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Abstract— We consider the optimal control problem of
steering a collection of agents over a network. The group
behavior of an ensemble is often modeled by a distribution,
and thus the optimal control problem we study can be cast
as a distribution steering problem. While most existing works
for steering distributions require the agents in the ensemble
to be homogeneous, we consider the setting of agents with
heterogeneous objectives. This control problem also resembles a
minimum cost network flow problem with a massive number of
commodities. We propose a novel framework for this problem
and derive an efficient algorithm for solving it. Our method is
based on optimal transport theory, and extends it to settings
with heterogeneous agents. The proposed method is illustrated
on a numerical simulation for traffic planning.

I. INTRODUCTION

Many problems in control and estimation involve a large
number of agents, ranging from applications in engineer-
ing and biology to social sciences [1]. Such groups of
indistinguishable and almost identically behaving agents are
also called ensembles. In general, modelling the dynamics
and control for individual agents in a large ensemble is
challenging. One remedy is to design a control law that
steers the ensemble collectively without designing control
laws for each individual [2]. Therefore, the aggregate state
information of the agents is often described by a distribution,
or density function [2], [3]. A well-studied problem based
on this representation is to steer a given distribution to a
target one [4]–[6]. In [4] the steering problem is solved based
on the optimal transport framework. Similar methods have
been applied to estimating distributions [7] and tracking of
ensembles [8], [9].

An inherent feature of these optimal transport methods
as well as typical ensemble applications, is that one models
only aggregate distributions and flows, but no individual be-
haviours. This reflects the underlying asumption that agents
in the ensemble are indistinguishable and behave identically.
However, in some applications this assumption does not
match reality. For instance, agents in the ensemble may have
heteregenous objectives, such as agents in a traffic network,
which are each equipped with the objective to reach their
destination. Similar problems appear in air traffic planning,
railroad traffic scheduling, communication and logistics, and
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are often treated as multi-commodity flow problems over
networks [10]–[12].

In this work, we extend the optimal transport framework in
order to allow for modelling ensembles with heterogeneous
objectives. More precisely, inspired by the example of agents
moving in a traffic network, we consider the problem of
steering ensembles with heterogeneous objectives over a
network. Note that the framework for steering distributions
in [4] has been applied to networks in order to find robust
transport plans [13]–[15].

In this work, we extend the existing methods for robust
transport over networks to the case of ensembles with hetero-
geneous objectives. In addition, our method can be seen as
new framework for addressing multi-commodity flow prob-
lems [11], [12], [16], and allows for solving problems with
a massive number of commodities. Moreover, we present an
efficient algorithm to solve the optimal transport formulation.

The paper is structured as follows. In Section II we
review some background material on optimal transport. The
main contribution is presented in Section III, where we
formulate the optimal steering problem for heterogeneous
ensembles, and develop an efficient algorithm for solving
it. In Section IV, we numerically illustrate the proposed
framework on a traffic planning simulation. Some proofs are
deferred to the appendix.

II. BACKGROUND ON OPTIMAL TRANSPORT

The optimal transport problem is to find a transport plan
that minimizes the cost of moving the mass from an initial
distribution to a target distribution [17]. In this work, we
consider optimal transport over discrete space. In the discrete
optimal transport setting the two distributions are represented
by non-negative vectors µ0, µ1 ∈ Rn+, and the transport plan
is a matrix M ∈ Rn×n+ , where the element Mij denotes the
amount of mass transported from point i to point j. Thus,
a transport plan between the two distributions µ0 and µ1

satisfies M1 = µ0 and MT1 = µ1, where 1 ∈ Rn×1 denotes
a vector of ones. Given a cost matrix C ∈ Rn×n+ , where the
element Cij denotes the cost for moving a unit mass from i
to j, the optimal transport problem can then be formulated
as

minimize
M∈Rn×n

+

trace(CTM)

subject to M1 = µ0, MT1 = µ1.
(1)

