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a b s t r a c t

Seemingly unrelated regression is a natural framework for regressing multiple correlated
responses on multiple predictors. The model is very flexible, with multiple linear
regression and covariance selection models being special cases. However, its practical
deployment in genomic data analysis under a Bayesian framework is limited due to both
statistical and computational challenges. The statistical challenge is that one needs to
infer both the mean vector and the inverse covariance matrix, a problem inherently
more complex than separately estimating each. The computational challenge is due
to the dimensionality of the parameter space that routinely exceeds the sample size.
We propose the use of horseshoe priors on both the mean vector and the inverse
covariance matrix. This prior has demonstrated excellent performance when estimating
a mean vector or inverse covariance matrix separately. The current work shows these
advantages are also present when addressing both simultaneously. A full Bayesian
treatment is proposed, with a sampling algorithm that is linear in the number of
predictors. MATLAB code implementing the algorithm is freely available from github at
https://github.com/liyf1988/HS_GHS. Extensive performance comparisons are provided
with both frequentist and Bayesian alternatives, and both estimation and prediction
performances are verified on a genomic data set.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Multiple predictors–multiple responses regression, sometimes also known as the problem of multi-task learning
n machine learning literature, is a common modeling framework in quantitative disciplines as diverse as finance,
hemometrics and genomics. To take a concrete example from the field of genomics, this problem arises in simultaneously
egressing the expression levels of multiple genes on multiple markers or regions of genetic variation, which is known as
n expression quantitative trait loci (eQTL) analysis. Early studies have shown that each gene expression level is expected
o be affected by only a few genomic regions [8,28] so that the regression coefficients in this application are expected to
e sparse. In addition, the expression levels of multiple genes have been shown to possess a sparse network structure that
ncodes conditional independence relationships [20], which, in the case of a multivariate Gaussian model, are encoded by
he off-diagonal zeros in the inverse covariance matrix. Therefore, an eQTL analysis, if formulated as a multiple predictors–
ultiple responses regression problem, presents with non-independent error terms. In high dimensions, this necessitates

egularized estimates of both the regression coefficients and the error inverse covariance matrix. Similar problems arise
n econometrics, for example, in predicting the set of several correlated stock prices using a common set of covariates.
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A natural question then is: what is there to be gained by treating all responses jointly rather than separately
regressing each response on the set of covariates, possibly adjusting for multiplicity in the responses? In multivariate
regression problems with correlated error terms, early works by Zellner [31] established that joint estimation of regression
coefficients improves efficiency. Zellner [31] went on to propose the seemingly unrelated regression framework where
the error correlation structure in multiple responses is leveraged to achieve a more efficient estimator of the regression
coefficients compared to separate least squares estimators. Holmes et al. [18] adopted the seemingly unrelated regression
framework in Bayesian regressions. However, these early methods in the seemingly unrelated regression framework
considered a relatively modest dimension of the responses, and did not encourage sparse estimates of either the regression
coefficients or the error inverse covariance matrix. Therefore, these methods cannot be applied directly to analyze
modern genomic or financial data. Much more recently, both Bayesian and frequentist approaches that encourage sparsity
have started to attract considerable attention in a seemingly unrelated regression framework [e.g.,1,6,9,29,30]. Precise
descriptions of some of these competing approaches and understanding their strengths and limitations require some
mathematical formalism. This is reserved for Section 2.

In this article, we propose a fully Bayesian method for high-dimensional seemingly unrelated regression problems with
n algorithm for efficient exploration of the posterior. We impose the horseshoe prior [11] on the regression coefficients,
nd the graphical horseshoe prior [21] on the precision matrix. In univariate normal regressions, the horseshoe prior
as been shown to possess many attractive theoretical properties, including improved Kullback–Leibler risk bounds [11],
symptotic optimality in testing under 0–1 loss [14], minimaxity in estimation under the ℓ2 loss [24], and improved risk

properties in linear regression [4]. The graphical horseshoe prior inherits the properties of improved Kullback–Leibler risk
bounds, and nearly unbiased estimates, when applied to precision matrix estimation [21].

The beneficial theoretical and computational properties of the horseshoe and graphical horseshoe are combined in our
proposed method, resulting in a prior that we term the horseshoe-graphical horseshoe or HS-GHS. The proposed method is
fully Bayesian, so that the posterior distribution can be used for uncertainty quantification, which in the case of horseshoe
is known to give good frequentist coverage [25]. For estimation, we derive a full Gibbs sampler, inheriting the benefits of
automatic tuning and no rejection that come with it. The complexity of the proposed algorithm is linear in the number
of covariates and cubic in the number of responses. To our knowledge, this is the first fully Bayesian algorithm with a
linear scaling in the number of covariates that allows arbitrary sparsity patterns in both the regression coefficients and the
error precision matrix. This is at a contrast with existing Bayesian methods that require far more restrictive assumptions
on the nature of associations. For example, Bhadra and Mallick [6] require that either a predictor is important to all the
responses, or to none of them. The proposed method is also at a contrast with approaches that require special structures
on the conditional independence relationships. For example, both Bhadra and Mallick [6] and Banterle et al. [1] require
that the graphical model underlying the inverse covariance matrix is decomposable. Such assumptions are typically made
for computational convenience, rather than any inherent problem-specific motivation, and the current work delineates a
path forward by dispensing with them. In addition to these methodological innovations, the performance of the proposed
method is compared with several competing approaches in a yeast eQTL data set and superior performances in both
estimation and prediction are demonstrated.

2. Problem formulation and related works in high-dimensional joint mean–covariance modeling

Consider regressing responses Yn×q on predictors Xn×p, where n is the sample size, p is the number of features,
and q is the number of possibly correlated outcomes. A reasonable parametric linear model is of the form Yn×q =

Xn×pBp×q + En×q, where E ∼ MNn×q(0, In, Ω−1
q×q) denotes a matrix normal random variate [15] with the property that

vec(E⊤) ∼ Nnq(0, In⊗Ω−1
q×q), a multivariate normal, where vec(A) converts a matrix A into a column vector by stacking the

columns of A, the identity matrix of size n is denoted by In, and ⊗ denotes the Kronecker product. Thus, this formulation
indicates the n outcome vectors of length q are assumed uncorrelated, but within each outcome vector, the q responses
share a network structure, which is reasonable for an eQTL analysis. The problem is then to estimate Bp×q and Ωq×q.
We drop the subscripts denoting the dimensions henceforth when there is no ambiguity. Here Ω is also referred to
as the precision matrix of the matrix variate normal, and off-diagonal zeros in it encodes a conditional independence
structure across the q responses, after accounting for the covariates. Of course, a consequence of the model is that one
has conditionally independent (but not i.i.d.) observations of the form Yi ∼ N(XiB, Ω−1), for i ∈ {1, . . . , n}. The negative
log likelihood function under this model, up to a constant, is

l(B, Ω) = tr{n−1(Y − XB)⊤(Y − XB)Ω} − log |Ω|.

