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a b s t r a c t

Classical thermodynamics aimed to quantify the efficiency of thermodynamic engines, by bounding
the maximal amount of mechanical energy produced, compared to the amount of heat required.
While this was accomplished early on, by Carnot and Clausius, the more practical problem to quantify
limits of power that can be delivered, remained elusive due to the fact that quasistatic processes
require infinitely slow cycling, resulting in a vanishing power output. Recent insights, drawn from
stochastic models, appear to bridge the gap between theory and practice in that they lead to physically
meaningful expressions for the dissipation cost in operating a thermodynamic engine over a finite time
window. Indeed, the problem to optimize power can be expressed as a stochastic control problem.
Building on this framework of stochastic thermodynamics we derive bounds on the maximal power
that can be drawn by cycling an overdamped ensemble of particles via a time-varying potential while
alternating contact with heat baths of different temperature (Tc cold, and Th hot). Specifically, assuming
a suitable bound M on the spatial gradient of the controlling potential, we show that the maximal
achievable power is bounded by M

8 (
Th
Tc

− 1). Moreover, we show that this bound can be reached to
within a factor of ( ThTc − 1)/( ThTc + 1) by operating the cyclic thermodynamic process with a quadratic
potential.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Thermodynamics is the branch of physics which is concerned
ith the relation between heat and other forms of energy. Histor-

cally, it was born of the quest to quantify the maximal efficiency
f heat engines, i.e., the maximal ratio of the total work output
ver the total heat input to a thermodynamic system. This was
ccomplished in the celebrated work of Carnot (Callen, 1998;
arnot, 1986) where, assuming that transitions take place in-

finitely slowly (quasi-static operation), it was shown that the
maximal efficiency possible is ηC = 1 − Tc/Th (Carnot efficiency),
here Th and Tc are the absolute temperatures of two heat
eservoirs, hot and cold respectively, with which the heat engine
akes contact with during phases of a periodic operation known
s Carnot cycle.
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Carnot’s result provides the absolute theoretical limit for the
efficiency of a heat engine, but provides no insight on the amount
of power output that can be achieved. Specifically, in order to
reach Carnot efficiency, the period of the Carnot cycle must tend
to infinity, resulting in quasi-static operation with vanishing total
power output. Whereas, to achieve non-vanishing power output
in a thermodynamic process, this must take place in finite time,
and thereby, away from equilibrium (Casas-Vázquez & Jou, 2003;
De Groot & Mazur, 2013; Lebon, Jou, & Casas-Vázquez, 2008). To
this end, the framework of stochastic thermodynamics (Brock-
ett, 2017; Dechant, Kiesel, & Lutz, 2017; Parrondo, Horowitz, &
Sagawa, 2015; Seifert, 2008, 2012; Sekimoto, 2010) has been
developed in recent years, to allow quantifying work in non-
equilibrium thermodynamic transitions. It is rooted in proba-
bilistic models in the form of stochastic differential equations to
specify the behavior of particles in a thermodynamic ensemble.
Manipulation of the ensemble is effected by a confining potential
that serves as a control input. This potential, together with a
heat reservoir in contact, couples the (canonical) ensemble to the
environment. Work and heat being transferred can then be com-
puted at the level of individual particles and averaged over the
ensemble. Important goals of the theory have been to assess the
amount of work needed for bit-erasure in finite time (Melbourne,
Talukdar, & Salapaka, 2018; Talukdar, Bhaban, & Salapaka, 2017)
and hence computation, i.e., a finite-time Landauer bound, as well
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s assessing the efficiency of thermodynamic engines operating at
aximal power.
The question of efficiency at maximal power was studied inde-

endently by Chambadal (1957), Curzon and Ahlborn (1975) and
ovikov (1958) based on a certain ‘‘endoreversible’’ assumption
o reflect finite-time heat transfer. They derived the bound ηCA =

−
√
Tc/Th = 1 −

√
1 − ηC , where the Th and Tc designate

temperatures of a hot and cold heat reservoir, respectively, at
maximal power estimated to be k(

√
Th −

√
Tc)2, with k being

the heat conductance. Subsequent works, most notably by Chen
and Yan (1989), based on differing sets of assumptions, arrived
at different bounds. More recently Schmiedl and Seifert (2007),
sought to improve, and reconcile these earlier results within the
framework of stochastic thermodynamics, albeit for thermody-
namic ensembles transitioning between Gaussian distributions. It
is fair to say that there is no consensus on the firmness of these
expressions, and that they serve as a guide to actual performance
of thermodynamic engines.

The present work focuses on maximizing power in general,
relaxing the Gaussian assumption, within the context of stochas-
tic thermodynamics (Seifert, 2012; Sekimoto, 2010). This is a
stochastic control problem. Our analysis is based on an over-
damped Langevin model for thermodynamic processes (with
damping coefficient γ ), and explores advantages and pitfalls
of selecting arbitrary control input, i.e., confining potential, for
steering thermodynamic ensembles through cyclic operation
while alternating contact between available heat reservoirs. It
is noted that without physically motivated constraints on the
actuation potential, the power output can become unbounded.
The salient feature of actuation (time-varying potential U(t, x),
with t denoting time and x ∈ Rd the spacial coordinate) that
draws increasing amounts of power is its ability to drive the ther-
modynamic ensemble to a state of very low entropy. Indeed, the
magnitude of the spatial gradient of the potential ∇xU(t, x) plays
a key role. Thus, it is reasonable on physical grounds to suitably
constrain this mode of ‘‘control’’ actuation, that is responsible for
energy exchange between the ensemble and the environment.
The present work puts forth and motivates the bound1 (Eq. (49))
1
γ

∫
Rd

∥∇xU(t, x)∥2ρ(t, x) dx ≤ M,

here ρ denotes the thermodynamic state, as a suitable such
onstraint, and under this assumption it is shown that a maximal
mount of power output that can be extracted by cyclic operation
f a Carnot-like engine is

M
8
(
Th
Tc

− 1)

( Th
Tc

− 1
Th
Tc

+ 1

)
≤ Pmax ≤

M
8
(
Th
Tc

− 1).

That is, the upper bound M
8 (

Th
Tc

−1) on power output only depends
on M and the temperature of the two heat baths.2 Moreover, this
bound can be attained within a factor of ( ThTc − 1)/( ThTc + 1), which
epends only on the ratio of temperatures of the two heat baths
s well.
The exposition proceeds as follows. Section 2 details the

tochastic model thermodynamic ensembles and the heat/energy
xchange mechanism. Section 3 is a brief overview of optimal
ransport theory, on which the main results are based. Section 4
xplores a connection between the second law of thermodynam-
cs and the Wasserstein geometry of optimal mass transport that

1 Interestingly, this can also be expressed in information theoretic terms, as
bound on the Fisher information of thermodynamic states.
2 In general power output is an extensive quantity, as it depends on the size of

he thermodynamic ensemble/engine. However, in our treatment, the ensemble
s described by a probability distribution (normalized). Hence, the bounds appear
s ‘‘intensive’’.
2

underlies the mechanism of energy dissipation in thermodynamic
transitions. Section 5 returns to the concept of a cyclically oper-
ated thermodynamic engine and expresses the optimal efficiency
and power output as functions of the operating protocol (solu-
tion of a stochastic control problem that dictates the choice of
control time-varying potential), temperature of heat reservoirs,
timing of the cyclic operation, and thermodynamic states at the
end of phases of the Carnot-like cycle. Section 6 contains the
main results regarding seeking maximal power output. Specifi-
cally, Section 6.1 explains optimal scheduling times, Section 6.2
highlights questions that arise based on physical grounds for
Gaussian thermodynamic states, Sections 6.3 and 6.4 discuss
optimal thermodynamic states at the two ends of the Carnot-
like cycle, and Sections 6.5 and 6.6 derive bounds on maximal
achievable power with or without constraint on the controlling
potential. A concluding remarks section recaps and points to
future research directions and open problems.

2. Stochastic thermodynamic models

We begin by describing the basic model for a thermodynamic
ensemble used in this work. This consists of a large collection of
Brownian particles that interact with a heat bath in the form of a
stochastic excitation and driven under the influence of an external
time varying) potential between end-point states. The dynamics
f individual particles are expressed in the form of stochastic
ifferential equations.