The optimal transport problem has been extended to
settings with several marginals µ0, . . . , µT ∈ Rn+ [7], [18]–
[20]. In this multi-marginal optimal transport setting, the
transport plan and cost are represented by (T + 1)-mode
tensors M,C ∈ Rn×···×n+ . For a given tuple (i0, . . . , iT ),



the element Mi0,...,iT is the associated amount of transported
mass, and Ci0,...,iT is the associated transportation cost of
a unit mass. The multi-marginal optimal transport problem
then reads

minimize
M∈Rn×···×n

+

〈C,M〉

subject to Pt(M) = µt, for t ∈ Γ.
(2)

where Pt(M) denotes the projection on the t-th marginal of
M and is defined by

(Pt(M))it =
∑

i1,...,ij−1,ij+1,iJ

Mi0,...,it−1,it,it+1,...,iT , (3)

and Γ ⊂ {0, . . . , T } is an index set that specifies the set of
marginals on which constraints are imposed. In the standard
multi-marginal optimal transport problem one assumes that
all marginals are given, i.e., Γ = {0, . . . , T }. However,
in this work we consider the case where the two sets are
not necessarily equal. Such optimal transport problems can
be utilized to estimate the distributions on the unknown
marginals [7].

Even though the optimal transport problem (2) is a linear
program, it suffers from the curse of dimensionality, which
makes it computationally infeasible to solve it directly in
many applications [7]. A popular method for the classical
bi-marginal problem (1) to decrease the computational cost
is to regularize it with an entropy term [21]. This approach
can also be applied to the multi-marginal problem (2) to
partly alleviate the computational burden [7], [18], [22].
In particular, the entropy-regularized multi-marginal optimal
transport problem reads

minimize
M∈Rn×···×n

〈C,M〉+ εD(M)

subject to Pt(M) = µt, for t ∈ Γ,
(4)

where ε > 0 is a regularization parameter, and the entropy
term is defned as

D(M) =
∑

i0,...iT

(Mi0...iT log(Mi0...iT )−Mi0...iT + 1) .

The entropy regularized optimal transport problem (4) is
strictly convex and thus has a unique solution. Moreover, it
can be shown that the optimal solution is of the form

M = K�U, (5)

where � denotes element-wise multiplication and the tensors
are of the form K = exp(−C/ε) and U = u0⊗u1⊗· · ·⊗uT
[7]. The vectors in U are given by ut = exp(−λt/ε), where
λt ∈ Rn is the Lagrange dual variable for the constraint on
Pt(M) in problem (4), and ut = 1 if t /∈ Γ [7]. The vectors
ut for t ∈ Γ, can be found as the fixed point of the so called
Sinkhorn iterations, which are to iterate

ut ← ut � µt./Pt(K�U), (6)

for t ∈ Γ, where ./ denotes element-wise division.
The Sinkhorn iterations (6) can be seen as iterative

Bregman projections [18] or, more generally, a block co-
ordinate ascent in the dual of (4) [7], [22], [23]. The

scheme (6) is therefore guaranteed to converge globally
[24], [25]. Although the entropy regularized problem (4)
can be solved more efficiently than the original formulation
(2), the complexity of the computation of the projections
Pt(M) in (3) increases exponentially with T , and thus is
often too expensive. However, in some applications the cost
tensor C has structures that can be utilized for efficient
computations of the projections [18], [22]. Such structures
also appear in, e.g., information fusion, interpolation, and
tracking applications [7].

III. STEERING OF HETEROGENEOUS ENSEMBLES

The optimal transport framework is a useful tool for the
estimation and steering of distributions [4], [7]. Based on
this, it has also been applied to the tracking of ensembles [8],
[9]. A main assumption of the optimal transport framework
for ensembles is that agents are indistinguishable and the
ensemble can thus be described by aggregate distributions
and flows. On a network the optimal transport problem
can hence be seen as single-commodity flow problem [14].
However, in many applications groups are better modeled as
ensembles with heterogeneous objectives, i.e., agents may
have individual objectives. For instance, in traffic control
problems agents are usually required to reach specific des-
tinations. Such problems on networks are often modeled as
minimum cost multi-commodity flow problems [11], [16].
In this section, we develop an optimal transport based
method for ensemble steering with heterogeneous objectives.
This extends the network flow interpretation of the optimal
transport problem to the multi-commodity case.