The maximum likelihood estimator for B is simply B̂OLS
= (X⊤X)−1X⊤Y , which does not exist when p > n. In addition,

increasing |Ω| easily results in an unbounded likelihood function. Therefore, it is desirable to regularize both B and Ω for
well-behaved estimates.

One of the earliest works in high dimensions is the multivariate regression with covariance estimation or the MRCE
method [27], which adds independent ℓ1 penalties to B and Ω , so the objective function is

(B̂MRCE, Ω̂MRCE) = argmin
{
l(B, Ω) + λ1Σk̸=ℓ|ωkℓ| + λ2Σ

pq
j=1|βj|

}
,

(B,Ω)
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here ωkℓ are the elements of Ω , βj are the elements of vectorized B⊤, and λ1, λ2 > 0 are tuning parameters. A coordinate
escent algorithm is developed that iteratively solves a lasso and a graphical lasso problem to update B̂MRCE and Ω̂MRCE ,
espectively.

Cai et al. [9] developed the covariate-adjusted precision matrix estimation or CAPME procedure taking a two-stage
pproach and using a multivariate extension of the Dantzig selector of Candes and Tao [10]. Let ȳ = n−1Σn

i=1yi,
x̄ = n−1Σn

i=1xi, Sxy = n−1Σn
i=1(yi − ȳ)(xi − x̄)⊤ and Sxx = n−1Σn

i=1(xi − x̄)(xi − x̄)⊤. The estimate of B in CAPME solves the
ptimization problem

B̂CAPME = argmin
B

{
|B|1 : |Sxy − BSxx|∞ ≤ λn

}
,

here λn is a tuning parameter, |A|1 defines the element-wise ℓ1 norm of matrix A, and |A|∞ defines the element-wise
∞ norm of A. This is equivalent to a Dantzig selector applied on the coefficients in a column-wise way. After inserting
he estimator B̂CAPME to obtain Syy = n−1Σn

i=1(yi − B̂xi)(yi − B̂xi)⊤, one estimates Ω by solving the optimization problem

Ω̂CAPME = argmin
Ω

{
|Ω|1 : |Ip − SyyΩ|

∞
≤ τn

}
,

here τn is a tuning parameter. The final estimator of Ω needs to be symmetrized since no symmetry condition on Ω is
mposed.

Critiques of the lasso shrinkage include that the lasso estimate is not tail robust [11], and at least empirically, the
antzig selector rarely outperforms the lasso in simulations and in genomic data sets [23,32], indicating these problems
ight be inherited by MRCE and CAPME, respectively.
Bayesian approaches seek to implement regularization through the choice of prior, with the ultimate goal being

robabilistic uncertainty quantification using the full posterior. Deshpande et al. [17] put spike-and-slab lasso priors on
he elements of B. That is, βkj; k ∈ {1, . . . , p}, j ∈ {1, . . . , q} is drawn a priori from either a ‘spike’ Laplace distribution
ith a sharp peak around zero, or a ‘slab’ Laplace distribution that is relatively flatter. A binary variable indicates whether
coefficient is drawn from the spike or the slab distribution. Such an element-wise prior on βkj is

π (βkj|γkj) ∝ (λ1e−λ1|βkj|)γkj (λ0e−λ0|βkj|)1−γkj ,

here λ1 and λ0 are the parameters for the spike and slab Laplace distributions, and the binary indicator γkj follows a
riori a Bernoulli distribution with parameter θ , with a beta hyperprior distribution on θ with parameters aθ and bθ .
imilarly, spike-and-slab lasso priors are put on elements ωℓm in Ω as well. An Expectation/Conditional Maximization
ECM) algorithm is derived for this model to obtain the posterior mode. The hyper-parameters (λ1, λ0, aθ , bθ ) for B, and
he corresponding four hyper-parameters for Ω , need to be specified in order to apply the ECM algorithm. In Deshpande
t al. [17], the Laplace distribution hyper-parameters are chosen by the trajectories of individual parameter estimates
iven a path of hyper-parameters, and the beta hyper-parameters are set at predefined levels. The method does not
rovide samples from the full posterior.
Bhadra and Mallick [6] also consider a spike-and-slab prior on B but place Bernoulli indicators in a different way. Their

riors on B and Ω−1 are

B | γ , Ω−1
∼ MN(0, cIpγ , Ω−1), Ω−1

| G ∼ HIWG(b, dIq),

here b, c, d are fixed, positive hyper-parameters and HIW denotes the hyper-inverse Wishart distribution [16]. The
ector of indicators γ selects entire rows of coefficients, depending on whether γi = 1; i ∈ {1, . . . , p}. Similarly, the
ndicator G has length q(q − 1)/2, and selects the off-diagonal elements in the precision matrix. Here pγ =

∑p
i=1 γi.

lements in γ and G are independently distributed Bernoulli random variables, with hyper-parameters ωγ and ωG,
espectively. The model allows B and Ω to be analytically integrated out to achieve fast Markov chain Monte Carlo
MCMC) sampling, at the expense of a somewhat restrictive assumption that a variable is selected as relevant to all of the
responses or to none of them.
Thus, it appears only a few of Bayesian shrinkage rules have been applied to joint mean and inverse covariance

stimation in SUR models, and there is no fully Bayesian method that efficiently solves this problem under the assumption
f arbitrary sparsity structures in B and Ω while allowing for uncertainty quantification using the full posterior. To this end,
e propose to use the horseshoe prior that achieves efficient shrinkage in both sparse regression and inverse covariance
stimation. We also develop an MCMC algorithm for sampling, without user-chosen tuning parameters.

. Proposed model and estimation algorithm

We define β to be the vectorized coefficient matrix, or β = vec(B⊤) = [B11, . . . , B1q, . . . , Bp1, . . . , Bpq]
⊤. To achieve

hrinkage of the regression coefficients, we put horseshoe (HS) prior on β , i.e.,

βj ∼ N(0, λ2
j τ

2); j ∈ {1, . . . , pq}, λj ∼ C+(0, 1), τ ∼ C+(0, 1),

here C+(0, 1) denotes the standard half-Cauchy distribution with density p(x) ∝ (1 + x2)−1
; x > 0. This normal scale

ixture on β with half-Cauchy hyperpriors on λ and τ is known as the horseshoe prior [11], presumably due to the
j

3
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Algorithm 1 The HS-GHS Sampler
function HS-GHS(X, Y , burnin, nmc)

Set n, p and q using dim(X) = n × p and dim(Y ) = n × q
Initialize β = 0p×q and Ω = Iq
for i = 1 to burnin + nmc do

(1) Calculate ỹ = vec(Ω1/2Y⊤), X̃ = X ⊗ Ω1/2

%% Sample β using the horseshoe
(2a) Sample u ∼ Npq(0, Λ∗) and δ ∼ Nnq(0, Inq) independently, where Λ∗ = diag(λ2

j τ
2)

