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Abstract— In this paper, a generic model for a differential
stripline is created using machine learning (ML) based
regression analysis. A recursive approach of creating various
inputs is adapted instead of traditional design of experiments
(DoE) approach. This leads to reduction of number of
simulations as well as control the data points required for
performing simulations. The generic model is developed using
48 simulations. It is comparable to the linear regression model,
which is obtained using 1152 simulations. Additionally, a
tabular W-element model of a differential stripline is used to
take into consideration the frequency-dependent dielectric loss.
In order to demonstrate the expandability of this approach, the
methodology was applied to two differential pairs of striplines
in the frequency range of 10 MHz to 20 GHz.
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As the appetite for fast data transmission rates keeps
increasing, the engineers are faced with a task of designing
and optimizing complex interconnects up to several tens of
GHz. To reduce the simulation times, a ML based regression
analysis methodology is used to create generic models (i.e.
“black-box”) of differential striplines. Generic models enable
engineers with little electromagnetic knowledge to develop
PCB structures.

Traditionally, Monte Carlo analysis [1] was used for
building the input dataset required for simulations. From the
obtained dataset, regression-based fitting was performed to
generate generic models and perform statistical analysis. The
drawback of using Monte Carlo method is that for the cases
with large number of parameters, an even larger number of
data points is required. Further, the regression analysis is
unsuitable for mapping linear input parameter space to
nonlinear outputs [5]. Considering these disadvantages, ML
provides a solution for solving complex nonlinear output
problems.

In the past, several research papers have introduced the
use of ML and regression-based fitting methods to develop
generic models. [2] uses an artificial neural network (ANN)
to create a generic model of three differential pairs with an
input dataset generated using DoE. The resulting generic
model uses per-unit-length resistance (R), inductance (L),
conductance (G) and capacitance (C) values obtained using
W-element model. The RLGC values are a function of multi-
dimensional space of input design parameters, such as: width
(W), spacing/pitch (S), spacing between pairs (Sp), pre-preg
height (Hp) and core height (H). It was shown in [2] that the
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input parameter ‘W’ is the most dominant factor. This is
because since the self and mutual RLGC values are functions
of ‘W’. An input dataset for ‘W’ is expanded outside the
required range to obtain a uniform distribution in [2].
Including values outside the required range is a drawback of
the proposed method. [3] and [4] use a similar approach for
creating a library of interconnects and then use it for
optimizing interconnect design. Both [3] and [4] use Latin
hypercube and orthogonal arrays, respectively, for creating
input dataset for training of the ML models. [6] performs
simulations based on orthogonal Taguchi arrays. [7] uses
1500 simulations for optimizing and obtaining time domain
reflectometry (TDR) profile for differential vias. Hence,
DoE-based input dataset generation limits the control on
number of simulations as well as input values used for
simulations.

Section II of this paper provides a comparison of ML-
based regression analysis to traditional linear regression
analysis without DoE. This leads to a decrease in the number
of simulations needed for building the generic model. In
Section III, the ML algorithm is extended to create a generic
model for two pairs of differential striplines. Once the generic
model is created, it is verified by using the geometrical
dimensions not present in the training dataset. The
verification was performed by comparing the S-parameters
obtained using Ansys Q2D to the generic model S-
parameters. Unlike [3], frequency dependent RLGC values
are used instead of per-unit-length parameters. This allows to
take into account frequency dependent dielectric loss.

II. COMPARISON OF FITTING METHODS FOR A

DIFFERENTIAL STRIPLINE

A cross-section of a differential stripline used for creating
the generic model is shown in Fig. 1. The inputs to the generic
model are geometrical variations like pre-preg and core
height (Dp /D) , width of the conductor (W), pitch between
the differential pair (W). The height of the dielectric ("h")
and the thickness of the conductor ('T{) are kept constant.

After the design space of the parameters is defined (see
Table I), simulations are performed in Ansys Q2D. Tabulated
and frequency dependent RLGC values are extracted from the
results. The RLGC values are used as output dataset.
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(a)
Fig. 1. Stripline model used for creating the generic model with
variations in parameters shown in Table I. The material characterstics of
the dielectric is €, = 3.68, tand = 0.02 with Djordjevic-Sarakar model.
The length of the stripline is 2 inches.

