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Abstract

The Perdew-Zunger self-interaction correction (PZ-SIC) removes unphysical electron self-

interaction from calculations employing standard density functional approximations. Doing so

improves many computed properties, bringing them into better agreement with experimental ob-

servations or with results from high-level quantum chemistry calculations. However, while PZ-SIC

generally corrects in the right direction relative to corresponding reference values, in many cases it

over-corrects. For this reason scaled-down versions of PZ-SIC have been proposed and investigated.

These approaches have mostly employed exterior scaling in which SIC correction terms are scaled

in the same way at every point in space. Recently, a new local, or interior, scaling SIC method

was proposed on non-empirical grounds to restore a property of the exact, but unknown, density

functional that is broken in PZ-SIC. In this approach, the scaling at each point depends on the

character of the charge density at that point. But the local scaling can be done in various ways

while still restoring the behavior of the exact functional. In this work, we compare and contrast

the performance of various interior scaling approaches for addressing over-corrections of calculated

molecular dipole moments and atomic polarizabilities, properties that reflect the nature of the

electronic charge density.
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I. INTRODUCTION

Traditional density functional theory (DFT) calculations suffer from self-interaction

error (SIE) due to the use of approximate exchange-correlation (XC) energy functionals. In

1981 Perdew and Zunger[1] proposed a scheme to eliminate the unphysical self-interaction.

That scheme is exact for a one-electron density, but approximate for a many-electron

density. Since then, the Perdew-Zunger self-interaction correction (PZ-SIC) has been

implemented and tested with many density functional approximations (DFAs), including

local density approximations (LSDA), generalized gradient approximations (GGA), and

meta-GGAs (mGGA)[2–12]. The effect of the PZ-SIC have been assessed for many proper-

ties, including total energies, reaction barrier heights, orbital energies, atomization energies,

magnetic exchange couplings, molecular dipoles, and atomic polarizabilities.[4–7, 13–18].

A general conclusion in many of these studies is that, while PZ-SIC-DFA results improve

over those of the bare DFA, PZ-SIC tends to over-correct. For example, Johnson et al.[4]

found recently that DFA methods systematically underestimate the dipole moments of

ionic molecules. In the corresponding PZ-SIC-DFA calculations, the dipoles agree better

with reference values, but they are too large. In response to this tendency to over-correct,

approaches that scale down the magnitude of the SIC have been proposed and tested[19–23].

Vydrov et al.[20, 21] proposed to use a different scaling factor for each orbital, while Klüpel

et al.[19] used a single or global scaling factor for all orbitals. We refer to both types of

approaches as exterior scaling methods, since the scale factor appears “outside” each orbital

self-interaction correction.

Non-empirical semi local functionals are constructed to give the exact exchange-

correlation (XC) energy in the limit of slowly varying densities. Remarkably, a recent study

by Santra and Perdew[24] revealed that semi local functionals used in conjunction with

PZ-SIC violate this basic property. This implies that, while PZ-SIC restores to DFAs the

behavior of the exact functional in the limit of a one-electron density, it causes the exact

behavior to be lost for a uniform density. This is clearly a problem, since, by construction,

global scaling PZ-SIC methods cannot restore both limits exactly with a single scale factor.

To address this problem, Zope et al.[25] proposed scaling the self-interaction correction

independently at each point in space, with the scaling factor determined by the nature of
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the local charge density. By using an iso-orbital indicator as the scaling factor, this interior

or local scaling SIC approach (LSIC) insures that full PZ-SIC will be applied for a single

electron density, while the correction terms are scaled down in many-electron regions and

reduced to zero for a uniform density. LSIC-LSDA calculations yield[25] thermochemical

properties that are significantly better than those of both LSDA and PZ-SIC-LSDA and are

superior to those of the Perdew, Burke, and Ernzerhof (PBE) GGA[26] and nearly as good

as those of the strongly constrained and appropriately normed (SCAN) meta-GGA[27] for

many equilibrium properties of covalent and ionic bonds. LSIC-LSDA calculations also

improve the description of water cluster polarizabilities[28] and the ionization energies

of organic molecules.[29] Gauge consistency of energy densities restricts[22] LSIC to the

correction of LSDA and disqualifies the similar correction of other standard functionals.

For atomization energies involving weak (hydrogen or van der Waals) bonds, LSIC is not

recommended,[30] but see Ref. 31 for an alternative.

