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Abstract—In large-scale distributed storage systems, erasure
codes are used to achieve fault tolerance in the face of node
failures. Tuning code redundancy to observed failure rates has
been shown to significantly reduce storage cost. Such tuning of
redundancy requires code conversion, i.e., a change in code dimen-
sion and length on already encoded data. Convertible codes [2]
are a new class of codes designed to perform such conversions
efficiently. The access cost of conversion is the number of nodes
accessed during conversion.

Existing literature has characterized the access cost of conver-
sion of linear MDS convertible codes only for a specific and
small subset of parameters. In this paper, we present lower
bounds on the access cost of conversion of linear MDS codes
for all valid parameters. Furthermore, we show that these lower
bounds are tight by presenting an explicit construction for access-
optimal linear MDS convertible codes for all valid parameters. En
route, we show that, one of the degrees-of-freedom in the design
of convertible codes that was inconsequential in the previously
studied parameter regimes, turns out to be crucial when going
beyond these regimes and adds to the challenge in the analysis
and code construction.

An extended version of this paper is accessible at: [1]

I. INTRODUCTION

Erasure codes are an essential tool for providing resilience
against node failures in a distributed storage system [3]–[9].
When using an [n, k] erasure code, k chunks of data are
encoded into n chunks, called a stripe. These chunks are then
distributed among n different “nodes” in the system, where
nodes correspond to distinct storage devices typically residing
on distinct servers. For the purposes of theoretical study, each
stripe can be viewed as a codeword, by viewing each of the
n chunks as one of the n codeword symbols. The parameters
n and k are usually chosen based on node failure rate, which
might vary over time. Redundancy tuning, i.e., changing n
and k in response to fluctuations in the failure rate of storage
devices can achieve significant savings (11% to 44%) in storage
space [10]. Due to practical system constraints, changing n
alone is typically insufficient and both n and k have to be
changed simultaneously [10]. The resource cost of changing
n and k on already encoded data can be prohibitively high
and is a key barrier in the practical adoption of redundancy
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tuning [2]. Other reasons to change n and k on already encoded
data might include variations in data popularity, failure rate
uncertainty, or restrictions on the total amount of used storage.

The code conversion problem defined in [2] involves convert-
ing multiple stripes of an [nI , kI ] code (denoted by CI ) into
(potentially multiple) stripes of an [nF , kF ] code (denoted by
CF ), along with desired constraints on decodability such as both
codes being Maximum Distance Separable (MDS). Considering
multiple stripes enables code conversions to allow for changes
in the code dimension (from kI to kF ). Convertible codes [2]
are code pairs that enable code conversion, usually designed
to minimize the cost of conversion. A detailed description of
the convertible codes framework is provided in Section II-A.

There are several ways in which one might measure the
cost of conversion. We focus on the access cost of conversion,
which is measured in terms of the total number of nodes that
need to be accessed during conversion. In [2], the authors
focus on the so-called merge regime, wherein multiple initial
stripes are merged into one. Specifically, they consider the case
where kF = ςkI for some integer ς ≥ 2, and propose explicit
constructions for converible codes that achieve optimal access
cost for the merge regime. We review these results for the
merge regime in Section II-B.

The results presented in this work are two fold. (1) We
present lower bounds on the access cost of conversion for
linear MDS codes for all valid parameters, that is, all
nI , kI , nF , kF ∈ N+ such that nI > kI and nF > kF . (2) We
show that the proposed lower bounds are tight by presenting
an explicit construction of linear MDS convertible codes that
is access optimal for all parameter regimes. To achieve this,
we first define and study the split regime in Section III, where
kI = ςkF for an integer ς ≥ 2, that is, a single initial stripe
is split into multiple final stripes. We prove a (tight) lower
bound on the access cost of conversion in the split regime,
and describe a conversion procedure which has optimal access
cost when used with any systematic MDS code. We then
present in Section IV a tight lower bound on the access cost
of conversion for linear MDS convertible codes for all valid
parameters (termed general regime) by reducing conversion
in the general regime to a combination of generalizations of
conversions in the split and merge regimes. While the split and
the merge regimes might seem somewhat restrictive, we show
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that, perhaps surprisingly, the proposed conversion procedure
for the general regime that builds on top of the generalized
split and merge regime is optimal. Interestingly, one of the
degrees-of-freedom in the design of convertible codes (called
“partitions” described subsequently in Section II-A), which is
inconsequential in the split and merge regimes, turns out to
be crucial in the general regime. The proposed construction
for access-optimal convertible codes for the general regime
builds on the constructions for split and merge regimes, while
separately optimizing along this additional degree-of-freedom.

