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Abstract—We consider incremental inference problems from
aggregate data for collective dynamics. In particular, we address
the problem of estimating the aggregate marginals of a Markov
chain from noisy aggregate observations in an incremental
(online) fashion. We propose a sliding window Sinkhorn belief
propagation (SW-SBP) algorithm that utilizes a sliding window
filter of the most recent noisy aggregate observations along
with encoded information from discarded observations. Our
algorithm is built upon the recently proposed multi-marginal
optimal transport based SBP algorithm that leverages standard
belief propagation and Sinkhorn algorithm to solve inference
problems from aggregate data. We demonstrate the performance
of our algorithm on applications such as inferring population
flow from aggregate observations.

Index Terms—Markov processes, filtering, stochastic systems

I. INTRODUCTION

THE problem of inference from aggregate data is widely
studied in fields including machine learning, ecology, and

social sciences [1], [2]. Similar problems also occur in the area
of estimation and control, for instance in ensemble filtering
[3]–[6]. In these applications, one aims to infer information
about a group of agents in the case where only aggregate
observations in the form of counts or contingency tables
are provided [1]. Information about individuals may not be
available due to, e.g., economical or privacy reasons [1]. For
example, in bird migration analysis, individual trajectories are
not readily accessible, but the number of birds in different
areas can typically be counted from pictures. Another very
present application is the spread of infectious diseases, where
infections are usually under-reported, but inference of the true
transmission dynamics is of utmost importance [7].

In control applications, individual dynamics are often esti-
mated using for instance the Kalman filter [8]. In statistics,
many methods are based on probabilistic graphical models
(PGMs), e.g., the belief propagation algorithm [9]. However,
neither approach is tractable when it comes to estimating the
behavior of a large group of individuals simultaneously, let
alone the fact that quite often only aggregate information
is available. A number of methods have been developed to
address this problem, for instance, the PGM framework has
been extended to collective graphical models (CGMs), which
is a formalism for inference and learning with aggregate
data [1]. A CGM is a graphical model that describes the
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relationship between the aggregated counts of individuals.
Several algorithms for aggregate marginal inference within
the CGM framework have been proposed including Sinkhorn
belief propagation (SBP) [10], approximate MAP inference [11]
and non-linear belief propagation [2]. Whereas the latter two
suffer from instability and lack convergence guarantees, the
SBP algorithm is guaranteed to converge in case the underlying
graphical model is acyclic.

The SBP algorithm is based on multi-marginal optimal
transport theory, which studies the problem of finding the
most efficient transport plan between several distributions [12],
[13]. It has been shown that the aggregate inference problem
is equivalent to the entropic regularized formulation of a multi-
marginal optimal transport problem [10]. With this equivalence,
the celebrated Sinkhorn algorithm [13], [14] has been utilized
to solve the aggregate inference problem.

Most estimation tasks in the control community involve
dynamic systems and thus evolution over time. This dynamic
nature adds a temporal component to CGM. As time evolves,
the number of aggregate noisy observations and the size of the
underlying graphical model increase constantly. Clearly, naive
CGM inference algorithms such as SBP are not suitable for
real-time operations as the computational complexity increases
linearly with the length of the graph. Thus, to achieve real-
time performance, we consider the problem of estimating the
aggregate marginals of a Markov chain from noisy, aggregate
observations in an incremental (online) fashion. In this problem,
M individuals behave independently according to the same
underlying Markov chain for multiple time steps, and, at each
time step, a noisy aggregate observation is made. As a new
aggregate observation comes in at time step t, the goal is
to estimate the aggregate marginal at time t. In case of an
individual’s model (M = 1), this coincides with the traditional
PGM, and naive incremental inference [15] can be used by
incorporating a sliding window filter to consider only a fixed
number of most recent observations.

