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Classical thermodynamics aimed to quantify the efficiency of thermodynamic engines, by bounding
the maximal amount of mechanical energy produced, compared to the amount of heat required.
While this was accomplished early on, by Carnot and Clausius, the more practical problem to quantify
limits of power that can be delivered, remained elusive due to the fact that quasistatic processes
require infinitely slow cycling, resulting in a vanishing power output. Recent insights, drawn from
stochastic models, appear to bridge the gap between theory and practice in that they lead to physically
meaningful expressions for the dissipation cost in operating a thermodynamic engine over a finite time
window. Indeed, the problem to optimize power can be expressed as a stochastic control problem.
Building on this framework of stochastic thermodynamics we derive bounds on the maximal power
that can be drawn by cycling an overdamped ensemble of particles via a time-varying potential while
alternating contact with heat baths of different temperature (T, cold, and Ty hot). Specifically, assuming
a suitable bound M on the spatial gradient of the controlling potential, we show that the maximal
achievable power is bounded by %(%‘ — 1). Moreover, we show that this bound can be reached to
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1. Introduction

Thermodynamics is the branch of physics which is concerned
with the relation between heat and other forms of energy. Histor-
ically, it was born of the quest to quantify the maximal efficiency
of heat engines, i.e., the maximal ratio of the total work output
over the total heat input to a thermodynamic system. This was
accomplished in the celebrated work of Carnot (Callen, 1998;
Carnot, 1986) where, assuming that transitions take place in-
finitely slowly (quasi-static operation), it was shown that the
maximal efficiency possible is nc = 1 — T, /T, (Carnot efficiency),
where T, and T, are the absolute temperatures of two heat
reservoirs, hot and cold respectively, with which the heat engine
makes contact with during phases of a periodic operation known
as Carnot cycle.
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Carnot’s result provides the absolute theoretical limit for the
efficiency of a heat engine, but provides no insight on the amount
of power output that can be achieved. Specifically, in order to
reach Carnot efficiency, the period of the Carnot cycle must tend
to infinity, resulting in quasi-static operation with vanishing total
power output. Whereas, to achieve non-vanishing power output
in a thermodynamic process, this must take place in finite time,
and thereby, away from equilibrium (Casas-Vazquez & Jou, 2003;
De Groot & Mazur, 2013; Lebon, Jou, & Casas-Vazquez, 2008). To
this end, the framework of stochastic thermodynamics (Brock-
ett, 2017; Dechant, Kiesel, & Lutz, 2017; Parrondo, Horowitz, &
Sagawa, 2015; Seifert, 2008, 2012; Sekimoto, 2010) has been
developed in recent years, to allow quantifying work in non-
equilibrium thermodynamic transitions. It is rooted in proba-
bilistic models in the form of stochastic differential equations to
specify the behavior of particles in a thermodynamic ensemble.
Manipulation of the ensemble is effected by a confining potential
that serves as a control input. This potential, together with a
heat reservoir in contact, couples the (canonical) ensemble to the
environment. Work and heat being transferred can then be com-
puted at the level of individual particles and averaged over the
ensemble. Important goals of the theory have been to assess the
amount of work needed for bit-erasure in finite time (Melbourne,
Talukdar, & Salapaka, 2018; Talukdar, Bhaban, & Salapaka, 2017)
and hence computation, i.e., a finite-time Landauer bound, as well
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as assessing the efficiency of thermodynamic engines operating at
maximal power.

The question of efficiency at maximal power was studied inde-
pendently by Chambadal (1957), Curzon and Ahlborn (1975) and
Novikov (1958) based on a certain “endoreversible” assumption
to reflect finite-time heat transfer. They derived the bound ncy =
1— JT./Ty, = 1 — /1 —nc, where the T, and T, designate
temperatures of a hot and cold heat reservoir, respectively, at
maximal power estimated to be k(+/T, — «/T.)?, with k being
the heat conductance. Subsequent works, most notably by Chen
and Yan (1989), based on differing sets of assumptions, arrived
at different bounds. More recently Schmiedl and Seifert (2007),
sought to improve, and reconcile these earlier results within the
framework of stochastic thermodynamics, albeit for thermody-
namic ensembles transitioning between Gaussian distributions. It
is fair to say that there is no consensus on the firmness of these
expressions, and that they serve as a guide to actual performance
of thermodynamic engines.

The present work focuses on maximizing power in general,
relaxing the Gaussian assumption, within the context of stochas-
tic thermodynamics (Seifert, 2012; Sekimoto, 2010). This is a
stochastic control problem. Our analysis is based on an over-
damped Langevin model for thermodynamic processes (with
damping coefficient y), and explores advantages and pitfalls
of selecting arbitrary control input, i.e., confining potential, for
steering thermodynamic ensembles through cyclic operation
while alternating contact between available heat reservoirs. It
is noted that without physically motivated constraints on the
actuation potential, the power output can become unbounded.
The salient feature of actuation (time-varying potential U(t, x),
with t denoting time and x € RY the spacial coordinate) that
draws increasing amounts of power is its ability to drive the ther-
modynamic ensemble to a state of very low entropy. Indeed, the
magnitude of the spatial gradient of the potential V,U(t, x) plays
a key role. Thus, it is reasonable on physical grounds to suitably
constrain this mode of “control” actuation, that is responsible for
energy exchange between the ensemble and the environment.
The present work puts forth and motivates the bound’ (Eq. (49))

1
1 f IVU(E X)2p(E, x)dx < M,
Y Jrd

where p denotes the thermodynamic state, as a suitable such
constraint, and under this assumption it is shown that a maximal
amount of power output that can be extracted by cyclic operation
of a Carnot-like engine is

T;
Mgy (E20) <p < M)
8 T, hp1)” ™78 '

. M, T)
That is, the upper bound 3 ( ﬁ —1) on power output only depends

on M and the temperature of the two heat baths.” Moreover, this
bound can be attained within a factor of (72 — 1)/(7% + 1), which
depends only on the ratio of temperaturescof the two heat baths
as well.

The exposition proceeds as follows. Section 2 details the
stochastic model thermodynamic ensembles and the heat/energy
exchange mechanism. Section 3 is a brief overview of optimal
transport theory, on which the main results are based. Section 4
explores a connection between the second law of thermodynam-
ics and the Wasserstein geometry of optimal mass transport that

1 Interestingly, this can also be expressed in information theoretic terms, as
a bound on the Fisher information of thermodynamic states.

2 general power output is an extensive quantity, as it depends on the size of
the thermodynamic ensemble/engine. However, in our treatment, the ensemble
is described by a probability distribution (normalized). Hence, the bounds appear
as “intensive”.
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underlies the mechanism of energy dissipation in thermodynamic
transitions. Section 5 returns to the concept of a cyclically oper-
ated thermodynamic engine and expresses the optimal efficiency
and power output as functions of the operating protocol (solu-
tion of a stochastic control problem that dictates the choice of
control time-varying potential), temperature of heat reservoirs,
timing of the cyclic operation, and thermodynamic states at the
end of phases of the Carnot-like cycle. Section 6 contains the
main results regarding seeking maximal power output. Specifi-
cally, Section 6.1 explains optimal scheduling times, Section 6.2
highlights questions that arise based on physical grounds for
Gaussian thermodynamic states, Sections 6.3 and 6.4 discuss
optimal thermodynamic states at the two ends of the Carnot-
like cycle, and Sections 6.5 and 6.6 derive bounds on maximal
achievable power with or without constraint on the controlling
potential. A concluding remarks section recaps and points to
future research directions and open problems.