Given the success of LSIC-LSDA for properties related to total energies, it is of interest

to determine how well the method describes properties related to the ground-state charge

density. In this work, we used the local scaling SIC approach with several variants of the

scaling factor to evaluate the dipole moments of a diverse set of small molecules and the

polarizabilties of closed-shell atoms and ions up to Ar. The methods differ in how strongly

they scale down the correction in many-electron-like regions of space relative to more one-

electron-like regions. All of the schemes are constructed to yield exact results in the limit of

a one-electron density and that of a uniform density. We compare the performance of the

methods with each other and with simple global scaling methods. The aim is to gain insight

into what features of a local scaling approach are important for making reliable predictions

for density-related properties.
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II. METHODS AND COMPUTATIONAL DETAILS

A. Global scaling

For global scaling SIC approaches, the total energy can be written as

ESIC−DFA = EDFA − α
∑

i,σ

(
U [ρi,σ] + EDFA

XC [ρi,σ, 0]
)
, (1)

where U [ρiσ] is the self Coulomb energy, EDFA
XC [ρi,σ, 0] is the self XC energy of the ith

orbital in the σ spin channel, and α is the global scaling factor. A value α = 0.5 has been

found to yield significant improvements to PZ-SIC-PBE calculations.[9, 32] For comparison

purposes, in this work we we used α = 0.25, 0.5 and 0.75, in addition to α = 0.0 (uncorrected

DFA) and α = 1.0 (full PZ-SIC), to systematically explore the effect of moving from no

correction to full PZ-SIC following a global scaling scheme.

ESIC−DFA is minimized by finding a set of orbitals (φi’s) that satisfy

(HDFA + αV SIC
i,σ (~r))φi,σ(~r) =

∑

j

λj,iφj,σ(~r). (2)

where HDFA is the standard Kohn-Sham Hamiltonian and the λj,i are Lagrange multi-

pliers. V SIC
i,σ is the SIC potential for the ith orbital:

V SIC
i,σ (~r) = −

(∫ ρi,σ(~r′)d3r′

|~r − ~r′|
+ V DFA

XC [ρi,σ, 0]
)
, (3)

where V DFA
XC is the XC potential corresponding to EDFA

XC .

B. Local Scaling

In the local scaling approach, the SIC energy density is scaled independently at each

point in space, depending on the character of the local density. Zope et al.[25] defined the

LSIC energy as

ELSIC−DFA = EDFA −
∑

i,σ

(
ULSIC[ρi,σ] + ELSIC

XC [ρi,σ, 0]
)
, (4)

where

ULSIC[ρi,σ] =
1

2

∫
d3rzσ(~r)ρi,σ(~r)

∫
d3r′

ρi,σ(~r′)

|~r − ~r′|
, (5)
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is the scaled self-Coulomb energy, and

ELSIC
XC [ρi,σ, 0] =

∫
d3rzσ(~r)ρi,σ(~r)εDFA

XC ([ρi,σ, 0], ~r) (6)

is the scaled self XC energy.

The scaling factor zσ(~r) is an iso-orbital indicator[33] defined as

zσ(~r) =
τWσ (~r)

τσ(~r)
, (7)

where

τσ(~r) =
1

2

∑

i

|~∇ψi,σ(~r)|2 (8)

is the positive definite kinetic energy density, and

τWσ (~r) =
|~∇ρσ(~r)|2

8ρσ(~r)
(9)

is the von Weizäceker kinetic energy density. It can be shown that 0 ≤ zσ(~r) ≤ 1, and zσ

is zero for a uniform density and exactly one for any single electron density. Thus, the

LSIC energy is equal to the full PZ-SIC energy for one-electron densities where PZ-SIC is

exact, and equal to the underlying DFA energy for uniform densities where the DFA is exact.

In the original implementation of LSIC,[25] the LSIC energy was computed using the

orbital densities obtained from a full PZ-SIC-LSDA calculation. To explore the impact of

local scaling on the charge density, we use a simple quasi-self-consistent approach to capture

the most important effects. A similar approach was used in Ref. 28. The method is based

on the following approximate one-electron equation:

(
HDFT + zσ(~r)V SIC

i,σ (~r)
)
φi,σ(~r) =

∑

j

λj,iφj,σ(~r). (10)

This equation differs from the corresponding fully variational equation in that it neglects

the terms related to the variation of zσ(~r) with respect to the orbitals. Since the value of

zσ(~r) depends on the character of the density rather than its specific value, we expect the

main effect of the local scaling will come from the scaled potential terms included in Eq. 10.

To solve Eq. 10 in practice, we begin by defining zσ(~r) using the density obtained

from a self-consistent FLO-SIC-DFA calculation. We then keep that zσ(~r) fixed and solve

Eq. 10 self-consistently for the orbitals φiσ, the corresponding density, and ELSIC−DFT.
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Then a new zσ(~r) is calculated using the updated density. That zσ is then held fixed and

Eq. 10 can again be solved self-consistently. This process is schematically shown in Fig. 1.

We repeat these steps until ELSIC−DFT changes by less than 1 × 10−6 Ha from one self-

consistent solution of Eq. 10 to the next. In a typical case this requires between 4 to 6 cycles.

DFA-SIC density

zN� (~r) = z�[⇢
N
� (~r)]

�
HDFT + zN� (~r)V SIC

i,�

�
�i =

P
j �i,j�j

E = E[zN ]

E[zN ] = E[zN�1] ?
No

Yes

End

FIG. 1: Flowchart of a quasi-self consistent LSIC calculation.