For collective dynamics, following the naive incremental ap-
proach, we build on the SBP algorithm and propose the sliding
window Sinkhorn belief propagation (SW-SBP) algorithm for
the incremental (online) aggregate inference problem. The SW-
SBP algorithm employs a sliding window filter of length K,
i.e., at each time step the K most recent observations are used
in order to estimate the current hidden aggregate distribution.
In order to capture previous information, we propose to add one
node at the beginning of the window, for which we consider
two different settings. In one setting, the marginal distribution
of this node is specified. In the other one, the node introduces
some prior potential. We evaluate the performance of our
algorithm on a variety of scenarios, including population flow
analysis, validating the working of our algorithm.

The contribution of this work is twofold. On one hand, this is



the first study of incremental inference in the CGM framework.
Our method makes it possible to estimate the group behavior
of a large collection of agents using aggregate observations
in an online manner. On the other hand, this extends many
incremental inference methods [15]–[17] to the CGM setting.
Indeed, when specialized to individual dynamics, our method
reduces to a standard incremental inference algorithm.

II. BACKGROUND

A. Probabilistic Graphical Models and Belief Propagation

Consider a distribution of J random variables with the
same finite image space X , where |X | = d, and with some
dependencies between them. A probabilistic graphical model
(PGM) is a compact and intuitive representation of such a
distribution, which describes the dependencies by a graph [18].
More precisely, for a graph G = (V, E), the random variables
are represented by the set of vertices V , and the dependencies
by the set of edges E. The joint probability of the distribution
of random variables can then be represented as

p(x) := p(x1, x2, . . . , xJ) =
1

Z

∏
(i,j)∈E

ψij(xi, xj), (1)

where x = {x1, . . . , xJ} ∈ X J , ψij ∈ R are edge potentials,
and Z ∈ R is a normalization constant. The edge potential
ψij characterizes the strength of the dependency between the
random variables at nodes i and j. Sometimes one also defines
node potentials φi(xi), for i ∈ V . However, these can be
absorbed in the edge potentials ψij , and in this work we
choose the compact notation (1).

Often, one is interested in finding the distribution of
one of the random variables, which is called the Bayesian
marginal inference problem. An efficient method for this
problem is the belief propagation algorithm, which updates
the marginal distribution on the vertices, by sending messages
(also called beliefs) between them [9]. Let N(i) denote the
set of neighboring nodes of i. Then the message from variable
node i to variable node j is

mi→j(xj) ∝
∑
xi

ψij(xi, xj)
∏

k∈N(i)\j
mk→i(xi). (2)

This message can be understood as the belief of node i about
node j. The messages in (2) are updated iteratively over the
graph. When the algorithm converges, the node and edge
marginals are given by

bi(xi) ∝
∏

k∈N(i)

mk→i(xi) (3a)

bij(xi, xj)∝ψij(xi, xj)
∏

k∈N(i)\j
mk→i(xi)

∏
`∈N(j)\i

m`→j(xj). (3b)

For an acyclic graph the belief propagation algorithm
converges globally [19] and the estimated marginal distributions
in (3) recover the true marginals exactly. Although convergence
is not guaranteed for general graphs with cycles, in practice
the belief propagation algorithm often performs well [20].

B. Collective Graphical Models

Collective graphical models (CGMs) describe the distribution
of the aggregate data from several populations, which are each
sampled independently from a discrete graphical model [1].
Consider a PGM as in Section II-A with underlying graph
G = (V,E). Let x(1), ...,x(M) be M samples of the PGM
according to its joint probability distribution (1). In particular,
each sample is a tuple x(m) = (x

(m)
1 , . . . , x

(m)
J ), where x(m)

i ∈
X , for each i = 1, . . . , J .

Let X(m)
i be the state of the mth individual at node i,

and let I[.] denote the indicator function. Then the aggregate
node distribution ni ∈ Rd and aggregate edge distribution
nij ∈ Rd×d are element-wise given by

ni(xi) =
M∑

m=1

I[X(m)
i = xi], for i ∈ V, (4a)

nij(xi, xj) =
M∑

m=1

I[X(m)
i = xi, X

(m)
j = xj ], for (i, j) ∈ E.