2. Stochastic thermodynamic models

We begin by describing the basic model for a thermodynamic
ensemble used in this work. This consists of a large collection of
Brownian particles that interact with a heat bath in the form of a
stochastic excitation and driven under the influence of an external
(time varying) potential between end-point states. The dynamics
of individual particles are expressed in the form of stochastic
differential equations.

2.1. Langevin dynamics

The (under-damped) Langevin equations

ax, = Pae (1a)
m

dp, =_VXU(t,x[)dr—%ptdth/zyk,sr(t)d&, (1b)

represent a standard model for molecular systems interacting
with a thermal environment. Throughout, X, € R¢ denotes the
location of a particle and p; denotes its momentum at time ¢,
U(t, x) denotes a time-varying potential for x € R%, m is the mass
of the particle, y is the viscosity coefficient, kg is the Boltzmann
constant, T(t) denotes the temperature of the heat bath at time
t, and B; denotes a standard R¢-valued Brownian motion.

In this paper, we consider only the case where inertial effects
in the Langevin equation (1b) are negligible for the time reso-
lution of interest. Specifically, for temporal resolution At > =
and small particle size, the dynamics reduce to the over-damped
Langevin equation

ZkBT(t)

1
dXt = —7VXU(t, X[)dt + dBt (2)
Y
Intuitively, Eq. (2) is obtained from (1b) by setting dp; = 0
and replacing %‘dt = dX;. For a more detailed explanation see

Sekimoto (2010, page 20).

Thus, we view {X;};>o as a diffusion process. The state of the
thermodynamic ensemble is identified with the probability den-
sity of X;, denoted by p(t, x), which satisfies the Fokker-Planck
equation

ap 1
5 - ;vx . [(VXU + kBTVX lng)P ] =0. (3)
Remark 1. The under-damped Langevin equation (1) is the most

common dynamical model for a particle immersed in a heat
bath (Sekimoto, 2010); alternative models can be based on e.g., a
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Table 1

Symbols and corresponding units.
Definition Notation Units
Time t s
Position of particle X; m
Boltzmann constant kg N m
Damping coefficient y N s/m
Potential u(t, x) N m
Temperature T °K
Brownian motion B s%
Density in RY o(t, x) m~
Velocity field in RY u(t, X) m/s
Wasserstein metric, length Wa (e, ) Lotitp) m
Entropy S(p) N m
Work (particle/ensemble) W, w N m
Heat (particle/ensemble) Q, 2 N m
Energy (particle/ensemble) u, e N m
Free energy F N m
Bound in (49) M N m/s
Power P N m/s

Poisson process for the thermal excitation, space-dependent vis-
cosity coefficient, and possibly nonlinear effects of an interaction
potential. It has been used to model e.g., colloidal particles in
a laser trap, enzymes and molecular motors in single molecule
assays, and so on Seifert (2012). In the present work, we fol-
low recent literature (Argun et al.,, 2017; Dechant et al.,, 2017;
Gomez-Marin, Schmiedl, & Seifert, 2008; Park, Chun, & Noh, 2016;
Schmiedl & Seifert, 2007) where, besides Brownian excitation, the
focus on constant viscosity coefficient y.

2.2. Heat, work, and the first law

The evolution of the thermodynamic ensemble under the in-
fluence of the time-varying thermal environment and the time-
varying potential U(t, x), leads to exchange of heat and work,
respectively. Heat and work can be defined at the level of a single
particle as explained below.

The energy exchange between an individual particle and the
thermal environment represents heat. This exchange is effected
by forces exerted on the particle due to viscosity (—y - ) and
due to the random thermal excitation («/ZkaTdd%‘) It is formally
expressed as the product of force and displacement

)/7 + vV 2]/](3

in Stratonovich form. Usmg (2), formally,

OdXt

dX; n
Y ar
which leads to the expression dQ = V,U(t, X;) o dX; for the heat;
see Sekimoto (2010, Chapter 4.1) for a more detailed exposition.
Then, bringing in the Itd correction, we arrive at

keT(t)

dB;
ZVI(BTH = VXU(t, Xt),

1
dQ = —— | VRU(t. Xo)|2dt + AU(t, X,)———dt
Y

2y T(t
v X, [ 2T g

te
Note that we use d, as in the case of not-perfect differentials,
to emphasize that fdQ depends on the path and not just on
end-point conditions.
The work transferred to the particle by a change in the actu-
ating potential is taken as’
ou

St Xode. (4)

aw =

3 This particular formula for the work has been the subject of considerable
debate (Horowitz & Jarzynski, 2008; Peliti, 2008a, 2008b; Vilar & Rubi, 2008).
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Thence, since the internal energy is simply the value of the
potential, the first law of thermodynamics, dU(t, X;) = dQ + dW,
holds.

Accordingly, for a thermodynamic ensemble at a state p(t, X),
the heat and work differentials are

we[[Cmoreas)osde o
U oy dx} dt, (5b)

leading to the first law for the ensemble d&(p, U) = dQ + dw,
where the internal energy is

etp.v)= [ Uupax (50
rA

and depends on p, U, whereas Q, W depend on the path.

2.3. Summary notation

As usual, R? denotes the d-dimensional Euclidean space, for
d € N, with (x,y) and ||x]| = +/(x,X) denoting the respective
inner product and norm, for x,y € RY. Throughout the paper,
the stochastic differential equations are stated in It6 form, unless
the Stratonovich integration notation o is used explicitly. The
Gaussian distribution with mean m and covariance X is denoted
by N(m, X'). For convenience we provide Table 1 of the various
quantities, including the corresponding units in SI format: New-
ton (N), seconds (s), meter (m), absolute temperature in degrees
Kelvin (°K).

3. A brief excursion into optimal mass transport

As it turns out, dissipation in Langevin models (2) is closely
linked to the path that a thermodynamic ensemble traverses. This
path is seen as a trajectory in the space probability distributions
and its length, that quantifies dissipation, is metrized by the
so-called Wasserstein metric. Thus, we now embark on a brief ex-
cursion into the basics of optimal mass transport so as to provide
context for needed results in Wasserstein geometry—the perti-
nence of the Wasserstein metric to thermodynamics has been
recognized in Aurell, Gawedzki, Mejia-Monasterio, Mohayaee,
and Muratore-Ginanneschi (2012), Aurell, Mejia-Monasterio, and
Muratore-Ginanneschi (2011), Chen, Georgiou, and Tannenbaum
(2020), Dechant and Sakurai (2019), Jordan, Kinderlehrer, and
Otto (1998) and Seifert (2012).

We denote by P,(R?) the space of probability distributions
with finite second-order moment. We utilize the notation du to
signify a probability measure while we write du(x) = p(x)dx
to signify that du is absolutely continuous with respect to the
Lebesgue measure dx with p the corresponding probability den-
sity.