II. BACKGROUND AND RELATED WORK

A. Convertible codes [2]

A conversion from an [nI , kI ] initial code CI to an [nF , kF ]
final code CF is a procedure that takes as input a set of initial
stripes from CI and outputs a set of final stripes from CF , such
that the final stripes together encode the same information as
the initial stripes. To avoid degeneracy, nF > kF and nI > kI

is assumed. Let Fq be a finite field, and consider a message
m ∈ FMq , where M = lcm(kI , kF ). The number of initial
stripes is λI = M/kI and the number of final stripes is λF =
M/kF . Let [n] = {1, . . . , n}, rI = nI −kI and rF = nF −kF .
Let m[S] denote the projection of m onto the coordinates in
the set S, and let C(m) denote the encoding of m under code
C. Consider an initial partition PI = {P I1 , . . . , P IλI} of [M ]
such that |P Ii | = kI (∀i ∈ [λI ]), and a final partition PF =
{PF1 , . . . , PFλF } of [M ] such that |PFj | = kF (∀j ∈ [λF ]).

Definition 1 (Convertible code [2]): An (nI , kI ;nF , kF )
convertible code over Fq is defined by: (1) a pair of codes
(CI , CF ) over Fq such that CI is [nI , kI ] and CF is [nF , kF ]; (2)
a pair of partitions (PI ,PF ) of [M = lcm(kI , kF )] such that
|P Ii | = kI for all P Ii ∈ PI and |PFj | = kF for all PFj ∈ PF ;
and (3) a conversion procedure which, for any m ∈ FMq ,
takes the set of initial codewords {CI(m[P Ii ]) | P Ii ∈ PI} as
input, and outputs the corresponding set of final codewords
{CF (m[PFj ]) | PFj ∈ PF }.
In this paper, we will restrict our focus to the case where CI
and CF are both linear and MDS.

The access cost of a conversion procedure is the total number
of nodes that are read or written during conversion. Recall
that each node in a stripe corresponds to a single symbol
from the corresponding codeword, therefore access cost is
equivalent to the number of codeword symbols that are read
or written during conversion. We distinguish three types of
nodes during conversion: unchanged nodes, which remain as
is during the conversion process, and are present in both the
initial and final configuration (possibly in different stripes);
retired nodes, which are present in the initial configuration and
throughout the conversion, but not in the final configuration;
and new nodes, which are introduced during conversion, and
are present in the final configuration, but not in the initial
configuration. Unchanged and retired nodes may be accessed for
reading during conversion, and new nodes are always accessed
for writing during the conversion. A convertible code that
maximizes the number of unchanged nodes is said to be stable.

The read access set of an (nI , kI ;nF , kF ) convertible code
is a set of tuples D ⊆ [λI ]×[nI ], where (i, j) ∈ D corresponds
to the j-th node in initial stripe i. After a conversion, each
new node holds a fixed linear combination of the contents of
the nodes indexed by D. We denote the accessed nodes from
initial stripe i as Di = {j | (i, j) ∈ D}. Thus, the access cost
of a conversion with read access set of size d = |D| and m
new nodes is d+m. Clearly, there always exists a conversion
procedure with read access cost M , which reconstructs the
original message m and re-encodes according to CF . We refer
to this procedure as the default approach.

An (nI , kI ;nF , kF ) convertible code is access-optimal if
and only if it achieves the minimum access cost over all (nI ,
kI ;nF , kF ) convertible codes.