(2b) Take v = X̃u + δ

(2c) Solve w from (X̃Λ∗X̃⊤
+ Inq)w = ỹ − v

(2d) Calculate β = u + Λ∗X̃⊤w

(3) Sample λ2
j ∼ InvGamma(1, 1/νj + β2

j /(2τ 2)), and νj ∼ InvGamma(1, 1 + 1/λ2
j ), for j ∈ {1, ..., pq}

(4) Sample τ 2
∼ InvGamma((pq + 1)/2, 1/ξ + Σ

pq
j=1β

2
j /(2λ2

j )), and ξ ∼ InvGamma(1, 1 + 1/τ 2)
(5) Calculate Yres = Y − XB and S = Y⊤

resYres
%% Sample Ω using the graphical horseshoe

for k = 1 to q do
Partition matrices Ω , S to (q − 1) × (q − 1) upper diagonal blocks Ω(−k)(−k) , S(−k)(−k); (q − 1) × 1
dimensional vectors ω(−k)k , s(−k)k; and scalars ωkk , skk
(6a) Sample γ ∼ Gamma(n/2 + 1, 2/skk)
(6b) Sample υ ∼ N(−Cs(−k)k, C) where C = (skkΩ−1

(−k)(−k) + diag(η(−k)kζ
2)−1)−1 and η(−k)k

is a vector of length (q − 1) with entries η2
ℓk, ℓ ̸= k

(6c) Apply transformation: ω(−k)k = υ, ωkk = γ + υ⊤Ω−1
(−k)(−k)υ

(7) Sample η(−k)k ∼ InvGamma(1, 1/ρ(−k)k + ω2
(−k)k/2ζ

2),
and ρ(−k)k ∼ InvGamma(1, 1 + 1/η(−k)k)

end for
(8) Sample ζ 2

∼ InvGamma((
(q
2

)
+ 1)/2, 1/φ +

∑
k,ℓ:k<ℓ ω2

kℓ/2η
2
kℓ), and φ ∼ InvGamma(1, 1 + 1/ζ 2)

Save samples if i > burnin
end for
Return MCMC samples of β and Ω

end function

shape of the induced prior on the shrinkage factor. The key motivation for this hierarchical form is that the global term τ

ncourages sparsity of the estimates by typically settling on a small value a posteriori, but the local heavy-tailed λj terms
revent the large signals from being over-shrunk. Similarly, to encourage sparsity in the off-diagonal elements of Ω , we
se the graphical horseshoe (GHS) prior for Gaussian graphical models [21], i.e.,

ωkℓ:k>ℓ ∼ N(0, η2
kℓζ

2); k, ℓ ∈ {1, . . . , q}, ηkℓ ∼ C+(0, 1), ζ ∼ C+(0, 1), p(ωkk) ∝ 1,

here Ω = {ωkℓ}, and the prior mass is truncated to the space of q × q positive definite matrices S+
q . In this model, ηkℓ

nd ζ induce shrinkage on the off-diagonal elements in Ω . The joint prior on Θ = (B, Ω) is termed the HS-GHS prior.
MCMC samplers have been proposed for regressions using the horseshoe prior for the linear regression model with

.i.d. error terms [7,22]. However, these samplers cannot be applied to the current problem due to the correlation structure
n the error. To transform the data into a model where sampling is possible, we reshape the predictors and responses. Let
˜ = vec(Ω1/2Y⊤), and X̃ = X ⊗ Ω1/2. Simple algebra shows that ỹ ∼ Nnq(X̃β, Inq). In this way, the matrix variate normal
egression problem is transformed into a multivariate normal regression problem, provided the current estimate of Ω is
nown. Next, given the current estimate of B, the graphical horseshoe sampler of Li et al. [21] is leveraged to estimate Ω .
A full Gibbs sampler for the above model is given in Algorithm 1. Throughout, the shape–scale parameterization is

sed for all gamma and inverse gamma random variables. First, the coefficient matrix B is sampled conditional on the
recision matrix Ω . We notice that the conditional posterior of β is N((X̃⊤X̃ + Λ−1

∗
)−1X̃⊤Ỹ , (X̃⊤X̃ + Λ−1

∗
)−1), where

∗ = diag(λ2
j τ

2), j ∈ {1, . . . , pq}. However, sampling from this normal distribution is computationally expensive
because it involves computing the inverse of the pq × pq dimensional matrix (X̃⊤X̃ + Λ−1

∗
), with complexity O(p3q3).

uckily, sampling β from this high-dimensional normal distribution can be solved by the fast sampling scheme proposed
y Bhattacharya et al. [7]. The algorithm is exact with a complexity linear in p.
To sample the precision matrix Ω conditional on B, define the residual Yres = Y − XB, and let S = Y⊤

resYres. Since
(Y − XB) | Ω ∼ MN(0, In, Ω−1), the problem of estimating Ω given B is exactly the zero-mean multivariate Gaussian
inverse covariance estimation that the graphical horseshoe [21] solves. A detailed derivation of Algorithm 1 is given
in Appendix A and a MATLAB implementation, along with a simulation example, is freely available from github at
https://github.com/liyf1988/HS_GHS.

Complexity analysis of the proposed algorithm is as follows. Once Ω1/2 is calculated in O(q3) time, calculating ỹ costs
O(nq2), and calculating X̃ costs O(npq2). The most time consuming step is still sampling β , which is O(n2pq3) with the
fast sampling method. Nevertheless, when n ≪ p, using the fast sampling method is considerably less computationally
intensive than sampling from the multivariate normal distribution directly, which has complexity O(p3q3). Since the

3), each iteration in our Gibbs sampler takes O(n2pq3) time.
complexity of the graphical horseshoe is O(q

4
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Although the Gibbs sampler is computation-intensive, especially compared to penalized likelihood methods, it has
several advantages. First, the Gibbs sampler is automatic, and does not require cross validation or empirical Bayes
methods for choosing hyperparameters. Penalized optimization methods for simultaneous estimation of mean and inverse
covariance usually need two tuning parameters [9,27,30]. Second, MCMC approximation of the posterior distribution
enables variable selection using posterior credible intervals. By varying the length of credible intervals, it is also possible to
assess trade-offs between false positives and false negatives in variable selection. Finally, to our knowledge this is the first
fully Bayesian solution in an SUR framework with a complexity linear in p. Along with these computational advantages,
we now proceed to demonstrate the proposed method possesses attractive theoretical properties as well.