.1. Langevin dynamics

The (under-damped) Langevin equations

Xt =
pt
m

dt (1a)

dpt =−∇xU(t, Xt )dt−
γ pt
m

dt+
√
2γ kBT (t)dBt , (1b)

epresent a standard model for molecular systems interacting
ith a thermal environment. Throughout, Xt ∈ Rd denotes the

ocation of a particle and pt denotes its momentum at time t ,
(t, x) denotes a time-varying potential for x ∈ Rd, m is the mass
f the particle, γ is the viscosity coefficient, kB is the Boltzmann
onstant, T (t) denotes the temperature of the heat bath at time
, and Bt denotes a standard Rd-valued Brownian motion.

In this paper, we consider only the case where inertial effects
n the Langevin equation (1b) are negligible for the time reso-
ution of interest. Specifically, for temporal resolution ∆t ≫

m
γ

and small particle size, the dynamics reduce to the over-damped
Langevin equation

dXt = −
1
γ

∇xU(t, Xt )dt +

√
2kBT (t)
γ

dBt . (2)

Intuitively, Eq. (2) is obtained from (1b) by setting dpt = 0
and replacing pt

m dt = dXt . For a more detailed explanation see
Sekimoto (2010, page 20).

Thus, we view {Xt}t≥0 as a diffusion process. The state of the
thermodynamic ensemble is identified with the probability den-
sity of Xt , denoted by ρ(t, x), which satisfies the Fokker–Planck
equation
∂ρ

∂t
−

1
γ

∇x · [(∇xU + kBT∇x log ρ)ρ ] = 0. (3)

emark 1. The under-damped Langevin equation (1) is the most
common dynamical model for a particle immersed in a heat
bath (Sekimoto, 2010); alternative models can be based on e.g., a
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ymbols and corresponding units.
Definition Notation Units

Time t s
Position of particle Xt m
Boltzmann constant kB N m
Damping coefficient γ N s/m
Potential U(t, x) N m
Temperature T ◦K
Brownian motion Bt s

1
2

Density in Rd ρ(t, x) m−d

Velocity field in Rd v(t, x) m/s
Wasserstein metric, length W2(·, ·), ℓρ[ti,tf ] m
Entropy S(ρ) N m
Work (particle/ensemble) W ,W N m
Heat (particle/ensemble) Q ,Q N m
Energy (particle/ensemble) U, E N m
Free energy F N m
Bound in (49) M N m/s
Power P N m/s

Poisson process for the thermal excitation, space-dependent vis-
cosity coefficient, and possibly nonlinear effects of an interaction
potential. It has been used to model e.g., colloidal particles in
a laser trap, enzymes and molecular motors in single molecule
assays, and so on Seifert (2012). In the present work, we fol-
ow recent literature (Argun et al., 2017; Dechant et al., 2017;
omez-Marin, Schmiedl, & Seifert, 2008; Park, Chun, & Noh, 2016;
chmiedl & Seifert, 2007) where, besides Brownian excitation, the
ocus on constant viscosity coefficient γ .

.2. Heat, work, and the first law

The evolution of the thermodynamic ensemble under the in-
luence of the time-varying thermal environment and the time-
arying potential U(t, x), leads to exchange of heat and work,
espectively. Heat and work can be defined at the level of a single
article as explained below.
The energy exchange between an individual particle and the

hermal environment represents heat. This exchange is effected
y forces exerted on the particle due to viscosity (−γ dXt

dt ) and
ue to the random thermal excitation (

√
2γ kBT dBt

dt ). It is formally
expressed as the product of force and displacement

(−γ
dXt

dt
+

√
2γ kBT

dBt

dt
) ◦ dXt

in Stratonovich form. Using (2), formally,

−γ
dXt

dt
+

√
2γ kBT

dBt

dt
= ∇xU(t, Xt ),

which leads to the expression d̄Q = ∇xU(t, Xt )◦dXt for the heat;
see Sekimoto (2010, Chapter 4.1) for a more detailed exposition.
Then, bringing in the Itô correction, we arrive at

d̄Q = −
1
γ

∥∇xU(t, Xt )∥2dt +∆xU(t, Xt )
kBT (t)
γ

dt

+ ∇xU(t, Xt )

√
2kBT (t)
γ

dBt .

ote that we use d̄, as in the case of not-perfect differentials,
o emphasize that

∫
d̄Q depends on the path and not just on

end-point conditions.
The work transferred to the particle by a change in the actu-

ating potential is taken as3

d̄W =
∂U
∂t

(t, Xt )dt. (4)

3 This particular formula for the work has been the subject of considerable
ebate (Horowitz & Jarzynski, 2008; Peliti, 2008a, 2008b; Vilar & Rubi, 2008).
3

Thence, since the internal energy is simply the value of the
otential, the first law of thermodynamics, dU(t, Xt ) = d̄Q + d̄W ,
olds.
Accordingly, for a thermodynamic ensemble at a state ρ(t, x),

he heat and work differentials are

d̄Q =

[∫
Rd

(
−

1
γ

∥∇xU∥
2
+∆xU

kBT
γ

)
ρ dx

]
dt (5a)

d̄W =

[∫
Rd

∂U
∂t
ρ dx

]
dt, (5b)

leading to the first law for the ensemble dE(ρ,U) = d̄Q + d̄W,
where the internal energy is

E(ρ,U) =

∫
Rd

Uρ dx, (5c)

and depends on ρ,U , whereas Q,W depend on the path.

2.3. Summary notation

As usual, Rd denotes the d-dimensional Euclidean space, for
d ∈ N, with ⟨x, y⟩ and ∥x∥ =

√
⟨x, x⟩ denoting the respective

inner product and norm, for x, y ∈ Rd. Throughout the paper,
the stochastic differential equations are stated in Itô form, unless
the Stratonovich integration notation ◦ is used explicitly. The
Gaussian distribution with mean m and covariance Σ is denoted
by N(m,Σ). For convenience we provide Table 1 of the various
quantities, including the corresponding units in SI format: New-
ton (N), seconds (s), meter (m), absolute temperature in degrees
Kelvin (◦K).

3. A brief excursion into optimal mass transport

As it turns out, dissipation in Langevin models (2) is closely
linked to the path that a thermodynamic ensemble traverses. This
path is seen as a trajectory in the space probability distributions
and its length, that quantifies dissipation, is metrized by the
so-called Wasserstein metric. Thus, we now embark on a brief ex-
cursion into the basics of optimal mass transport so as to provide
context for needed results in Wasserstein geometry—the perti-
nence of the Wasserstein metric to thermodynamics has been
recognized in Aurell, Gawȩdzki, Mejía-Monasterio, Mohayaee,
and Muratore-Ginanneschi (2012), Aurell, Mejía-Monasterio, and
Muratore-Ginanneschi (2011), Chen, Georgiou, and Tannenbaum
(2020), Dechant and Sakurai (2019), Jordan, Kinderlehrer, and
Otto (1998) and Seifert (2012).

We denote by P2(Rd) the space of probability distributions
with finite second-order moment. We utilize the notation dµ to
signify a probability measure while we write dµ(x) = ρ(x)dx
to signify that dµ is absolutely continuous with respect to the
Lebesgue measure dx with ρ the corresponding probability den-
sity.

For dµ0, dµ1 ∈ P2(Rd), the 2-Wasserstein distance

W2(µ0, µ1) :=

√
inf

π∈Π (µ0,µ1)

∫
Rd×Rd

∥x − y∥2dπ (x, y), (6)

where Π(µ0, µ1) denotes the set of probability measures on the
product space Rd

× Rd with µ0, µ1 as marginals, is a bona fide
metric on the space of distributions. This metric, in fact, induces
a Riemannian-like structure as we explain below.