In addition to assessing the performance of the original LSIC energy functional, we also

explore the effect of replacing zσ(~r) by one of several functions f(zσ(~r)) These functions

were chosen such that f(0) = 0 and f(1) = 1, insuring exact behavior for a uniform density

and a one-electron density in all cases. A list of the functions is given in Table I and

they are plotted in Fig. 2. The functions clearly differ in how they weight the corrections.

For example, in LSIC(a), f(zσ) > zσ for all 0 < zσ < 1, so that LSIC(a) reduces the

SIC less in many-electron regions than the original LSIC or the other LSIC variants

shown in Fig. 2. For LSIC and LSIC(b-d), the average of f(zσ) over all zσ is 0.5, but in

LSIC(b-d), f(zσ) ≈ 0.5 over an increasing range of zσ values. LSIC(b) is called LSIC+ in

Refs. 30 and 29. Like SCAN, LSIC+ is designed to be exact for all three leading-order
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terms proportional to Z5/3, Z lnZ, and Z for the exchange-correlation energies of neu-

tral atoms of large atomic number Z, while LSIC is only exact for the Z5/3 and Z lnZ terms.

Method f(z)

LSIC z

LSIC(a) z1/3

LSIC(b) 0.5 + 0.5(z − 0.5) + 2(z − 0.5)3

LSIC(c) 0.5 + 4(z − 0.5)3

LSIC(d) 0.5 + 16(z − 0.5)5

TABLE I: The functions of the iso-orbital indicator zσ(~r) used in the locally scaled self-interaction

correction methods studied in this work. LSIC corresponds to the method introduced in Ref. 25.

LSIC(b) is called LSIC+ in Ref. 30.
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FIG. 2: f(zσ) vs. the iso-orbital indicator zσ for the different local scaling methods investigated in

this work.

The PZ-SIC and LSIC energy functionals are orbital dependent. Thus, in each case

minimizing the energy requires finding not only the correct total electron density, but the

optimal set of orthonormal orbitals consistent with that density.[2] For all SIC calculations
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in this study we used the Fermi-Löwdin orbital self interaction correction (FLO-SIC)

formalism proposed by Pederson and co-workers[3, 34] to find optimized orbitals. In

FLO-SIC, the PZ-SIC energy functional is evaluated using Fermi-Löwdin orbitals (FLOs),

which are determined using a set of parameters, N positions in space for N occupied

orbitals, known as Fermi-orbital descriptors (FODs). The gradients of the energy with

respect to the FODs can be computed[35] and used in a gradient optimization scheme to

determine optimal FOD positions. The optimized Fermi-orbital descriptors from the full

PZ-SIC calculations are used in the corresponding scaled calculations. All results presented

below are taken from calculations using the FLOSIC code.[36] FLOSIC inherits features

such as extensive Gaussian-orbital basis sets[37] and a highly accurate numerical integration

scheme[38] from its parent program, NRLMOL.[38–40] Here we use the Perdew-Wang

exchange-correlation local spin density approximation (LSDA-PW92)[41] in conjunction

with PZ-SIC and the various scaled SIC methods.

In this study, we assess the performance of the scaled methods for calculating molecular

dipole moments (µ) and atomic polarizabilties. We use a diverse set of 47 molecules employed

in the recent work of Johnson et al. [4]. The molecules in this set span a range of bonding

types and dipole moments. The geometries and reference CCSD(T) dipole values for the

molecules are taken from Ref. 42. We compute the dipole ~µ by integrating over the (quasi-)

self consistent density

~µ =

∫
d3rρ(~r)~r. (11)

This is then converted from atomic units to Debye units, using 1 D = 0.3934 atomic units.

To insure the convergence of the dipoles with respect to the basis set, we follow Ref. 4 and

add one additional diffuse single Gaussian orbital (SGO) of s-, p-, and d -type to the default

FLOSIC basis sets[37]. The exponent Gi+1 for the additional SGOs is chosen according

to an even-tempered scheme: Gi+1 = G2
i /Gi−1. Adding the extra diffuse functions reduces

the mean absolute difference between dipole values computed with the PBE functional in

the FLOSIC code and corresponding values computed at essentially the complete basis set

limit in the reference work of Hait and Head-Gordon[42] from roughly 0.04 D to about 0.01 D.

In the statistical analysis of the relative errors, we use the regularized error (RE)[4, 42]
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as the metric for accuracy:

RE =
(µcalc. − µref)

max(1 D, µref)
× 100%. (12)

This prevents errors for molecules with small dipole moments from dominating the results.

In addition to the full set, we also separate out a subset of 12 ionic molecules with µ > 5

D (LiCH3, LiBH4, LiCl, LiCN, LiF, LiH, LiN, NaCl, NaCN, NaF, NaH and NaOH) for

analysis. The bonding in the molecules of this ionic subset is more uniform and uncorrected

DFAs perform in a more systematic way across the set.