4. Kullback–Leibler risk bounds

Since a Bayesian method is meant to approximate an entire distribution, we provide results on Kullback–Leibler
divergence between the true density (assuming there exists one) and the Bayes marginal density. Adopt the slightly non-
Bayesian view that n conditionally independent observations Y1, . . . , Yn are available from an underlying true parametric
model with parameter θ0 and let pn denote the true joint density, i.e., pn =

∏n
i=1 p(yi; θ0). Similarly, let the marginal mn

in a Bayesian model with prior ν(dθ ) on the parameter be defined as mn
=

∫ ∏n
i=1 q(yi|θ )ν(dθ ), where q is the sampling

ensity. If the prior on θ is such that the measure of any set according to the true density and the sampling density
re not too different, then it is natural to expect pn and mn to merge in information as more samples are available. The
ollowing result by Barron [2] formalizes this statement. Let Dn(θ ) =

1
nD(p

n
∥qn(·|θ )), where D(π1∥π2) =

∫
log(π1/π2)dπ1,

denotes the Kullback–Leibler divergence (KLD) of density π1 with respect to π2 and qn(·|θ ) =
∏n

i=1 q(yi|θ ). The set
ϵ = {θ : Dn(θ ) < ϵ} can be thought of as a K–L information neighborhood of size ϵ, centered at θ0. Then we have
n upper bound on the KLD of pn from mn, in terms of the prior measure of the set Aϵ .

emma 4.1 ([2]). Suppose the prior measure of the Kullback–Leibler information neighborhood is not exponentially small,
.e. for every ϵ, r > 0 there is an N such that for all n > N one has ν(Aϵ) ≥ e−nr . Then,

1
n
D(pn∥mn) ≤ ϵ −

1
n
log ν(Aϵ).

The left hand side is the average Kullback–Leibler divergence between the true joint density of the samples Y1, . . . , Yn
and the marginal density. The right hand side involves logarithm of the prior measure of a Kullback–Leibler information
neighborhood centered at θ0. A larger prior measure in this neighborhood of the ‘‘truth’’ gives a smaller upper bound for
the average Kullback–Leibler divergence on the left, ensuring pn and mn are close in information. The following theorem
shows that the HS-GHS prior, which has unbounded density at zero, achieves a smaller upper bound on the KLD when
the true parameter is sparse (i.e., contains many zero elements), since it puts higher prior mass in an ϵ neighborhood of
zero compared to any other prior with a bounded density at zero.

Theorem 4.2. Let θ0 = (B0, Ω0) and assume n conditionally independent observations Y1, . . . , Yn from the true model
Yi

ind
∼ N(XiB0, Ω−1

0 ), where B0 ∈ Rp×q and Ω0 ∈ S+
q are the true regression coefficients and inverse covariance, respectively and

Xi are observed covariates. Let βj0, ωkℓ0 and σkℓ0 denote the jth and kℓth element of vec(B0), Ω0 and Σ0 = Ω−1
0 , respectively.

Suppose that
∑

k,ℓ ωkℓ0 ∝ q,
∑

k,ℓ σkℓ0 ∝ q, and
∑n

i=1(Xi1 + · · · + Xip)2 ∝ np2. Suppose that an Euclidean cube in the
neighborhood of Ω0 with (ωkℓ0 − 2/Mn1/2q, ωkℓ0 + 2/Mn1/2q) on each dimension lies in the cone of positive definite matrices
S+
q , where M =

∑
k,ℓ σkℓ0/q. Then, 1

nD(p
n
∥mn) ≤

1
n −

1
n log ν(A1/n) for all n, and:

(i) For prior measure ν with density that is continuous, bounded above, and strictly positive in a neighborhood of zero, one
btains, log ν(A1/n) ∝ K1pq log( 1

n1/4pq1/2
) + K2q2 log( 1

n1/2q
), where K1 and K2 are constants.

(ii) For prior measure ν under the HS-GHS prior, log ν(A1/n) > C1(pq − |sB|) log{ log(n1/4pq1/2)
n1/4pq1/2

} + C2|sB| log( 1
n1/4pq1/2

) +

C3(q2 − |sΩ |) log{ log(n1/2q)
n1/2q

} + C4|sΩ | log( 1
n1/2q

), where |sB| is the number of nonzero elements in B0, |sΩ | is the number of
nonzero elements in Ω0, and C1, C2, C3, C4 are constants.

Proof of Theorem 4.2 is in Appendix B. Logarithm of the prior measure in the Kullback–Leibler divergence neighbor-
hood, log ν(A1/n), can be bounded by the summation of log measures in each of the pq + q2 dimensions. Any Bayesian
estimator with an element-wise prior satisfying conditions in Part (1) of Theorem 4.2 puts a prior measure proportional to
(n1/4pq1/2)−1 in each of the pq dimensions of the regression coefficients, and a measure proportional to (n1/2q)−1 in each
of the q2 dimensions of the inverse covariance, regardless of whether the corresponding true element is zero or non-zero.
Theorem 4.2 implies that when p and q are fixed and n → ∞, the average divergence 1

nD(p
n
∥mn) under any Bayesian

rior converges to zero. However, when q is fixed and p log(n1/4p)/n → ∞, the upper bound n−1
{1− log ν(A1/n)} diverges.

imilarly, when p is fixed and q2 log(n1/2q)/n → ∞, the upper bound diverges. Some common Bayesian estimators,
ncluding the double exponential prior in Bayesian lasso, induce a prior density bounded above near the origin [11],
atisfying conditions in Part (1). Being a mixture of double exponential priors, the spike-and-slab lasso prior also satisfies
onditions in Part (1).
5
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Although the upper bound diverges when p and q are large, it can be improved by putting higher prior mass near the
rigin when B0 and Ω0 are sparse. One element where βj0 = 0 contributes log(n1/4pq1/2)/n to the upper bound under a

bounded prior near the origin, and {log(n1/4pq1/2) − log log(n1/4pq1/2)}/n to the upper bound under the horseshoe prior.
For each element where βj0 = 0, the HS-GHS upper bound has an extra −O{(log log n1/4pq1/2)/n} term. Similarly, for each
element where ωkℓ0 = 0, the HS-GHS upper bound has an extra −O{(log log n1/2q)/n} term. When most true coefficients
and off-diagonal elements in the inverse covariance are zero, the horseshoe prior brings a non-trivial improvement on
the upper bound. The theoretical findings of improved Kullback–Leibler divergence properties are extensively verified by
simulations in Section 5.