For djuig, dpuq € Po(RY), the 2-Wasserstein distance

mwell(po.1t1)

Wz(Mo,M1)i=\/ inf /IIX—YI|2dﬂ(X,J/), (6)
R xRA

where IT(t, 1) denotes the set of probability measures on the
product space RY x R? with pg, 1 as marginals, is a bona fide
metric on the space of distributions. This metric, in fact, induces
a Riemannian-like structure as we explain below.

The expression f lIx — yl|>dm(x, y) above is a relaxation of the
transportation cost

/ lx —w

in Monge’s problem (Villani, 2003) to be minimized over maps
¥ that transfer the “mass” distribution o into w1, i.e., such

X2 dpo(x)
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that [, du; = f,- 1(4) @0 over measurable sets A. This relation

is denoted by ¥Hug = w;. In case the two measures admit
densities, it can be expressed via the change of variables formula
det(Vy¥(x))p1(¥(x)) = po(),

for the respective p;’s (i € {0, 1}). In fact, in this case where
both measures admit densities, the support of the optimal 7 in
(the convex problem) (6) coincides with the graph of the unique
minimizing map ¥ : R — R? for Monge’s problem. Further, the
optimal ¥ is the gradient of a convex function v on R? (Villani,
2003, Ch. 5), i.e.,, ¥ = V, . Interesting, being a gradient “vector
field”, ¥ is curl-free, which in itself characterizes optimality.

We now sketch how P,(RY) can be equipped with a
Riemannian-like structure, while we refer to Ambrosio, Gigli,
and Savaré (2008) for a rigorous exposition. For brevity and for
notational convenience, we are only concerned with distributions
that admit densities and use the simplified notation p € P,(RR9).

Consider an “infinitesimal” perturbation p + 8 € P,(R%) and
the solution ¢ to the Poisson equation

Vi - (pVap) = —

The map ¥ = Id + V,¢, where Id denotes the identity map,
optimally transports p into p + 6 as (Id + Vid)ip =~ p + 6.
Alternatively, v = V,¢ can be viewed as a velocity field effecting
transport as p — Vi - (pv) = p + 4.

Thus, the correspondence § — V¢ identifies tangent di-

rections 8 on P,(RY), ie. rates of change %—’; = § about a

given density p, with an (optimal) corresponding velocity field
Vi¢. Hence, it is natural to consider the (twice) average “ki-
netic energy” to defme a metric on tangent directions on P,(RY).

Specifically, if §; = 3[, for i € {1,2}, represent two tangent

directions at p, we define the inner product

ap dp

(> —w 'Z/ (Vxo1, Vi) p dx, (7)
8 8t2 RrRd

where the ¢;’s solve V, - (pVy¢;) = —g—g. The associated norm is
ap 8,0 ap

|| ||w (= FTRAFT: ——w

Consider Pl ] = {o(t, ) € PLRIt € [t;, te]} as a curve (path)
in P,(R%). Two quantities of interest are its length,

ot :=/; ” | (8)

and the kinetic energy integral (action) along the path

mr, ] ::f ” “w (9)

(modulo a factor of 5). It can be seen that

z/>[ri.tfj = min (tf - ti)-Ap[[ivtha

over time-parametrizations of the path, with the minimum corre-
sponding to constant velocity. Moreover, the minimal path-length
between two end-points o, and Py turns out to be precisely
Wa( oy, Py ), and thus, P,(RY) is a length space, Ambrosio et al.
(2008) and Villani (2003, Chapter 8).

We conclude with an important inequality linking the Wasser-
stein metric to information functionals. Consider a reference
probability distribution dm = e~Vdx € P,(R?), with V(x) having
Hessian V2V > kI for k € R, and du = pdm also in P,(R?). The
relative entropy and Fisher information functionals, respectively,
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are defined by

H(ulm) == / plog(p) dm (10a)
Rd

k) = [ 19, Iog(o)p . (10b)
R

These are linked to the Wasserstein distance via the following

HWI* inequality (Gentil, Léonard, Ripani, & Tamanini, 2019; Otto

& Villani, 2000),

H(palm) < W1, w2)v/I(p1lm)

2

K
—?Wg(l/«h 2),

H(pq|m)—

Vi, pa € Po(RY). (1)
4. The second law, dissipation, and Wasserstein geometry

Next, we discuss the second law of thermodynamics in the con-
text of an ensemble of particles obeying over-damped Langevin
dynamics (2) for a heat bath with constant temperature T(t) = T.
The classical formulation of the law amounts to the inequality

W — AF >0, (12)

where W = fttf dw is the work transferred to the ensemble over
a time interval (t;, tr), and AF is the change in the free energy*

Flp,U) = &(p,U) = TS(p) (13)

between the two end-point states, see Owen (2012) and Parrondo
et al. (2015). Here,

S(p) = —kg f log(p) p dx (14)
Rd

denotes the entropy of the state p, and U the potential.

Inequality (12) becomes equality for quasi-static (reversible)
thermodynamic transitions. In general, for irreversible transi-
tions, the gap in (12) quantifies dissipation. Interestingly, alter-
native formulations that shed light into irreversible transitions
have recently been discovered. A most remarkable identity was
discovered by Jarzynski in the late 90’s (Jarzynski, 1997b) to hold
for irreversible thermodynamic transitions between work and
free energy, in the form,

E {e‘ﬂw} — e P —

where the expectation is taken over the probability law on paths,
W = f dW represents the work along trajectories of individual

particles, and AF,y = —p~ 1log( ) signifies the difference of

the equilibrium free energy —8~ llog(Zt) at the two end-points
in time t € {t;, tr}. Here, Z, = [.4e PU"Ydx where, as usual,

B = 1/kgT. In Jarzynski’s original derivation (Jarzynski, 1997a,
1997b) of the Jarzynski equality, the notions of work and heat are
in alignment with the ones used in this paper, though (Jarzynski,
1997a) considers more general stochastic dynamics satisfying one
type of detailed balance condition (Jarzynski, 1997a, Section 1).
Interestingly, the Jarzynski equality holds even for an alternative
notion of work, see e.g., Kurchan (1998).

While the Jarzynski relation establishes equality between the
above functional of the work and free energy differences, it does
not allow quantifying the actual expected work performed on

4 The free energy represents the amount of energy that can be delivered
at temperature T with fixed potential U. However, a rather revealing re-
write of the free energy is as the relative entropy (KL-divergence) between
the current state p and the Gibbs distribution pginps(x) = e PU®/Z, with
B=1/kT and Z = [ e‘ﬁ” ¥dx the partition function. Specifically, 7(p, U) =

B! foa log( 5295 )p(x)dx — B log(Z).

PGibbs
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the ensemble. An alternative identity that quantifies explicitly the
gap in (12) holds for irreversible thermodynamic transitions. This
identity is (cf. Theorem 1)

[f 8,0 2
W—A}':y/ 1222, e, (15)
g Ot
——
dissipation
which is y times A, . the action integral along the time-

parametrized path traversed. Thus, if the path is selected as a
“constant speed” W,-geodesic,

14 2
W (o, 16
bt 2(,0q Ptf) (16)

W— AF =

quantifies the least amount of work needed for transition be-
tween specified end-point thermodynamic states, or the maximal
work that can be drawn. We recap the key points below.

