

1 **Does plant community plasticity mediate microbial homeostasis?**

2
3 Kate M. Buckeridge^{1*}# and Jennie R. McLaren^{2#}

4
5 ¹ Global Academy of Agriculture and Food Security, The Royal (Dick) School of Veterinary
6 Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK

7 ² Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA,
8 jennie.mclaren@gmail.com

9 *Corresponding author, email: kmbuckeridge@gmail.com

10 #These authors contributed equally to this manuscript

11
12 **Running Title:** Do plants mediate microbial homeostasis?

13
14
15 **Statement of Authorship:** KMB and JRM jointly conceived of this study. JRM performed
16 fieldwork while KMB performed the majority of the soil analyses. KMB and JRM jointly
17 performed statistical analyses and wrote the manuscript.

18
19 **Data Accessibility Statement:** Vegetation and soil data are available publicly at:

20 - Species cover: Arctic Data Center Entry

21 <http://dx.doi.org/10.6073/pasta/8a2999c9ed297a184aaca7057e1ae177>

22 - Soil microbial biomass C, N and P; extracellular enzyme activity, soil extractable C, N and P;
23 soil total C, N and P, in g m⁻² (Appendix Table 1) and µg g⁻¹: Arctic Data Center Entry

24 <https://doi.org/10.6073/pasta/2302b3a5eab56970aa4e4f71d36b7fce>.

25
26
27
28 **Keywords:** stoichiometry, plant-microbe interactions, long-term fertilization, Arctic tundra,
29 extracellular enzymes, carbon use efficiency

31 **Abstract**

32 Microbial homeostasis - constant microbial element ratios along resource gradients – is a core
33 ecological tenet, yet not all systems display homeostasis. We suggest investigations of
34 homeostasis mechanisms must also consider plant-microbial interactions. Specifically, we
35 hypothesized that ecosystems with strong plant community plasticity to changing resources will
36 have homeostatic microbial communities, with less microbial resource cost, because plants
37 reduce variance in resource stoichiometry. Using long-term nutrient additions in two ecosystems
38 with differing plant response we fail to support our hypothesis because although homeostasis
39 appears stronger in the system with stronger plant response, microbial mechanisms were also
40 stronger. However, our conclusions were undermined by high heterogeneity in resources, which
41 may be common in ecosystem-level studies, and methodological assumptions may be
42 exacerbated by shifting plant communities. We propose our study as a starting point for further
43 ecosystem-scale investigations, with higher replication to address microbial and soil variability,
44 and improved insight into microbial assimilable resources.

45

46 **Introduction**

47 Organismal homeostasis is defined as consistency in element composition despite fluctuations in
48 environmental resource availability (Sterner & Elser, 2002). This is a core tenet of ecological
49 stoichiometry, a conceptual framework that explains how element proportions drive processes in
50 organisms and ecosystems. In plant-soil-microbial systems, microbial homeostasis determines
51 rates of decomposition, nutrient retention and biomass production (Zechmeister-Boltenstern *et*
52 *al.*, 2015), processes that predict food security, fertilizer pollution, and carbon storage (Paustian
53 *et al.*, 2016). Uncertainty in these predictions arise because microbial homeostasis can be both
54 strong or weak, in other words, microbial C:N:P is sometimes invariant, and sometimes varies
55 with resource C:N:P. Despite increasing attention to the mechanisms that support microbial
56 homeostasis, it remains unclear what causes this variation.

57 The current paradigm for exploring microbial homeostasis was nicely outlined by
58 Mooshammer *et al.* (2014), with a four-option mechanistic framework describing how microbial
59 communities can respond to the stoichiometric imbalance between their biomass and their
60 resources at the individual and or community level. Microbes may: (1) store C, N or P or shift
61 community structure to match their biomass composition towards their resource; (2) mobilize
62 needed resources by enhancing extracellular enzyme activity (EEA); (3) alter element use
63 efficiencies (the ratio of the investment of an element in growth vs. the total uptake of this
64 element) by excreting nutrients in excess; or (4) alter resource pools via inputs of nutrients
65 external to the measurement system, such as by N-fixing prokaryotes or fungal hyphae. There
66 was an earlier focus in modelling and experimental research on EEA as the dominant mechanism
67 (Sinsabaugh *et al.*, 2009), while more recent studies suggest that changing nutrient use
68 efficiency is the primary mechanism (Mooshammer *et al.*, 2014; Fanin *et al.*, 2016; Manzoni *et*

69 *al.*, 2017). Here, we propose that mechanistic studies of microbial homeostasis at the ecosystem
70 scale – with associated higher complexity of interactions - should also consider plant community
71 mechanisms that alter the soil resource pool.