B. Merge regime [2]

The merge regime is the subset of valid parameter values
for convertible codes where kF = ςkI , for some integer ς ≥ 2.
Thus, in this regime we have λI = ς and λF = 1. This regime
was the focus of [2], wherein the following lower bound on
access cost was shown.

Theorem 1 ([2]): For all linear MDS (nI , kI ;nF , kF )
convertible code, the access cost of conversion is at least
rF + ςmin{kI , rF }. Furthermore, if rI < rF , the access cost
of conversion is at least rF + ςkI .
An explicit construction for access-optimal convertible codes
for all values in the merge regime was also provided in [2].

C. Related work

The closest related work [2] proposes the convertible codes
framework considered in this work (discussed at length above).
Several other works in the literature [11]–[15] have considered
variants of the code conversion problem, largely within the
context of so-called “regenerating codes” [16]. The study on
regenerating codes, which are a class of codes that optimize
for recovery for a small subset of nodes within a stripe
(as opposed to decoding all original data), was initiated
by Dimakis et al. [16]. Subsequently numerous works have
studied and constructed optimal regenerating codes (e.g., [17]–
[31]). Specific instances of code conversion can be viewed
as instances of the repair problem, for example, increasing n
while keeping k fixed as studied in [11], [15].

D. Notation

This subsection introduces notation that generalizes the
notation used in [2] and is used throughout this paper. Let
G♦ = (g♦

1 · · ·g
♦
n♦) ∈ Fk♦×n♦

q be a generator matrix of MDS
code C♦ for ♦ ∈ {I, F}. An encoding vector in relation to
m ∈ FMq is associated to each node in the initial or final
stripes. The encoding vector g̃♦

i,j ∈ FMq of node j ∈ [n♦] in
stripe i ∈ [λ♦] with partition set P♦

i ∈ P♦ is defined such that
g̃♦
i,j [P

♦
i ] = g♦

j , and 0 everywhere outside of P♦
i .

Let S♦i = {g̃♦
i,j | j ∈ [n♦]} be the encoding vectors for a

particular stripe, and let S♦ =
⋃
i∈[λ♦] S

♦
i . Let U = SI ∩ SF

be the encoding vectors of unchanged nodes, and define Ui,j =
SIi ∩ SFj , where the index i or j is dropped if λI = 1 or
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λF = 1, respectively. Let Ai = {g̃Ii,j | j ∈ Di} be the
encoding vectors of nodes that are read from initial stripe i, and
define A = {g̃Ii,j | (i, j) ∈ D} as the set of all encoding vectors
of nodes that are read. Finally, let N = SF \SI be the encoding
vectors of new nodes, and define Ni = SFi \SI as the encoding
vectors of new nodes of a particular stripe i. Notice that it
must hold that N ⊆ span(A). For simplicity, we sometimes
refer to a node and its encoding vector interchangeably.

III. SPLIT REGIME

The split regime of convertible codes corresponds to the
case where a single initial stripe is split into multiple final
stripes. This regime is, in some sense, the opposite of the merge
regime, in which multiple initial stripes are combined into one
final stripe. Specifically, an (nI , kI ;nF , kF ) convertible code
is in the split regime if kI = ςkF for an integer ς ≥ 2, with
arbitrary nI and nF . Notice that in this regime we have that
M = lcm(kI , kF ) = kI and thus λI = 1 and λF = ς .

A. Access cost lower bound for the split regime

In this subsection, we lower bound the access cost of
conversion in the split regime. This is done by first showing a
lower bound on write access cost, and then showing a lower
bound on the read access cost of conversion.

The following fact simplifies the analysis of the split regime.
Proposition 2: For a linear MDS (nI , kI = ςkF ;nF , kF )

convertible code, all possible pairs of initial and final partitions
are equivalent (up to relabeling).

Proof: There is only one possible initial partition PI =
{[kI ]}, hence any two final partitions can be made equivalent
by relabeling nodes.
Therefore, we do not need to consider differences in partitions
in our analysis of the split regime.

Proposition 3: In a linear MDS (nI , kI = ςkF ;nF , kF )
convertible code, there are at most kF unchanged nodes in
each of the final stripes (i.e., at least rF new nodes per stripe).
Hence, there are at most kI unchanged nodes in total.

