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Abstract—Equivalent dipole moments are widely used for
noise source reconstruction in radio frequency interference (RFI)
study. The equivalent dipole sources are usually extracted from
measured near-field pattern. This paper introduces a machine
learning based method to extract the dipole moments. A
convolutional neural network is trained to perform a multi-label
classification to determine the type of dipole moments. The
locations of the dipole moments are obtained from the global
averaging pooling layer. Then the magnitude and phase of the
dipoles can be calculated from least square (LSQ) optimization.
The proposed method is tested on simulated near-field patterns.
The comparison between reconstructed field pattern and original
field pattern is given.
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L.

As the data rate in electronic devices gets higher, radio
frequency interference (RFI) problems are becoming more
significant. In the study of RFI problems, equivalent dipole
moments are widely used to reconstruct the noise source [1]-[4].
The coupled voltage or coupled power can be calculated from
the reconstructed dipole sources. Designers can also improve the
design to mitigate the coupling based on the equivalent source
models.

INTRODUCTION

Since dipole sources reconstruction can help the analysis and
design significantly, various methods have been developed to
extract dipole moments. With a uniform array of electric and
magnetic dipole moments predefined, the least square (LSQ)
method can be used to solve the magnitude and phase of each
dipole moment [4]. However, this method is sensitive to
measurement noise and the solution may be non-physical when
the size of the dipole array gets large. Optimization methods
such as Genetic algorithm are also common solutions to this
problem [5], [6]. But the convergence and computation time of
optimization methods usually depend on the initial value. A
machine learning method based on support vector machine
(SVM) have been used to classify the dominant dipole type from
the image of the near-field pattern [7]. The location of the dipole
is further determined from auto-correlation calculation after the
type is identified. This method shows the capability of pattern
recognition techniques in field pattern classification and dipole
source reconstruction.

This paper proposes a machine learning based dipole source
reconstruction method using convolutional neural networks
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(CNN). CNNs are widely used to process 2-D grid data such as
images. CNNs have also been used to solve electromagnetic
problems [8]. The picture of the electromagnetic field is fed to
the convolutional neural network, and the CNN performs a
multi-label classification to determine all types of dominant
dipole moments. The CNN also generates a class activation map,
which indicates the locations of each type of present dipole
moment [9]. With the types and locations of the dipoles known,
the magnitude and phase of each dipole can be obtained from
LSQ or other optimization methods.

This paper is organized as follows. In Section II, the
algorithm of extracting the type and location of dipole sources
from a near-field pattern is illustrated. In Section III, the
proposed method is validated with several simulated test cases.
Section IV concludes the paper finally.

II. MACHINE LEARNING BASED DIPOLE RECONSTRUCTION

Dipole moments are the most basic radiation sources. An
infinitely small electrical current segment forms an electrical
dipole. An infinitely small current loop forms a magnetic dipole.
The electrical dipole is denoted as a P dipole and the magnetic
dipole is denoted as an M dipole. There are six types of basic
dipole moments based on the orientations as shown in Fig. 1.
The near field of each basic dipole moment can be calculated
from analytical formulas. Each basic dipole moment also has its
unique near field patterns. The feature of the pattern can be used
to classify the type of the dipole moment by machine learning
algorithms.
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Fig.1. Six types of basic dipole moments
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A. Convolution Neural Network for Multi-Label
Classification

In machine learning and computer vision, the convolutional
neural network is a typical neural network used for image
classification analysis [10]. In this work, a set of field pattern
pictures generated from analytical formulas is given as the
training dataset. Each picture is labeled with the categories of
the present dipoles. If a type of dipole moment exists in the field
pattern, this category is labeled with 1, otherwise it is labeled
with 0. As a result, the label for each picture is a 1 by 6 array
and each element in the array is either 1 or 0. In convolutional
neural networks, there are usually a few convolutional layers
with rectified linear unit (ReLu) function as the activation
function and pooling layers. Since it’s possible that multiple
types of dipole moments are present, different types of dipole
moments are not exclusive and a multi-label classification task
is desired. Therefore, the activation function of the last layer is
the sigmoid function instead of the softmax function, which is
widely used as the activation function in multi-class
classification tasks. The sigmoid function is shown as follows:
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The output of the sigmoid function can interpreted as the
probability of the input belonging to this category. The loss
function is the cross entropy between the output logits and the
corresponding labels as shown in (2),

sigmoid (x) = (1)

cross _entropy = —z x log(sigmoid (a))