A. Optimal transport over networks

Consider the optimal transport problem over a network
where the set of edges is denoted by E, with |E| = n, and
let µt denote a distribution over E at time t = 0, . . . , T .
Define a cost tensor C ∈ Rn×···×n+ as

Ci0,...,iT =
T∑
t=1

Cit−1it , (7)

where C ∈ Rn×n+ with Cij denoting the cost for a unit
mass to move from i ∈ E to j ∈ E. Note that the network
topology is encoded in the optimal transport problem through
this cost matrix. In particular, Cij :=∞ if the edges i and j
do not share a node [13]. Multi-marginal optimal transport
problems (2) with a cost tensor that decouples as (7) appear
naturally in applications with a sequential structure, such as
interpolation or tracking problems [7]. In the network setting,
the element Mi0,i1,...,iT in (2) can then be understood as the
amount of mass that is transported from time t = 0 to t = T
over the edges i0, i1, . . . , iT . With a sequentially decoupling
cost (7) the projections (3) are of the form

Pt(K�U) = ut � ϕt � ϕ̂t, (8)

where

ϕ̂t = KTdiag(ut−1)KT . . . diag(u1)KTu0,

ϕt = Kdiag(ut+1)K . . . diag(uT −1)KuT ,



and K = exp(−C/ε) [7], [22]. The projections for the
Sinkhorn scheme (6) can thus be efficiently computed by
sequential matrix-vector multiplications.

Remark 1: It is worth noting that the entropy regularized
multi-marginal optimal transport problem (4) can also be
viewed as a so called Schrödinger bridge [9], [22]. The
Schrödinger bridge problem has been studied as a framework
for robust transport over networks in [13]–[15]. Therein
it is argued that the entropy term not only makes the
problem computationally feasible, but also induces desirable
smoothing to the solution, and thus yields robust transport
plans over networks.

B. Steering of heterogeneous ensembles over networks

In this section, we introduce a framework for optimally
steering an ensemble of agents with heterogeneous objectives
over a network. That is, given an initial distribution of agents,
we want to find an optimal steering plan to move all agents to
their given destination without violating capacity constraints
on the networks edges.

Similarly to the optimal transport framework for networks
in Section III-A, define a cost tensor C ∈ Rn×···×n+ that
decouples as in (7), where Cij denotes the cost for an agent
on i ∈ E to move to j ∈ E in one time step. Moreover, let
M ∈ Rn×···×n+ be a transport plan, where Mi0...iT denotes
the number of agents that take the path i0, . . . , iT . Thus, the
total cost of transporting the ensemble is given by 〈C,M〉.
Furthermore, let R ∈ Rn×n+ , where Rij denotes the number
of agents that are to be steered from edge i ∈ E at time 0 to
node j ∈ E at time T . Then the transport plan M is required
to fulfill P0,T (M) = R, where the bi-marginal projection
between the two times t1 and t2, with 0 ≤ t1 < t2 ≤ T , is
defined as

Pt1,t2(M) =
∑

i0,...,iT \{it1 ,it2}

Mi0...iT .

Moreover, define d ∈ Rn, where di denotes the maximal
capacity of agents on edge i ∈ E. Then, the transport plan
has to satisfy the additional constraint Pt(M) ≤ d, for t =
1, . . . , T − 1. The resulting optimal steering problem reads
then

minimize
M∈Rn×···×n

+

〈C,M〉

subject to P0,T (M) = R

Pt(M) ≤ d t = 1, . . . , T − 1.

(10)

Problem (10) is similar to a multi-commodity network
flow problem, where the number of nonzero elements in
R denotes the number of commodities. Note that problem
(10) is a multi-marginal optimal transport problem (2) with
modified constraints. Based on this connection, we develop
a numerical scheme for finding an approximate solution to
(10) by solving the entropy regularized problem

minimize
M∈Rn×···×n

〈C,M〉+ εD(M)

subject to P0,T (M) = R (11a)
Pt(M) ≤ d t = 1, . . . , T − 1. (11b)

Remark 2: Note that problem (11) may also be seen as
a constrained Schrödinger bridge. In the light of Remark 1,
the entropy regularization is thus not only needed from a
computational perspective, but it also yields robust transport
plans over networks.

Similarly to the standard multi-marginal optimal transport
problem (cf. (5)), the optimal solution to (11) can be ex-
pressed in terms of the dual variables.

Theorem 1: The optimal solution to (11) is given by

M = K�U, (12)

where the two tensors K,U ∈ Rn×···×n are given by K =
exp(−C/ε), and

Ui0,...,iT = Ui0iT · (u1)i1 · . . . · (uT −1)iT−1
, (13)

with U = exp(−Λ/ε) and ut = exp(−λt/ε), for t =
1, . . . , T −1. Here, Λ ∈ Rn×n and λt ∈ Rn+ are the Lagrange
dual variable for constraint (11a) and (11b), respectively.
Moreover, the corresponding Lagrangage dual of (11) reads

maximize
Λ∈Rn×n,

λ1,...,λT−1∈Rn
+

− ε〈K,U〉 − 〈Λ, R〉 −
T −1∑
t=1

〈λt, d〉, (14)

where U depends on the dual variables as in (13).
Proof: See Appendix A.