5. Simulation study

In this section, we compare the performance of the HS-GHS prior to other multivariate normal regression methods
that estimate both the regression coefficients and the precision matrix. We consider two cases, both with p > n. The first
case has p = 200 and q = 25, and the second case has p = 120 and q = 50, and n = 100 in both cases. We generate
sparse p × q coefficient matrix B for each simulation setting, where 5% of the elements in B are nonzero. The nonzero
lements in B follow a uniform distribution in (−2,−0.5)

⋃
(0.5, 2). The precision matrix Ω is taken to be sparse with

iagonal elements set to one and one of the following two patterns for off-diagonal elements:
1. AR1. The precision matrix has an AR1 structure, with ωk,ℓ = 0.45 for |k − ℓ| = 1 and zero otherwise for k ̸= ℓ.
2. Cliques. The rows/columns are partitioned into disjoint groups and ωkℓ:k,ℓ∈G, k̸=ℓ are set to 0.75. When q = 25, we

onsider eight groups and three members within each group. When q = 50, the precision matrix contains 16 groups
nd each group has three members. It is important to note although these settings are used for the simulation examples,
he proposed method allows arbitrary sparsity patterns in both B and Ω and is in no way dependent on these specific
ettings.
We generate n × p design matrix X with a Toeplitz covariance structure where Cov(Xi, Xj) = 0.7|i−j|, and n × q

rror matrix E ∼ MN(0, In, Ω−1). The n × q response matrix is set to be Y = XB + E. For each simulation setting, 50
ata sets are generated, and B and Ω are estimated by HS-GHS, MRCE [27], CAPME [9] and the joint high-dimensional
ayesian variable and covariance selection (BM13) [6]. The proposed HS-GHS estimator is implemented in MATLAB. The
ATLAB code by Bhadra and Mallick [6] is used for BM13, and R packages ‘MRCE’ and ‘capme’ are used for MRCE and
APME respectively. Mean squared estimation errors of the regression coefficients and the precision matrix; prediction
ean squared error; average Kullback–Leibler divergence; and sensitivity (TP/(TP+FN)), specificity (TN/(TN+FP)), and
recision (TP/(TP+FP)) in variable selection are reported. Here, TP, FP, TN and FN denote true positives, false positives,
rue negatives and false negatives, respectively. Variable selection for HS-GHS is performed using the middle 75% posterior
redible interval. Following Bhadra and Mallick [6], variables with posterior probability of inclusion larger than 0.5 are
onsidered to be selected by BM13. In case the choices of these thresholds appear somewhat arbitrary, we also present
eceiver operating characteristic (ROC) curves for all methods to compare their overall variable selection performances
s the decision threshold is varied between the two extremities, i.e., where all variables are selected and where none are
elected.
Results are reported in Tables 1 and 2, along with CPU times for all methods. It is evident that the HS-GHS has the

est overall statistical performance. Except for the mean squared error of Ω when p = 200, the HS-GHS has the best
stimation, prediction, information divergence and variable selection performances in our simulations. Although the HS-
HS does not have the highest sensitivity in recovering the support of B or Ω in some cases, it has very high levels of
pecificity and precision. In other words, while the HS-GHS may miss some true signals, it finds far fewer false positives,
o that a larger proportion of true positives exists in HS-GHS findings. This property of higher precision in identifying
ignals is an attractive feature in genomic applications.
In terms of the other methods, BM13 sometimes gives Ω estimate with the lowest mean squared error, but its estimate

f B has higher errors, and its sensitivity for recovering the support of Ω is low. MRCE estimation of B is poor in higher
imensions, while CAPME has low mean squared errors in estimating both B and Ω . Both MRCE and CAPME are not stable
n support recovery of Ω . They either tend to select every element as a positive, giving high sensitivity and low specificity,
r select every element as a negative, giving zero sensitivity and high specificity.
Fig. 1 shows the ROC curves for both B and Ω , when p = 120 and q = 50. True and false positive rates are generated

y varying the width of posterior credible intervals from 0% to 100% in HS-GHS, and varying the posterior inclusion
robability from 0% to 100% in BM13. In MRCE and CAPME, variables are selected by thresholding the estimated B
nd Ω . For each estimated βj and ωkℓ, the element is considered to be a positive if its absolute value is larger than
threshold, and the threshold is varied to generate a series of variable selection results. In all four plots, the HS-GHS
urves closely follow the line where the true positive rate equals one, suggesting that the credible intervals for the
rue nonzero parameters do not include zero. These results are consistent with the theoretical findings that horseshoe
redible intervals have optimal size [25]. CAPME has the second best performance in variable selection, except when
t does not generate valid ROC plots. For example, in the cliques structured precision matrix estimated by CAPME, all
ff-diagonal elements are estimated to be zero, so CAPME cannot generate an ROC curve in this case. Moreover, neither
RCE nor BM13 produces satisfactory ROC curves. MCMC convergence diagnostics of the HS-GHS sampler are presented

n Supplementary Section S.1. Further simulation results complementing the results in this section are in Supplementary
6
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able 1
ean squared error (sd) in estimation and prediction, average Kullback–Leibler divergence, and sensitivity, specificity and precision of variable
election performance, over 50 simulated data sets, p = 200 and q = 25. The regression coefficients and precision matrix are estimated by HS-GHS,
joint high-dimensional Bayesian variable and covariance selection (BM13), MRCE, and CAPME. The best performer in each column is shown in bold

Simulation 1: p = 200, q = 25, n = 100, Uniform coefficients, AR1 structure

MSE Divergence B support recovery Ω support recovery CPU time

Method B Ω Prediction avg KL SEN SPE PRC SEN SPE PRC min.

HS-GHS 0.0033 0.0365 2.6352 10.2075 .9380 .9981 .9621 .9658 .9973 .9700 788.75
(0.0005) (0.0123) (0.1792) (1.2853) (.0155) (.0006) (.0122) (.0383) (.0039) (.0418)

BM13 0.0560 0.0301 8.4230 14.8512 – – – .0200 .9986 .5588a 54.80
(0.0006) (0.0005) (0.4276) (0.3441) – – – (.0242) (.0019) (.4567)

MRCE 0.0854 0.0476 19.4201 29.9000 .0208 .9996 .8074 .9425 .0907 .0828 0.28
(0.0007) (0.0006) (0.8754) (0.3824) (.0083) (.0004) (.1751) (.0733) (.0724) (.0028)

CAPME 0.0156 0.0417 4.0337 12.1094 .9445 .8187 .2167 0 1 –b 74.60
(0.0014) (0.0010) (0.2749) (0.4189) (.0130) (.0201) (.0182) (0) (0) –

Simulation 2: p = 200, q = 25, n = 100, Uniform coefficients, Cliques structure

MSE Divergence B support recovery Ω support recovery CPU time

Method B Ω Prediction avg KL SEN SPE PRC SEN SPE PRC min.

HS-GHS 0.0058 0.0371 3.5388 9.0762 .8696 .9985 .9693 .9700 .9972 .9687 788.31
(0.0010) (0.0253) (0.1791) (1.3446) (.0204) (.0008) (.0159) (.0430) (.0030) (.0331)

BM13 0.0570 0.0595 9.2452 14.3267 – – – .0204 .9993 .7500c 54.79
(0.0006) (0.0006) (0.4789) (0.4324) – – – (.0242) (.0014) (.3808)

MRCE 0.0861 0.0756 20.1694 27.3668 .0116 .9999 .9370 .9507 .0788 .0825 0.16
(0.0005) (0.0006) (0.9440) (0.2892) (.0057) (.0001) (.1121) (.0581) (.0596) (.0041)

CAPME 0.0188 0.0718 5.0170 11.2598 .9266 .8270 .2218 0 1 –d 73.67
(0.0016) (0.0007) (0.2930) (0.3797) (.0155) (.0215) (.0198) (0) (0) –

a16 NaNs in 50 replicates.
b50 NaNs. All mean and sd. calculated on non-NaN values.
c23 NaNs in 50 replicates.
d50 NaNs. All mean and sd. calculated on non-NaN values.