The expression
∫

∥x− y∥2dπ (x, y) above is a relaxation of the
transportation cost∫
Rd

∥x − Ψ (x)∥2dµ0(x)

in Monge’s problem (Villani, 2003) to be minimized over maps
Ψ that transfer the ‘‘mass’’ distribution µ into µ , i.e., such
0 1
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hat
∫
A dµ1 =

∫
Ψ−1(A) dµ0 over measurable sets A. This relation

is denoted by Ψ ♯µ0 = µ1. In case the two measures admit
densities, it can be expressed via the change of variables formula

det(∇xΨ (x))ρ1(Ψ (x)) = ρ0(x),

for the respective ρi’s (i ∈ {0, 1}). In fact, in this case where
both measures admit densities, the support of the optimal π in
(the convex problem) (6) coincides with the graph of the unique
inimizing map Ψ : Rd

→ Rd for Monge’s problem. Further, the
ptimal Ψ is the gradient of a convex function ψ on Rd (Villani,
003, Ch. 5), i.e., Ψ = ∇xψ . Interesting, being a gradient ‘‘vector
ield’’, Ψ is curl-free, which in itself characterizes optimality.

We now sketch how P2(Rd) can be equipped with a
iemannian-like structure, while we refer to Ambrosio, Gigli,
nd Savaré (2008) for a rigorous exposition. For brevity and for
otational convenience, we are only concerned with distributions
hat admit densities and use the simplified notation ρ ∈ P2(Rd).

Consider an ‘‘infinitesimal’’ perturbation ρ + δ ∈ P2(Rd) and
he solution φ to the Poisson equation

x · (ρ∇xφ) = −δ.

he map Ψ = Id + ∇xφ, where Id denotes the identity map,
ptimally transports ρ into ρ + δ as (Id + ∇xφ)♯ρ ≃ ρ + δ.
lternatively, v = ∇xφ can be viewed as a velocity field effecting
ransport as ρ − ∇x · (ρv) = ρ + δ.

Thus, the correspondence δ → ∇xφ identifies tangent di-
ections δ on P2(Rd), i.e., rates of change ∂ρ

∂t = δ about a
iven density ρ, with an (optimal) corresponding velocity field
xφ. Hence, it is natural to consider the (twice) average ‘‘ki-
etic energy’’ to define a metric on tangent directions on P2(Rd).
pecifically, if δi =

∂ρ

∂ti
, for i ∈ {1, 2}, represent two tangent

irections at ρ, we define the inner product

∂ρ

∂t1
,
∂ρ

∂t2
⟩W :=

∫
Rd

⟨∇xφ1,∇xφ2⟩ρ dx, (7)

where the φi’s solve ∇x · (ρ∇xφi) = −
∂ρ

∂ti
. The associated norm is

∂ρ

∂t
∥W :=

√
⟨
∂ρ

∂t
,
∂ρ

∂t
⟩W.

onsider ρ[ti,tf ] := {ρ(t, ·) ∈ P2(Rd)|t ∈ [ti, tf ]} as a curve (path)
n P2(Rd). Two quantities of interest are its length,

ρ[ti,tf ]
:=

∫ tf

ti

∂ρ
∂t


Wdt, (8)

and the kinetic energy integral (action) along the path

Aρ[ti,tf ]
:=

∫ tf

ti

∂ρ
∂t

2
Wdt (9)

(modulo a factor of 1
2 ). It can be seen that

ℓρ[ti,tf ]
= min

√
(tf − ti)Aρ[ti,tf ]

,

ver time-parametrizations of the path, with the minimum corre-
ponding to constant velocity. Moreover, the minimal path-length
etween two end-points ρti and ρtf turns out to be precisely

W2(ρti , ρtf ), and thus, P2(Rd) is a length space, Ambrosio et al.
(2008) and Villani (2003, Chapter 8).

We conclude with an important inequality linking the Wasser-
stein metric to information functionals. Consider a reference
probability distribution dm = e−Vdx ∈ P2(Rd), with V (x) having
Hessian ∇

2
x V ≥ κI for κ ∈ R, and dµ = ρdm also in P2(Rd). The

relative entropy and Fisher information functionals, respectively,
4

are defined by

H(µ|m) :=

∫
Rd
ρ log(ρ) dm, (10a)

I(µ|m) :=

∫
Rd

∥∇x log(ρ)∥2ρ dm. (10b)

These are linked to the Wasserstein distance via the following
HWI∗ inequality (Gentil, Léonard, Ripani, & Tamanini, 2019; Otto
& Villani, 2000),

H(µ1|m)−H(µ2|m) ≤ W2(µ1, µ2)
√
I(µ1|m)

−
κ2

2
W2

2(µ1, µ2), ∀µ1, µ2 ∈ P2(Rd). (11)

4. The second law, dissipation, and Wasserstein geometry

Next, we discuss the second law of thermodynamics in the con-
text of an ensemble of particles obeying over-damped Langevin
dynamics (2) for a heat bath with constant temperature T (t) = T .
The classical formulation of the law amounts to the inequality

W −∆F ≥ 0, (12)

where W =
∫ tf
ti

d̄W is the work transferred to the ensemble over
a time interval (ti, tf ), and ∆F is the change in the free energy4

(ρ,U) = E(ρ,U) − TS(ρ) (13)

etween the two end-point states, see Owen (2012) and Parrondo
t al. (2015). Here,

(ρ) = −kB

∫
Rd

log(ρ) ρ dx (14)

enotes the entropy of the state ρ, and U the potential.
Inequality (12) becomes equality for quasi-static (reversible)

hermodynamic transitions. In general, for irreversible transi-
ions, the gap in (12) quantifies dissipation. Interestingly, alter-
ative formulations that shed light into irreversible transitions
ave recently been discovered. A most remarkable identity was
iscovered by Jarzynski in the late 90’s (Jarzynski, 1997b) to hold
or irreversible thermodynamic transitions between work and
ree energy, in the form,{

e−βW}
− e−β∆Feq = 0,

here the expectation is taken over the probability law on paths,
=
∫
d̄W represents the work along trajectories of individual

articles, and ∆Feq = −β−1 log(
Ztf
Zti

) signifies the difference of
the equilibrium free energy −β−1 log(Zt ) at the two end-points
in time t ∈ {ti, tf }. Here, Zt =

∫
Rd e−βU(t,x)dx where, as usual,

β = 1/kBT . In Jarzynski’s original derivation (Jarzynski, 1997a,
997b) of the Jarzynski equality, the notions of work and heat are
n alignment with the ones used in this paper, though (Jarzynski,
997a) considers more general stochastic dynamics satisfying one
ype of detailed balance condition (Jarzynski, 1997a, Section 1).
nterestingly, the Jarzynski equality holds even for an alternative
otion of work, see e.g., Kurchan (1998).
While the Jarzynski relation establishes equality between the

bove functional of the work and free energy differences, it does
ot allow quantifying the actual expected work performed on

4 The free energy represents the amount of energy that can be delivered
t temperature T with fixed potential U . However, a rather revealing re-

write of the free energy is as the relative entropy (KL-divergence) between
the current state ρ and the Gibbs distribution ρGibbs(x) = e−βU(x)/Z , with
β = 1/kBT and Z =

∫
Rd e−βU(x)dx the partition function. Specifically, F(ρ,U) =

β−1
∫

log( ρ(x) )ρ(x)dx − β−1 log(Z).
Rd ρGibbs(x)
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he ensemble. An alternative identity that quantifies explicitly the
ap in (12) holds for irreversible thermodynamic transitions. This

identity is (cf. Theorem 1)

W −∆F = γ

∫ tf

ti

∂ρ
∂t

2
W dt,  

dissipation

(15)

hich is γ times Aρ[ti,tf ]
, the action integral along the time-

arametrized path traversed. Thus, if the path is selected as a
‘constant speed’’ W2-geodesic,

−∆F =
γ

tf − ti
W2(ρti , ρtf )

2 (16)

uantifies the least amount of work needed for transition be-
ween specified end-point thermodynamic states, or the maximal
ork that can be drawn. We recap the key points below.

heorem 1. Consider thermodynamic transitions between states
ρti , ρtf , under constant temperature T and a time-varying potential
U for the overdamped Langevin model (2). Then,

W −∆F ≥
γ

tf − ti
ℓ2ρ[ti,tf ]

. (17)

elation (17) holds with equality for a path of the thermodynamic
nsemble chosen to be a constant speed W2-geodesic, effected by a
uitable potential, a choice that corresponds to minimal dissipation.