Proof: For any final stripe i ∈ [ς], any subset V ⊆ SFi
of size at least kF + 1 is linearly dependent due to the MDS
property. Thus, V ⊆ SI contradicts the fact that CI is MDS.
Hence, each final stripe i has at most kF unchanged nodes.

Therefore, the total write access cost in the split regime is
at least ςrF .

Now we focus on bounding the read access cost. We obtain
the following lower bound as a consequence of the MDS
property of the initial and final code.

Lemma 4: For all linear MDS (nI , kI = ςkF ;nF , kF )
convertible codes, the read access set D satisfies |D| ≥
(ς − 1)kF +min{rF , kF }.

Proof sketch: We consider a node u from a final stripe
that is neither read nor written during conversion and select
a subset of nodes W of size kF from the same final stripe
containing rF new nodes and not containing u. (If such a
node u does not exist, then all final nodes are either read or
written and the result follows easily.) By the MDS property of
the final code, u can be recovered from W . However, by the

MDS property of the initial code and the rank of W one can
show that W cannot contain any information about u unless
|D| ≥ (ς − 1)kF +min{rF , kF }.

However, we next show that it is not possible to achieve
less read access cost than the default approach when rI < rF .

Lemma 5: For all linear MDS (nI , kI = ςkF ;nF , kF )
convertible codes, if rI < rF then the read access set D
satisfies |D| ≥ ςkF .

Proof sketch: We follow the same strategy as the proof of
Lemma 4. We consider an unaccessed node u, and select a set
W of size kF containing the most amount of accessed nodes
from the same final stripe and not containing u. If all nodes in
W are accessed, the results follows easily. Otherwise, we can
use the fact that rI < rF to limit the number of read-accessed
nodes in the initial stripe that are not part of W , and thus
prove the bound.

By combining all the results in this subsection, we obtain
the following lower bound on the access cost of conversion in
the split regime.

Theorem 6: The total access cost of any linear MDS (nI ,
kI = ςkF ;nF , kF ) convertible code is at least (ς − 1)kF +
min{rF , kF }+ ςrF if rI ≥ rF , and at least ςnF otherwise.

Proof: Follows from Proposition 3 and Lemmas 4–5.
As we show in the next subsection, this lower bound is tight

since it is achievable.

B. Access-optimal convertible codes for the split regime

In this subsection we present a construction of access-optimal
convertible codes in the split regime. Under this construction,
any systematic MDS code can be used as the initial code. The
final code corresponds to the projection of the initial code
onto the coordinates of any kF systematic nodes. Since our
construction can be applied to existing codes and only specifies
the conversion procedure, we introduce the following definition
capturing the property of codes that can be converted efficiently.

Definition 2: A code CI is (nF , kF )-optimally convertible
if and only if there exists an [nF , kF ] code CF (along with
partitions and conversion procedure) that form an access-
optimal (nI , kI ;nF , kF ) convertible code.
The conversion procedure that leads to optimal access cost
(meeting the lower bound in Theorem 6) is as follows.

Conversion procedure: All the systematic nodes are used as
unchanged nodes. When rI < rF or rF ≥ kF , the conversion
is trivial since one cannot do better than the default approach.
The conversion procedure for the nontrivial case proceeds
as follows. For all but one final stripe, all unchanged nodes
are read ((ς − 1)kF in total), and the new nodes are naively
constructed from them. For the remaining final stripe, rF retired
nodes are read, and then the unchanged nodes from the other
final stripes are used to remove their interference from the
retired nodes to obtain rF new nodes.

Theorem 7: Every systematic linear MDS [nI , kI = ςkF ]
code CI is (nF , kF )-optimally convertible.

Proof sketch: The generator matrix of the final code is
defined as the first kF rows of the initial code’s generator matrix.
As described in the conversion procedure above, conversion
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can be realized by accessing all systematic nodes except for
those corresponding to the first kF columns (which correspond
to the unchanged nodes of all but one initial stripe), along
with rF parity nodes (which correspond to the retired nodes).
Interference from all but one final stripe can be removed from
the rF parity nodes using the accessed systematic nodes.
Notice that convertible codes created using the construction
above are stable. We show this property is, in fact, necessary.