72 Changing plant community structure may influence nutrient outputs, inputs and the
73 associated microbial community, three mechanism that could change how the microbial
74 community maintains, or fails to maintain homeostasis. *Nutrient outputs*: plant functional types
75 take up nutrients in different ratios (McLaren & Turkington, 2010). *Nutrient inputs*: changing
76 soil resources changes the stoichiometric ratio of individual plant tissue (Shaver & Chapin 1980)
77 and the community averaged plant tissue stoichiometry, through shifts in plant functional group
78 composition (Guiz *et al.*, 2016). Individual and community tissue stoichiometry alters litter and
79 root exudate stoichiometry, and the litter:exudate ratio of these inputs, the latter which may
80 further change microbial mechanisms of C and nutrient acquisition (Sokol *et al.*, 2018). *Plant-*
81 *microbe associations*: not all microbial populations maintain homeostasis (Danger *et al.*, 2016)
82 so when plant community shifts are associated with microbial community shifts, this may lead to
83 changes in the preferred mechanisms or ability to maintain homeostasis.

84 Soil type is the dominant control on microbial community structure and activity, with
85 both plant community and resource supply secondary controls (Fierer, 2017). Studies that
86 examine microbial efforts to maintain homeostasis under various resource regimes have been
87 most commonly conducted with both soil type and plant communities varying (Cleveland &
88 Liptzin, 2007; Sinsabaugh *et al.*, 2009; Nottingham *et al.*, 2015; Fanin *et al.*, 2016; Tipping *et*
89 *al.*, 2016), or in mesocosms on the same soil type with the same (or no) plant community
90 (Joergensen & Scheu, 1999; Heuck *et al.*, 2015; Pinsonneault *et al.*, 2016; Zhou *et al.*, 2017). In
91 ecosystem-scale investigations of homeostasis, both the microbial community and the plant

92 community respond to the changes in resource availability, although not always in tandem, while
93 soil type usually remains constant. We are not aware of examinations of microbial homeostasis
94 using experimental nutrient additions resulting in changing plant functional groups on the same
95 soil type, despite that this is a likely outcome of enhanced nutrient pollution in natural
96 ecosystems (Dormann & Woodin, 2002; Suding *et al.*, 2005; Xia & Wan, 2008).

97 We addressed this research gap by investigating microbial homeostasis and potential
98 mechanisms – including the role of plants - for ecosystem response to stoichiometric imbalance
99 in long-term fertilization experiments in two dominant, close-proximity (< 2 km separation),
100 upland Arctic tundra ecosystems: Moist Acidic Tundra (MAT) and Moist Non-acidic Tundra
101 (MNT). Despite similar vegetation functional groups, vegetation community response to
102 fertilization differs between the sites. The MAT has responded to fertilization with large
103 increases in *Betula nana*, a deciduous shrub known for its plastic response to nitrogen and
104 phosphorus additions (Bret-Harte *et al.*, 2002). In contrast, the MNT initially responded to
105 fertilization with increases in a variety of functional groups, particularly forbs and grasses
106 (Hobbie *et al.*, 2005), and in the longer term responded primarily with reductions in moss and
107 few changes in vascular plants (McLaren & Buckeridge, 2019). We use these two sites to test the
108 hypothesis that a large plant community response to fertilization can minimize microbial effort
109 while still maintaining microbial homeostasis across a steep gradient of resource supply.

110

111 **Site Description and Methods**

112 **Study Site.** The study was conducted at the Arctic LTER site at Toolik Lake in northern Alaska,
113 USA (68°38'N and 149°43'W, elevation 760 m) in the MAT and MNT (described previously in
114 Buckeridge and McLaren 2019) which are dominant ecosystems of the Alaskan tundra. The two

115 ecosystems differ based on age and acidity: the MAT site is on older substrate (50k – 120k y)
116 with a pH = 3-4, and the MNT is on younger substrate (11.5-25k y), with a neutral pH.