roof. We first derive (15), cf. Graham (1978) and Pavon and
icozzi (2006) for similar computations with time independent

potential. Consider

dF
dt

(ρ,U) =
d
dt

E(ρ,U) − T
d
dt

S(ρ)

=

∫
Rd

∂U
∂t
ρdx +

∫
Rd
(U + kBT (1 + log ρ))

∂ρ

∂t
dx.

sing the Fokker–Planck equation (3), the second term∫
Rd
(U+kBT (1+log ρ))

1
γ

∇x·[(∇xU+kBT∇x log ρ)ρ] dx

= −
1
γ

∫
Rd

∥∇xU + kBT∇x log ρ∥
2ρ dx

= −γ

∫
Rd

∥v∥2ρ dx,

where the first equality follows using integration by parts (under
standard assumptions on the decay rate of ρ at infinity), while
the second equality is a re-write using5

v := −
1
γ
(∇xU + kBT∇x log ρ). (18)

hus, dF
dt (ρ,U) =

∫
Rd

∂U
∂t ρ dx − γ

∫
Rd ∥v∥2ρ dx. Integrating over

[ti, tf ] yields

∆F = W − γ

∫ tf

ti

∫
Rd

∥v∥2ρ dx dt, (19)

where v is the gradient of φ = −
1
γ
(U+kBT log ρ) and satisfies the

ontinuity equation ∇ · (ρ∇φ) =
∂ρ

∂t as claimed. This establishes
15).

The inequality (17) follows from the fact that the W2-length of
he path ρ[ti,tf ] (i.e., as a curve in P2), is given by (8). Specifically,

5 We note that v is known as Nelson’s current velocity (Chen, Georgiou, &
avon, 2016).
 b

5

provided
∫
Rd ∥v∥2ρ dx = α2 remains constant along the path

(i.e., for t ∈ [ti, tf ]),

α =
1

tf − ti
ℓρ[ti,tf ]

.

nd the claim follows. If on the other hand the kinetic energy
aries with time, then the path ρ(t, ·), time-reparametrized by

˜(t) :=
ℓρ[ti,t]

ℓρ[ti,tf ]

(tf − ti) + ti

ill be traversed via a velocity field

˜(t̃(t)) =
v(t)

∥v(t)∥ρ

ℓρ[ti,tf ]

tf − ti
.

nowing ṽ, a new potential Ũ can be computed so that ṽ(t̃, ·) =

xŨ(t̃, ·)+ kBT∇x log(ρ(t̃, ·)). Finally, equality in (17) holds when
taking ρ[ti,tf ] to be a geodesic (Villani, 2008). □

Remark 2. Early work by Jordan et al. (1998), pointing out
that the gradient flow of the free energy in W2 is the Fokker–
Planck equation, set the stage for understanding the role of the
Wasserstein geometry in quantifying dissipation. This fact was
recognized in Aurell et al. (2012, 2011), Seifert (2012) and more
recently developed in Chen et al. (2020) and Dechant and Sakurai
(2019).

5. Cyclic operation of engines

We consider two types of thermodynamic transitions, isother-
mal and adiabatic. The first corresponds to a situation where the
system remains in contact with a heat bath of constant temper-
ature T while a time-varying potential steers its thermodynamic
state ρ(t, .) from an initial ρ(ti, ·) to a final ρ(tf , ·). The adiabatic
transition amounts to abrupt changes in both, the temperature of
the heat bath as well as the shape of the potential, that are fast
enough not to have any measurable effect on the state ρ(t, .) and,
as a consequence, to the entropy of the ensemble. We evaluate
next the energy and work budgets in the corresponding actuation
protocols.

5.1. Isothermal transition

We consider transition between states ρti and ρtf for the
ensemble modeled by (2), over a time interval [ti, tf ], under the
time-varying potential U(t, Xt ) and in contact with a heat bath
of temperature T . Using the relationship (15) between work, free
energy, and the dissipation, and the first law, we have the fol-
lowing identity relating thermodynamic quantities in isothermal
transitions

W = ∆E − T∆S + Wirr (20a)

Q = T∆S − Wirr (20b)

with the irreversible Wirr that represents dissipation attaining its
minimal value
γ

tf − ti
W2(ρti , ρtf )

2 (20c)

y the choice of actuation ∇xU(t, ·) in (18) with v the opti-
al velocity field minimizing dissipation in (15) (item (iii) in
heorem 1).
It is important to note that the minimizing v can be obtained

y solving a convex reformulation of (15) in terms of the density
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(t, ·) and the momentum field p(t, ·) = v(t, ·)ρ(t, ·), in the form

min
p(t,·),ρ(t,·)

∫ tf

ti

∫
Rd

∥p∥
2

ρ
dxdt (21a)

subject to
∂ρ

∂t
+ ∇x · p = 0 (21b)

and ρ(ti, ·), ρ(tf , ·) specified. (21c)

hen, v = p/ρ, see Benamou and Brenier (2000, Section 4)
nd Villani (2003, p. 241).

.2. Adiabatic transition

We now consider transition between ρti and ρtf for the en-
semble modeled by (2), over a time interval [ti, tf ], under abrupt
changes in the potential U(t, ·) and the temperature T of the heat
bath.

The transition takes place over an infinitesimally short time
interval about time t (with t−/t+ indicating the left/right limits,
respectively). Thus, the temperature T of the heat bath jumps
etween values T (t−) and T (t+) while, at the same time, the

controlling potential switches from U(t−, ·) to U(t+, ·).
The energy budget of the transition no longer contains irre-

versible losses, as the right hand side of (15) vanishes. Moreover,
the entropy of the ensemble remains constant. Thus, the work
input into the system equal to change in internal energy,

W =

∫
Rd
(U(t+, x) − U(t−, x))ρ(t, x)dx = ∆E, (22a)

and therefore no heat transfer takes place, and therefore,

Q = 0. (22b)

5.3. Finite-time Carnot cycle

We are now in position to consider a complete Carnot-like
thermodynamic cycle where the ensemble is steered between two
states ρa and ρb during isothermal expansion (from ρa to ρb)
and contraction (from ρb to ρa) phases, separated by adiabatic
transitions. Periodic operation about such a scheduling is sought
as a means to extract work from a heat bath. A schematic in Fig. 1
depicts the phases of the cyclic operation. These four phases are
described in detail next.
(1) Isothermal process in temperature Th (‘‘hot’’): The first step
is an isothermal expansion over the time interval (0, t1) in contact
with a heat bath of temperature T = Th. Change in the potential
steers the ensemble from a starting state ρa to a terminal state
ρb. As in (20),

W (1)
= ∆E (1)

− Th∆S(1)
+ W (1)

irr (23a)

Q(1)
= Th∆S(1)

− W (1)
irr (23b)

where the superscript enumerates the phase in the cycle, and the
minimal work loss W (1)

irr depends only on the end-point states as
t equals

(1)
irr =

γ

t1
W2(ρa, ρb)2. (23c)

2) Adiabatic process: The second phase of the cycle is an adia-
atic transition at time t = t1, over an infinitesimal interval (of

duration ‘‘t2 = 0’’), bringing the ensemble in contact with a heat
ath of temperature Tc (‘‘cold’’). As in (22),
(2)

= ∆E (2) (24a)

Q(2)
= 0 (24b)

hile the state remains at ρ .
b
6

Fig. 1. Carnot-like cycle of a stochastic model for a heat engine (with d = 1):
the operation cycles clockwise through two isothermal transitions (1) and (3),
and two adiabatic transitions (2) and (4). During the isothermal transitions
having duration t1 and t3 , the ensemble is in contact with a ‘‘hot’’ reservoir of
emperature Th , and a ‘‘cold’’ one of temperature Tc , respectively. The adiabatic
ransitions are considered to be instantaneous, i.e., t2 = t4 = 0. The marginal
ensities are ρa and ρb .