For polarizabilties, we considered the atoms and anions with closed electronic shells from

Li to Ar. We compute the polarizability by using the finite field approach

αij =
µi(δEj)− µi(−δEj)

2δEj
(13)

where δEj is the strength of the uniform external electric field in the Cartesian j direc-

tion. We found that a field strength of 0.005 a.u. gives satisfactory results for the numerical

derivative. We report the isotropic average values (α = 1
3

∑
i αii) of the polarizabilities be-

low. We use the same extended basis sets for the polarizability calculations as used for the

molecular dipole calculations.

III. RESULTS AND DISCUSSION

A. Dipole moments

Mean regularized errors (MRE) and mean absolute regularized errors (MARE) of the

calculated dipole moments for the 47 molecules from global scaling SIC calculations with

the LSDA-PW92 functional are presented in Fig. 3. In all cases, the errors were calculated

using CCSD(T) values taken from Ref. 42 as the reference. Results for each individual

molecule can be found in the supplemental information. The summary shown in Figure 3

indicates that uncorrected LSDA-PW92 underestimates the dipole moments of the test set

on average, while incorporating SIC increases the magnitude of the dipoles relative to the

reference values. Full PZ-SIC gives the smallest MRE (-0.2%) for the full set, but the 50%

scaling scheme (MRE = -1.8%) performed best in terms of MARE (7.4%). For the subset
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FIG. 3: Mean regularized errors (MRE) and mean absolute regularized errors of the calculated

dipoles for a 47 molecule test set relative to CCSD(T) reference values using global scaling SIC

methods.

of ionic molecules, LSDA underestimates the dipole moments significantly (MRE of -4.8%),

while 100% SIC gives dipoles that are somewhat over-corrected, making them larger than the

CCSD(T) dipoles (MRE and MARE of 1.4% and 1.6%). 50% SIC gives MRE and MARE

between those of LSDA and full PZ-SIC, but 75% scaling gives the best results with a MRE

of 0.3% and MARE of 0.8%. These results show that, within a global scaling scheme, a

larger scaling factor of the SIC is needed to capture the physically correct charge separation

in the more ionic molecules.

The performance of local scaling methods is somewhat mixed. The MRE and MARE

for this set of 47 molecules are presented in Fig. 4 along with the corresponding results given

by LSDA-PW92, 50% global scaling SIC, full PZ-SIC-LSDA-PW92 and SCAN calculations

for comparison. The MRE of the LSIC methods lies between those of LSDA and 100% SIC,

as might be expected since the local scaling methods are designed to reduce the effect of

the full PZ-SIC. As might be expected from Fig. 2, the MRE for LSIC(a) is closest to that

of SIC, and the MRE for LSIC is closest to that of 50% global scaling, while for LSIC(b-d)

10



the MRE is somewhat smaller in magnitude. In terms of MARE, all LSIC variants perform

better than either DFT-LSDA or full PZ-SIC. LSIC and LSIC(b) have the smallest MARE

among all the local scaling methods (≈ 7%), which is very similar to the result for 50% SIC.

However, none of these methods outperforms the uncorrected SCAN functional (MARE of

5.7%). Interestingly, the MARE for LSIC(b-d) steadily increases, despite the MRE staying

approximately the same.

While the average results of the LSIC method and 50% scaling are similar as determined

by the MRE and MARE, the details for the individual molecules are different. 50% scaling

yields dipoles that are typically close to the mean of the values given by LSDA-PW92 and

SIC. Averaged over all molecules, the mean average difference between the 50% dipole

and the LSDA-PW92/SIC mean is only 0.05 D. For comparison, the average size of the

dipoles in the test set is 3.00 D. For LSIC, the predicted dipoles have a much larger mean

average deviation of 0.19 D from the mean of the LSDA and SIC values and in several cases

are outside the range set by these values. Thus, the effect of local scaling on the dipole

moments is more nuanced than that of global scaling.

For the ionic molecules, the local scaling methods tend to overestimate the dipole

moments, with MRE and MARE between 2% and 3%, respectively. A close inspection of

the results reveals that they can be divided into two groups, one involving molecules that

contain H atoms and one that does not. Detailed results for the individual molecules in

these groups are given in the Supplemental Information. The MRE and MARE for the two

groups are shown in Table 2 for LSIC and LSIC(a), where they are compared to reference

values, and values from LSDA, 50% SIC, and full SIC. LSIC(b-d) results are qualitatively

similar to the LSIC results. In both groups of molecules, LSDA underestimates the reference

dipole values by about the same amount (MRE of -4.2 and -5.6%, respectively). Similarly,

full PZ-SIC overestimates by nearly the same amount (1.5 vs. 1.3%). In clear contrast, the

local scaling methods give markedly different results for the two groups. For the molecules

without H atoms, LSIC and LSIC(a) perform about as well as PZ-SIC (MRE of 1.4 and

1.5%, respectively). But for the H-containing molecules, LSIC and LSIC(a) have much

larger errors (MREs of 5.6 and 3.6%, respectively). For each molecule in this group, the

LSIC and LSIC(a) dipoles lie outside the range set by the LSDA and PZ-SIC values.
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FIG. 4: Mean regularized error (MRE) and mean absolute regularized error (MARE) of the calcu-

lated dipoles for 47 molecules relative to reference CCSD(T) values for the local scaling methods.