Table 2
Mean squared error (sd) in estimation and prediction, average Kullback–Leibler divergence, and sensitivity, specificity and precision of variable
selection performance, over 50 simulated data sets, p = 120 and q = 50. The regression coefficients and precision matrix are estimated by HS-GHS,
joint high-dimensional Bayesian variable and covariance selection (BM13), MRCE, and CAPME. The best performer in each column is shown in bold

Simulation 3: p = 120, q = 50, n = 100, Uniform coefficients, AR1 structure

MSE Divergence B support recovery Ω support recovery CPU time

Method B Ω Prediction avg KL SEN SPE PRC SEN SPE PRC min.

HS-GHS 0.0022 0.0041 2.4495 8.0596 .9709 .9984 .9696 .9873 .9995 .9875 2.57e+03
(0.0002) (0.0009) (0.1055) (0.6494) (.0087) (.0007) (.0120) (.0136) (.0007) (.0156)

BM13 0.0493 0.0132 5.1923 25.1810 – – – .2804 .9976 .8295 217.24
(0.0006) (0.0006) (0.2091) (0.7590) – – – (.0603) (.0015) (.1058)

MRCE 0.0689 0.0150 10.5162 40.3985 .2774 .9897 .5895 .9755 .1218 .0442 10.34
(0.0022) (0.0004) (0.5920) (0.8349) (.0281) (.0023) (.0431) (.0189) (.0116) (.0009)

CAPME 0.0151 0.0105 3.2662 14.6163 .9462 .8887 .3122 .9514 .9795 .6705a 80.69
(0.0015) (0.0013) (0.1501) (0.9668) (.0131) (.0184) (.0280) (.1390) (.0093) (.0782)

Simulation 4: p = 120, q = 50, n = 100, Uniform coefficients, Cliques structure

MSE Divergence B support recovery Ω support recovery CPU time

Method B Ω Prediction avg KL SEN SPE PRC SEN SPE PRC min.

HS-GHS 0.0032 0.0052 3.0221 7.8564 .9409 .9986 .9717 .9992 .9990 .9776 2.57e+03
(0.0004) (0.0028) (0.0983) (0.8065) (.0131) (.0006) (.0121) (.0059) (.0013) (.0284)

BM13 0.0506 0.0290 5.8167 24.0404 – – – .0904 .9993 .8414 216.83
(0.0007) (0.0005) (0.2225) (0.6104) – – – (.0359) (.0007) (.1497)

MRCE 0.0774 0.0298 12.0456 41.3306 .1527 .9971 .7398 .9679 .0940 .0419 8.06
(0.0014) (0.0010) (0.6366) (0.7870) (.0192) (.0009) (.0625) (.0684) (.0780) (.0020)

CAPME 0.0161 0.0331 3.8324 16.9539 .9537 .8373 .2384 0 1 –b 81.99
(0.0013) (0.0004) (0.1421) (0.4293) (.0122) (.0234) (.0251) (0) (0) –

a1 NaN in 50 replicates.
b50 NaNs. Mean and sd. calculated on non-NaN values.
7
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Fig. 1. Receiver operating characteristic (ROC) curves of estimates by HS-GHS, joint high-dimensional Bayesian variable and covariance selection
(BM13), MRCE and CAPME for p = 120 and q = 50. The true positive rates are shown on the y-axis, and the false positive rates are shown on the
x-axis.

Section S.2. Specifically, Section S.2.1 provides performance comparisons with the method of Deshpande et al. [17] for
the settings of Tables 1 and 2, demonstrating superior performance for HS-GHS for most settings; Sections S.2.2 and
.2.3 provide evidence that simultaneous mean and covariance estimation indeed results in improved prediction and
stimation performances compared to q separate regressions; and Section S.2.4 complements the results in Tables 1 and
by considering additional simulation settings.

. Yeast eQTL data analysis

We illustrate the HS-GHS method using the yeast eQTL data analyzed by Brem and Kruglyak [8]. The data set contains
enome-wide profiling of expression levels and genotypes for 112 yeast segregants from a cross between BY4716
nd RM11-1a strains of Saccharomyces Cerevisiae. This data set is available in the R package trigger (https://www.
ioconductor.org/packages/release/bioc/html/trigger.html). The original data set contains expression values of 6216 genes
ssayed on each array, and genotypes at 3244 marker positions. Due to the small sample size, we only consider 54 genes
8
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Table 3
Percentage of model explained variation in prediction of gene expressions. Model coefficients are estimated in training
set (n = 88) and prediction performance is evaluated in testing set (n = 22).
Gene CAPME MRCE HS-GHS Gene CAPME MRCE HS-GHS

FUS3 15.46 0.00 2.12 TEC1 23.08 0.00 26.27
FUS1 31.78 0.00 17.60 SSK22 21.24 0.00 59.57
STE2 43.78 0.00 79.76 MF(ALPHA)2 23.64 0.00 48.27
GPA1 19.50 0.00 1.38 FAR1 30.66 0.00 1.47
STE3 36.19 0.00 76.45 MF(ALPHA)1 39.37 0.00 80.93
BEM1 0.00 0.00 16.68 STE5 0.00 4.90 19.60
KSS1 2.80 0.00 21.76 SLN1 4.38 0.00 10.41
STE18 0.00 0.00 24.88 MLP1 0.00 0.00 10.19
HOG1 0.00 0.00 19.28 FKS1 0.00 0.00 32.09
MCM1 0.00 0.00 29.96 WSC3 0.00 0.00 10.20
SLG1 0.00 8.98 10.27 RHO1 0.00 0.00 10.57

in the yeast mitogen-activated protein kinase (MAPK) signaling pathway in our analysis. This pathway was provided by
the Kyoto Encyclopedia of Genes and Genomes database [19], and was also analyzed by Yin and Li [30] and Cai et al. [9].