3) Isothermal process in temperature Tc (‘‘cold’’): The third
step is an Isothermal contraction over the time interval (t1, t1+t3)
while in contact with a heat bath of temperature Tc . Actuation
in the form of the time-varying potential causes the state of the
ensemble to return to ρa back from starting at ρb. Once again, as
in (20),

W (3)
= ∆E (3)

− Tc∆S(3)
+ W (3)

irr (25a)

Q(3)
= Tc∆S(3)

− W (3)
irr (25b)

W (3)
irr =

γ

t3
W2(ρa, ρb)2. (25c)

(4) Adiabatic process: Finally, an adiabatic transition over an
interval of infinitesimal duration (‘‘t4 = 0’’) returns the ensemble
to be in contact with a heat reservoir of temperature Th for a total
period of the cycle tperiod = t1 + t3. The state of the ensemble
remains at ρa, to begin the cycle again. As before, in (22),

W (4)
= ∆E (4) (26a)

Q(4)
= 0 (26b)

5.4. Thermodynamic efficiency & power delivered

For a cyclic process the total change in internal energy
4∑

i=1

∆E (i)
= 0.

On the other hand, the entropy does not change during the
adiabatic transitions

∆S(i)
= 0, for i = 2, 4,

while, since it depends only on the end-point states

∆S(1) = −∆S(3) = S(ρb) − S(ρa) =: ∆S.

As a result, the total work output is

− W = −

(
4∑

i=1

∆E (i)
−

4∑
i=1

Ti∆S(i)
+

4∑
i=1

W (i)
irr

)
(1) (3)

(27)
= (Th − Tc)∆S − Wirr − Wirr .
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hus, assuming optimality of the choice of the potential to min-
mize Wirr in each transition, we conclude that the total work
utput possible is

− W = (Th − Tc)∆S − γ (
1
t1

+
1
t3
)W2(ρa, ρb)2. (28)

Since Th > Tc , naturally, a necessary condition for positive work
output is that ∆S := S(ρb) − S(ρa) > 0 which dictates that
phase 1 is an isothermal expansion and phase 3, an isothermal
contraction.6

The thermodynamic efficiency of an engine is the ratio of work
extracted over the heat dissipated,

η =
−W
Qh

(29)

here the heat input during isothermal expansion is

h = ∆Q(1)
= Th∆S − Wirr.

Once again assuming optimality (Wirr =
γ

t1
W2(ρa, ρb)2), the

ound on the efficiency is seen to be

η =

(Th − Tc)∆S − γ ( 1
t1

+
1
t3
)W2(ρa, ρb)2

Th∆S − γ 1
t1
W2(ρa, ρb)2

. (30)

hen the period of the cyclic process tends to infinity (and hence,
1, t3 → ∞), tends to the Carnot limit for quasistatic (infinitely
slow) transitions ηC = 1 −

Tc
Th
.

Periodic operation, over a finite period t1 + t3 (since t2 = t4 =

0), delivers

P = −W/(t1 + t3)

=

(Th − Tc)∆S − γ ( 1
t1

+
1
t3
)W2(ρa, ρb)2

t1 + t3
(31)

nits of power. Note that the power output is zero when Carnot
fficiency is achieved, because the total duration t1 + t3 → ∞. In
he sequel, we focus on assessing bounds on available power.

. Fundamental limits to power

Our main interest is in assessing the maximal amount of
ower that can be drawn by a thermodynamic engine operating
etween heat baths with temperatures Th and Tc < Th, i.e., ‘‘hot’’

and ‘‘cold’’, respectively. In the present work we draw conclusions
based on the basic model in (2) via analysis of the thermodynamic
cycle that was presented in Section 5.

Consider the expression in (31) for the power that can be
drawn via a cyclic operation as discussed. Preparation of the
ensemble, and actuation during the cycle, allow a number of
choices. Specifically, the power depends on the period t1 + t3,
the times of the two isothermal phases t1, t3 individually, as well
as the end-point states (distributions) ρa, ρb. The latter choice
impacts both, the Wasserstein distance W2(ρa, ρb) as well as the
change in entropy ∆S . We will explore systematically the various
options.

6.1. Optimizing the time scheduling

Optimizing the maximal power delivered during cyclic opera-
tion

P =
1

t1 + t3
(Th − Tc)∆S −

γ

t1t3
W2(ρa, ρb)2,

6 The opposite would be true if we sought to operate the cycle for
efrigeration purposes.
7

with respect to choices for t1, t3, with W2(ρa, ρb), Th, Tc and ∆S
kept fixed, gives that

t1 = t3 =
4γW2(ρa, ρb)2

(Th − Tc)∆S
, (32)

and therefore that the period for the cycle is

tcycle := t1 + t3 =
8γW2(ρa, ρb)2

(Th − Tc)∆S
. (33)

If instead we specify the period of the cycle tcycle, and optimize
with respect to the breakdown between t1 and t3, we once again
obtain that the durations of the two phases are equal

t1 = t3 =
tcycle
2
. (34)

emark 3 (Efficiency at Maximum Power). The thermodynamic
fficiency (29) of the engine, when it is operating at optimal

transition times (32) that maximize the power, is equal to

ηSS =
2(Th − Tc)
3Th + Tc

=
ηC

2 −
ηC
2

(35)

his result appeared in Esposito, Kawai, Lindenberg, and Van den
roeck (2010a), and Schmiedl and Seifert (2007) for the case of

Gaussian marginals ρa, ρb and potential U(t, x) that is quadratic
in x. Our derivation establishes (35) in a general setting.

Using the expression (33), the total power delivered

P =
(Th − Tc)2

16γ

(
∆S

W2(ρa, ρb)

)2

. (36)

ut as we will see in Section 6.2, optimizing the power for ρa, ρb
eads to the non-physical conclusion of a vanishingly small tcycle.

.2. The caveat of optimal tcycle: Gaussian states ρa, ρb

The case where the two marginal distributions/states are Gaus-
ian allows for closed-form expressions for ∆S and their Wasser-
tein distance. Indeed, if ρa, ρb are Gaussian distributions with
zero mean and variances Σa,Σb, respectively, then

W2(ρa, ρb)2 = trace
(
Σa+Σb−2(Σ1/2

a ΣbΣ
1/2
a )1/2

)
(37a)

∆S = S(ρb) − S(ρa) =
1
2
kB log det(ΣbΣ

−1
a ). (37b)

vidently, these allow deriving explicit expressions for the avail-
ble power in terms of the respective variances.
Specializing to the case of scalar processes with σi (i ∈ {a, b})

he corresponding standard deviation, i.e., Σi = σ 2
i , and period

cycle for the thermodynamic cycle as in (33), we obtain that the
aximal power available, as a function of σa and σb, is given by

(σa, σb) =
k2B(Th − Tc)2

16γ

(
log σb

σa

σb − σa

)2

. (38)

The corresponding heat uptaken from the hot reservoir and the
work extracted during one cycle are

Q(1)
= Qh =

1
4
kB(3Th + Tc) log

σb

σa

and

−W =
1
2
kB(Th − Tc) log

σb

σa
,

respectively.
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The maximum of the power P(σa, σb) over either σa, or σb,
akes place when σa = σb. But at this limiting condition, although

max
σb

P(σa, σb) =
k2B(Th − Tc)2

16γ σ 2
a

(39a)

nd the rate with which heat is drawn is

lim
σb→σa

Qh

tcycle
=

k2B(3Th + Tc)(Th − Tc)
32γ σ 2

a
,

the limiting values of −∆W , Qh over a cycle vanish, as does the
period tcycle of the cycle. Thus we are led to a non-physical situ-
ation of a vanishingly small period for the thermodynamic cycle.

A similar issue in the context of power in quantum engines is
brought up in Esposito, Kawai, Lindenberg, and Van den Broeck
(2010b). In the setting herein, in addition, it is seen that taking

σa → 0

and operating with a vanishingly small period for the cycle,
leads to infinite power. Once again, bringing up a non-practical
situation that is questionable on physical grounds. In the sequel
we focus on tcycle being finite.

6.3. Optimizing the thermodynamic state ρb

Henceforth we fix the period tcycle as well as the duration of
the isothermal phases according to (34). The power delivered, as
a function of the ρi’s (i ∈ {a, b}), is
(Th − Tc)
tcycle

(S(ρb) − S(ρa)) −
4γ
t2cycle

W2(ρa, ρb)2. (40)

We now consider the problem to maximize power over choice
f ρb, with ρa specified. This problem reduces to finding a suitable
inimizer of

min
ρb

{W2(ρa, ρb)2 − hS(ρb)} (41)

or h =
tcycle(Th−Tc )

4γ .