2
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where z is the label vector of the picture and « is the output of
the neural network before the sigmoid activation function. With
the sigmoid cross entropy as the loss function, the convolutional
neural network is supposed to recognize all the present types of
dipoles in the given field pattern.

B. Class Activation Map

To get the location of each type of dipole, the class activation
mapping (CAM) technique is used. In image processing, a class
activation map for a particular category indicates the
discriminative image regions used by the CNN to identify that
category. CAM can be generated using global averaging pooling
after the last convolutional layer. Global averaging pooling
outputs the spatial average of the feature map at the last
convolutional layer. Then a fully-connected layer is used as the
last layer to produce the final output.

For a given image, let fi(x, ) represent the output of unit k
in the last convolutional layer at location (x, y). Then equation
(3) shows the result of global average pooling.

Fr=3 Ji(x.y) 3)

The final score of a given class ¢, S., is calculated in (4).

S.=Y, &F, 4)
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where wf is the weight corresponding to class ¢ for unit & in the
last fully-connected layer. By plugging equation (3) into (4), the
final score can be expressed in (5).

S.=2,0, filxy)
= Zx,y Zk a)kcfk (x’ y)

Then the class activation map for class ¢, denoted as M., is
defined in (6).

M (x,y) =D @ f,(x,y) (©6)

Since the total score is the spatial summation of the class
activation map, the class activation map directly indicates the
importance of the image region leading to a certain class. The
image region with larger values in the class activation map tends
to be more relevant to this class. In this work, if a certain type of
dipole moment is recognized by the neural network, the class
activation map is calculated to identify the location of this dipole
moment.

®)

C. Dipole Extraction Algorithm by CNN

The structure of the CNN is shown in Fig. 2. The batch size
is 256 in this structure. After the input layer, there are two 2D
convolutional layers connecting in series to increase the network
complexity and function-fitting ability. Then a linear layer is
used to reduce the dimension of the data. Finally a fully-
connected layer with sigmoid activation function is used to
generate the classification outputs. The last fully-connected
layer is also used to compute the class activation map.

3000 field patterns generated from analytical formulas and
their corresponding labels are used as training data. A learning
rate of 0.01 with Adam Optimizer is used in training. The loss
on test data is shown in Fig. 3. The loss converges after 40
epochs.

The workflow of the proposed dipole source reconstruction
is shown in Fig. 4. First the unknown field pattern is fed to the
trained convolutional neural network to determine the types of
dipole moments in this pattern. For each type of the dipole
moment that is identified, the corresponding class activation
map is calculated to determine its location.

Input image Output
(256x61x61x3) (256%6)

v i

Conv2D Fully-connected
(61-64)(5X5) (64x6)

Conv2D Linear
(64-64)(5%5) (15%15x64-64)

Fig.2. The structure of the CNN layer
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Fig. 3. Testing loss graph of the neural network

The unknown field pattern is presented to the trained
convolutional network.

!

Determine all present types of dipole moments from the
output of the convolutional network.

i

Determine the location of each type of dipole from the
corresponding class activation map.

i

Determine the magnitude and phase of each dipole.

End

Fig.4. Workflow of the proposed algorithm

III. VALIDATION

Several simulation examples are discussed below to validate
the proposed method. The field pattern of the first example is
shown in Fig.5. This pattern is from a simple My dipole and used
to illustrate the function of class activation map. The neural
network classifies the field pattern to My dipole category. Then
the class activation map for this category is calculated and the
result is shown in Fig. 6.