System Ref. LSDA LSIC LSIC(a) LSIC(b) LSIC(c) LSIC(d) 50% SIC SIC SCAN

Ionic molecules without H atoms

MRE (%) -4.2 1.4 1.5 0.9 0.4 -0.1 -0.6 1.5 -1.2

MARE (%) 4.2 1.4 1.5 1.0 0.9 1.1 0.8 1.5 1.2

Ionic molecules with H atoms

MRE (%) -5.6 5.6 3.6 6.0 5.9 5.4 -1.6 1.3 -0.7

MARE (%) 5.6 5.6 3.6 6.0 5.9 5.9 1.6 1.7 0.8

All ionic molecules

MRE (%) -4.8 3.1 2.4 3.0 2.7 2.2 -1.0 1.5 -1.0

MARE (%) 4.8 3.1 2.4 3.1 3.0 3.1 1.1 1.6 1.1

TABLE II: Mean regularized error (MRE) and mean absolute regularized error (MARE) of calcu-

lated dipoles for the ionic molecules (µ > 5.8 D) in the test set.

To better understand this behavior, it is useful to consider how the values of the
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scaling functions vary near the atoms in the H-containing molecules. In Fig. 5 we present

f(zσ(~r)) for NaH along the interatomic axis for LSIC, LSIC(a), and LSIC(c). f(zσ) is

close to one in a larger volume near the H atom than in the region around the Na atom.

The detailed behavior of f(zσ) can be understood by considering the nature of the charge

density in the molecule. Near the H atom, the density is dominated by the H 1s orbital

and is thus one-electron like. This is consistent with a value of zσ ∼ 1 in this region

and f(zσ) ∼ 1 for all of the local scaling methods. zσ drops to zero at approximately

the bond center (∼ 2.1 Bohr) where the total density has a local maximum and f(zσ)

goes to zero for each method. In the volume around the Na atom, the average value of

f(zσ) depends on the method. The scaling function is closest to one for LSIC(a). The

scaling function is smallest for LSIC(c) over most of the volume near Na. (zσ drops to zero

right at the position of the Na and H nuclei. This is an inconsequential artifact that orig-

inates in the use of Gaussian-type orbitals, which have zero gradient at the nuclear position.)

The implication of Fig. 5 is that the SIC potentials near the H atom are nearly unscaled,

while near the Na atom, they are significantly reduced. Because the SIC potentials are

dominated by the self-Coulomb part, they are negative (attractive). Thus, in the local

scaling methods, the region near the H atom will be relatively more attractive to electrons

than in full PZ-SIC. This affects the dipole moments in the two methods. PZ-SIC gives a

dipole of 6.69 D in the negative x-direction for NaH, showing a transfer of electronic charge

from Na to H. This is much larger than the value of 5.68 D in LSDA, indicating that SIC

helps to stabilize the anionic part of the molecule. In LSIC, the dipole is 7.16 D in the

same direction. This shows that there is even more charge transfer towards the H atom in

LSIC than in PZ-SIC, consistent with a relatively less attractive SIC potential near the Na

atom. For LSIC(a) the dipole is 6.87 D and for LSIC(c), 7.42 D, reflecting less and more

relative stabilization of the H site, respectively. It is also interesting to consider the effect

of local scaling on diatomic molecules where the H atom loses electronic charge. In HCl, for

example, the LSDA dipole is 1.12 D. This is increased to 1.20 D in SIC, reflecting a larger

charge transfer from H to Cl, as expected due to the relative stabilization of the anionic

side of the molecule by SIC. But the LSIC dipole in this case is only 1.03 D, evidencing

a reduction in charge transfer from H compared to both LSDA and SIC. In this case, the

smaller scaling of the SIC potential around the H atom overrides the tendency of PZ-SIC to
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favor greater ionicity. In LSIC(a) the dipole is 1.10 D and in LSIC(c), 1.04 D.
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FIG. 5: The interior scaling functions of the iso-orbital indicator z(~r) plotted along the bond

direction of NaH for LSIC, LSIC(a) and LSIC(c), respectively. The Na nucleus is located at x=0

and the H nucleus is at x=1.89 Å. The forms of the functions are shown in Table 2. z(~r) falls to 0

at the nuclear positions due to use of atom-centered Gaussian orbital basis sets.