C. Numerical method

We next develop a numerical method for solving problem
(11). Since the Sinkhorn iterations (6) can be viewed as a
block coordiante ascent in a dual problem of the standard
multi-marginal optimal transport problem (4) [23], which
resembles the steering problem (11), we follow the same
approach. In fact, this leads to an efficient scheme for solving
(11) which resembles the Sinkhorn iterations (6).

Proposition 1: Let K,U be defined as in Theorem 1, and
iteratively perform

U ← U �R./P0,T (K�U) (15a)
ut ← min (ut � d./Pt(K�U),1) , (15b)

for t = 1, . . . , T − 1, where the minimization in (15b)
is element-wise. Then the iterates (15) converge, and in
the limit point the variables Λ = −ε log(U), and λt =
−ε log(ut) for t = 1, . . . , T − 1, are an optimal solution
to (14).

Proof: We derive the scheme as a block coordinate
ascent method, which is to maximize the objective with
respect to one set of dual variables, while keeping the other
dual variables fixed. Applied to (14) this is to iteratively
perform the updates

Λ← arg max
Λ∈Rn×n

− ε〈K,U〉 − 〈Λ, R〉, (16a)

λt ← arg max
λt∈Rn

+

− ε〈K,U〉 − 〈λt, d〉, (16b)



for t = 1, . . . , T −1. Since the objective in the unconstrained
maximization step (16a) is strictly concave, a necessary and
sufficient condition for optimality is that its gradient

exp(−Λ/ε)�
( ∑
i1,...,iT−1

Ki0...iT (u1)i1 . . . (uT −1)iT−1

)
−R

vanishes. This yields the update (15a). Note that the objective
in (16b) can be written as∑
it

(
−εe−(λt)it/ε

( ∑
i0,...,it−1

it+1,...,iT

Ki0...,iT Ui0iT

T −1∏
s=1
s6=t

(us)is

)
−(λt)itdit

)
.

Thus, the maximization in (16b) can be performed in each
element of λt individually. If the derivative of the objective
in (16b) with respect to (λt)it vanishes for a feasible,
i.e., non-negative, point, then this is the global maximizer.
Otherwise, the maximizer is (λt)it = 0. This yields (15b).
The convergence of the scheme follows from [24].

Note that given the solution to (14), the optimal solution
to (11) can then be recovered as in (12).

Similarly to the standard multi-marginal Sinkhorn itera-
tions, the computational bottleneck of the method in Propo-
sition 1 is to compute the projections P0,T (K � U) and
Pt(K � U) for t = 1, . . . , T − 1. For a cost tensor that
decouples sequentially as in (7), the tensor K decouples as

Ki0...iT =
T∏
t=1

Kit−1it , (17)

where K = exp(−C/ε). Given this structure, the bi-marginal
projections of K � U can be computed efficiently as de-
scribed in the next theorem.

Theorem 2: Consider two (T + 1)-mode tensors K,U ∈
Rn×···×n, that decouple as in (17) and (13), respectively.
Then, for t = 1, . . . , T − 1, the tensor K �U has the bi-
marginal projections

P0,t (K�U) =
(

Φ̂t �
(
UΦTt

))
diag(ut), (18a)

Pt,T (K�U) =diag(ut)
((

Φ̂Tt U
)
� Φt

)
, (18b)

where

Φ̂t =Kdiag(u1)Kdiag(u2) . . . diag(ut−1)K,

Φt =Kdiag(ut+1)Kdiag(ut+2) . . . diag(uT −1)K.

Moreover,

P0,T (K�U) = Φ̂T � U = U � Φ0. (19)
Proof: See Appendix B.

Note that expression (19) can be used for computing the
projections in (15a). Moreover, the results from Theorem 2
can be used to compute the projections Pt(K�U) for t =
1, . . . , T − 1, which are required for (15b), as follows.