Throughout we assume that states have finite second-order
oments. As noted earlier, the space of probability distributions

measures, in general) with finite second-order moments P2(Rd)
s metrized by the Wasserstein metric W2(·, ·) and, as can easily
e verified, the expression

2(ρa, ρb)2 − hS(ρb) (42)

s strictly convex, which leads to the following statement.

roposition 1. Assuming that Th, Tc as well as tcycle and an initial
tate ρa ∈ P2(Rd) are specified, there exists a unique minimizer ρb
f (41).

roof. Eq. (41) is similar to one step in the so-called JKO-scheme
also, proximal projection) that displays the heat equation as the
radient flow of the Shannon entropy (Jordan et al., 1998). While
2(ρa, ρb)2 − hS(ρb) is strictly convex, it is not automatically
ounded from below. Thus, a rather extensive and technical argu-
ent is needed to show existence and uniqueness of a minimizer.
his is detailed in Jordan et al. (1998, Proposition 4.1). □

We conclude this section with two statements. The first es-
ablishes implicit conditions for optimality of ρb, in maximizing
he expression in (40) (equivalently, minimizing (42)). For ease
of referencing we view the expression in (40) as a function of ρb,
amely,

(ρb) :=
(Th−Tc) (S(ρb)−S(ρa))−

4γ
2 W2(ρa, ρb)2. (43)
tcycle tcycle
8

The following lemma provides stationarity conditions for f (ρb)
that, albeit, are implicit in that they involve the optimal transport
map from ρa and ρb that minimizes quadratic transportation
cost (Villani, 2003, Ch. 5).

We first highlight stationarity conditions that characterize the
minimizer of f (·) in (43).

Lemma 2. Consider two probability densities ρa, ρ∗

b in P2(Rd),
here ρ∗

b is the unique maximizer of f (ρb), and let ∇xψ , for a
onvex function ψ on Rd, be such that ∇xψ♯ρa = ρ∗

b . The following
stationarity) condition holds

B(Th − Tc)∇x log ρ∗

b (y) −
8γ
tcycle

(
(∇xψ)−1

− Id
)
(y) = 0, (44)

here Id denotes the identity map.

roof. The proof is given in Appendix A.1. □

The lemma, which is of independent interest, is used in the
roof of the following proposition concluding the section. The
roposition states that, for scalar distributions for simplicity, if
a is Gaussian, then so is ρb. As a consequence the optimal
ctuation protocol is based on a time-varying potential U(t, x)
hat is quadratic in x.

roposition 3. If ρa is a one-dimensional Gaussian distribution
ith zero mean and variance σ 2

a , then ρ
∗

b is also Gaussian with zero
ean and variance σ 2

b , where

b =
1 +

√
1 + c

2
σa, (45)

and c =
kB(Th−Tc )tcycle

2γ σ2
a

.

Proof. The proof is given in Appendix A.2. □

Remark 4. In earlier works, it is commonly assumed that the
marginal distributions ρa, ρb are Gaussian and the potential func-
tion U(t, x) is quadratic in x. Proposition 3 justifies this assump-
tion to some extent: if ρa is specified to be Gaussian, the optimal
ρb and the optimal potential function that achieve the maximum
power, are Gaussian and quadratic, respectively. However, as we
will see in Section 6.4, if instead ρb is specified as Gaussian dis-
tribution, the optimal ρa is not Gaussian. Gaussian distributions
turn out instead to be local minimizers of the power under certain
conditions (see discussion following Remark 5).

6.4. Optimizing the thermodynamic state ρa

We now consider the dependence of the maximal power on ρa,
i.e., on the thermodynamic state at which the ensemble begins its
expansive phase. As we will see, the situation is not symmetric
to the conclusions drawn in Section 6.3 with regard to ρb and,
without further assumptions, an optimal ρa does not exist. In-
terestingly, on closer inspection, the source of this conundrum
is the unreasonably high demands on the magnitude of ∇xU for
the controlling potential U(t, x). The insights gained lead to the
framework for maximal power in the follow up section.

For simplicity, and without any loss of generality for the
purposes of this section, we assume that ρb is specified to be a
zero-mean Gaussian distribution with standard deviation σb. In
view of (40), a choice of ρa that is close to a Dirac delta distri-
bution allows arbitrarily large negative values for the entropy,
i.e., S(ρa) ≃ −∞, and hence infinite power.

Thus, it is natural to impose a lower bound on the entropy of

ρa, or simply fix −∞ < sa = S(ρa) < S(ρb). But in this case, and
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nce more in view of (40), maximal power would be drawn by
inimizing W2(ρa, ρb) over probability densities ρa with entropy

a. We claim that

inf
ρa

{W2(ρa, ρb) | S(ρa) = sa > −∞} = 0. (46)

o see this note that

nf
ρa

W2(ρa, ρb) = 0

y taking ρa to approximate an increasingly fine train of suitably
caled Dirac deltas, i.e.,

a(x) ≈

∑
i∈Z

ρiδxi (x)

here ρi =
∫ xi+1
xi

ρb(x)dx and xi (i ∈ Z) equispaced. The latter
s a singular distribution which, however, can be approximated
rbitrarily closely in W2 by a probability density with any given
ntropy. Such a density can be produced by approximating Dirac
eltas by a piecewise constant function with finite support.
The optimization problem (46) is inherently related to the con-

inuity of the entropy functional with respect to the Wasserstein
istance. For a rigorous treatment of the problem, see Polyanskiy
nd Wu (2016), where it is shown that unless certain regularity
ssumptions are in place for ρa and ρb, the infimum in (46) is
ero.

emark 5 (Gaussian is not Optimal for ρa). The preceding ar-
uments show that a Gaussian distribution is not the optimal
hoice for ρa with respect to maximizing power, even when ρb
s Gaussian, unless additional constraints are introduced.

Since the Gaussian distribution maximizes entropy when mean
nd variance are specified, it is natural to explore constraints
n the mean and variance of ρa for the purposes of maximizing
ower. Without loss of generality, the mean can be assumed to
e zero and the variance specified to be σ 2

a < σ 2
b . First-order

nd second order optimality analysis for the power output (40),
t ρa = N(0, σ 2

a ) can be carried out. It turns out that, although
(0, σ 2

a ) satisfies the first-order optimality condition, it does not
atisfy the second-order optimality condition. In fact, N(0, σ 2

a ) is
nly a local minimizer when σa < σb < kB(Th − Tc)tcycle/(8γ σa).

The analysis, detailed in Appendix A.3 of the arXived preprint (Fu,
Taghvaei, Chen, & Georgiou, 2020), aims to highlight that the
conjecture of a Gaussian ρa being optimal fails. In hindsight,
this is not surprising. Maximizing power over ρa is equivalent to
minimizing the entropy of ρa. Minimizing entropy under a fixed
variance constraint does not lead to a Gaussian distribution since
two Dirac delta distributions with the desired mean and variance
achieve negative infinity entropy.

6.5. Maximum power with arbitrary potential

In this section, we show that the power output of a thermody-
namic engine, under any choice of potential U(t, x) cannot exceed
a bound that involves the Fisher information of the marginal state
ρa.

Proposition 4. Under the standing assumptions on the Carnot-like
cycle, the power output (40), is bounded by

P ≤
k2B(Th − Tc)2

16γ
I(ρadx|dx). (47)

roof. It is a consequence of the HWI∗ inequality (11) (see
supplemental proof in Appendix A.3) that

S(ρ ) − S(ρ ) ≤ k W (ρ , ρ )
√
I(ρ dx|dx). (48)
b a B 2 a b a

9

Using the formula for power (40), we have

P ≤
(Th − Tc)∆S

tcycle
−

4γ
t2cycle

∆S2

k2BI(ρadx|dx)

=−
4γ
t2cycle

(
∆S−

tcyclek2B(Th−Tc )
8γ I(ρadx|dx)

)2
k2BI(ρadx|dx)

+
k2B(Th − Tc)2

16γ
I(ρadx|dx) ≤

k2B(Th − Tc)2

16γ
I(ρadx|dx),

concluding the bound in (47). □

We point out that the bound in (47) becomes tight when tcycle
takes the optimal value (33) and ρb → ρa. Specifically, if ρa =

N(0, σ 2
a ) and ρb = N(0, σ 2

b ) are Gaussian distributions and tcycle
takes the optimal value (33), then as σb → σa the power output is
given by (39a), which coincides with (47), since I(ρadx|dx) =

1
σ2
a
.

