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Abstract—Performance of electromagnetic interference (EMI)
filters in power-electronics applications is limited by the parasitic
coupling between the components of the filters and the self-parasitic
of each component. While these parasitic effects can be partially
taken into account on the circuit level, it is difficult to estimate
their values. In this article, a full-wave modeling methodology is
proposed to predict the performance of a complete EMI filter up to
1 GHz. Following the proposed methodology, the mutual couplings
among the EMI filter components are taken into account as well as
the self-parasitics of each individual component. Experiments and
simulations are carried out to validate the modeling methodology. A
self-parasitic cancellation technique is also applied to demonstrate
the benefits of three-dimensional modeling methodology in EMI
filter design.

Index Terms—Common-mode choke (CMC), EMI filter, film
capacitor, full-wave modeling, mutual coupling.

I. INTRODUCTION

EMI FILTERS are commonly used to address conducted
emission issues. With the process of miniaturization, mod-

ularization, and integration in power electronic systems, the
electromagnetic interference (EMI) filters are required to have
smaller volume and better performance [1]. At the design stage
of an EMI filter, however, parasitic behavior and mutual coupling
among the components are hard to predict accurately. These
effects are responsible for degradation of the filter performance,
as reported in [2]. Different methodologies have been proposed
to estimate parasitics and coupling. A circuit model has been
proposed in [3], which contains both self and mutual parasitics of
an EMI filter (capacitor-to-capacitor and capacitor-to- common-
mode chokes (CMCs) mutual inductances). But the values of
these mutual inductances are determined using measurements,
which require to have filter prototypes. A 3-D model in [4] uses a
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Fig. 1. Example of a compact EMI filter design.

simple structure to represent two coupled current paths. The mu-
tual inductance obtained from the 3-D model is back-annotated
into a circuit model to predict the filter performance. Transverse
electromagnetic (TEM) cell measurements for individual com-
ponents are implemented in [5] to obtain the mutual inductance
between every two components.

However, as the filter geometry gets more and more compli-
cated, the reliability of these methods becomes questionable.
As shown in Fig. 1, a compact EMI filter design can include
not only the individual electrical components such as capacitors
and CMCs, but also wires, printed circuit board (PCB) board,
chassis, and other metallic parts for mechanical purposes. There-
fore, identifying all coupling mechanisms in such structures can
become difficult as inductive and capacitive coupling exists not
only between the electrical components but also between them
and external elements, such as chassis and wires. Besides this,
previous studies have been concentrating mainly on modeling
and predicting the inductive mutual coupling, while few inves-
tigations were done upon the capacitive couplings.

On the other hand, during the iterative stage of EMI filter
design, the methods mentioned previously require remeasure-
ment and recalculating each mutual parasitics even if only the
geometry of the filter has changed.

Several different techniques have been proposed to reduce the
self or mutual parasitics [1], [2], [6], [7]. These techniques can
help to improve filter performance. However, they all introduce
other parasitics. The study in [6] has shown that the combina-
tion of different parasitic-cancellation techniques may lead to
degraded filter performance.
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Fig. 2. EMI filter under investigation.

The 3-D modeling of the whole EMI filter can, therefore,
provide a solution for both predicting the filter performance and
validating different parasitic-cancellation techniques. The 3-D
model of an EMI filter can help at both initial and iterative design
stages.

Using 3-D models for EMI filter is not new. For example in
[8]–[10], the authors modeled the parasitics and mutual coupling
in EMI filters using 3D-PEEC-BIM method. Results obtained
by the 3D-PEEC-BIM method were presented for frequency
range up to 30 MHz. Moonen et al. [11], Asmanis et al. [12],
and Asmanis et al. [13] reported the modeling procedure for
individual components such as multilayer ceramic capacitors
(MLCC) and CMCs. However, 3-D modeling of complete EMI
filters up to 1 GHz based on a more common and readily com-
mercially available method such as finite element method (FEM)
has not been reported in the literature. Full-wave simulations up
to 1 GHz reveal not only the performance of the EMI filter in
suppressing conducted EMI but potentially can also predict the
role of the EMI filter in radiated EMI tests, increasing the value
of the model for EMC-aware design.