Lemma 8: All access-optimal convertible codes for the split
regime are stable.

Proof: Theorem 7 shows that there exist stable access-
optimal codes for the split regime. Since any unstable convert-
ible code must incur higher write access cost and at least as
much read access cost, it cannot be access-optimal.

IV. GENERAL REGIME

In this section, we will study the general regime of con-
vertible codes with arbitrary valid parameter values (i.e. any
nI > kI and nF > kF ). Recall that the choice of partition
functions was inconsequential in the split and merge regimes. In
contrast, it turns out that the choice of initial and final partitions
play an important role in the general regime. This makes the
general regime significantly harder to analyze. We deal with
this complexity by reducing conversion in the general regime
to generalized versions of the split and merge conversions, and
by identifying the conditions on initial and final partitions to
minimize total access cost.

In Section IV-A, we explore a generalization of the split
regime and of the merge regime. In Section IV-B, these
generalizations are used to lower bound the access cost of
conversion in the general regime. In Section IV-C, we describe
a conversion procedure and construction for access-optimal
conversion in the general regime which utilizes ideas from the
constructions for generalizations of split and merge regimes.

A. Generalized split and merge regimes

The generalized split and merge regimes are similar to the
split and merge regimes, except that the generalized variants
allow for initial or final stripes of unequal sizes. This flexibility
enables the generalized split and merge regimes to be used
as building blocks in the analysis of the general regime. In
these generalized variants, the message length M is defined to
be max{kI , kF } (which coincides with the definition of M in
the split and merge regime), but now the sets in the initial and
final partitions need not be all of the same size.

Since the initial (or final) stripes might be of different lengths,
we define them as shortenings of a common code C.

Definition 3: An s-shortening of an [n, k] code C is the code
C′ formed by all the codewords of C that have 0 in a fixed
subset of s positions.
It can be shown that the s-shortening of an MDS [n, k] code
is an MDS [n− s, k − s] code.

1) Generalized split regime: In the generalized split regime,
λI = 1 is fixed, λF > 1 is arbitrary, and the final parti-
tion PF = {PF1 , . . . , PFλF } is such that |PFi | = kFi and∑
i∈[λF ] k

F
i = kI . Let kF∗ = maxi∈[λF ] k

F
i . Then CF is a

[nF , kF∗ ] MDS code, and the code corresponding to each final
stripe is some fixed shortening of CF . In this case, we define
rF = nF − kF∗ .

Definition 4: A (nI , kI =
∑λF

i=1 k
F
i ;n

F , {kFi }λ
F

i=1) convert-
ible code for the generalized split regime is a variant of a
convertible code defined by (1) CI and CF as [nI , kI ] and
[nF , kF∗ ] codes, where kF∗ = maxi∈[λF ] k

F
i , (2) a partition

PF = {PF1 , . . . , PFλF } where |PFi | = kFi , and (3) a conversion
procedure such that each final stripe i, is an si-shortening of
CF where si = kF∗ − kFi .

The generalized split regime has an access cost lower bound
similar to the split regime presented in Section III. We show
this by showing that a more efficient conversion procedure for
the generalized split regime would imply the existence of a
conversion procedure for split regime violating Theorem 6.

Theorem 9: For all linear MDS (nI , kI =
∑λF

i=1 k
F
i ;n

F ,

{kFi }λ
F

i=1) convertible codes, the read access set D satisfies
|D| ≥ kI −max{kF∗ − rF , 0}, where kF∗ = maxi∈[λF ] k

F
i .

Proof sketch: Proof is via contradiction. Assume there is a
conversion procedure for a convertible code in the generalized
split regime with |D| < kI−max{kF∗ −rF , 0}. We modify the
code by adding extra “pseudo-nodes” so that every final stripe is
the same size. The conversion procedure is modified to access
all pseudo-nodes. The resulting code is in the split regime.
Since accessing pseudo-nodes does not add to the actual access
cost, we can invoke Theorem 6 to obtain a contradiction.