6.6. Maximum power under constrained potential

While a lower bound on S(ρa) readily implies an upper bound
on the available power, achieving such a bound in general re-
quires a cyclic operation involving an irregular and complicated
potential function U(t, x) to bring back the ensemble to ρa at end
of each cycle. It is unreasonable to expect technological solutions
to such demands, and therefore, a constraint on the complexity of
the potential function seems meaningful. To this end, we propose
the constraint
1
γ

∫
Rd

∥∇xU(t, x)∥2ρ(t, x) dx ≤ M (49)

or all t ∈ (0, tcycle). Thus, we analyze the maximum power (40)
hat can be extracted from a thermodynamic engine, under the
onstraint (49).

heorem 2. Consider a thermodynamic ensemble, undergoing a
arnot cycle as described in Section 5, governed with the over-
amped Langevin equation (2). Then, the maximum power P that
an be extracted from the cycle, over all marginal probability distri-
utions ρa and ρb, the cycle period tcycle, and all potential functions
(t, x) that respect the bound (49), satisfies

M
8
(
Th
Tc

− 1)
Th
Tc

− 1
Th
Tc

+ 1
≤ Pmax ≤

M
8
(
Th
Tc

− 1) (50)

Proof. The proof for the upper-bound follows from bounding
the entropy difference S(ρb) − S(ρa) under the constraint (49).
During the isothermal transition in contact with the cold bath
with temperature Tc ,

S(ρb) − S(ρa) = −

∫ tcycle

tcycle
2

d
dt

S(ρ(t, ·)) dt

=
−kB
γ

∫ tcycle

tcycle
2

(⟨∇x log ρ,∇xU⟩ρ + kBTc∥∇x log ρ∥
2
ρ)dt,

here the notation ⟨∇xf ,∇xg⟩ρ :=
∫
Rd⟨∇xf ,∇xg⟩ρdx and ∥∇xf ∥ρ√

⟨∇xf ,∇xf ⟩ρ is used. By the Cauchy–Schwartz inequality and
constraint (49),

−⟨∇x log ρ,∇xU⟩ρ ≤ ∥∇xU∥ρ∥∇x log ρ∥ρ

≤

√
γM∥∇x log ρ∥ρ .
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S(ρb) − S(ρa)
kB
γ

∫ tcycle

tcycle
2

(√
γM∥∇x log ρ∥ρ − kBTc∥∇x log ρ∥

2
ρ

)
dt

kB
γ

∫ tcycle

tcycle
2

γM
4kBTc

dt =
M
8Tc

tcycle.

This concludes the bound∆S ≤
M
Tc

tcycle
8 on the entropy difference,

hich yields to upper-bound on the power output:

≤
(Th − Tc)
tcycle

∆S −
1

tcycle
Wirr ≤

M(Th − Tc)
8Tc

(51)

where Wirr ≥ 0 is used.
Next, we prove the lower-bound by describing a setting so that

the power is equal to the lower bound. Assume the marginal dis-
tributions ρa and ρb are Gaussian N(0, σ 2

a ) and N(0, σ 2
b ) respec-

ively, and the potential function U(t, x) =
1
2atx

2 is a quadratic
unction. In this setting, the exact power output is equal to

=
1

tcycle
kB(Th − Tc) log(

σb

σa
)

−
1

γ tcycle

∫ tcycle

0
(at −

kBT
σ 2
t
)2σ 2

t dt

with update law for the variance given by the Lyapunov equation:

dσ 2
t

dt
= −2(

at
γ

−
kBT
γ σ 2

t
)σ 2

t

ith the constraint (49) given by 1
γ
a2t σ

2
t ≤ M . Then, in the limit

as tcycle → 0, and σb → σa = σ , the power output is equal to

P = kB(Th − Tc)
λ

2
− γ λ2σ 2 (52)

ith the constraint

γ λ+
kBTc
σ 2 |≤

√
γM
σ

, (53)

here we introduced a new variable λ =
a
γ

−
kBTc
γ σ2 . It is shown

n Appendix A.4, that the maximum of the expression (52) over
ll values of λ and σ that satisfy the constraint (53), is equal to
he lower-bound. The lower-bound also holds in vector setting
y extending this argument and considering a d-dimensional
aussian distributions with independent components. □

This final result is universal as it does not depend on the choice
f ρa and ρb, unlike (47). Moreover, the bounds in this final result
re especially appealing in that it depend on the ratio Th/Tc of the
bsolute temperatures of the two heat baths.

emark 6. It is noted that the upper bound in (50) on achiev-
ble power under the constraint (49) does not depend on tcycle,
hereas our construction for achieving the lower bound ensures
hat the bound is approached as tcycle → 0.

emark 7. In the proof of Theorem 2, an operating point has
een constructed to ensure that power equal the lower bound
n (50) can be achieved. The parameters are given in Eq. (56) in
the Appendix. For this operating point, which corresponds to
maximal power constrained by (49), the efficiency turns out to
be

η =
Th − Tc
Th + Tc

.

t is interesting to note that

≤ η ≤ η ≤ η ,
SS CA C

10
where ηSS is the efficiency given in (35), ηCA = 1 −
√
Tc/Th is

the Curzon–Ahlborn efficiency, and ηC = 1 − Tc/Th is the Carnot
fficiency. Furthermore, ηCA, η and ηC tend to 1 as Tc → 0,

while ηSS → 2/3. Interestingly, that η may be larger than ηSS
is due to the fact it is obtained under an added constraint on the
controlling potential, that seeks to maximize power, as compared
to ηSS ; the increase in efficiency is consistent with the inherent
trade-off between power and efficiency.

7. Concluding remarks

The present work focused on quantifying the maximal power
that can be drawn by a Carnot-like heat engine operating by
alternating contact with two heat reservoirs and modeled by
stochastic overdamped Langevin dynamics driven by the time
dependent potential. The framework that the work is based on
is that of Stochastic Thermodynamics (Dechant et al., 2017; Par-
rondo et al., 2015; Seifert, 2008, 2012; Sekimoto, 2010), which
allows quantifying energy and heat exchange by individual parti-
cles in a thermodynamic ensemble, to be subsequently averaged,
so as to quantify performance of the thermodynamic process as a
whole. A physically reasonable bound is derived, which is shown
to be reached within a specified factor, both depending on the
ratio Th/Tc of the absolute temperatures of the two heat baths,
hot and cold, respectively. The present work is quite distinct from
earlier results, within a similar framework, which is however re-
stricted to Gaussian states. Conditions that suggest non-physical
conclusions are highlighted, and a suitable constraint on the
controlling potential is brought forth that underlies our analysis.

In the past few decades, there have been several attempts
to quantify efficiency mainly, but also power, of thermodynamic
processes operating in Carnot-like manner. It is fair to say that
there has been neither a consensus on the type of assump-
tions that have been used by previous authors, and thereby,
nor full consistency of the results. This is to be expected, since
finite-period operation and finite-time thermodynamic transi-
tions require substance/engine dependent assumptions to cap-
ture the complexity of heat transfer in non-equilibrium states.
Thus, estimated bounds may never reach the ‘‘universality’’ of
the celebrated Carnot efficiency. They are expected to provide
physical insights and guidelines for engineering design. Thus, it
will be imperative that these estimates be subject to experimental
testing. The notable feature of our conclusions as compared to
earlier works is that the expressions we derive are given in the
form of ratio of absolute temperatures—a physically suggestive
feature.

