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Abstract—In particle simulations of semiconductor devices
for electro-static discharge (ESD) study at the microscopic level,
solving Poisson’s equation is an inevitable but time-consuming
step. In this work, a deep learning technique is utilized to resolve
Poisson’s equation for a PN junction under an ESD event,
namely using a trained deep neural network (DNN) to predict
the potential distribution according to the charge distribution
and the boundary condition under a transient ESD excitation.
To improve the generalization performance of the DNN,
multiple typical ESD curves with different parameters are used
as the excitation boundary to generate large amounts of training
data with a finite-element method (FEM) solver. After being
trained, the DNN is used in the particle simulation to calculate
the current response of the PN junction to a new ESD voltage
curve that has never been trained before, and the result can
perfectly match with that obtained from the FEM solver.
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Electro-static discharge (ESD) events can cause severe
damages to electronic devices [1]-[4]. To study the influence
of ESD on semiconductor devices, particle simulations at the
microscopic level can be performed to consider different
factors such as diffusion, drifting, and scattering [5]-[8]. In this
simulation process, in every step, it is inevitable to solve
Poisson’s equation, namely calculating potential distribution
according to charge distribution and boundary condition, so
that the E-field can be obtained from the renewed potential
distribution to compute the particle renewal at the next step
[8]. There are many available methods to solve Poisson’s
equation such as the finite difference method (FDM) and finite
element method (FEM). However, these approaches usually
require considerable computational resources.

INTRODUCTION

The great success of deep learning in many different areas
has indicated another possible solution to solving Poisson’s
equation since it has an unimaginable power of fitting complex
functions [9]-[15]. Deep learning has been successfully
applied to solve Poisson’s equation in fluid dynamics [16],
which is an inspiration for computational electromagnetics
due to the analogy between fluid and electromagnetics [17].
Therefore, some researches have been conducted attempting
to resolve the Poisson’s equation in electromagnetics using
deep learning [18][19].
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In the work of [18], deep learning is utilized to predict the
potential distribution in a certain region from the charge and
permittivity distribution in a larger region, trained by large
amounts of data with different charge and permittivity
distributions. However, their model does not cover the
variation of the boundary condition, which is an important
factor in many situations. Also, their prediction is only for
every single static step. Afterward, in the work of [19], the
variation of the boundary condition is considered and
emphasized in the particle simulation of a PN junction, which
is shown to perform satisfactorily in terms of producing
negligible long-term accumulative error by predicting the
accurate steady-state current for different static voltage
excitation. Nevertheless, their work just demonstrates the
feasibility of applying deep learning on solving Poisson’s
equation for long-term particle simulation but lacks practical
significance due to the fixed boundary voltage in every
simulation process.

Considering the ultimate purpose of studying the influence
of ESD events on semiconductor devices, which means that
transient voltages will be applied instead of static ones, this
paper aims to explore the possibility of developing a deep
learning-based Poisson solver for different ESD excitation, to
improve the generalization performance of the deep learning
model. In other words, a deep neural network (DNN) will be
trained to solve Poisson’s equation and accurately predict the
long-term current response of a PN junction to a new ESD
voltage excitation, which will make the model more

meaningful in real applications.
N-type I—O I::> Current ?

II. ESD PARTICLE SIMULATOR

|‘\g ESD Voltage
A “ania TN
I‘ - g hy I:‘|> Q—E

Fig. 1. Problem Description.

A. Particle Simulation

As mentioned earlier, the mechanisms considered in the
particle simulator include drift, diffusion, and scattering [8].
Fig. 2 describes the basic flow chart of the particle simulator.
In the beginning, the distribution, energy, and wave vector of
the electrons and holes are initialized through random
assignment. Drift, diffusion, and scattering are considered to

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on January 25,2021 at 01:36:54 UTC from IEEE Xplore. Restrictions apply.



change the particle distribution, so the charge distribution is
updated at the end of each time step. Afterward, the Poisson’s
equation needs to be solved to obtain the potential distribution
at the current step, and then the E field to be used for the drift
calculation at the next step can be calculated easily. By
following this iteration procedure and dividing the whole
process into many small time steps, the simulator is able to
compute the long-term response to an external voltage
excitation.
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Fig. 2. Basic flow chart of particle simulation.

B. FEM Poisson Solver

In this paper, the particle simulator considers a 2D case
for the PN junction shown in Fig. 1 by assuming a uniform
potential and charge distribution in the third dimension. The
2D Poisson’s equation can be expressed using (1):

aZ
(= (1)
Solving this Poisson’s equation is an inverse calculation
process, namely to calculate V(x,y) according to p(x, y)
and the boundary condition of V (x,y). FEM is an optional
method to solve this problem, which discretizes the entire
domain into triangular meshes and obtain the values on the
nodes through some inverse matrix calculation [20].
However, when the number of nodes becomes large, this
inverse calculation can consume considerable computational
time and resources. The objective of this paper is to replace
this FEM solver with a deep learning model. The trained
neural network takes charge distribution and boundary
condition as input and calculates potential distribution simply
through matrix multiplication and summation instead of
inverse calculation, which is more efficient and
straightforward.
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III. ESD EXCITATION

The eventual goal of the particle simulator is to compute
the response of devices to ESD events. Apparently, the deep
learning model developed in [19] cannot address transient
excitations since it is trained with the data under static
boundary conditions. In this paper, a deep learning model that
can handle transient ESD excitation is pursued. Therefore, to
achieve this purpose, multiple ESD waveforms can be used to
train a neural network that can deal with any new ESD
waveform that has never been trained before.
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Fig. 3. An idealized ESD waveform.