B. Water complexes

Johnson et al. recognized that standard DFAs dramatically overestimate and underesti-

mate the dipole of H2O-Li and H2O-F, respectively, and that PZ-SIC largely corrects these

errors.[4] This makes these two systems interesting cases in the context of the SIC scaling

methods, since the uncorrected DFA dipoles (0% SIC) are far from the reference values,

while the SIC values are very close. We present the calculated dipole moments for those two

systems using the various scaling methods in Table III. We also include results for H2O-Al,

for which the LSDA dipole (4.19 D) is in reasonable agreement with the reference value

(4.36 D). For H2O-Li and H2O-F, all of the local scaling methods result in significantly

improved dipole moments compared to the LSDA values, i.e. the local scaling results are

much closer to the SIC results than the LSDA results. The 50% scaling results, by contrast,
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Ref. LSDA LSIC LSIC(a) LSIC(b) 50% SIC SIC SCAN

H2O-Li 3.62 1.74 3.45 3.35 3.81 2.64 3.42 2.75

H2O-F 2.19 3.37 2.44 2.22 2.44 2.57 2.18 2.95

H2O-Al 4.36 4.19 4.42 4.38 4.52 4.32 4.395 4.44

TABLE III: Calculated dipole moments (in D) for three H2O-X complexes. The 50% scaling

method gives dipole values that are near the average of the LSDA and SIC results. The LSIC

methods give values that are closer to the SIC results and in better agreement with reference

values.

are nearer the mean of the LSDA/SIC results and thus in clearly worse agreement with

the reference dipoles. For H2O-Al, the LSIC and LSIC (b-d) dipoles are somewhat larger

than the SIC value and further from the reference. In this instance, the 50% SIC dipole is

closer to the SIC value and in reasonable agreement with the reference. Of the local scaling

methods, LSIC (a) gives the closest results to the SIC values and also to the reference values.

The H2O-X complexes are weakly bound systems and it is reasonable to expect that

the frontier orbital of the atom is key to determining the properties of each complex. To

gain understanding into the relative success of the different methods in describing these

complexes, we examine the orbital energies of the highest occupied molecular orbitals

(HOMOs) of each constituent. In Table IV we compare the HOMO energies calculated

in LSDA, SIC, and the various scaled SIC methods against the experimental ionization

potentials (IP) for Li, F, Al, and H2O. For the exact functional, the negative of the HOMO

level equals the IP.[43, 44] In all cases, the magnitude of the LSDA value is significantly

smaller than the IP, and the SIC value is somewhat larger. The 50% SIC value is near the

LSDA/SIC mean in all cases and smaller than the IP. The LSIC values, on the other hand,

are closer to the SIC than the LSDA value and very close to the IP. This better description

could account for the relative success of the local scaling methods over 50% SIC for these

complexes.
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IPexp LSDA LSIC 50% SIC SIC

Li 0.198 -0.116 -0.188 -0.159 -0.202

F 0.640 -0.385 -0.645 -0.550 -0.724

Al 0.220 -0.110 -0.223 -0.175 -0.242

H2O 0.464 -0.271 -0.477 -0.403 -0.543

TABLE IV: Comparison of calculated HOMO energy levels (in Hartree) against experimental

ionization potentials (IPexp).

C. Molecular dissociation

In approximate DFT, many neutral diatomic molecules dissociate to a minimum energy

state with residual charge on the isolated atoms. This undesired effect has been attributed

to many-electron self-interaction error.[45]. PZ-SIC typically eliminates this error, giving

neutral atoms in the separated atom limit, but scaled-down SIC can fail to do so. An indica-

tor of the error is a non-zero dipole that grows linearly as the atoms are separated. Johnson

et al.[4] studied the dipole moment of the HF molecule versus separation and showed

that PZ-SIC yields values in good qualitative agreement with results from reference wave

function calculations. To investigate the effect of scaling, we repeated these calculations

using the LSIC and 50% SIC methods. In Fig. 6 we show the calculated dipole moment

versus H-F bond length for LSDA, LSIC, 50% SIC and full SIC, along with reference values

obtained from two wave function-based methods, CCSD(2)[46] and CASPT(2)[47]. All

methods agree well near the equilibrium bond length of approximately 1 Å and all predict

an initial linear increase in the dipole as the bond is stretched beyond that point. The three

SIC calculations then predict that a maximum in µ is reached near 1.5 Å, after which the

dipole drops gradually to zero, in good qualitative agreement with the reference calculations.

The turning points in the LSIC and 50% SIC curves occur at roughly the same bond length,

somewhat longer than in full SIC. The value of µ remains significantly larger in 50% SIC

than in LSIC at larger separations. All three SIC methods yield zero dipole in the disso-

ciation limit, in agreement with the reference calculations. By contrast, the LSDA dipole

grows with the separation of HF, indicating a net charge transfer in the separated atom limit.
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FIG. 6: Variation in the calculated dipole moment (µ) (in D) with the separation (in Å) of the

atoms in the HF molecule using different methods. The equilibrium HF bond length is near 1.0 Å.