In [14], a 3-D modeling strategy for film capacitors has been
proposed and validated. The mentioned modeling strategy uses a
simple structure to avoid explicit modeling of the film roll inside
the film capacitor. In this way, the model is easy to build and
is computationally efficient. The FEM-based solver is able to
perform full-wave simulation for the film capacitors with good
accuracy up to 1 GHz in a relatively short time (up to tens of
minutes maximum).

In this article, a full-wave modeling strategy for an entire EMI
filter (including capacitors and CMCs) is proposed and vali-
dated. The filter performance is correctly predicted by the 3-D
full-wave model up to 1 GHz including common and differential
mode responses. Besides this, a parasitic-cancellation technique
is implemented in 3-D modeling to demonstrate the benefit
brought by the model at the iterative stage of the filter design.

The rest of this article is organized as follows. In Section II,
a typical EMI filter is presented. The components are anato-
mized to provide information for constructing a 3-D model.
In Section III, the modeling procedure for each component is
described. In Section IV, an example is shown to display the
advantages of using 3-D model to help improve the EMI filter
design. Finally, Section V concludes this article.

II. EMI FILTER AND COMPONENTS

A one-stage EMI filter is analyzed in this work. The layout
of the EMI filter is demonstrated in Fig. 2. This filter uses two
film-capacitors as X-capacitors and two ceramic capacitors as
Y-capacitors.

Fig. 3. Equivalent model of the EMI filter under investigation.

Fig. 4. (a) Asymmetric winding and (b) symmetric winding of film capacitors.
The film of capacitor from each type is unwound to show the difference.

The Y-capacitors are relatively far away from the other com-
ponents, thus, the mutual coupling between other components
and the Y-capacitors is of less relevance. As for the X-capacitors,
they are inductively and capacitively coupled to the CMC. Tak-
ing this into account, a circuit diagram for the filter containing
self and mutual parasitics can be drawn (see Fig. 3).

In the proposed methodology, the self-parasitics of the com-
ponents are captured by 3-D modeling their geometry (in some
cases measurements are needed to determine model parameters,
such as the permeability of the CMC core). The mutual parasitics
are modeled in a 3-D model exclusively, without relying on
measurements. The following subsections demonstrate how 3-D
models of every EMI filter component can be created.

A. Internal Structure of Film Capacitors

In most cases film capacitors are made of two pieces of plastic
film covered with metallic electrodes rolled into a cylindrically
shaped winding. The capacitor is finalized by attaching terminals
and encapsulation [15]. The electrodes are interchangeable be-
cause the film capacitors are not polarized. However, as demon-
strated in [14], the film capacitor is not necessarily electrically
symmetric. The capacitive coupling between the film capaci-
tor and another film capacitor may be dependent on the film
capacitor’s orientation. Two winding technologies—symmetric
and asymmetric—have been investigated in [14]. These two
technologies are shown in Fig. 4. The symmetric winding in
film capacitors effectively forms multiple smaller capacitors
connected in series. In this way, the effective breakdown voltage
of the film capacitor is raised.

Correspondingly, two modeling structures were proposed in
[14] for electrically symmetrical and asymmetrical film capac-
itors (see Fig. 5). It is essential to determine, which type of
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Fig. 5. Three-dimensional model for film capacitors. (a) Asymmetric winding.
(b) Symmetric winding.

Fig. 6. Group of CMC used in EMI filer applications.

winding technology is applied in the film capacitors especially
when they are mounted close to other components to capture
the capacitive coupling effects correctly and what is the actual
orientation of the capacitor mounted on the PCB. The winding
type and orientation can be determined by dissecting the capac-
itor or nondestructively by measuring the electric potential on
the capacitor surface as described in [14].

The models in Fig. 5 represent capacitors as solid metal
blocks and its nominal capacitance is modeled by inserting a
dielectric material between the metal blocks. The permittivity
of the dielectric layer is calculated using a parallel plate capacitor
formula [14].