An idealized ESD waveform can be represented by the
equation introduced in [21], shown in Fig. 3, which has a main
peak and a secondary peak. Several parameters have a certain
variation range. By changing those parameters, different ESD
waveforms can be obtained [21]. Fig. 4 shows five different
ESD curves that will be used to generate the training data for
the deep learning model. In real applications, the peak voltage
is usually up to several kV. But in this paper, the peak voltage
does not exceed 2V. The reason is that the mechanisms at
higher voltages are more complicated and thus need more
investigation. In the machine learning perspective, the
waveforms shown in Fig. 4 are enough to demonstrate the core
idea of this paper. In future work, ESD curves with higher
voltages will be incorporated into the deep learning model.
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Fig. 4. Multiple ESD curves used to generate the training data.
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IV. DEEP LEARNING MODEL

A. DNN Structure

The dimension of the charge and the potential matrix is
41x9, the same as [19]. The input matrix of the DNN, with the
dimension of 2X41X 9, contains both the charge distribution
and boundary condition. In the boundary matrix, except for the
two boundary rows, the other elements are all zeros. The
output matrix has a dimension of 41X 9, which represents the
predicted potential distribution.

The detailed structure of the DNN used in this paper is
shown in Fig. 5, with a batch size of 512. Different from the
DNN structure in [19], which uses convolutional layers with a
core size of 3X3, 5X5, 7X7, and 9X9 respectively to capture
features of different scales, multiple layers with a core size of
3% 3 are adopted in this paper to improve computational
efficiency without degrading the visual depth of the
convolutional layers, according to the study in [22]. The other
layers, including the convolutional layers, Leakey Relu, batch
normalization, and dropout layer, are utilized to optimize the
performance of the network. More details about the DNN can
be found in [19].
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Fig. 5. Structure of the deep neural network.

B. Loss Function

Similar to [19], to emphasize the significance of the
boundary condition, an additional term related to the boundary
potential values is added into the loss function, expressed in

2):

M N plei)2 M N plein)2
Loss = \/Z‘=1(P(1131 0) +2 X \/ZFI(B(L;I 5'W) )

where M is the batch size; P and P’ are the ground-truth and
predicted potential matrix respectively; B and B’ are the
ground-truth and predicted boundary matrix respectively. The
potential matrix is a full matrix containing every potential
value, while the boundary matrix only contains the boundary
potential values. Even though the potential matrix already
includes the boundary values, the boundary term is still
strengthened in the loss function to ensure a better prediction.

C. Model Training

The FEM solver uses triangular mesh, which can not be
directly utilized by deep learning. To generate the training
data in matrices, the data from FEM solver is linearly
interpolated to rectangular meshes with the dimension of
41x 9, as illustrated in Fig. 6. Therefore, large amounts of
training data can be obtained by injecting the different ESD
waveforms shown in Fig. 4 and interpolating the triangular
meshes into rectangular meshes, as described in Fig. 6.
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Fig. 6. Use linear interpolation to obtain training data in rectangular meshes
from the FEM data in triangular meshes.

Around 800,000 groups of datasets are generated by using
the ESD waveforms in Fig. 4 as the voltage excitation and
FEM as the Poisson solver, in which 80% datasets are used
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for training and the remaining 20% datasets are used for
testing. The Adam optimizer is used, and the learning rate is
0.0001. The training and testing loss are shown in Fig. 7,
which shows a good convergence as the training continues.
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Fig. 7. Loss during the training (contains training loss and test loss).

V. MODEL VALIDATION

To validate the performance of the trained DNN, the
predicted potential for every single step can be compared with
the ground-truth potential calculated by FEM. Fig. 8 shows the
comparison between the predicted and ground-truth potential
for three randomly sampled cases from the test dataset. The
trained DNN not only predicts the overall distribution very
well but also tracks the boundary values accurately. The loss
value calculated using (2) is as low as 0.056V for the test
cases.
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Fig. 8. Comparison of potential distribution between ground truth (from
FEM solver) and prediction of DNN for some randomly sampled test cases.
(a)(c)(e) Ground-truth potential distribution. (b)(d)(f) Predicted potential
distribution by the trained DNN.

To test whether the DNN performs well in long-term
simulations with small accumulative error, a new ESD voltage
waveform that has not been trained, shown in Fig. 9, is used
as the excitation, and the trained DNN is applied to solve the
Poisson’s equation. The current response is plotted in Fig. 10.
Even though the testing ESD waveform differs a lot with the
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training ESD waveforms, but the predicted current response
matches perfectly well with the current response obtained
from the FEM solver. This result proves that the trained DNN
not only has an excellent generalization performance but also
produces a negligible accumulative error.
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Fig. 10. The current response of the trained DNN to a new ESD excitation
voltage. The number of particles is proportional to the current.

VI. CONCLUSION

In this paper, the deep learning technique is successfully
applied to solve Poisson’s equation for the particle simulation
of'a PN junction under transient electro-static discharge (ESD)
excitation. Several typical idealized ESD waveforms are used
as the excitation boundary to generate large amounts of
training data with a FEM Poisson solver and train a deep
neural network (DNN). The trained DNN can predict the
potential distribution for every single step very well. Besides,
given a completely new ESD waveform that has never been
trained before, the DNN can still predict the correct current
response with good accuracy. This paper demonstrates the
feasibility of using one trained DNN to solve Poisson’s
equation under the excitation of an arbitrary ESD waveform.
In future work, ESD waveforms with higher voltages will be
considered in the particle simulator, and the generalization
performance of the DNN model can be further improved.
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