Theorem 1. Consider thermodynamic transitions between states
Ptir Pty under constant temperature T and a time-varying potential
U for the overdamped Langevin model (2). Then,

Y 2

W—AF > .
st tf _ ti p[ti.tf]

(17)

Relation (17) holds with equality for a path of the thermodynamic
ensemble chosen to be a constant speed W,-geodesic, effected by a
suitable potential, a choice that corresponds to minimal dissipation.

Proof. We first derive (15), cf. Graham (1978) and Pavon and
Ticozzi (2006) for similar computations with time independent
potential. Consider
dF

d
Z(p.U)=— U)—
ar (P U) =4 0. U)

U 9
=/ —,odx+/ (U + kgT(1 4+ log p)) —pdx.
rd Ot Rd Jat

d
Ti
dtS(p)

Using the Fokker-Planck equation (3), the second term
1
/(U—l—kBT(l—f-log 0)) ;VX~[(VXU+kBTVX log p)p]dx
R4

1
= _7/ IViU + kT Vy log p||%p dx
YV Jrd

= —J// lvl?p dx,
R4

where the first equality follows using integration by parts (under
standard assumptions on the decay rate of p at infinity), while
the second equality is a re-write using’

1
V= —7(VXU =+ kBTVx logp) (18)
Y

Thus, %(p, U)= fpa %p dx — y [ra [vII?p dx. Integrating over
[t;, t] yields

&
A}':W—y/ f llvll2p dx dt, (19)
t; Rrd

where v is the gradient of ¢ = —%(U—i—kBT log p) and satisfies the
continuity equation V - (pV¢) = %—f as claimed. This establishes
(15).

The inequality (17) follows from the fact that the W,-length of
the path Plt; ] (i.e., as a curve in P,), is given by (8). Specifically,

5 We note that v is known as Nelson’s current velocity (Chen, Georgiou, &
Pavon, 2016).
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2

provided [4[[v|?p dx = «® remains constant along the path

(e, for t € [t;, t7]),
! 0
m Pltitp)*

and the claim follows. If on the other hand the kinetic energy
varies with time, then the path p(t, -), time-reparametrized by
. Lo,
Be) = 4 (g — 1)+ 1
P[ti,tf]

will be traversed via a velocity field
o~ v(t) eo{r,-,u
B(E(t)) = 3
lo(Oll, tr — &
Knowing v, a new potential U can be computed so that o(f, ) =

V, U(E, -) + ks T Vy log(p(E, -)). Finally, equality in (17) holds when
taking Pit; 1 to be a geodesic (Villani, 2008). O

Remark 2. Early work by Jordan et al. (1998), pointing out
that the gradient flow of the free energy in W, is the Fokker-
Planck equation, set the stage for understanding the role of the
Wasserstein geometry in quantifying dissipation. This fact was
recognized in Aurell et al. (2012, 2011), Seifert (2012) and more
recently developed in Chen et al. (2020) and Dechant and Sakurai
(2019).

5. Cyclic operation of engines

We consider two types of thermodynamic transitions, isother-
mal and adiabatic. The first corresponds to a situation where the
system remains in contact with a heat bath of constant temper-
ature T while a time-varying potential steers its thermodynamic
state p(t, .) from an initial p(t;, -) to a final p(ts, -). The adiabatic
transition amounts to abrupt changes in both, the temperature of
the heat bath as well as the shape of the potential, that are fast
enough not to have any measurable effect on the state p(t, .) and,
as a consequence, to the entropy of the ensemble. We evaluate
next the energy and work budgets in the corresponding actuation
protocols.

5.1. Isothermal transition

We consider transition between states p,; and Py for the
ensemble modeled by (2), over a time interval [t;, tf], under the
time-varying potential U(t, X;) and in contact with a heat bath
of temperature T. Using the relationship (15) between work, free
energy, and the dissipation, and the first law, we have the fol-
lowing identity relating thermodynamic quantities in isothermal
transitions

W =AE —TAS + Wiy
Q=TAS — Wirr

(20a)
(20b)

with the irreversible Wi that represents dissipation attaining its
minimal value

Y
tr —

by the choice of actuation V,U(t,-) in (18) with v the opti-
mal velocity field minimizing dissipation in (15) (item (iii) in
Theorem 1).

It is important to note that the minimizing v can be obtained
by solving a convex reformulation of (15) in terms of the density

Wa(py;, oy ) (20c)
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p(t, -) and the momentum field p(t, -) = v(t, -)p(t, -), in the form
l)(tmm[ )/tf/ Md dt (21a)
subject to a— +Vy-p=0 (21b)
and po(t;, -), p(ty, -) specified. (21¢)
Then, v = p/p, see Benamou and Brenier (2000, Section 4)

and Villani (2003, p. 241).
5.2. Adiabatic transition

We now consider transition between p;, and Py for the en-
semble modeled by (2), over a time interval [t;, t], under abrupt
changes in the potential U(t, -) and the temperature T of the heat
bath.

The transition takes place over an infinitesimally short time
interval about time t (with t~/t" indicating the left/right limits,
respectively). Thus, the temperature T of the heat bath jumps
between values T(t~) and T(t") while, at the same time, the
controlling potential switches from U(t™, -) to U(t™, -).

The energy budget of the transition no longer contains irre-
versible losses, as the right hand side of (15) vanishes. Moreover,
the entropy of the ensemble remains constant. Thus, the work
input into the system equal to change in internal energy,

W= / (Ut x) — U™, x)p(t, x)dx = AE, (22a)
R4

and therefore no heat transfer takes place, and therefore,

0=0. (22b)

5.3. Finite-time Carnot cycle

We are now in position to consider a complete Carnot-like

thermodynamic cycle where the ensemble is steered between two
states p; and pp during isothermal expansion (from p, to pp)
and contraction (from p, to p,) phases, separated by adiabatic
transitions. Periodic operation about such a scheduling is sought
as a means to extract work from a heat bath. A schematic in Fig. 1
depicts the phases of the cyclic operation. These four phases are
described in detail next.
(1) Isothermal process in temperature T}, (“hot”): The first step
is an isothermal expansion over the time interval (0, t;) in contact
with a heat bath of temperature T = Tj. Change in the potential
steers the ensemble from a starting state p, to a terminal state
pb. As in (20),

W = Ae® — 1, A8M 4 W)
o = 1,480 — WY

r

(23a)
(23b)

where the superscript enumerates the phase in the cycle, and the
minimal work loss Wi(r]r) depends only on the end-point states as
it equals

Y
W = LWy, po)?. (23¢)
1

(2) Adiabatic process: The second phase of the cycle is an adia-
batic transition at time t = t;, over an infinitesimal interval (of
duration “t, = 0”), bringing the ensemble in contact with a heat
bath of temperature T, (“cold”). As in (22),

w2 = Ag@
Q(Z) -0

(24a)
(24b)

while the state remains at pp.
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u(0*,x) 'U(t; X)

(1)
Ut +t5,%) @)

Fig. 1. Carnot-like cycle of a stochastic model for a heat engine (with d = 1):
the operation cycles clockwise through two isothermal transitions (1) and (3),
and two adiabatic transitions (2) and (4). During the isothermal transitions
having duration t; and t3, the ensemble is in contact with a “hot” reservoir of
temperature Ty, and a “cold” one of temperature T., respectively. The adiabatic
transitions are considered to be instantaneous, i.e., t; = t4 = 0. The marginal
densities are p, and pp.