B. Internal Structure of the Toroidal CMCs

A group of toroidal CMCs commonly used in EMI filters is
shown in Fig. 6. These CMCs, although they share the same
shape of core, could have different properties. Three types of
core material are used: Nanocrystalline, Mn-Zn ferrite, and
Ni-Zn ferrite. The Nanocrystalline core is highly conductive
and usually is placed inside a plastic shell with relatively large
gaps (up to several mm) between the core and the shell. Thus,
the capacitive coupling to the core is small or even negligible.
Other than a difference in the core material, the CMCs can
differ in the number of the winding layers. Besides this, they
can be mounted on a PCB in either standing or flat fashion. The
modeling procedure proposed in this article can cover all these
variations.

The windings of the CMCs will exhibit a transmission line
effect at high frequencies [16], similar to the transmission line
effect found in film capacitors [17]. A 3-D model following the
strategy proposed in this article can reproduce the transmission
line effect since the model for CMC is very close to the actual
structure, with little geometrical features discarded.

Fig. 7. Cross section of a 1 nF MLCC. Multiple smaller capacitors are found
inside the MLCC, connected in series. The length L, width W, and height H are
measured.

Fig. 8. Dimensions of a CMC.

C. Internal Structure of Ceramic Capacitors

Ceramic capacitors usually have small package size. How-
ever, their parasitic inductance and inductive coupling with other
components could be still relevant. Mutual capacitances con-
tributed by the ceramic capacitors—although small—can still
be measured. To create a 3-D model a MLCC was cut open. The
cross section shows that the capacitor can have a complicated
internal structure (see Fig. 7). Other than laminated electrodes,
the capacitor can consist of several smaller capacitors, connected
in series to increase the voltage rating of the capacitor.

III. EMI FILTER MODELING PROCEDURE

The primary goal of the modeling strategy is to predict the
filter performance accurately. Saving computational resources
comes secondly. In this section, the modeling procedure is bro-
ken down into the modeling of each component. The component
models are validated separately before being inserted into the
filter model. He et al. [14] described the film capacitor modeling
in detail. As for the modeling of CMCs, characterization through
simple measurements is required before the modeling procedure
starts.

A. Characterization of CMC

CMC WE7448252311 [18] is used in the EMI filter shown in
Fig. 2. The dimensions of this CMC are measured and displayed
in Fig. 8 and Table I.
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TABLE I
DIMENSION OF THE CMC

Fig. 9. (a) Single-winding CMC configuration. (b) Cross-winding CMC con-
figuration. (c) Equivalent circuit for single-winding configuration. (d) Equivalent
circuit for cross-winding configuration.

Other than physical dimensions, the electrical properties are
also measured under two configurations: single-winding config-
uration and cross-winding configuration [19]. The measurement
circuits and the equivalent circuits of the choke in two configu-
rations are presented in Fig. 9.

The equivalent circuit shown in Fig. 9(c) is used in [20] to
extract the permeability of the core material. Equivalent parallel
capacitance (EPC) denotes the equivalent parallel capacitance
of the winding on CMC. The green box in Fig. 9(c) represents
the actual inductance and magnetization loss contributed by the
flux inside the core material with a total impedance equal to

Zcore = jX (f) +R (f) . (1)

The impedance Zleak = jωLleakRleak

jωLleak+Rleak
represent the leakage

inductance and its loss.
The real and imaginary part of the core material permeability

can be related to the core geometry [20]

μ′ =
2πX (f)

ωN2μ0WE ln
(

DE

DI

)

μ′′ =
2πR (f)

ωN2μ0WE ln
(

DE

DI

) (2)

Fig. 10. Simplified circuit for cross-winding configuration.

where WE, DE, and DI are the width, outer diameter, and inner
diameter of the core, respectively, N is the number of turns in
the winding.