(4b)

The collection of all the aggregate node and edge distributions
is denoted as n, i.e., n = {ni,nij |i ∈ V, (i, j) ∈ E}. By
construction all entries of n are integers and they satisfy∑

xi

ni(xi) = M, for i ∈ V,

ni(xi) =
∑
xj

nij(xi, xj), for (i, j) ∈ E.
(5)

From the underlying PGM p(x), one can calculate the
probability distribution of n, and this is known as the CGM.
Similar to PGM, an important problem in CGM is to infer
the marginal distributions given some measurements. Multiple
algorithms for aggregate marginal inference within the CGM
framework have been proposed including the recent Sinkhorn
belief propagation (SBP) [10], approximate MAP inference [11]
and non-linear belief propagation (NLBP) [2]. The approximate
MAP inference and NLBP often suffer from instability and lack
of convergence, while SBP exhibits convergence guarantees
for acyclic graphs.

C. Sinkhorn Belief Propagation

The Sinkhorn belief propagation algorithm [10] is based
on belief propagation and utilizes the celebrated Sinkhorn
algorithm for multi-marginal optimal transport [13], [21], [22],
in order to solve the aggregate inference problem efficiently.

Let G = (V,E) be a CGM, as in Section II-B, with joint
aggregate distribution n. Moreover, let Γ ⊂ {1, . . . , J} be a
set of indices that represents all the nodes that are observed.
That is, it holds ni = yi for a given set of observations yi,
for i ∈ Γ (see [10] for more discussion on this observation
model). In its variational form, the marginal inference problem
for CGM with this observation model reads

min
n

KL(n ||
∏

(i,j)∈E
ψij(xi, xj))

s. t. ni = yi, ∀i ∈ Γ.

(6)



When the underlying graph is a tree, the objective function
of problem (6) is the same as the Bethe free energy [23]

FBethe(n) =
∑
i,j

∑
xi,xj

nij(xi, xj) ln
nij(xi, xj)

ψij(xi, xj)

−
∑
i=1

(di − 1)
∑
xi

ni(xi) lnni(xi),
(7)

together with the consistency constraints (5). Here, di denotes
the degree of node i ∈ V . Then the aggregate inference
problem, with aggregate observations yi for i ∈ Γ, reads

min
nij ,ni

FBethe(n) (8a)

s.t. ni(xi) = yi(xi), ∀i ∈ Γ (8b)∑
xj

nij(xi, xj) = ni(xi), ∀(i, j) ∈ E (8c)∑
xi

ni(xi) = 1, ∀i ∈ V. (8d)

Note that here (8b) corresponds to the aggregate observation
constraints and (8c)-(8d) to the normalized consistency con-
straints (5). The solution to this problem is characterized by
the following result.

Theorem 1 ( [10, Theorem 1] ): The solution to the aggregate
inference problem (8) is characterized by

ni(xi) ∝
∏

k∈N(i)

mk→i(xi), ∀i /∈ Γ (9)

where mi→j(xj) are fixed points of

mi→j(xj) ∝
∑
xi

ψij(xi, xj)
∏

k∈N(i)\j
mk→i(xi);

∀i /∈ Γ, ∀j ∈ N(i), (10a)

mi→j(xj) ∝
∑
xi

ψij(xi, xj)
yi(xi)

mj→i(xi)
;

∀i ∈ Γ, ∀j ∈ N(i). (10b)

Note that the inference problem (6) can be viewed as an
entropy regularized multi-marginal optimal transport problem
[10], [13], [21]. As a result, one can utilize the efficient
Sinkhorn algorithm to solve the inference problem (6). This can
be accelerated further by merging it with belief propagation. To
summarize, by combining Sinkhorn for multi-marginal optimal
transport problem and Theorem 1, we establish Algorithm 1.
We refer the reader to [10] for details of the derivation. Note
that in contrast to other algorithms for the aggregate inference
problem, which rely on an explicit observation model [2], SBP
is guaranteed to converge when the underlying graph is a tree
due to its foundations: Sinkhorn and belief propagation both
converge [13], [19], [24], [25].