(3) Isothermal process in temperature T. (‘“cold”): The third
step is an Isothermal contraction over the time interval (ty, t;+t3)
while in contact with a heat bath of temperature T.. Actuation
in the form of the time-varying potential causes the state of the
ensemble to return to p, back from starting at p,. Once again, as
n (20),

W = Ae®) — T, 48P + WY (25a)

Q¥ =T A% - (25b)
Y

Wi = & Waloo ob ). (25¢)

(4) Adlabatlc process: Finally, an adiabatic transition over an
interval of infinitesimal duration (“t; = 0”) returns the ensemble
to be in contact with a heat reservoir of temperature Ty, for a total
period of the cycle tyerioa = t1 + t3. The state of the ensemble
remains at pg, to begin the cycle again. As before, in (22),

w = Ag@
Q(4) =0

(26a)
(26b)

5.4. Thermodynamic efficiency & power delivered

For a cyclic process the total change in internal energy

4

> ag® =o.

i=1

On the other hand, the entropy does not change during the
adiabatic transitions

ASW =0, fori=2,4,

while, since it depends only on the end-point states

ASD = —AS®) = S(pp) — S(pa) =: AS.

As a result, the total work output is

4 4
= A0 N TA80 4y Tl
(e prasns ot )

= (Th — T)AS — Wi — W0,

T r
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Thus, assuming optimality of the choice of the potential to min-
imize Wy, in each transition, we conclude that the total work
output possible is

W= (5~ T)AS = Y- + - Walpus (28)
Since T, > T, naturally, a necessary condition for positive work
output is that AS := S(pp) — S(ps) > 0 which dictates that
phase 1 is an isothermal expansion and phase 3, an isothermal
contraction.’

The thermodynamic efficiency of an engine is the ratio of work
extracted over the heat dissipated,

-W
On
where the heat input during isothermal expansion is

n= (29)

Op = AQ(U = ThA'S — Wirr-

Once again assuming optimality (Wi =
bound on the efficiency is seen to be

(Th = TAS — y (& + £ )Wa2(pa, pb)°
ThAS =y - Wa(pa. pb)?

When the period of the cyclic process tends to infinity (and hence,
t1, t3 — 00), tends to the Carnot limit for quasistatic (infinitely
slow) transitions nc = 1 — %

Periodic operation, over a finite period t; + t3 (since t; = t4 =
0), delivers

& Walpa, pp)?). the

n= (30)

P=-wW/(t; +t3)

(Th = T)AS = y (& + £ )Wa2(pa, pb)’° 1)
B ti +t3
units of power. Note that the power output is zero when Carnot
efficiency is achieved, because the total duration t; 4+ t; — oc. In
the sequel, we focus on assessing bounds on available power.

6. Fundamental limits to power

Our main interest is in assessing the maximal amount of
power that can be drawn by a thermodynamic engine operating
between heat baths with temperatures T, and T, < Ty, i.e., “hot”
and “cold”, respectively. In the present work we draw conclusions
based on the basic model in (2) via analysis of the thermodynamic
cycle that was presented in Section 5.

Consider the expression in (31) for the power that can be
drawn via a cyclic operation as discussed. Preparation of the
ensemble, and actuation during the cycle, allow a number of
choices. Specifically, the power depends on the period t; + t3,
the times of the two isothermal phases t1, t3 individually, as well
as the end-point states (distributions) p,, pp. The latter choice
impacts both, the Wasserstein distance W,(p4, op) as well as the
change in entropy AS. We will explore systematically the various
options.

6.1. Optimizing the time scheduling

Optimizing the maximal power delivered during cyclic opera-
tion

1 y )
P=—(T, — T.))AS — —W, R R
f +l'3( h c) s 2(Pa> pb)

6 The opposite would be true if we sought to operate the cycle for
refrigeration purposes.
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with respect to choices for tq, t3, with W(pq, op), T, Tc and AS
kept fixed, gives that

_ 4yWy(pa, pp)

ty =t3 = s 32
1=B= T n T As (32)
and therefore that the period for the cycle is

8y Wa(pa, 0b)*
leyle ==t + 13 = 270- (33)

(Th - TC)AS

If instead we specify the period of the cycle tcyce, and optimize
with respect to the breakdown between t; and t3, we once again
obtain that the durations of the two phases are equal

tcycle

t)=t; = R (34)

Remark 3 (Efficiency at Maximum Power). The thermodynamic
efficiency (29) of the engine, when it is operating at optimal
transition times (32) that maximize the power, is equal to

2Ty — Tc) Nc

3T+ T, 2- %

This result appeared in Esposito, Kawai, Lindenberg, and Van den
Broeck (2010a), and Schmiedl and Seifert (2007) for the case of
Gaussian marginals pg, pp and potential U(t, x) that is quadratic
in x. Our derivation establishes (35) in a general setting.

nss

Using the expression (33), the total power delivered
Ty — T, )2 As 0\
p= Tn=To) ( > : (36)
16y W2 (pa, pob)

But as we will see in Section 6.2, optimizing the power for pq, pp
leads to the non-physical conclusion of a vanishingly small tcyce.

6.2. The caveat of optimal teyce: Gaussian states pq, Py

The case where the two marginal distributions/states are Gaus-
sian allows for closed-form expressions for AS and their Wasser-
stein distance. Indeed, if p,, pp are Gaussian distributions with
zero mean and variances X, X, respectively, then

Wa(pa, pp)* =trace(Z,+ 2 —2( 2?5, 2,/*)'/?) (37a)

AS = S(pp) — S(pa) = %kg log det(Z, 2,7 1). (37b)
Evidently, these allow deriving explicit expressions for the avail-
able power in terms of the respective variances.

Specializing to the case of scalar processes with o; (i € {a, b})
the corresponding standard deviation, i.e., X; = aiz, and period
teyle for the thermodynamic cycle as in (33), we obtain that the
maximal power available, as a function of o, and oy, is given by

2
KX(T, — T.? [ log2
P(og, o) = (LT —Te) ) (38)
16
Y Op — Og

The corresponding heat uptaken from the hot reservoir and the
work extracted during one cycle are

1
Q(l) =Oh= 7’(3(3Th + TC)lOg ﬂ
4 Oa
and
1 Op
—W = 7kB(Th —_ Tc)log )
2 Oq

respectively.
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The maximum of the power P(oy, 0},) over either og, or oy,
takes place when o, = o},. But at this limiting condition, although

KX (T — T.)?
max P(oq, 0p) = ky(Th = Ty

39a
o 16y 07 (39)

and the rate with which heat is drawn is
Qn  kg(3Th + T )(Th — Tc)
B 32y0}

the limiting values of —AW, Qp, over a cycle vanish, as does the
period feyce Of the cycle. Thus we are led to a non-physical situ-
ation of a vanishingly small period for the thermodynamic cycle.
A similar issue in the context of power in quantum engines is
brought up in Esposito, Kawai, Lindenberg, and Van den Broeck
(2010b). In the setting herein, in addition, it is seen that taking

lim

ob—=0a Leycle

’

o, — 0

and operating with a vanishingly small period for the cycle,
leads to infinite power. Once again, bringing up a non-practical
situation that is questionable on physical grounds. In the sequel
we focus on teyce being finite.