This lower bound is achievable for all pairs of initial and
final parameters. Similar to the case of the split regime, shown
in Section III-B, we can use any systematic MDS codes as
initial and final codes, and access all but a set of nodes of size
kF∗ (forming the largest final stripe) to perform this conversion.

2) Generalized merge regime: In the generalized merge
regime, the sets in the initial partition need not be all of the
same size. In this case, we fix M = kF and λF = 1, while
λI > 1 is arbitrary. The initial partition PI = {P I1 , . . . , P IλI}
is such that |P Ii | = kIi and

∑
i∈[λI ] k

I
i = kF . Let kI∗ =

maxi∈[λI ] k
I
i . Then CI is a [nI , kI∗] MDS code, rI = nI − kI∗ ,

and the code corresponding to each initial stripe is some fixed
shortening of CI .

Definition 5: A (nI , {kIi }λ
I

i=1;n
F , kF =

∑λI

i=1 k
I
i ) convert-

ible code for the generalized merge regime is a variant
of a convertible code defined by (1) CI , CF as [nI , kI∗]
and [nF , kF ] codes, where kI∗ = maxi∈[λI ] k

I
i (2) partition

PI = {P I1 , . . . , P IλI} where |P Ii | = kIi , and (3) a conversion
procedure such that each initial stripe i, is an si-shortening of
CI where si = kI∗ − kIi .

The next theorem gives a lower bound on the read access
cost of a (nI , {kIi }λ

I

i=1;n
F , kF =

∑λI

i=1 k
I
i ) convertible code.

Theorem 10: For all (nI , {kIi }λ
I

i=1;n
F , kF =

∑λI

i=1 k
I
i )

convertible code, |Di| ≥ min{kIi , rF } for all i ∈ [λI ].
Furthermore, if rI < rF , then |Di| ≥ kIi for all i ∈ [λI ].

Proof: Follows from the proofs of Lemmas 10, 11, and
13 in [2], with some straightforward modifications.

We can achieve this lower bound by shortening an access-
optimal (nI , kI∗;n

F
m, k

F
m) convertible code, where kFm = λIkI∗
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and nFm = kFm + rF .

B. Access cost lower bound for the general regime

In this subsection, we study the access cost lower bound for
conversions in the general regime (i.e., for all valid parameter
values, nI > kI and nF > kF ). As in the merge and split
regime, we show that when rI ≥ rF , significant reduction in
access cost can be achieved. However when rI < rF , one
cannot do better than the default approach.

For an (nI , kI ;nF , kF ) convertible code with kI 6= kF

and partitions (PI ,PF ), let ki,j = |P Ii ∩ PFj | for (i, j) ∈
[λI ]× [λF ] and let ki,∗ = maxj∈[λF ] ki,j .

Lemma 11: For all linear MDS (nI , kI ;nF , kF ) convertible
codes with kI 6= kF , |Di| ≥ kI −max{ki,∗ − rF , 0} for all
i ∈ [λI ]. Moreover, if rI < rF then |Di| ≥ kI for all i ∈ [λI ].

Proof sketch: If we consider only the nodes from a single
initial stripe, and set all other initial nodes to zero, we can
view conversion as a conversion in the generalized split regime
and use Theorem 9. If we consider only the nodes from a
single final stripe, and set all other final nodes to zero, we
can view conversion as a conversion in the generalized merge
regime and use Theorem 10.

We prove a lower bound on the total access cost of conversion
in the general regime by using Lemma 11 on all initial stripes
and finding a partition that minimizes the value of the sum.

Theorem 12: For every linear MDS (nI , kI ;nF , kF )
convertible code such that kI 6= kF , it holds that |D| ≥
λIrF + (λI mod λF )(kI − max{kF mod kI , rF }) if rF <
min{kI , kF }. Furthermore, if rI < rF or rF ≥ min{kI , kF },
then |D| ≥M .