Following the method described in Curtis et al. [13], we divide the genome into 316 groups based on linkage
isequilibrium between the markers, and select the marker with the largest variation within each group. Then, we apply
imple screening, and find 172 markers that are marginally associated with at least one of the 54 genes with a p-value less
han or equal to 0.01. We use these 172 markers as predictors and run a lasso regression on each of the 54 genes. Residuals
re used to assess the normality assumption. Based on qq-plots and normality tests, we drop five genes and two yeast
egregants. Marginal qq-plots of residuals and other assessments of normality assumption are provided in Supplementary
ection S.3. The final data set we use in our analysis contains 49 genes in the MAPK pathway and 172 markers in 110
east segregants.
We divide the 110 yeast segregants into a training set containing 88 segregants, and a testing set containing 22

egregants. Coefficients of markers are estimated by HS-GHS, MRCE and CAPME using the training set, and the precision
atrix of gene expressions are estimated as well. Prediction performance is measured over the testing set for each gene
xpression. Tuning parameters in MRCE and CAPME are selected by five-fold cross validation. Variable selection in HS-
HS are made by 75% posterior credible interval. Prediction and estimation results are summarized in Tables 3 and 4,
espectively.

Out of 8428 regression coefficients, CAPME estimates 182 nonzero coefficients, MRCE estimates 11 nonzero coefficients,
nd HS-GHS estimates 15 nonzero coefficients. Prediction performance differs across these methods as well. For each gene
xpression, we use R-square in the testing set, defined as (1−residual sum of squares/total sum of squares), to evaluate
rediction. Many of the gene expressions cannot be predicted by any of the markers. Consequently, we only consider gene
xpressions that have R-square larger than 0.1 in any of these three models. Among 22 such gene expressions, CAPME
as the highest R-square among the three methods in 4 gene expressions, and HS-GHS has the highest R-square in 18
ene expressions. Average prediction R-square values in these 22 genes by CAPME, MRCE and HS-GHS are 0.1327, 0.0063,
.2771, respectively.
We also examine the 15 nonzero coefficients estimated by the HS-GHS. CAPME estimates eight of these 15 coefficients

o be nonzero, and CAPME estimates have smaller absolute magnitudes than the HS-GHS estimates. In HS-GHS estimates,
he genes SWI4 and SSK2 are associated with three markers each, and FUS1 is associated with two markers. The remaining
ene expressions are associated with zero or one marker. One marker on chromosome 3, location 201166 is associated
ith four gene expressions (SWI4, SHO1, BCK1, SSK2), and it has the largest effect sizes among HS-GHS and CAPME
stimated coefficients. This location is also identified as an eQTL hot spot by Zhu et al. [33]. In addition, a marker on
hromosome 5 and a marker on chromosome 14 in HS-GHS nonzero estimates also correspond to two other eQTL hot
pots given by Zhu et al. [33]. All of these nonzero estimates correspond to expressions mapped far from the location
f their gene of origin, and can be considered distant eQTLs. This highlights the need for a model to simultaneously
ccommodate expressions and markers on different genomic locations, rather than separate chromosome-specific eQTL
nalysis.
Out of the 1176 possible pairs among 49 genes, CAPME, MRCE, and HS-GHS estimate 702, 6, and 88 pairs to have

onzero partial covariance, respectively. We only present the HS-GHS estimated graph in Fig. 2, while CAPME and MRCE
esults are in Supplementary Section S.4. Vertex colors in the graph indicate functions of genes. A current understanding
f how yeast genes in the MAPK pathway respond to environmental stress and cellular signals, along with the functions
f these genes, is available [12]. Fig. 2 recovers some known structures in the MAPK pathway. For instance, STE4, STE18,
PA1, STE20, CDC42, DIG1, BEM1, FUS1, STE2, STE3 and MSG5 are involved in the yeast mating process, and they are
inked in the HS-GHS estimate. SLT2, SWI3, RHO1, RLM1 and MLP1 involved in the cell wall remodeling process, and
PD1, CTT1, GLO1 and SSK1 involved in the osmolyte synthesis process are also linked. It is also known that the high-
smolarity glycerol (HOG) and cell wall integrity (CWI) signaling pathways interact in yeast [26], and some genes in the
OG pathway are indeed connected to genes in the CWI pathway in the HS-GHS estimate.
9
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Table 4
Nonzero coefficients in HS-GHS estimate, along with names and locations of the genes, locations of the markers, and
CAPME estimated coefficients.
Gene Chromosome Within-chr. Marker chr. Within-chr. HS-GHS CAPME

position marker position coefficients coefficients

FUS3 2 192454–193515 2 424330 0.32 0.06
BEM1 2 620867–622522 8 71742 −0.35 0.00
FUS1 3 71803–73341 4 17718 0.13 0.00
FUS1 3 71803–73341 4 527445 −0.42 −0.13
SWI4 5 382591–385872 13 361370 −0.88 0.00
SWI4 5 382591–385872 5 458085 −0.69 0.00
SWI4 5 382591–385872 3 201166 3.65 2.00
SHO1 5 397948–399051 3 201166 −1.89 −0.91
BCK1 10 247250–251686 3 201166 −4.11 −2.66
MID2 12 790676–791806 13 314816 0.29 0.06
STE11 12 849865–852018 5 109310 0.13 0.00
MFA2 14 352416–352532 14 449639 0.13 0.00a

SSK2 14 680696–685435 5 395442 0.98 0.00
SSK2 14 680696–685435 13 403766 0.68 0.08
SSK2 14 680696–685435 3 201166 −3.60 −2.05

aMRCE estimate for this coefficient is 0.05 and MRCE estimates for all other coefficients in this table are 0. Thus, MRCE
results are not separately presented.

Fig. 2. The inferred graph for gene expressions in the MAPK pathway by the HS-GHS estimate. Vertex colors indicate functions of genes. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

7. Conclusions

The horseshoe estimator has been shown to possess many attractive theoretical properties in sparse high-dimensional
egressions. In this paper, we propose the HS-GHS estimator that generates sparse estimates of the regression coefficients
nd the error inverse covariance simultaneously in multiple predictors–multiple responses regressions. The proposed
ethod allows arbitrary sparsity patterns in both B and Ω (as opposed to, say, methods based on decomposable graphs)

and the number of unknown parameters inferred is pq + q(q + 1)/2, which is indeed much larger than n in all our
xamples. This fact needs to be accounted for before a naïve comparison of the scalability of SUR approaches with marginal
orrelation based methods for separate regression analysis. With q = 1, the latter approaches may scale to larger values
10
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f p, but cannot utilize the error correlation structure as the SUR models do, consequently resulting in less statistically
fficient estimates. HS-GHS also recovers the support of the regression coefficients and inverse covariance with higher
recision compared to other SUR model based approaches, such as MRCE, CAPME and BM13 and outperforms these
lternatives in terms of both estimation and prediction.
Computationally, the proposed sampler is the first in an SUR setting with a complexity linear in p. A major advantage of

our method is samples are available from the full posterior, thereby allowing straightforward uncertainty quantification.
If posterior draws are not required, it is possible to develop faster point estimation algorithms. Prominent among these
possibilities is an iterated conditional modes (ICM) algorithm [3] to obtain the maximum pseudo posterior estimate. At
each iteration, ICM maximizes the full conditional posteriors of all variables and converges to a deterministic solution.
Since the full conditionals in the HS-GHS model are either normal, gamma or inverse gamma, the conditional modes are
unique, and ICM should be easy to implement. It is also possible to include domain knowledge in designing the priors,
such as pathway information for the genomic application, by coupling the local shrinkage parameters a priori. This article
focuses on the horseshoe prior, which is a member of a broader class of global–local priors, sharing a sharp peak at zero
and heavy tails. Performance of other priors belonging to this family, such as the horseshoe+ [5], should also be explored.
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Appendix A. Derivation of Algorithm 1