D. Polarizabilities

Table V shows the calculated polarizabilties and the corresponding reference values for

spherical neutral atoms and anions from Li to Ar. Results for LSDA, full and 50% SIC and

for the various local scaling SIC methods are included. LSDA overestimates (MPE = 6.7%)

the polarizabilities for most of the neutral atoms as we found and discussed previously.[5]

Full SIC improves the LSDA polarizabilties in all cases, but often overcorrects, leading to

underestimated polarizabilities on average (MPE = -2.6%). 50% SIC yields the best MPE

among all the methods (0.3%), but is only slightly better than full SIC in terms of absolute

errors (MAPE = 5.5 and 5.9% for 50% and 100% SIC, respectively). All the LSIC methods

except LSIC(a) significantly overestimate the polarizabilties of the neutral atoms (MPE of

∼ 11%). It should be noted that LSIC and LSIC(b-d) perform especially poorly for Li,

Be, Na, and Mg, where they overestimate the polarizabilities significantly (from 16 - 20%).

For these cases in which the outer electrons are in s-type orbitals, the following comments

can be made. First, the polarizability is almost entirely due to shifts in the outer orbital

density. Second, for the outer electron, there is nearly no scaling of the SIC potential in
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the outer region of the atom, but there is significant scaling down of the SIC potential in

the region where the core electron density is significant. This results in the density of the

outer electron being reduced in the core region and enhanced in the outer region, leading

to a more polarizable outer electron. For the remaining atoms, the local scaling methods

still overestimate reference values, but are much closer (from 6.2% to 2.4% from LSIC to

LSIC(d)). LSIC(a), which is closest to full PZ-SIC among the local scaling methods, gives

the best performance among the local scaling methods and the best MAPE (4.8%) of all

methods.

Full SIC underestimates the polarizabilties of the anions significantly (MPE of -21.2%).

The local scaling methods increase the calculated polarizabilities and thus correct the full SIC

values towards the reference calculations. LSIC yields the best overall results (MPE = 3.6%

and MAPE = 8.2%). Like full SIC, LSIC(a) significantly underestimates the polarizabilities

on average (MPE = -12.3%). It is clear from these results that local scaling methods do not

offer a clear advantage for the calculation of response properties (particularly polarizabilities

in this case) for neutral atoms in comparison to the best results of global scaled SIC methods.

For the spherical anions, 100% SIC yields polarizabilities that are too small, correspond-

ing to electrons that are too tightly bound and therefore not sufficiently polarizable (MPE

= -21.2%). LSIC(a) also underestimates reference values (MPE = -12.3%). On the other

hand, 50% scaling leaves the outer electrons unbound, making the anions unstable in this

method, as they are in LSDA. LSIC, LSIC(b), and LSIC(c) yield better mean errors and

mean absolute errors for the anion polarizabilities than the other methods.

IV. SUMMARY

In this article we presented molecular dipole moments and atomic polarizabilties

calculated using different local scaling approaches in which the self-interaction correction

terms employed in PZ-SIC were scaled at each point in space according to the character

of the charge density at that point. For comparison, we also included global scaling

methods in which the SIC terms in the total energy and in the one-electron Kohn-Sham-like

equations were simply reduced to 25%, 50% and 75% of their full PZ-SIC values. The local

scaling methods included the LSIC method introduced by Zope et al.[25], as well as several
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System Ref. LSDA LSIC LSIC(a) LSIC(b) LSIC(c) LSIC(d) 50% SIC SIC

Atoms

Li 164.19 145.27 181.04 165.03 180.48 180.05 180.30 148.86 151.77

Be 37.79 43.92 47.43 44.91 47.42 47.45 47.57 43.31 42.64

N 7.42 8.11 7.91 7.31 7.77 7.64 7.54 7.36 6.80

Ne 2.57 3.37 2.72 2.53 2.69 2.67 2.65 2.65 2.37

Na 162.70 142.64 186.87 166.20 191.88 196.97 202.33 151.30 154.01

Mg 71.53 71.08 82.28 76.05 83.28 84.26 85.36 72.04 71.46

P 24.50 28.17 27.29 25.59 26.83 26.41 26.11 25.72 24.57

Ar 11.23 11.99 11.36 10.91 11.24 11.17 11.04 10.81 10.67

MPE 6.7 11.3 3.3 11.1 11.0 11.1 0.3 -2.6

MAPE 12.8 11.3 4.8 11.1 11.2 11.6 5.5 5.9

Anions

Li− 828.58 - 997.79 919.42 998.73 999.99 1003.22 - 806.75

C− 74.81 - 75.74 55.64 78.94 87.55 84.59 - 45.44

F− 15.54 - 13.72 11.48 14.37 15.19 15.51 - 10.20

Na− 1106.80 - 1092.67 959.15 1109.04 857.54 1155.34 - 899.30

Si− 151.76 - 172.34 137.86 173.94 176.43 171.60 - 123.42

Cl− 36.19 - 35.89 32.38 36.27 36.76 36.83 - 29.93

MPE - 3.6 -12.3 5.6 5.1 8.9 - -21.2

MAPE - 8.2 15.9 8.1 13.4 8.9 - 21.8

Overall

MPE - 8.0 -3.4 8.7 8.5 10.2 - -10.9

MAPE - 10.0 9.6 9.8 12.1 12.7 - 12.7

TABLE V: Calculated polarizabilties of spherical atoms and anions. The reference values for

neutral are experimental results[48]. The reference values for anions are from CCSD calculations

done with same basis set.