The measured impedance following the single-winding con-
figuration is denoted as Zmeas. According to the equivalent
circuit diagram in Fig. 9(c), the relationship between measured
impedance and Zcore is

Zmeas =
Zc · (Zcore + 2Zleak)

Zc + (Zcore + 2Zleak)
(3)

where

Zc =
1

jω · EPC . (4)

Thus, the leakage impedance Zleak needs to be determined
before obtaining Zcore. As suggested in [19], the cross-winding
configuration needs to be measured to obtain Zc and Zleak. The
configuration and the corresponding equivalent circuit diagram
is shown in Fig. 9(b). The circuit in Fig. 1(d) can be simplified
into the circuit in Fig. 10, as the cross-winding configuration let
the perfectly coupled portion of the inductances to cancel each
other.

According to the circuit, the Zleak can be obtained from the
measurement result under cross-winding configuration. The pro-
cedure is straightforward since the measured impedance shows
a clear resistor-inductor-capacitor (RLC) parallel resonance pat-
tern.

The measured impedances from both configurations are
shown in Fig. 11. Both the magnitude and phase are displayed.
Substituting the parameters obtained from the cross-winding
measurement into (2), along with the dimensions from Table
I, the real and imaginary parts of the core permeability μ′, μ′′

are extracted and plotted in Fig. 12.

B. Modeling of CMC

With the dimensions listed in Table I, a 3-D model of the CMC
can be constructed. A macro program is developed to generate
the model in CST STUDIO SUITE, in frequency domain solver
environment. (Fig. 13).

In the entry of the macro, there are two options for the wire,
either a thin wire model or a solid wire model. To reduce the
mesh count required to represent solid wires, the wires are built
to have square cross section instead of round cross section. The
difference in wire settings leads to a difference in the parasitic
capacitance.

In order to save computation resources, wires in the 3-D model
have no insulation coating. Besides this, the wires in the model
are not wound as tight as in the real CMC (due to difficulty of
calculating the wire geometry needed to achieve tight winding).
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Fig. 11. (a) Single-winding configuration impedance magnitude and phase.
(b) Cross-winding configuration impedance magnitude and phase.

Fig. 12. Extracted permeability of the Ni-Zn core.

Fig. 13. User interface of the macro program.

As a result of this, the distance between wires is larger than that
in reality, which can be as low as tens of micrometers, and the
permittivity of the dielectric between the wires is lower. These
differences lead to a mismatch in the parallel capacitance of
the winding. To compensate for this difference, an additional
insulation layer is added into the inner opening of the torus
covering all turns. The permittivity of this insulation layer is

Fig. 14. CMC model and its impedance seen at single-winding configuration
comparing against measurement results.

tuned to match the target parasitic capacitance. As mentioned
in the previous section, the cross-winding configuration results
show a clear LC resonance, which makes it an ideal target for
parameter tuning. The tuning procedure is simple, since the EPC
is dominated by the wire-to-wire capacitance in the winding,
which is linearly proportional to the permittivity of the additional
insulation layer.

Two versions of the CMC model (solid and thin wire) are
displayed in Figs. 14 and 15, followed by their impedances under
single-winding and cross-winding configurations, in compari-
son with the impedances obtained through measurement.

Both models demonstrate relatively good agreement with the
measured parameters. However, since the mesh count of the
thin wire model is significantly lower, this model will be used
henceforth as more computationally efficient.

C. Modeling for the Ceramic Capacitor

An extreme case where two identical MLCCs are closely
placed (0.3 mm apart) has been tested to validate the MLCC
model. The cross section of the capacitor is shown in Fig. 7. One
side of these two capacitors are connected to port 1 and port 2,
respectively. The other side of the capacitors are connected to the
ground plane by a 0.01 Ω lumped resistance. In the correspond-
ing measurement setup one end of the capacitors is mounted
on the microstrip trace (having the gap in the middle) and the
other end is connected to the ground plane by vias. The coupling
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Fig. 15. CMC model and its impedance seen at cross-winding configuration
comparing against measurement results.

between these two capacitors are evaluated by measuring and
simulating the transmission coefficient S21 between the ports.
Two models of the capacitors were created: the explicit model
reproducing the internal structure of the capacitors and the sim-
plified model, modeling the capacitors as solid blocks (similar
to the film capacitors in Fig. 5). The results from both explicit
model and simplified model are compared against measurement
results (see Fig. 16).