6.3. Optimizing the thermodynamic state py

Henceforth we fix the period tcye as well as the duration of
the isothermal phases according to (34). The power delivered, as
a function of the p;'s (i € {a, b}), is

(Th - Tc)

4y )
(S(pp) — S(pa)) = 5—W2(pas )" (40)

tcycle cycle

We now consider the problem to maximize power over choice
of pp, with p, specified. This problem reduces to finding a suitable
minimizer of

min(W(pq, b)Y — hS(op)) (41)

for h = fcycle(Th—Tc)

Throughoﬂt we assume that states have finite second-order
moments. As noted earlier, the space of probability distributions
(measures, in general) with finite second-order moments P,(R%)
is metrized by the Wasserstein metric W;(-, -) and, as can easily
be verified, the expression

Wa(pa, pb)* — hS(pp) (42)

is strictly convex, which leads to the following statement.

Proposition 1. Assuming that Ty, T, as well as teyce and an initial
state p, € Po(R?) are specified, there exists a unique minimizer pj

of (41).

Proof. Eq.(41)is similar to one step in the so-called JKO-scheme
(also, proximal projection) that displays the heat equation as the
gradient flow of the Shannon entropy (Jordan et al., 1998). While
W1 (pa, pp)* — hS(pp) is strictly convex, it is not automatically
bounded from below. Thus, a rather extensive and technical argu-
ment is needed to show existence and uniqueness of a minimizer.
This is detailed in Jordan et al. (1998, Proposition 4.1). O

We conclude this section with two statements. The first es-
tablishes implicit conditions for optimality of pp, in maximizing
the expression in (40) (equivalently, minimizing (42)). For ease
of referencing we view the expression in (40) as a function of pj,
namely,

(Th_Tc )

4y 5
(S(pp)—S(pa))— 5—Wa(pa, pb)" (43)

tcycle cycle

flop):=
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The following lemma provides stationarity conditions for f(pp)
that, albeit, are implicit in that they involve the optimal transport
map from p, and p, that minimizes quadratic transportation
cost (Villani, 2003, Ch. 5).

We first highlight stationarity conditions that characterize the
minimizer of f(-) in (43).

Lemma 2. Consider two probability densities p,, p; in Py(RY),
where p; is the unique maximizer of f(pp), and let Vi, for a
convex function ¥ on RY, be such that Vyrtp, = p;- The following
(stationarity) condition holds

8y

kg(Th — Tc)Vxlog oy (¥) —
tcycle

(Vxy)™' = 1d) () =0, (44)
where Id denotes the identity map.

Proof. The proof is given in Appendix A.1. O

The lemma, which is of independent interest, is used in the
proof of the following proposition concluding the section. The
proposition states that, for scalar distributions for simplicity, if
pa is Gaussian, then so is pp. As a consequence the optimal
actuation protocol is based on a time-varying potential U(t, X)
that is quadratic in x.

Proposition 3. If p, is a one-dimensional Gaussian distribution
with zero mean and variance o2, then pj; is also Gaussian with zero
mean and variance o}, where

1+4/1+4+c
o= X VI¥E (45)
2
_ kp(Th=Tc)teycle
and c = e

Proof. The proof is given in Appendix A.2. O

Remark 4. In earlier works, it is commonly assumed that the
marginal distributions pg, pp are Gaussian and the potential func-
tion U(t, x) is quadratic in x. Proposition 3 justifies this assump-
tion to some extent: if p, is specified to be Gaussian, the optimal
pp and the optimal potential function that achieve the maximum
power, are Gaussian and quadratic, respectively. However, as we
will see in Section 6.4, if instead pj is specified as Gaussian dis-
tribution, the optimal p, is not Gaussian. Gaussian distributions
turn out instead to be local minimizers of the power under certain
conditions (see discussion following Remark 5).

6.4. Optimizing the thermodynamic state pq,

We now consider the dependence of the maximal power on pg,
i.e,, on the thermodynamic state at which the ensemble begins its
expansive phase. As we will see, the situation is not symmetric
to the conclusions drawn in Section 6.3 with regard to p, and,
without further assumptions, an optimal p, does not exist. In-
terestingly, on closer inspection, the source of this conundrum
is the unreasonably high demands on the magnitude of V,U for
the controlling potential U(t, x). The insights gained lead to the
framework for maximal power in the follow up section.

For simplicity, and without any loss of generality for the
purposes of this section, we assume that p, is specified to be a
zero-mean Gaussian distribution with standard deviation o}. In
view of (40), a choice of p, that is close to a Dirac delta distri-
bution allows arbitrarily large negative values for the entropy,
i.e., S(pq) >~ —o0, and hence infinite power.

Thus, it is natural to impose a lower bound on the entropy of
Pa, or simply fix —oo < s = S(pg) < S(pp). But in this case, and
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once more in view of (40), maximal power would be drawn by
minimizing W3(pq, pp) over probability densities p, with entropy
Sq. We claim that

iBf{WZ(Paa o) | S(pa) = Sq > —00} = 0. (46)
To see this note that
i;lsz(pa, ) =0

by taking p, to approximate an increasingly fine train of suitably
scaled Dirac deltas, i.e.,

palX) Y pid(X)

i€Z
where p; = fx i1 pp(x)dx and x; (i € Z) equispaced. The latter
is a singular distribution which, however, can be approximated
arbitrarily closely in W, by a probability density with any given
entropy. Such a density can be produced by approximating Dirac
deltas by a piecewise constant function with finite support.

The optimization problem (46) is inherently related to the con-
tinuity of the entropy functional with respect to the Wasserstein
distance. For a rigorous treatment of the problem, see Polyanskiy
and Wu (2016), where it is shown that unless certain regularity
assumptions are in place for p, and pp, the infimum in (46) is
zero.

Remark 5 (Gaussian is not Optimal for p,). The preceding ar-
guments show that a Gaussian distribution is not the optimal
choice for p, with respect to maximizing power, even when pj
is Gaussian, unless additional constraints are introduced.

Since the Gaussian distribution maximizes entropy when mean
and variance are specified, it is natural to explore constraints
on the mean and variance of p, for the purposes of maximizing
power. Without loss of generality, the mean can be assumed to
be zero and the variance specified to be 0? < of. First-order
and second order optimality analysis for the power output (40),
at p, = N(0, 02) can be carried out. It turns out that, although
N(O, oaz) satisfies the first-order optimality condition, it does not
satisfy the second-order optimality condition. In fact, N(0, 62) is
only a local minimizer when o, < 0 < kg(Tp — T¢)teycle /(8 04).
The analysis, detailed in Appendix A.3 of the arXived preprint (Fu,
Taghvaei, Chen, & Georgiou, 2020), aims to highlight that the
conjecture of a Gaussian p, being optimal fails. In hindsight,
this is not surprising. Maximizing power over p, is equivalent to
minimizing the entropy of p,. Minimizing entropy under a fixed
variance constraint does not lead to a Gaussian distribution since
two Dirac delta distributions with the desired mean and variance
achieve negative infinity entropy.