variations of it. All of these local scaling schemes are designed to give exact results in the

limits of a single electron density and a uniform density.
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Our results show that 50% global scaling gives the best dipole moments on average for

our test set of 47 diverse molecules, significantly outperforming 100% SIC in mean absolute

regularized error. The locally scaled methods LSIC and LSIC(b) perform essentially as

well. Using an ionic subset of the test molecules we found that the LSIC method can give

systematic errors in molecules containing H atoms. The SIC potential is largely unscaled in

the volume around an H atom in an LSIC calculation, making that region relatively more

favorable for electrons than around other atoms. Dipole moments are affected as there is

relatively more electron charge transfer to the H atoms than reflected in the corresponding

reference dipole values.

Scaling SIC differently in different regions of space proves favorable in weakly bound

complexes of a water molecule and Li and F atoms. For these systems full SIC gives an

excellent description of the dipoles, while LSDA fails dramatically. The results for the

locally scaled methods are similar to the SIC results, while results using 50% SIC global

scaling are decidedly worse, essentially just averaging the LSDA and SIC results.

The locally scaled methods perform somewhat worse than the 50% global scaling

method in calculating the polarizabilities of neutral spherical atoms. For the atoms with

s-type outer electrons, LSIC and its variants overestimate the polarizabilities even more

than LSDA does, with the exception of the LSIC(a) variant, which scales down corrections

the least of all the locally scaled methods. The LSIC(a) polarizabilities have the smallest

mean absolute percentage error of all the methods tested including 50% and 100% SIC.

Importantly, and in contrast to 50% global scaling and LSDA, locally scaled methods give

bound valence electrons even for atomic anions, and thus can be utilized for the calculation

of polarizabilities in anionic systems.

The dramatic improvements in the performance of density functional approximations

over the past forty years have been due to constructing functionals that incorporate more

and more of the behavior of the exact density functional. Because the local scaling methods

are designed to recover a feature of the exact functional that is lost in PZ-SIC, they offer

a promising path toward building an improved self-interaction-free method. Our purpose

in studying various local scaling corrections here is to better understand how local scaling
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methods work in a practical setting and not to determine an empirically best scheme for

repairing PZ-SIC’s tendency to over-correct density-related properties. The results presented

show that local scaling has a more subtle effect than global scaling. The 50% SIC method

gives results that are typically close to the mean of LSDA/SIC for all properties studied.

The local scaling methods are more variable, sometimes giving results close to the LSDA

results, in other cases close to the SIC results, and in several cases outside the limits defined

by the LSDA and SIC results. The LSIC(a) method, which scales SIC the least of all the

local scaling methods tested, gives results that are closest to those of SIC. LSIC and LSIC

(b-d) are similar in the sense that the average of the function of the scaling parameter over

all values of zσ is 0.5 in all cases. This may be the reason that the results for these methods

are generally similar.
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[9] S. Klüpfel, P. Klüpfel, and H. Jónsson, Phys. Rev. A 84, 050501 (2011).

[10] K. Sharkas, L. Li, K. Trepte, K. P. K. Withanage, R. P. Joshi, R. R. Zope, T. Baruah, J. K.

Johnson, K. A. Jackson, and J. E. Peralta, J. Phys. Chem. A 122, 9307 (2018).

[11] Y. Yamamoto, C. M. Diaz, L. Basurto, K. A. Jackson, T. Baruah, and R. R. Zope, J. Chem.

Phys. 151, 154105 (2019).

[12] Y. Yamamoto, A. Salcedo, C. M. Diaz, M. S. Alam, T. Baruah, and R. R. Zope, Phys. Chem.

Chem. Phys. 22, 18060 (2020).

[13] J. Harrison, R. Heaton, and C. Lin, J. Phys. B 16, 2079 (1983).

[14] Z. Szotek, W. M. Temmerman, and H. Winter, Phys. Rev. B 47, 4029 (1993).

[15] T. Tsuneda and K. Hirao, J. Chem. Phys. 140, 18A513 (2014).

[16] D.-y. Kao, K. Withanage, T. Hahn, J. Batool, J. Kortus, and K. Jackson, J. Chem. Phys.

147, 164107 (2017).

[17] S. Patchkovskii and T. Ziegler, J. Chem. Phys. 116, 7806 (2002).

[18] R. P. Joshi, K. Trepte, K. P. K. Withanage, K. Sharkas, Y. Yamamoto, L. Basurto, R. R.

Zope, T. Baruah, K. A. Jackson, and J. E. Peralta, J. Chem. Phys. 149, 164101 (2018).
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