with decoupling capacitor placement

with only VRM can be obtained as the solid curve shown in

Fig. 2 through the computation. The input impedance of the

decoupling capacitor is shown as the dashed line in Fig. 2. We

can observe that the decoupling capacitor can pull down the

resonance at 718 MHz. The optimum location (52.8 mm, 8.8
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mm) computed by solving (11) is located on the edge of the

highlight red region close to the Port 1. The simulation time for

a single decoupling capacitor location optimization is around 1

second. Fig. 3 shows the Zin comparison of different cases of

Fig. 2. Zin of the parallel plate without decoupling capacitors

the parallel planes. The dashed black curve in Fig. 3 indicates

the parallel planes without decoupling capacitor, a resonance

at 718 MHz with impedance 1.9 Ohm is marked. The blue

curve indicates when the decoupling capacitor is placed at the

middle (66.5 mm, 12 mm) of the selected blue region in Fig. 1.

We can observe that the decoupling capacitor at this location

can pull down the resonance to 0.5 Ω. However, when the

decoupling capacitor is located at the optimum location, the

resonant impedance can be pull down to 0.277 Ω, shown as

the solid red curve in Fig.3. The optimized position shows the

best results at the resonant frequency 718 MHz compare to the

others. The Zin distribution is computed as shown in Fig. 4

Fig. 3. Zin comparison of different cases of the parallel planes

through the brute-force method for the different positions of

the decoupling capacitor. We can observe that the optimum

position computed by the proposed method is the same as

that computed by the brute-force method, which validates the

accuracy of the proposed method in this paper. We can also

observe that in the highlighted area, the optimum position is

the nearest position to the Port 1.

Fig. 4. Zin distribution at 718 MHz with respect to the location of the 1nF
decoupling capacitor

Fig. 5. Zin distribution at 1.42 GHz with respect to the location of the 30
pF decoupling capacitor

However, in another case, it shows that the nearest position

to the port is not the best case. The board size a, b, and d are

50 mm, 50 mm and 0.1 mm, respectively. A 30 pF decoupling

capacitor with 6 mΩ ESR and 0.289 nH ESL is used to pull

down the impedance of the power/ground plane pair at 1.42

GHz. The Port 1 and VRM are located at (36 mm, 23 mm)

and (5 mm, 7 mm), respectively. The rest parameters are the

same as the first POC we studied.

The optimum location of this decoupling capacitor, com-

puted by the proposed method, is (42 mm, 23 mm), which

is the same as that computed by the brute-force method, as

shown in Fig. 5. This optimum position is located in the middle

of the highlighted red region, which pulls down the resonant

impedance at 1.42 GHz to 0.073 Ω. In addition, points most

close to Port 1 in the highlighted red region in Fig. 5 have
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a much higher impedance than that when the capacitor is

located at the optimum location. It shows that the opinion

that capacitors should be placed as close as to the reservation

port is not always correct.

IV. CONCLUSION

We proposed an analytical method for the PDN optimization

by combining the cavity model with multi-ports parameters

and the Lagrange multiplier method. The mathematical process

of the input impedance expression based on cavity model

related to coordinates is developed through the Lagrange mul-

tiplier method. Two optimization examples are computed with

the proposed method, the results compared to the brute-force

method proved the efficiency of the method. The opinion of

placing the decoupling capacitor as close as possible is proved

not always correct. Since we are targeting one decoupling

capacitor placement in this paper, the future work will focus

on the placement of multi-decoupling capacitors with more

complex scenario by covering the PDN cascading, among

VRM, PCB, PKG.
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