Proof sketch: The case rI < rF follows directly
from Lemma 11. Otherwise, by the same lemma we have
|D| ≥

∑λI

i=1 k
I −max{ki,∗− rF , 0}. It can be shown that the

right hand side of this inequality is minimized when ki,∗ = kI

for 1 ≤ i ≤ λI − (λI mod λF ) and ki,∗ = kF mod kI

otherwise. Therefore, this yields a lower bound valid for any
valid assignment {ki,j | (i, j) ∈ [λI ] × [λF ]} and thus any
initial and final partitions. When these values are replaced back
into the inequality, we obtain the desired lower bound.

C. Access-optimal convertible codes for the general regime

In this subsection we prove that the lower bound from
Theorem 12 is achievable by presenting convertible code
constructions that are access-optimal in the general regime.
We first present the conversion procedure for our construction
and then describe the construction of the initial and final codes
that are compatible with this conversion procedure.

1) Conversion procedure: Conversion in the general regime
can be achieved by combining the conversion procedures of
codes in the generalized split and merge regimes. In the case
where rI < rF , we access kI nodes from each initial stripe
and use the default approach. For the case where rI ≥ rF , we
present the conversion procedure by considering three cases:
kI = kF , kI < kF , and kI > kF .
Case kI = kF : This is a degenerate case where any nF nodes
from the initial stripe can be kept unchanged.

split procedure merge procedure read node

Initial stripes Intermediate stripes Final stripes

Fig. 1. Conversion procedure from [6, 5] to [13, 12] (λI = 12 and λF = 5).
Read access cost is 18 compared to 60 in the default approach (70% savings).

Case kI < kF : We will separate the nodes of initial
stripes into λF disjoint groups with the same amount of
information. This requires splitting some initial stripes into
what we call intermediate stripes, which are then assigned
to different groups. We will finally merge each group to
form the λF final stripes. Specifically (see Fig. 1): (1) Assign
bkF/kIc initial stripes to each group (dashed boxes in Fig. 1).
(2) Use an (nI , kI ;nF , {kFi }λ̂

F

i=1) conversion procedure to
(generalized) split the (λI mod λF ) remaining initial stripes to
obtain λ̂F intermediate stripes, where λ̂F = dkI/(kF mod kI)e,
kFi = (kF mod kI ) for i ∈ [λ̂F −1], and kF

λ̂F
= (kF mod kI)

if (kF mod kI) | kI and kF
λ̂F

= (kI mod (kF mod kI))
otherwise. Each intermediate stripe is assigned to a different
group. (3) The conversion procedure for generalized merge is
used to turn each stripe group into a single final stripe.

The total number of nodes read during conversion is
λIrF + (λI mod λF )(kI − max{kF mod kI , rF }), which
matches Theorem 12.
Case kI > kF : Conversion occurs in two steps. In the first
step, each initial stripe is split to form as many final stripes as
possible. The leftover nodes are then merged into the remaining
final stripes. See [1] for more details.

The total number of nodes read in this case during conversion
is λI(rF + kI − kF ), which matches Theorem 12.

Therefore, the total access cost of conversion when rI ≥
rF and kI 6= kF is (λI + λF )rF + (λI mod λF )(kI −
max{kF mod kI , rF }), while the access cost of the default
approach is λFnF .

2) Access-optimal construction: Since the conversion pro-
cedure in Section IV-C1 is based on the generalized split and
merge regimes, we only need to ensure that the constructed
codes can perform those conversions with optimal access cost.

Theorem 13: For all kF ≤ kI , every systematic linear
MDS [nI , kI ] code CI is (nF , kF )-optimally convertible. For
all kF ≤ ςkI with integer ς > 2, every access-optimal
systematic linear MDS (nI , kI ;nF , kF = ςkI) convertible
code is (nF , kF )-optimally convertible.

Proof sketch: From Section IV-A1, any systematic initial
code can be used in access-optimal codes in the generalized
split regime. From Section IV-A2, an access-optimal code from
the merge regime can be used in an access-optimal code from
the generalized merge regime if ς ≥ λI .

Therefore, the constructions for the merge regime presented
in [2] can be used to construct access-optimal convertible codes
in the general regime.
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