Corollary 1: Let K,U be defined as in Theorem 2. For
t = 1, . . . , T − 1, the marginals of the tensor K � U are
then of the form

Pt(K�U) = ut � vt, (20)

Algorithm 1 Block coordinate ascent for problem (14).
Initialize U
while Not converged do

Compute P0,T (K�U) as in (19).
U ← U �R./P0,T (K�U).
Update U as in (13).
for t = 1, . . . , T − 1 do

Compute Pt(K�U) as in (20).
ut ← min (ut � d./Pt(K�U),1).
Update U as in (13).

end for
end while
return U

where vt =
(

Φ̂Tt �
(
ΦtU

T
))

1 =
((

Φ̂Tt U
)
� Φt

)
1.

Proof: The claim follows directly from Theorem 2,
since Pt(K�U) = P0,t(K�U)T1 = Pt,T (K�U)1.

With the expressions for the projections in Theorem 2
and Corollary 1, we can efficiently perform the updates in
(15) in order to solve the steering problem (11). The full
method is summarized in Algorithm 1. Recall that upon
convergence the optimal solution to the primal problem (11)
can be recovered as detailed in Theorem 1.

It is worth noting that the method in Algorithm 1 has
a similar sturucture as the standard Sinkhorn iterations (6).
Compared to the standard multi-marginal optimal transport
problem, the number of optimization variables in the dual
(14) is increased due to the matrix constraint in (10), and
the computation of the projections becomes more expensive,
as detailed in the following remark.

Remark 3: Computing the projections in Theorem 2, re-
quires matrix-matrix multiplications and the complexity is
thus of a factor n larger as compared to the standard
Sinkhorn case (cf. (8)). More precisely, computing one of
the projections in Theorem 2 is of complexity O(T n3),
whereas the complexity of computing a projection in (8) is
only O(T n2). Moreover, the computations of the projections
in Algorithm 1 can be arranged so that the outer loop is
computed in O(T n3). By extending the graph over time,
it resembles a multi-commodity network with n(T − 1)
edges and at most n2 commodities. Standard frameworks
for multi-commodity flow problems thus require solving a
linear program with n3(T − 1) variables [12].

IV. TRAFFIC PLANNING SIMULATION

In order to illustrate the method for steering an ensemble
with heterogeneous objectives, which was introduced in
Section III, we consider a traffic planning example. Figure 1
illustrates a network of streets, inspired by north Atlanta,
where the wide edges symbolize highways and the thin edges
symbolize local streets. We consider an ensemble of agents
starting in two point of departures, e.g., residential areas,
and travelling to two points of destinations, e.g., offices and
university campus near the city center.

We describe the street network in Figure 1 by a directed
graph with edges E, that is, each edge in the street network



Fig. 1. Street network for the example in Section IV.

is represented by two directed edges, and n = |E| = 42.
Denote the set of edges on the highway as EH ⊂ E, the set
of departure edges, as Ein ⊂ E, and the set of destinations,
as Eout ⊂ E. Furthermore, let li be the Euclidean length of
edge i ∈ E, as seen in Figure 1.

In order to apply the framework in Section III, let µt ∈ Rn
denote the distribution of agents over E at time t. To define
the cost matrix C ∈ Rn×n+ in (7), we assume that for agents
it is desirable to spend as little time as possible travelling,
i.e., to reach their destination fast, or otherwise wait with
their departure. The cost for an agent to move to another
edge, or stay on an edge in the network, is dependent on the
length of the edge. Moreover, in one time step, agents should
only be allowed to move to neighbouring edges. Thus, we
define the cost for an agent to move from i ∈ E to j ∈ E
as

Cij =



(li + lj)/2, if j ∈ N(i)

0.06 if j = i ∈ Ein
0, if j = i ∈ Eout
li, if j = i /∈ Ein ∪ Eout
1000, oherwise,

where N(i) denotes the set of edges that start in the end node
of edge i. Moreover, the capacity on the edges is defined by
a vector d ∈ Rn, where

di =


14li, if i ∈ EH
7li, if i ∈ E \ (EH ∪ Ein ∪ Eout)
1000, if i ∈ Ein ∪ Eout.

Utilizing Algorithm 1 with regularization parameter ε =
0.1, we solve the steering problem (11) for two scenarios. In
particular, we consider two different ensemble flows defined
by the matrix R in (11a), which defines the number of agents
moving between each pair of nodes from time 0 to T = 20.