The mechanism of the coupling between the two MLCCs is
capacitive at lower frequencies, inductive at higher frequencies
(above the resonance). The inductive coupling between the
capacitors would be almost identical for both models because
the current path geometry is practically the same in both cases.
Capacitive coupling potentially could be different (due to a
difference in electric field potential between the models), but
for the configuration in Fig. 16 it happens to be very similar.

As can be seen from Fig. 16, building an explicit model
for the ceramic capacitor does not improve the accuracy when
compared with a simplified model. The relevance of coupling
would be even less significant for the filter in Fig. 2 due to the
increased distance between the capacitors relative to Fig. 16. At
the same time the self-impedance of the capacitors is modeled
accurately [see Fig. 16(c)].

In the simplified model for MLCC, a thin dielectric layer is
inserted between the two solid blocks. The permittivity εr of this

Fig. 16. (a) Three-dimensional models for MLCC capacitors and the measure-
ment configuration for the coupling between the two capacitors. (b) S21 results
obtained from explicit model, simplified model and measurement. (c) Impedance
of a single MLCC from explicit model, simplified model, and measurement.

Fig. 17. Three-dimensional model for the EMI filter.

thin layer is obtained from parallel plate capacitance formula

εr =
C

S
d (5)

where C is the nominal value of the MLCC; S is the cross-
sectional area of the two solid blocks; d is the thickness of the
thin dielectric layer.

D. Modeling for the Filter

The filter model integrates the models of the individual com-
ponents. Other items such as the board, the traces, etc., are also
included. Fig. 17 illustrates the final filter model. The CMC is
mounted upright on the PCB, the X-capacitors have symmetric
winding, and the Y-capacitors are MLCCs modeled as two solid
blocks separated by a dielectric layer.

The performance of this filter model is displayed in Fig. 18
together with the measured curves. Coefficients Scc21 and
Sdd21 are the mix-mode scattering transmission coefficients
for common and differential modes, respectively. Filter per-
formance is predicted very accurately up to 10 MHz. Above
10 MHz, the accuracy of the differential mode suffers, probably
due to inaccurate modeling of leakage inductance of the CMC (a
similar effect of the leakage inductance is observed in a circuit
model in Fig. 3). Relatively large discrepancies are observed
above 100 MHz but even in that frequency range, the tendency is
captured correctly. At the same time, frequencies where the filter

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 01,2021 at 01:13:39 UTC from IEEE Xplore.  Restrictions apply. 



1578 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 62, NO. 4, AUGUST 2020

Fig. 18. Performance of the EMI filter. Results are compared between 3-D
simulation and measurement.

Fig. 19. EPC cancellation technique using a tapping capacitor.

performance changes qualitatively (50 MHz and 100 MHz for
the differential mode and 100 MHz for the common mode) are
predicted relatively accurately. Because of this, the model can be
useful for filter optimization despite quantitative inaccuracies.

IV. PRACTICAL APPLICATION OF THE 3-D MODEL

In this section, an example of applying parasitic cancellation
technique to the filter design is discussed. The purpose of this
discussion is to give an example of the scenarios, where the 3-D
modeling strategy for EMI filters can be used.

The goal of the filter mentioned in Section III is to suppress
both differential mode (DM) noise and common mode (CM)
noise, especially for the frequency range of 10 MHz–100 MHz.
Since the EPC of the CMC dictates the performance of Scc21in
this range, an EPC cancellation technique (see Fig. 19) proposed
in [21] is, therefore, implemented and evaluated through the 3-D
modeling.

This approach adds a tapping capacitor (marked in blue box)
to the windings on the CMC. This tapping capacitor—when
set at the right value—will cancel the EPC of the winding.
The performance of the filter is maximized when the following
criterion is met:

nC

(n+ 1)2
= EPC. (6)

However, the EPC of the winding often varies from unit to
unit. Besides this, the cancellation technique itself introduces
additional capacitances (marked in red dashed boxes in Fig. 19),
and the tapping capacitors themselves will be parasitically cou-
pled to the CMC. Because of this, the circuit in Fig. 19 is a
relatively rough approximation of the actual situation. The 3-D
model provides a solution to find the best tapping capacitor value

Fig. 20. Three-dimensional model of the filter after applying the EPC cancel-
lation technique.