The expressions in (10) can be interpreted as messages
between nodes, in analogy to the standard belief propagation
method presented in Section II-A. In fact, the messages in (10)
resemble the ones in (2). The messages (10a) can be understood
as a scaling step, which guarantees that the constraints (8b)
remain satisfied.

Algorithm 1 Sinkhorn Belief Propagation (SBP)

Initialize the messages mi→j(xj)
Update mi→j(xj) using (10)
while not converged do

for i ∈ Γ do
i) Update mi→j(xj) using (10b)
ii) Update all the messages on the path from i to inext
according to (10a) (fix an order in Γ, inext is the next
element to i in this order)

end for
end while

III. MAIN RESULTS

We consider incremental marginal inference problems from
aggregate data within the CGM framework. In particular, we
address the problem of estimating the aggregate marginals of a
hidden Markov chain from noisy aggregate observations in an
incremental (online) fashion. We follow the model described
in Section II-C as the generative model of aggregate data. A
hidden Markov model (HMM) is a Markov chain where the
state is not directly observable. The joint distribution of an
HMM factorizes as

p(x,o) = p(x1)
∏
t=1

p(xt+1 | xt)p(ot | xt), (11)

where x,o denotes state variable and observation respectively,
p(x1) is the initial distribution of the starting state, p(xt+1 | xt)
are the transition probabilities between hidden (unobserved)
variables, and p(ot | xt) are the observation probabilities for
time steps t = 1, 2, . . .. Note that the model given by (11) is a
directed graphical model but it can be equivalently converted
to the undirected graphical model (1) by viewing the transition
and observation probabilities as edge potentials ψij in (1).

In this problem, M individuals behave independently accord-
ing to the same underlying hidden Markov chain for multiple
time steps, and, at each time step, a noisy aggregate observation
yt is made in terms of the number of individuals in each
observation node ot. As a new observation is made at time
step t, our goal is to estimate the corresponding aggregate
marginal at time t. The number of aggregate noisy observations
and the size of the underlying graphical model increases with
time. To perform inference from this full data is not suitable
for real-time operations as the computational complexity of
inference increases greatly with the size of the graph. Therefore,
incremental inference is of great importance in that it can
efficiently estimate the required aggregate marginals from
new observations without needing access to the previous
observations.

Building on the SBP algorithm, we propose a sliding window
Sinkhorn belief propagation (SW-SBP) algorithm for the
incremental (online) aggregate inference problem. Borrowing
the idea from traditional incremental HMM inference [15],
the SW-SBP algorithm employs a sliding window filter of
length K so that at time step t (t > K), only the K most
recent observations are used in order to estimate the conditional
probabilities. In addition to using only K previous observations,
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Fig. 1: Incremental HMM in SW-SBP.
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Fig. 2: Incremental HMM graph for the two methods.

we propose to add a node1 to capture most of the information
lost by discarding the previous observations. Denote this
subgraph of the HMM model by Gt = (Vt, Et) as shown
in Figure 1. Here, the incremental time starts at t = K + 1.
With this setting, we always have 2K+ 1 nodes (in Gt) at any
time step t from which the aggregate marginal is estimated.
The Bethe free energy (7) for the subgraph/sliding window Gt
with the underlying HMM model (11) is

t∑
i=t−K+1

( ∑
xi−1,xi

ni−1,i(xi−1, xi) ln
ni−1,i(xi−1, xi)

p(xi|xi−1)
+

∑
xi,oi

ni,i(oi, xi) ln
ni,i(oi, xi)

p(oi|xi)
− 2

∑
xi

ni(xi) lnni(xi)

)
+∑

xt

nt(xt) lnnt(xt)

(12)

We propose two methods for encoding information from
the previous discarded observations in the node nt−K . In the
first method (SW-SBP-I) the node is constrained to be equal
to the estimate of this node from the previous time step. In the
second method (SW-SBP-II) previous information is imposed
by updating the potential φt−K on this node to the message
mt−K→t−K+1 obtained at the previous time step.