6.5. Maximum power with arbitrary potential

In this section, we show that the power output of a thermody-
namic engine, under any choice of potential U(t, x) cannot exceed
a bound that involves the Fisher information of the marginal state

Pa.
Proposition 4. Under the standing assumptions on the Carnot-like
cycle, the power output (40), is bounded by

20T T \2
- ke(Tp — T¢)
- 16y

p I(padx|dx). (47)

Proof. It is a consequence of the HWI* inequality (11) (see
supplemental proof in Appendix A.3) that

S(pp) — S(pa) < kgW3 (04, ob)v/I( padx|dx). (48)
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Using the formula for power (40), we have

b Mi=T)As 4y 4S8
T leyde t2 et kp1(padx|dx)
C cek2 T _TE 2
4 (As—tylgig/“)l(padxldx))
Eycte k21( pqdx|dx)
Ka(Ty — Tc)? K3(Ty — T, 7
3 T Ty i < T8Il 0 aan)

16y
concluding the bound in (47). O

We point out that the bound in (47) becomes tight when tcyce
takes the optimal value (33) and p, — pq. Specifically, if p, =
N(0, 02) and p, = N(O, abz) are Gaussian distributions and teycle
takes the optimal value (33), then as o, — o, the power output is
given by (39a), which coincides with (47), since I(podx|dx) = ;—2

6.6. Maximum power under constrained potential

While a lower bound on S(p,) readily implies an upper bound
on the available power, achieving such a bound in general re-
quires a cyclic operation involving an irregular and complicated
potential function U(t, x) to bring back the ensemble to p, at end
of each cycle. It is unreasonable to expect technological solutions
to such demands, and therefore, a constraint on the complexity of
the potential function seems meaningful. To this end, we propose
the constraint

1
~ / IV DI X dx < M (49)
R

for all t € (0, teyele)- Thus, we analyze the maximum power (40)
that can be extracted from a thermodynamic engine, under the
constraint (49).

Theorem 2. Consider a thermodynamic ensemble, undergoing a
Carnot cycle as described in Section 5, governed with the over-
damped Langevin equation (2). Then, the maximum power P that
can be extracted from the cycle, over all marginal probability distri-
butions p, and py, the cycle period teyce, and all potential functions
U(t, x) that respect the bound (49), satisfies

<Pmax<*(*_]) (50)

Proof. The proof for the upper-bound follows from bounding
the entropy difference S(pp) — S(ps) under the constraint (49).
During the isothermal transition in contact with the cold bath
with temperature T,

tcycle d
S(pp) = S(pa) = — —S(p(t,-))de
(op) — S(pa) /rL 3 Sle(t )
_kB Leycle ,
= Je ((Vxlog p, V,U), + ksTc||Vx log p||7)dt,
T2

where the notation (V,f, V,g), = fRd(VJ, Vig)pdx and || Vifl,

= /(Vif, Vif), is used. By the Cauchy-Schwartz inequality and
constraint (49),

—(Vxlog p, VxU), < IV:Ull,IIVxlog pll,
<VyM|V,logpll,.
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Hence,

S(pp) — S(pa)

kB Leycle 5
=7 fue (VPMIVI0g0ll, —KsTel Vilog 1 ) de

2

kB Leycle VM M
=— ¢ dt=7tcycle-

y Jiade 4kpT, 8T,

This concludes the bound AS < TMC tcdee on the entropy difference,
which yields to upper-bound on the power output:
T, — T, 1 M(T, — T,
( h C)AS— Wiy < (h c)

8T,

tcycle

P < (51)

tcycle
where Wi, > 0 is used.

Next, we prove the lower-bound by describing a setting so that
the power is equal to the lower bound. Assume the marginal dis-
tributions p, and pp, are Gaussian N(0, ) and N(0, o) respec-
tively, and the potential function U(t, x) %atxz is a quadratic
function. In this setting, the exact power output is equal to

1

P =

O}
ke(Ty — Te) log(—)
O,

cycle a

1 Leycle k T
/ (ar — —5 Yopdt
Yiteycle Jo O¢

with update law for the variance given by the Lyapunov equation:

d0'2 a kBT
il S Toa 72)(,[2
dt Y yo{
with the constraint (49) given by Jao? < M. Then, in the limit

as teye — 0, and o, — 04 = o, the power output is equal to

A
P = ky(Ty — Tc)5 — yA’o’? (52)
with the constraint
kgT, JYM
yh+ =< Y2 (53)
o o
where we introduced a new variable » = £ — "fg. It is shown

in Appendix A.4, that the maximum of the expression (52) over
all values of A and o that satisfy the constraint (53), is equal to
the lower-bound. The lower-bound also holds in vector setting
by extending this argument and considering a d-dimensional
Gaussian distributions with independent components. O

This final result is universal as it does not depend on the choice
of pg, and pp, unlike (47). Moreover, the bounds in this final result
are especially appealing in that it depend on the ratio T, /T, of the
absolute temperatures of the two heat baths.

Remark 6. It is noted that the upper bound in (50) on achiev-
able power under the constraint (49) does not depend on teycle,
whereas our construction for achieving the lower bound ensures
that the bound is approached as teyce — O.

Remark 7. In the proof of Theorem 2, an operating point has
been constructed to ensure that power equal the lower bound
in (50) can be achieved. The parameters are given in Eq. (56) in
the Appendix. For this operating point, which corresponds to
maximal power constrained by (49), the efficiency turns out to
be

Th - Tc
T+ T
It is interesting to note that

n

Nss < Nca =N = Nc,

10
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where 7ss is the efficiency given in (35), nca = 1 — /T /T is
the Curzon-Ahlborn efficiency, and nc = 1 — T, /T}, is the Carnot
Efficiency. Furthermore, nca, n and nc tend to 1 as T, — 0O,
while nss — 2/3. Interestingly, that n may be larger than 7ss
is due to the fact it is obtained under an added constraint on the
controlling potential, that seeks to maximize power, as compared
to nss; the increase in efficiency is consistent with the inherent
trade-off between power and efficiency.

7. Concluding remarks

The present work focused on quantifying the maximal power
that can be drawn by a Carnot-like heat engine operating by
alternating contact with two heat reservoirs and modeled by
stochastic overdamped Langevin dynamics driven by the time
dependent potential. The framework that the work is based on
is that of Stochastic Thermodynamics (Dechant et al., 2017; Par-
rondo et al., 2015; Seifert, 2008, 2012; Sekimoto, 2010), which
allows quantifying energy and heat exchange by individual parti-
cles in a thermodynamic ensemble, to be subsequently averaged,
so as to quantify performance of the thermodynamic process as a
whole. A physically reasonable bound is derived, which is shown
to be reached within a specified factor, both depending on the
ratio Ty /T, of the absolute temperatures of the two heat baths,
hot and cold, respectively. The present work is quite distinct from
earlier results, within a similar framework, which is however re-
stricted to Gaussian states. Conditions that suggest non-physical
conclusions are highlighted, and a suitable constraint on the
controlling potential is brought forth that underlies our analysis.