TABLE L DIFFERENT GEOMETRICAL PARAMETERS AND THEIR
RANGES
Parameter Description Range [mil]  Simulation Levels Simulation
[Linear Levels
Regression] ML}
Dp/De Pre-preg and core height 3-8 8 3
s Pitch of Differential pair 3~12 24 8
w Width of conductor 3~4 6 2
'n Dielectric thickness 15 Fixed Fived
T Conductor thickness 0.65 Fixed Fixed

A. Linear Regression Fitting

Fig. 2 depicts the flow diagram of the generic model
creation process. Linear regression cannot map non-linear
outputs to linear inputs accurately [4]. Since the RLGC
parameters are non-linear w.r.t frequency before performing
the fit they are divided into two different groups: a) ‘group-
1’ contains parameters from 10 MHz to 1 GHz, and b) ‘group-
2’ from 1 GHz to 20 GHz. The data is split because, for
performing the linear regression fitting, 50 frequency points
are chosen with 30 frequency points in group-1 and 20
frequency points in group-2. This would allow the non-linear
region below 1 GHz to be captured accurately. As an
example, the parameter R, is plotted in Fig. 3 contains non-
linear region below 1 GHz and a linear region above 1 GHz.
This is the true for other RLGC parameters of the model.
1152 simulations were performed for obtaining a linear
regression fitted equation for each of the RLGC values. This
is another drawback of the linear regression model. JMP tool
[9] was used to perform linear regression modeling.

B. Machine Learning (ANN) Based Fitting

Before performing a ML based fitting, it should be
observed whether the targets (RLGC values) follow a certain
pattern that could be related to the input features (stripline
cross-section dimensions). As observed from Fig. 3, the R4
values can be mapped to the input geometrical structure. Fig.
4 describes the flow diagram for creating a generic model of
the differential stripline with ML based fitting. Prior to
creating and tuning the ML network, all the parameters values
are normalized between 0 and 1, as expressed in (1).

X — min(X)

KXnorm = m ey
X = Xporm * (max(X) — min(X)) + min(X) @

where, X is the quantity to be normalized. (2) represents the
re-scaling factor for obtaining the original value of X.
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Fig. 2. Flow chart showing the division RLGC values into group — 1 and

group — 2 followed for linear regression analysis.
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Fig. 3. Example of non-linearity below 1 GHz in R4

Unlike the linear regression modeling, only 48
simulations were used for training and testing. A recursive
approach was chosen for selecting the number of simulations
and levels for each of the input parameters. This means, at
every step, the accuracy of the created generic model is
checked. Additional simulations are added to the training
dataset until the criteria for accuracy is met. The criteria in
this case is the insertional loss to match be matched with 2D
simulations within 1 dB. The levels of each input parameter
are listed in Table I. While it was observed that a better fit
can be obtained using a larger number of simulations, the
same effect can be achieved by carefully tuning the number
of hidden layers, the input polynomial, the regularization
factor, as well as the optimizer. Tensorflow [8] is used for
creating the ML model for the 12 parameters(R;1, R13, Ryz,
L1y, L1z, Loz, Gi1, Giz, Gazy Ciy, Ciay Cp3) . Tuning the
ML parameters individually rather than as a batch (as
performed in [2], [3]) also improved the accuracy of the
generic model. The training is performed with the ML
hyperparameters shown in Table II.

TABLE IL HYPER PARAMETERS FOR SELF & MUTUAL TERMS
Parameter Self Term Mutual Term
Hidden Layers 2 5
Optimizer Adam Adam
Training : Validation 80:20 % 90:10 %
Epochs/Training Iterations 300 700