Figure 2 shows the incremental HMM graphs corresponding
to the two proposed schemes. The graph corresponding to SW-
SBP-I at time step t is Gc

t = (V c
t , E

c
t ) as shown in Figure 2a.

Here, the node nt−K is a fixed marginal node, which equals
the estimated marginal on Gc

t−1. The index set of constraints
Γc
t is described by the set of shaded nodes in Figure 2a. At

time step t, SW-SBP-I solves the inference problem (8) with
Γ = Γc

t and Bethe free energy given as in (12). The steps of
SW-SBP-I are listed in Algorithm 2, where Ginit is the initial
graph with the first K number of observations (2K nodes) as
in Figure 1.

For the SW-SBP-II case, the incremental graph at time t
is represented by Gp

t = (V p
t , E

p
t ) as in Figure 2b. Here, the

index set of constraints Γp
t does not contain t−K. Instead, the

1In case no extra node is added, the resulting algorithm is called naive
SW-SBP.

Algorithm 2 SW-SBP-I (constrained marginal)

Run SBP on initial graph Ginit

for t = K + 1,K + 2, . . . , do
Constrain marginal nt−K to be equal to its estimate
obtained from Gc

t−1
Run SBP on Gc

t

end for

potential φt−K (which will be absorbed into p(xt−K+1 | xt−K)
and is thus not explicit in (12)) is updated to be the message
from nt−K to nt−K+1 on the graph Gp

t−1. Algorithm 3 lists
the steps of SW-SBP-II.

Algorithm 3 SW-SBP-II (potential update)

Run SBP on initial graph Ginit

for t = K + 1,K + 2, . . . , do
Update node potential φt−K by message mt−K→t−K+1

obtained from Gp
t−1

Run SBP on Gp
t

end for

Remark 1: The idea to replace the previous observations
with a single node potential as in SW-SBP-II has been widely
adopted in standard filtering settings. For instance, a Kalman
filter [8] utilizes this idea to efficiently estimate the current
state for linear dynamic systems.

Remark 2: When applied to a single HMM trajectory, that is,
when all the measurements yi are Dirac distributions, the SBP
algorithm reduces [10] to the standard inference algorithm:
Forward-backward algorithm [18] in HMM literature. This is
due to the fact that when yi is Dirac, the belief mi→j it outputs
is independent of what it receives by (10b). Consequently, SW-
SBP-II reduces to a standard incremental inference algorithm in
HMM which also employs a potential node to capture discarded
information when all the observations yi are Diracs.

IV. EVALUATION

We evaluate the performance of SW-SBP on multiple
experiments including a toy example and a mobility pattern
estimation problem. We compare the performance of different
SW-SBP algorithms in terms of the estimation error with the
baseline algorithm, which is SBP (Algorithm 1) on the whole
graph without discarding previous measurements.

A. Performance Comparison

To evaluate the performance of the proposed algorithms,
we simulate a time-varying HMM with randomly chosen
observations and evaluate the performance for different filter
lengths K and different values of state dimension d. The
observation is of the same dimension as the state. The transition
and observation matrices are both generated randomly using
500I + 10 exp(E) where I denotes the identity matrix and
E is a random matrix generated from a standard Gaussian
distribution. Figure 3 compares the performance of proposed
methods for varying sliding window length. The results are
averaged over 10 different trials. It is evident that the time



(a) K = 3.

(b) K = 5.

(c) K = 10.

Fig. 3: Performance with d = 50 for different window lengths
K. The right column shows the `1-norm error with respect
to the baseline marginals and the left column shows the time
consumption for the algorithms to converge. The solid lines
denote the average over 10 trials and the shaded area represents
the corresponding standard deviation.