• Step 2: Since ỹ ∼ Nnq(X̃β, Inq) and the prior on β is horseshoe, the full conditional posterior of β is N((X̃⊤X̃ +

Λ−1
∗

)−1X̃⊤ỹ, (X̃⊤X̃ + Λ−1
∗

)−1), where Λ∗ = diag(λ2
j τ

2), j ∈ {1, . . . , pq}. Sampling of β is exactly the problem solved
by Bhattacharya et al. [7]. Realizing that β has length pq, ỹ has length nq, and substituting X̃ , ỹ, Λ∗ and β into Steps
1 to 4 in Algorithm 1 in Bhattacharya et al. [7], yield Steps (2a)–(2d).

• Steps 3–4: These steps concern sampling of the shrinkage parameters λj for j ∈ {1, . . . , pq}, and τ . Both have
half Cauchy priors, which can be written as a mixture of two inverse gamma random variables. Specifically, if
x2 | a ∼ InvGamma(1/2, 1/a) and a ∼ InvGamma(1/2, 1), then Makalic and Schmidt [22] demonstrated that
marginally x ∼ C+(0, 1). Since an inverse gamma prior is conjugate to itself and to the variance parameter in a
normal model, the full conditional posteriors of λ2

j , τ
2 and the corresponding auxiliary variables νj and ξ are all

inverse gamma random variables. This completes Steps 3 and 4 in our Algorithm 1.
• Steps 6–8: Given B, if one defines Yres = Y −XB, then sampling of Ω is the problem of sampling the precision matrix

in a zero-mean multivariate normal model. Thus, Steps (6a)–(8) in Algorithm 1 follows the sampling scheme of the
graphical horseshoe model for sample size n, number of features q, and scatter matrix S = Y⊤

resYres. Details for these
steps can be found in Algorithm 1 of Li et al. [21].

ppendix B. Proof of Theorem 4.2

Let Aϵ = {{B, Ω} :
1
nDn(pB0,Ω0∥pB,Ω ) ≤ ϵ}. We claim that Aϵ ⊂ Rp×q

×Rq×q is bounded by an Euclidean cube of pq+ q2

dimensions with (βj0 − k1ϵ1/4/pq1/2, βj0 + k1ϵ1/4/pq1/2), and (ωkℓ0 − k2ϵ1/2/q, ωkℓ0 + k2ϵ1/2/q) on each dimension. The
proof is as following.

Let B = B0 + (ϵ1/4/pq1/2)1p×q, Ω = Ω0 + (ϵ1/2/q)1q×q, where 1m×n denotes a m × n matrix with all elements equal to
. Then,

Dn(pB0,Ω0∥pB,Ω ) =
n
2
{log |Ω−1Ω0| + tr(ΩΩ−1

0 ) − q} +
1
2
vec(XB − XB0)⊤(Ω ⊗ In)vec(XB − XB0)

:=I + II.

By the proof of Theorem 3.2 in Li et al. [21], I ∝ nϵ when ϵ → 0. We will show that II ∝ nϵ as well. The expression for II
is simplified as,

II =
1
2
vec(XB − XB0)⊤(Ω ⊗ In)vec(XB − XB0) =

1
2

ϵ1/4

pq1/2
vec(X1p×q)⊤

{(
Ω0 +

ϵ1/2

q
1q×q

)
⊗ In

}
ϵ1/4

pq1/2
vec(X1p×q)

=
1 ϵ1/2

2 vec(X1p×q)⊤
{
Ω0 ⊗ In +

(
ϵ1/2

1q×q

)
⊗ In

}
vec(X1p×q).
2 p q q

11
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ome algebra shows that vec(X1p×q)⊤(Ω0 ⊗ In)vec(X1p×q) =

∑
k,ℓ ωkℓ0

∑
i(Xi1 + · · · + Xip)2, and vec(X1p×q)⊤(1q×q ⊗

n)vec(X1p×q) = q2
∑

i(Xi1 + · · · + Xip)2. Therefore,

II =
1
2

ϵ1/2

p2q

{∑
k,ℓ

ωkℓ0

∑
i

(Xi1 + · · · + Xip)2 +
ϵ1/2

q
q2

∑
i

(Xi1 + · · · + Xip)2
}

=
1
2

ϵ1/2

p2q
(c1np2q + c2ϵ1/2np2q) =

1
2
(c1nϵ1/2

+ c2nϵ).

Combining I and II, 1
nDn(pB0,Ω0∥pB,Ω ) ∝ ϵ when ϵ → 0. We have proved that Aϵ is bounded by cubes of pq+q2 dimensions

described above. Now that we find cubes that bound Aϵ , we will bound ν(Aϵ) by the product of prior measures on each
dimension of these cubes. For any prior measure with density p(βj) that is continuous, bounded above, and strictly positive

on a neighborhood of the true βj0, one has
∫ βj0+ϵ1/4/(pq1/2)

βj0−ϵ1/4/(pq1/2)
p(βj)dβj ∝ ϵ1/4/(pq1/2), since the density is bounded above.

Similarly,
∫ ωkℓ0+ϵ1/2/q

ωkℓ0−ϵ1/2/q p(ωkℓ)dωkℓ ∝ ϵ1/2/q, for any prior density p(ωkℓ) satisfying the conditions. Taking ϵ = 1/n, this gives
log ν(A1/n) in Part(1) of Theorem 4.2. The horseshoe prior also satisfies conditions in (1) in dimensions where βj0 ̸= 0 and
ωkℓ0 ̸= 0, so the same measures hold for HS-GHS in nonzero dimensions.

Now we need prior measure of horseshoe prior on dimensions where βj0 = 0 and ωkℓ0 = 0. Using bounds of
horseshoe prior provided in Carvalho et al. [11], it has been established by Li et al. [21] that

∫ ϵ1/2/q
0 p(ωkℓ)dωkℓ >

c3log(ϵ−1/2q)/(ϵ−1/2q). Similar calculations show that
∫ ϵ1/4pq1/2

0 p(βj)dβj > c4log(ϵ−1/4pq1/2)/(ϵ−1/4pq1/2). Taking ϵ = 1/n,
this gives Part (2) of the theorem and completes the proof.

Appendix C. Supplementary material

The supplementary material contains MCMC diagnostics and additional simulation results, referenced in Section 5 and
additional data analysis results, referenced in Section 6. Computer code is provided in a .zip archive to reproduce the
simulation results in Section 5.

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2020.104716.
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