Fig. 21. Improvement ofScc21 at 70 MHz as a function of tapping capacitance.

Fig. 22. Simulated performance of the filter (Scc21) with different tapping
capacitor values.

and evaluates the influence introduced by the added parasitics. A
group of simulation results can quickly be obtained from a 3-D
simulation with different values of tapping capacitance. Fig. 20
shows the 3-D model, where the tapping capacitor (modeled as a
lumped element) is added between the first turn of the windings
and the ground plane.

The effect of the tapping capacitor can be observed in the
frequency range from 10 to 100 MHz. We selected a frequency
of 70 MHz as a reference point to compare the effect of dif-
ferent capacitor values on the magnitude of Scc21. A parameter
sweep is then implemented in 3-D solver, sweeping the tapping
capacitance value from 0.1 pF to 10 pF at a step of 0.5 pF.
The improvement in Scc21 at 70 MHz is then plotted against
the tapping capacitance in Fig. 21, while the Scc21 at certain
capacitance values are plotted in Fig. 22.

At the same time, simulation results also show that adding a
tapping capacitor will not affect Sdd21 (see Fig. 23). Adding a
tapping capacitor cancels the EPC of the coupled windings and
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Fig. 23. Simulated Sdd21 of the filter with different tapping capacitor values.

Fig. 24. (a) Installation of the tapping capacitor on the windings of the
CMC. (b) Performance of the filter Scc21 in comparison with the original filter
configuration. (c) Performance of the filterSdd21 in comparison with the original
filter configuration.

introduces two equivalent Y-caps and a negative capacitor that
cancels EPC of coupled inductors, as shown in Fig. 19. There-
fore, the taping capacitor only affects the CM attenuation of the
EMI filter (since no asymmetry is added). DM transmission can
be affected if additional degrees of freedom are used, such as
different tapping points for the windings.

From the curves abovementioned, it can be determined that
the capacitance around 4 pF will yield the largest improvement
of the CM suppression at 70 MHz. The tapping capacitance
within the range of 2–6 pF leads to at least 5 dB improvement
in Scc21 at 70 MHz. The tapping technique is then put to
measurement (see Fig. 24), with a 5.6 pF additional capacitance

added to the first turns of the CMC windings. The measurement
shows 10 dB improvement in the Scc21 at 70 MHz, which is
close to the predicted value in Fig. 21. (5.6 dB improvement).
The DM attenuation in the range of 10 MHz–100 MHz is not
affected, as shown in both simulation and measurement. At
higher frequencies introducing the tapping capacitors reduces
the DM attenuation, which is correctly predicted by simulation.

V. SUMMARY

In this article, a 3-D modeling strategy for EMI filters is
proposed and evaluated. The model takes into account the inter-
nal structure of the film capacitor, the CMC, and the ceramic
capacitor. Blocks and thin wires are implemented to avoid
explicit modeling of the internal structure of the capacitors and
simplify the CMC model, relieving the burden of the solver
and mesh generator. The need for model parameter tuning is
also minimized in the proposed strategy. The only parameter
that requires tuning is the equivalent parallel capacitance of the
choke (through the permittivity of the equivalent dielectric layer
in the model).

A 3-D model is built for an example EMI filter, the model
demonstrated the ability of the proposed strategy to predict the
filter performance up to 1 GHz (with various accuracy across the
frequency range, but qualitatively correctly). An example of the
procedure of improving the filter design utilizing the 3-D model
is presented.

Section IV demonstrates that the effect of the tapping ca-
pacitors on the filter performance is correctly predicted up to
1 GHz for both common and differential modes. The proposed
modeling strategy is, therefore, useful for not only the early
design stage of EMI filters, but also at the iterative stage, where
multiple parameters need to be changed to fine-tune the filter
performance.
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