In the class activation map, the hot region represents the
location that is most relevant to this category, thus indicating the
location of the dipole moment. It can be seen that the region with
largest color value in fig. 6 corresponds to the location of the
dipole in the field pattern shown in Fig. 5. Though the location
information are not provided and only image-level labels are
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Fig.5. Field patterns of the input image in example 1. (a). Hy. (b). Hy.
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Fig.6. Class activation map of the M dipole type

used in the training, this algorithm has the ability to locate the
feature of a certain category.

The Hx and Hy field patterns of the second example are
shown in Fig. 7. The field pattern picture is sent to the pre-
trained convolutional neural network. Two types of dipoles, My
and M,, are identified by the network. Similarly, the class
activation maps for these two categories are calculated and the
results are shown in Fig. 8.

In the class activation map for My dipole, it is clear that there
is only one red region and the location of the largest value in this
map is the location of the My dipole. The location of the M,
dipole is also where the largest value locates in the M, dipole
map. The map for M, dipole is noisier than the map for My in
this example. Possible reasons can be the imbalance of the
training data or hyper-parameters not being well-tuned. With the
types and the locations of the dipoles known, their magnitudes
and phases can be determined by least square or optimization
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Fig. 7. Field patterns of the input image in example 2. (a). Hy. (b). Hy.
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Fig. 8. The class activation maps of (a). My. (b). M,
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Fig. 9. Hy patterns from the extracted dipoles. (a). My. (b). M,
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methods. The H fields from the My dipole moment and the M,
dipole moment at the detected locations are shown in Fig. 9.

Since two dipoles are located far away from each other, the
field pattern in Fig. 7 is relatively easier to recognize. A more
complex example is tested on the proposed algorithm. The field
pattern is shown in Fig. 10.

In this example, the probability for My and My categories is
more than 99% and 20% for M, from the neural network output.
For other categories, the probability is less than 1%. If 50% is
used as the threshold, My and My are two types of dipole
moments identified by the algorithm. Their corresponding class
activation maps are shown in Fig. 11. It can be observed that the
M; and M, dipoles are pretty close to each other. Similarly, the
magnitudes and phases of the dipoles can be further determined.
The H fields from the My dipole moment and the My dipole
moment at the detected locations are shown in Fig. 12. The
reconstructed field is compared to the original field as shown in
Fig. 13. It can be seen that the reconstructed field pattern is very
close to the input pattern.

The main advantage of the proposed algorithm is that it can
determine the dipole moment types and their corresponding
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Fig. 10. Field patterns of the input image in example 3. (a). Hy. (b). H.
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Fig. 11. The class activation maps of (a). M. (b). M,
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Fig. 12. Hy patterns from the extracted dipoles. (a). M. (b). M

Hx mag, reconstructed

Hx mag, original A/m x10% A/m =10

!15
10
is
10 20 30 40 50 60

Fig. 13. The structure of the CNN layer
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locations in a short time with a well-trained neural network.
Then the calculation of the magnitude and phase of each dipole
with the location and type known is much easier than directly
performing an optimization algorithm to extract dipole sources.
The main drawback of this method is its generalization
capability, like other machine learning based algorithms, is
affected by the quality of training data and the values of hyper-
parameters. Data augmentations and hyper-parameters tunings
are needed to further improve the algorithm.

IV. CONCLUSION

This paper proposes a machine learning based dipole source
reconstruction method. A multi-label classification analysis is
performed by a convolutional neural network to determine the
types of the dipole moment sources. This algorithm further uses
the class activation map technique to determine the location of
the dipoles. Three simulation examples are presented to validate
the proposed algorithm and show how the class activation map
can help locate the dipoles. Future work includes testing the
proposed algorithm on measured field patterns and improving
this algorithm by doing data augmentations and tuning hyper-
parameters.
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