Loss Function Mean Square Error Mean Square Error

Learning Rate 0.01 0.01
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C. Comparison of Different Fits with 2D Simulations : b s —
The created generic model is then tested on the data which Rt Sass [
is not used in the training process. Fig. 5 shows a comparison R Eiaars ;s —Awiciz
of training and testing mean square error (MSE) loss function _— sl ML FitC12
for Ry4. Fig. 5 shows no significant difference between the o} e sl )
training and testing loss, which indicates that neither under- Freq(GH?) Freq(GH?)
nor over-fitting occur in the ML model. This is true for the i , (CY
. . . Fig. 6. A comparasion of the self and mutual RLGC values between
other targets as well. A comparison of the linear regression, . . : )
X actual, regression based fitting and ML based fitting model : (a)
ML based generic model and actual RLGC values are shown Resistance, (b) Inductance, (c) Conductance, and (d) Capacitance

in Fig. 6. The RLGC values match within 10 % for both ML
as well as regression analysis when compared to actual
RLGC values. Further, the comparison between S-parameters
obtained using predicted RLGC model and S- parameters
from Ansys Q2D simulations is done in Fig. 7. The
geometrical parameters used for verification are Dp =
4mils, W = 3mils, S = 7mils, h = 15mils, T, =
0.65 mils.
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Dp/Dg Pre-preg and core height 3-8 [3,9]
5 Pitch of Differential pair 3~12 [3,6,12]
III. EXTENDING THE PROPOSED ML MODEL TO TWO s Spacing betwesn Differental 525 [5.10.20.25)
DIFFERENTIAL PAIRS pairs
. . w Width of conductor 3-4 3.4
The proposed ML model from Section II is extended to FE R —— - [F ;
. . . . .. helectric thickness X
two differential pairs (see Fig. 8). The ML training il
T Conduetor thickness 0.65 Fixed

parameters developed for self and mutual terms from Section
II are re-applied for the case with two differential pairs. For
the mutual terms between conductors 1 — 3,1 - 4,2 — 4,
the ML model hyperparameters are listed in Table III. 0

The inputs to the generic model are the geometrical
parameters similar to one differential pair with the addition
of the spacing between the differential pairs (Sp). Individual
ranges of each of the parameters are shown in Table IV.
Similar to the single pair case, the number of levels and total
number of simulations are determined by a recursive process
described by the flow chart in Fig. 4.

A total of 48 simulations are performed using Ansys Q2D
and the frequency dependent RLGC parameter are extracted.

=ML Model
== Q2D Simulation Model

Insertion Loss, S | (dB)

Each of the output parameters 0 5 10 15 20
(Ry1, Ry, Rys) Ryg, Ros) Ryy, Ray etc.) is fit with an individual FfeﬁagGH”

ML model. Fig. 9 shows the comparison between S-

parameters obtained using predicted RLGC values and S- s

parameters extracted using Q2D simulations. The insertion 2 20

loss matches within 1 dB when compared to 2D simulations. s

The return loss for ML model matches close to 2D é 25

simulations, this could be because the L and C matches with “

5 % error which is lower than for single pair differential from E

Section II. The differential-to-differential near end crosstalk £ 33
matches within 5 dB. Two possible reason for larger error, g — Q2D Simulation Model
they are: 1) the mutual terms are small, specially the L and C,

to obtain a better fit, 2) the cross talk is very low in the range e s o s 20
of -60 dB. As there are 40 RLGC values for the case of two Freq (GHz)

differential stripline pairs, a comparison between actual ®)

RLGC values and predicted RLGC values obtained using ML
model are not shown here.
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Fig. 9. Comparison between ML model S — parameters and Q2D S —
parameters for Dp = 6mils, W = 3mils, S = 9mils, h =
15 mils, T, = 0.65 mils and Sp = 15 mils: (a) Differential Insertion
loss for conductors 1,2 , (b) Differential Return Loss for conductor 1,2

IV. CONCLUSION

A generic model for a differential pairs of stripline is
created for a frequency range of 10 MHz — 20 GHz using
machine learning based regression fitting. It was observed
that while 1152 simulations are required for creating the
generic model using linear regression method only 48
simulations were enough when ML based fitting was used.
This reduced the time required to create the generic model by
95 %. The accuracy of insertion loss is within 1 dB in both
the cases. The reduction in the number of simulations is
achieved by avoiding DoE-based Latin hypercube or
orthogonal arrays and adapting a recursive process of
increasing training data till the required accuracy in
prediction is used. The ML technique was then extended to
two differential pairs and verified by a 2D solver.
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