In a first scenario, an ensemble of 500 agents starts on
edge (1, 3), where half of the agents are steered to each
of the two edges of destination. The result of solving the
steering problem (11) can be seen in Figure 2, where the
width of the edges corresponds to the log-scaled number of
agents on it. The optimal scheduling plan sends the majority
of agents to travel via the highway, only a small group of
agents is steered over the local roads. Moreover, one can see
that the traffic is spread out over time. Thus, some agents
travel earlier, and reach their destination within five time
steps, while others stay in the point of departure and are
scheduled to travel later.

Fig. 2. Optimal traffic flow from edge (1, 3) to the two destinations.

Fig. 3. Optimal traffic flow during rush hour.

A second scenario models the case of heavy traffic, e.g.,
during rush hour. Here, an additional 500 agents enter the
network on edge (2, 4), and half of the additional agents are
steered to each of the two edges of destination. The result is
shown in Figure 3. In this scenario the highway is used to full
capacity, and thus a large group of agents from the previous
scenario is instead steered over the local roads. Moreover,
more agents are scheduled for departure later as compared
to the scenario with lighter traffic.

In order to illustrate the method we have selected only
two points of departure and two points of destination, i.e.,
four commodities. However, note that the computational
complexity of each iteration in Algorithm 1 is O(T n3),
which is independent of the number of points of departure
and points of destination.

V. CONCLUSION AND FUTURE WORK

We formulated and studied an optimal steering problem for
ensembles with heterogeneous objectives. We also presented
an efficient algorithm for solving it, and applied it to a traffic
planning example. Seen as a multi-commodity flow problem,
note that, independently of the number of commodities, the
complexity for each iteration is O(T n3), and allows for n2

commodities, i.e., one commodity for every pair of edges.

APPENDIX

A. Proof of Theorem 1

With the Lagrange multipliers Λ ∈ Rn×n and λt ∈ Rn+,
for t = 1, . . . , T −1, as in the theorem, define the Lagrangian



as
L(M,Λ, λ1, . . . λT −1) = 〈C,M〉+ εD(M)

+ 〈Λ, P0,T (M)−R〉+
T −1∑
t=1

〈λt, Pt(M)− d〉.
(21)

The minimum of (21) with respect to Mi0...iT is achieved
when its derivative vanishes, i.e., when

Ci0...iT + ε log (Mi0...iT ) + Λi0iT +
T −1∑
t=1

λt = 0.

Thus, the optimal transport tensor is of the form M = K�
U with K and U as defined in the theorem. Note that the
entropy term D(K�U) reads∑
i0,...,iT

(
Ki0...iTUi0...iT

1

ε

(
−Ci0...iT − Λi0iT −

T −1∑
t=1

λt

)
−Ki0...iTUi0...iT + 1

)
=− 1

ε
〈K�U,C〉 − 1

ε
〈Λ, P0,T (K�U)〉

− 1

ε

T −1∑
t=1

〈λt, Pt(K�U)〉 − 〈K,U〉+ nT +1.

Thus, plugging M = K�U into the Lagrangian (21) yields

−ε〈K,U〉 − 〈Λ, R〉 −
T −1∑
t=1

〈λt, d〉. (22)

The dual to (10) is to maximize (22) with respect to Λ ∈
Rn×n and λt ∈ Rn+, for t = 1, . . . , T − 1.

B. Proof of Theorem 2
Note that, for 0 < t1 < t2 < T it holds∑

it1 ,...,it2

( t2∏
s=t1

Kis−1is

)( t2−1∏
s=t1

(us)is

)
= (Kdiag(ut1)K . . .Kdiag(ut2)K)it1−1it2+1

.

Thus, (18a) follows as

P0,t (K�U) =
∑

i1,...,it−1

it+1,...iT

( T∏
s=1

Kis−1is

)( T −1∏
s=1

(us)is

)
Ui0iT

= (ut)it(Φ̂t)i0it
∑
iT

(Φt)itiT Ui0iT

= (ut)it(Φ̂t)i0it
(
UΦTt

)
i0it

.

Similarly, (18b) is given as

Pt,T (K�U) = (ut)it

(∑
i0

(Φ̂t)i0itUi0iT

)
(Φt)itiT

= (ut)it(Φ̂
T
t U)itiT (Φt)itiT .

Finally, the expression for the projection (19) follows as

P0,T (K�U) =
∑

i1,...,iT−1

( T∏
s=1

Kis−1is

)( T −1∏
s=1

(us)is

)
Ui0iT

= Ui0iT (Kdiag(u1)K . . .Kdiag(uT −1)K)i0iT .
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