(a) d = 20 (b) d = 50

Fig. 4: Performance for different values of d with fixed window
length of K = 5.

consumption of the baseline method increases rapidly with
the size of the graph. Moreover, the convergence behaviors of
Naive-SW-SBP, SW-SBP-I, and SW-SBP-II are similar. In terms
of estimation errors, SW-SBP-I and SW-SBP-II outperform
Naive-SW-SBP by a significant margin. Moreover, SW-SBP-II
shows better error performance as compared to SW-SBP-I and
as the length of the filter increases, the errors decrease. Figure 4
depicts the error performance for different values of d with

Fig. 5: Location of 16 sensors in a 15× 15 grid.

fixed window length of K = 5. It is observed from the figure
that SW-SBP-I and SW-SBP-II perform similar for small values
of d, outperforming Naive-SW-SBP algorithm, and SW-SBP-II
performs better for large values of d. Note that the idea to
update the potential in SW-SBP-II is inspired by the Kalman
filter (see Remark 1). In standard inference of HMMs, which is
a special case of our framework where yi is a Dirac distribution
for all i, the strategy in SW-SBP-II gives precise solutions,
that is, SW-SBP-II is a precise incremental implementation of
SBP. However, in cases where the measurements yi are general
distributions, SW-SBP-II only approximates SBP. Currently
there is no rigorous justification why SW-SBP-II outperforms
SW-SBP-I in our general setting.

B. Bird Migration

Next, we consider the problem of estimating a mobility
pattern of birds in a geographical area from noisy aggregate
counts. Following the environment considered in [2], we
simulate M individuals moving in an L × L grid, aiming
to reach the top-right of the grid following a Markov chain.
The transition probabilities of this Markov chain follow a log-
linear distribution that accounts for four factors: the distance
between two positions, the angle between movement direction
and the top-right direction, the angle between wind direction
and the direction to goal (top-right in the grid), and preference
to stay in the original cell. The weight for those four factors
in the log-linear model is (5, 3, 1.6, 1). The observations are
made as the counts of individuals connected to the randomly
distributed sensors in the grid (see Figure 5). These sensors
constitute a distributed sensor network in which each sensor
can only detect the present of birds nearby while is not able
to output their locations. We assume that each individual is
connected to exactly one of the sensors and the probability of
the connection decreases exponentially as the distance between
agent and the sensor increases. At time t = 0, the population
is concentrated at the two clusters: one at the left-bottom and
one at the center-bottom.

We simulate the Markov chain for M = 10000 individuals
independently and perform incremental inference using SW-
SBP algorithms. We compare the performance of the algorithms
in terms of the `1-norm of the difference between the estimated
marginals and the baseline marginals. Figure 7 shows the errors
for the algorithm for 30 time steps on a 15 × 15 grid with
16 randomly distributed sensors. It can be observed from the
figure that SW-SBP-II performs significantly better than SW-
SBP-I and Naive-SW-SBP. Moreover, the errors for all the three



Ground Truth Observation Baseline Naive-SW-SBP SW-SBP-I SW-SBP-II

Fig. 6: Simulation of movement of M =
10000 agents over 15 × 15 grid with
K = 3. The first column depicts the
real movement of agents at different time
steps, second column represents the ag-
gregate sensor observations, third column
depicts estimated aggregated positions
using the baseline full graph. Fourth, fifth,
and sixth columns represent the estimated
positions obtained by different variants
of SW-SBP. The size of the circles is
proportional to the number of agents.

Fig. 7: Error comparison for bird migration experiment. The
left and right figure show the error with respect to the ground
truth and with respect to the baseline estimate, respectively.

methods decrease as the length of the sliding window filter
increases. Figure 6 shows the true and estimated movements
of the the population using different methods. As can be seen,
SW-SBP-II infers the population movements closest to the
baseline.

V. CONCLUSION

In this paper, we proposed an algorithm for incremental
inference from aggregate data in a Markov chain by employing
a sliding window filter. The performance of proposed methods
were demonstrated on multiple scenarios including estimation
of bird mobility patterns. The present work focus on discrete
setting and its extension to continuous state system is a future
direction.
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