In the past few decades, there have been several attempts
to quantify efficiency mainly, but also power, of thermodynamic
processes operating in Carnot-like manner. It is fair to say that
there has been neither a consensus on the type of assump-
tions that have been used by previous authors, and thereby,
nor full consistency of the results. This is to be expected, since
finite-period operation and finite-time thermodynamic transi-
tions require substance/engine dependent assumptions to cap-
ture the complexity of heat transfer in non-equilibrium states.
Thus, estimated bounds may never reach the “universality” of
the celebrated Carnot efficiency. They are expected to provide
physical insights and guidelines for engineering design. Thus, it
will be imperative that these estimates be subject to experimental
testing. The notable feature of our conclusions as compared to
earlier works is that the expressions we derive are given in the
form of ratio of absolute temperatures—a physically suggestive
feature.

The present work follows a long line of contributions within
the control field to draw links between thermodynamics and
control, see e.g., Brockett and Willems (1979), Mitter and Newton
(2005), Pavon (1989), Rajpurohit and Haddad (2017), Sandberg,
Delvenne, Newton, and Mitter (2014) and Wallace (2014). More
recently, important insights have linked the Wasserstein distance
of optimal mass transport, which itself is a solution to a stochastic
control problem, to the dissipation mechanism in stochastic ther-
modynamics (Aurell et al., 2012, 2011; Chen et al., 2020; Dechant
& Sakurai, 2019; Seifert, 2012). Indeed, the Wasserstein metric
takes the form of an action integral and arises naturally in the
energy balance of thermodynamic transitions. This fact has been
explored and developed for the overdamped Langevin dynamics
studied herein. Whether similar conclusions can be drawn for un-
derdamped Langevin dynamics remains an open research direc-
tion at present. Furthermore, much work remains to reconcile and
compare alternative viewpoints and models for thermodynamic
processes including those based on the Boltzmann equation.

Besides the potentially intrinsic value of the analysis and
bounds that have been derived, it is hoped that the control-
theoretic aspect of the problem to optimize Carnot-like cycling
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of thermodynamic process has been sufficiently highlighted, and

that this work will serve to raise attention on this important and
foundational topic to the control community.

Appendix

A.1. Proof of Lemma 2

Consider an arbitrary smooth vector field £ on R? with
bounded support, and ¥ : R — R? defined by

a
ailps(x) = E(WS(X))v ‘IIO = Id!
N

for x e RY and s > 0. If p; := Wittoy, we claim that

1
im0~ S0 = [ (0500, £, (54
s—=>0 S rd

where, for AT =T, — T,

kg AT 8
Di(xX) = =22V l0g(p; (1)) + ~(VI () = %),

tcycle cycle

Assuming the claim is true (to be shown shortly), then, because
p; is the maximizer, f(ps) < f(p;). Therefore

/ (010, €00y e < tim TLIH)

Hence, by symmetry £ — —§&,
[ o0, it =o. (55)

This is true for all vector fields & € C{°(RY RY). As a result,
Dy(x) = 0, concluding (44) and the lemma.
It remains to prove (54). By definition,

Fo0) £ op) = 2L (stps) = S(o1))

tcycle

4y
- o (Wa(par ps)* — Walpa, p3)%)-

cycle

The entropy term
S(ps) = — ka f log(px(x))os(0)dx
=k f log(:(W(x))) A5 ()dx

)
B Py (%))
= ks / o8 Gervw iy e
=5(,OZ)+kB/108(det(V‘1’s( Moy (x)dx.
Therefore
1 N
lim < (5(p5) ~ S(63)

zlimk—B/log(det(VWs(x)))p;‘(x)dx

s—0 S
iy / V- E(0p;(x)dx
— / (), V log(pf () P ().

The Wasserstein term

Wa(pa, ps — W3 (pq, pb)

/ 19~ (x) = Bl 01 (0)dx
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- / 1V (x) — xl2pp(x)dx
_ / (X — B(x), 2V (x) — x — V() (0.

Therefore

1
ll_{% ; [Wz(,Oa, Ps)2 — W3(pq, p;)z]

<2 / (), Vo) — %) (0

Using the two expressions, the one for derivative of the entropy
and the other for the Wasserstein distance, the claim follows.

A.2. Proof of Proposition 3

According to Proposition 1, the maximizer is unique. There-
fore, it is sufficient to show that the Gaussian distribution N(O,
b) where abz is given by (45), satisfies the optimality condi-
tion (44). When pq, p; are Gaussian, vy i(y) = ;‘,—Zy. Hence, the

optimality condition reads

kpteyce AT _
%wogpg‘m—yww ')
kBtcycleATl _a )
8y of o
kpteycle AT
=%— —l—ﬁ)y:O, Vy€eR,
8yao} Op

which is satisfied when o}, is according to (45).

A.3. Proof of Eq. (48)

The proof follows by expressing the HWI* inequahty (11) for
e

a Gaussian reference measure dmy, = (2no?)” 2e 202 dx with

constant k = Uiz and taking the limit as 0 — oo. The relative

entropy with respect to Gaussian measure is

d d
H(julmg) = / tog( Ly~ f log( ST

2

= —kg's( Ccll“ )+ 20“‘; glog(Znaz).
where aj = f Ix||>d . Therefore, the left hand side of (11)
0'2 — O'2
H(palmg) — H(plmg) = k' (S(pp) — S(0a)) + %

with p, = dug/dx, py = duyp/dx, and aza,aib are the corre-

sponding variances. On the right hand side, the Fisher information
term becomes

du
Hjtalmg) = / IV log( 5

)IIZdMa

/nvmg ”“’)—wo( ") 2,

Ma dug
=/||Vlog(—)ll dua—2/<vlog(
dx dx

—X 2d o
+/ 1 =X 2 dutg = puald) — 23 4 %
o o (o2

—X
o2

)s
log

)dig

Thus, taking the limit o0 — oo, (48) follows.

11
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A.4. Proof of the lower-bound in Theorem 2

The constraint (53) is expressed as:

v _ kBTc, for o > —kBTC .

yo yo? JYM
The inequality A > 0 ensures that the power is non-negative,
whereas o > "’;—TI;I ensures that the upper bound is positive. We

0<A<

utilize dimensionless variables
A oo

X = —, =—
)\.0 y o

for o9 = kgT./~/YM, Lo := M/kgT,, and re-write (52) and the
constraints,

P = Mf(x,y)

0<x=<g(y), O0<y=<1

where f(x,y) = %X— ;‘,—z g(y) =y—y* Aslong asy < y,, where

yo = —L=, the unconstrained maximizer
T+
c

AT
Y

4T,

satisfies the constraint x*(y) < g(y). When yo < y < 1, the

maximizer is at x = g(y). Hence,

x*(y) = argmax f(x,y) =

(ar? 2
7Y, 0<y=Yyo
max flxy)=1{ " )
xSy WV =y) ==y, yo=y=1

Maximizing the expressions in the two cases over y gives

AT \?
max
3T. + T,

This is achieved for
> — kpT, 2(Tp + T¢)
Y% VM (Th + 3Tc)’
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