The present work follows a long line of contributions within
the control field to draw links between thermodynamics and
control, see e.g., Brockett and Willems (1979), Mitter and Newton
(2005), Pavon (1989), Rajpurohit and Haddad (2017), Sandberg,
Delvenne, Newton, and Mitter (2014) and Wallace (2014). More
recently, important insights have linked the Wasserstein distance
of optimal mass transport, which itself is a solution to a stochastic
control problem, to the dissipation mechanism in stochastic ther-
modynamics (Aurell et al., 2012, 2011; Chen et al., 2020; Dechant
& Sakurai, 2019; Seifert, 2012). Indeed, the Wasserstein metric
akes the form of an action integral and arises naturally in the
nergy balance of thermodynamic transitions. This fact has been
xplored and developed for the overdamped Langevin dynamics
tudied herein. Whether similar conclusions can be drawn for un-
erdamped Langevin dynamics remains an open research direc-
ion at present. Furthermore, much work remains to reconcile and
ompare alternative viewpoints and models for thermodynamic
rocesses including those based on the Boltzmann equation.
Besides the potentially intrinsic value of the analysis and

ounds that have been derived, it is hoped that the control-
heoretic aspect of the problem to optimize Carnot-like cycling
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f thermodynamic process has been sufficiently highlighted, and
hat this work will serve to raise attention on this important and
oundational topic to the control community.

ppendix

.1. Proof of Lemma 2

Consider an arbitrary smooth vector field ξ on Rd with
ounded support, and Ψs : Rd

→ Rd defined by
∂

∂s
Ψs(x) = ξ (Ψs(x)), Ψ0 = Id,

for x ∈ Rd and s ≥ 0. If ρs := Ψs♯ρ
∗

b , we claim that

lim
s→0

1
s
(f (ρs) − f (ρ∗

b )) ≥

∫
Rd

⟨Df (x), ξ (x)⟩ρ∗

b (x)dx, (54)

where, for ∆T := Th − Tc ,

Df (x) = −
kB∆T
tcycle

∇ log(ρ∗

b (x)) +
8γ
t2cycle

(∇ψ−1(x) − x).

Assuming the claim is true (to be shown shortly), then, because
ρ∗

b is the maximizer, f (ρs) ≤ f (ρ∗

b ). Therefore∫
⟨Df (x), ξ (x)⟩ρ∗

b (x)dx ≤ lim
s→0

f (ρs)−f (ρ∗

b )
s

≤ 0.

ence, by symmetry ξ → −ξ ,

⟨Df (x), ξ (x)⟩ρ∗

b (x)dx = 0. (55)

his is true for all vector fields ξ ∈ C∞

0 (Rd,Rd). As a result,
f (x) = 0, concluding (44) and the lemma.
It remains to prove (54). By definition,

(ρs) − f (ρ∗

b ) =
∆T
tcycle

(S(ρs) − S(ρ∗

b ))

−
4γ
t2cycle

(W2(ρa, ρs)2 − W2(ρa, ρ∗

b )
2).

The entropy term

S(ρs) = − kB

∫
log(ρs(x))ρs(x)dx

= − kB

∫
log(ρs(Ψs(x)))ρ∗

b (x)dx

= − kB

∫
log(

ρ∗

b ((x))
det(∇Ψs(x))

)ρ∗

b (x)dx

=S(ρ∗

b ) + kB

∫
log(det(∇Ψs(x)))ρ∗

b (x)dx.

Therefore

lim
s→0

1
s
(S(ρs) − S(ρ∗

b ))

= lim
s→0

kB
s

∫
log(det(∇Ψs(x)))ρ∗

b (x)dx

kB

∫
∇ · ξ (x)ρ∗

b (x)dx

− kB

∫
⟨ξ (x),∇ log(ρ∗

b (x))⟩ρ
∗

b (x)dx.

The Wasserstein term

W2(ρa, ρs)2 − W2(ρa, ρ∗

b )
2

≤

∫
∥∇ψ−1(x) − Ψs(x)∥2ρ∗

b (x)dx
11
−

∫
∥∇ψ−1(x) − x∥2ρ∗

b (x)dx

=

∫
⟨x − Ψs(x), 2∇ψ−1(x) − x − Ψs(x)⟩ρ∗

b (x)dx.

Therefore

lim
s→0

1
s

[
W2(ρa, ρs)2 − W2(ρa, ρ∗

b )
2]

− 2
∫

⟨ξ (x),∇ψ−1(x) − x⟩ρ∗

b (x)dx.

sing the two expressions, the one for derivative of the entropy
nd the other for the Wasserstein distance, the claim follows.

.2. Proof of Proposition 3

According to Proposition 1, the maximizer is unique. There-
ore, it is sufficient to show that the Gaussian distribution N(0,
2
b ), where σ 2

b is given by (45), satisfies the optimality condi-
ion (44). When ρa, ρ∗

b are Gaussian, ∇ψ−1(y) =
σa
σb
y. Hence, the

optimality condition reads

kBtcycle∆T
8γ

∇ log ρ∗

b (y) − y + ∇ψ−1(y)

kBtcycle∆T
8γ

y
σ 2
b

− (1 −
σa

σb
)y

=(
kBtcycle∆T

8γ σ 2
b

− 1 +
σa

σb
)y = 0, ∀ y ∈ R,

which is satisfied when σb is according to (45).

A.3. Proof of Eq. (48)

The proof follows by expressing the HWI∗ inequality (11) for

Gaussian reference measure dmg = (2πσ 2)−
d
2 e−

∥x∥2

2σ2 dx with
constant κ =

1
σ2 and taking the limit as σ → ∞. The relative

ntropy with respect to Gaussian measure is

(µ|mg ) =

∫
log(

dµ
dx

)dµ−

∫
log(

dmg

dx
)dµ

= −k−1
B S(

dµ
dx

) +
σ 2
µa

2σ 2 +
d
2
log(2πσ 2).

where σ 2
µ :=

∫
∥x∥2dµ. Therefore, the left hand side of (11)

(µa|mg ) − H(µb|mg ) = k−1
B (S(ρb) − S(ρa)) +

σ 2
µa

− σ 2
µb

2σ 2 ,

ith ρa = dµa/dx, ρb = dµb/dx, and σ 2
µa
, σ 2

µb
are the corre-

ponding variances. On the right hand side, the Fisher information
erm becomes

(µa|mg ) =

∫
∥∇ log(

dµa

dmg
)∥2dµa

=

∫
∥∇ log(

dµa

dx
) − ∇ log(

dmg

dx
)∥2dµa

=

∫
∥∇ log(

dµa

dx
)∥2dµa − 2

∫
⟨∇ log(

dµa

dx
),

−x
σ 2 ⟩dµa

+

∫
∥
−x
σ 2 ∥

2dµa = I(µa|dx) −
2d
σ 2 +

σ 2
µa

σ 4

Thus, taking the limit σ → ∞, (48) follows.
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.4. Proof of the lower-bound in Theorem 2

The constraint (53) is expressed as:

≤ λ ≤

√
γM
γ σ

−
kBTc
γ σ 2 , for σ ≥

kBTc
√
γM

.

he inequality λ ≥ 0 ensures that the power is non-negative,
hereas σ ≥

kBTc√
γM ensures that the upper bound is positive. We

tilize dimensionless variables

:=
λ

λ0
, y :=

σ0

σ

or σ0 := kBTc/
√
γM , λ0 := M/kBTc , and re-write (52) and the

constraints,

P = Mf (x, y)
0 ≤ x ≤ g(y), 0 < y ≤ 1

where f (x, y) =
∆T
2Tc

x−
x2

y2
, g(y) = y−y2. As long as y ≤ y0, where

0 =
1

1+ ∆T
4Tc

, the unconstrained maximizer

x∗(y) = argmax
x

f (x, y) =
∆T
4Tc

y2

atisfies the constraint x∗(y) ≤ g(y). When y0 < y ≤ 1, the
aximizer is at x = g(y). Hence,

max
≤y−y2

f (x, y) =

⎧⎨⎩
(∆T )2

16T2c
y2, 0 < y ≤ y0

∆T
2Tc

(y − y2) − (1 − y)2, y0 ≤ y ≤ 1.

aximizing the expressions in the two cases over y gives

ax

{(
∆T

3Tc + Th

)2

,
(∆T )2

8Tc(Tc + Th)

}
=

(∆T )2

8Tc(Tc + Th)
.

his is achieved for

=
kBTc
√
γM

2(Th + Tc)
(Th + 3Tc)

, λ =
M
kBTc

(Th + 3Tc)(Th − Tc)
4(Th + Tc)2

. (56)
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