117 **Experimental Design.** We sampled existing long-term fertilization experiments established and
118 maintained by the Arctic LTER in both vegetation types. Fertilization treatments in both
119 experiments represent a full-factorial addition of N (10 g/m²/yr as NH₄NO₃) and P (5 g/m²/yr as
120 P₂O₅), with fertilizer applied annually in pellet form following snowmelt (early June) for 26
121 years (MAT, established in 1988) and 16 years (MNT, established in 1997). From each
122 experiment we sampled a single 5 x 20 m plot from each of the three treatments (N, P, N+P) and
123 the control, from each of four (MAT) or three (MNT) replicate blocks.

124 **Vegetation and soil sampling.** Aerial percent cover of mosses, lichens, litter and all vascular
125 plant species was visually estimated in each treatment plot in mid-July 2013, within eight 1m²
126 adjacent quadrats in each plot. Vole litter was assigned visually as the haying/nesting activities
127 of small mammalian herbivores, primarily *Microtus oeconomus* and *M. miurus*. A ca. 10cm x
128 10cm column of soil was collected from each MAT and MNT plot to the depth of the permafrost
129 in early July 2013. All organic horizons were <20cm deep and were separated into the upper
130 organic (0 – 5cm depth) and lower organic (>5cm depth) layers. Soils were homogenized and all
131 large roots (>1mm diameter) removed in the field lab. Soil was then partitioned for the analyses
132 below, frozen at -20°C and shipped for analyses.

133 **Soil and microbial biomass extraction and analysis.** Field-moist and thawed soil samples (10
134 g) were shaken with 40 ml of ultra-pure water, or with water plus CHCl₃ (Fierer *et al.*, 2003).
135 Extractable organic C (EOC) and total N (ETN) and PO₄-P contents in the CHCl₃ and non-
136 CHCl₃ extracts were determined as described previously (McLaren & Buckeridge 2019).

137 **Soil microbial extracellular enzyme analysis.** We assayed for the activity of three hydrolytic
138 enzymes that release C, N and P at the terminal stages of organic matter decomposition:
139 cellulose-degrading beta-glucosidase (BG), chitin-degrading N-acetyl-glucosaminidase (NAG)
140 and phosphatase (AP), using standard methods, as described previously (McLaren & Buckeridge
141 2019).

142 **Data analysis and statistical models.** The two ecosystems have different lengths of time under
143 experiment and were thus evaluated separately and the results qualitatively compared. For all soil
144 analyses, data from both organic horizons (upper and lower) were pooled, with the values
145 weighted by the depth of each horizon. Microbial biomass C, N and P flushes (hereafter, MBC,
146 MBN and MBP) were calculated as the difference between EOC, ETN or PO₄-P in CHCl₃ and
147 non-CHCl₃ extracts, with no correction factor for incomplete CHCl₃-release applied. For
148 potential enzyme activity (EEA), for each substrate, we measured the background fluorescence
149 of soils and substrate and the quenching of MUB by soils, and used standard curves of MUB to
150 calculate nmol of substrate hydrolysed per hour per g of soil. Vegetation data were analysed as
151 relative percent cover for each species and also for functional groups (calculated as the sum of all
152 component species).

153 For each ecosystem, we used variations on the metric H for determining homeostasis:

$$H = \frac{1}{m},$$

154 where m is the slope of $\log_e C:N_R$ or $\log_e C:P_R$ (resources) versus $\log_e C:N_B$ or $\log_e C:P_B$
155 (microbial biomass) (Cui *et al.*, 2018). Strictly homeostatic organisms have an H of infinity,
156 which presents analytical problems, and so the regression slope $1/H$ was used in its place (as in
157 Persson *et al.* 2010). If the regression slope is not significant, the organisms are considered
158 homeostatic (Persson *et al.*, 2010).

159 CUE was estimated from the stoichiometry of the organic matter, microbial biomass and
160 extracellular enzyme activity (Sinsabaugh *et al.*, 2016) for both C:N and C:P:

161 $CUE_{c:x} = CUE_{max} \left[\frac{S_{c:x}}{(S_{c:x} + K_x)} \right]$,

162 where the half-saturation constant K_x was 0.5, and CUE_{max} , the upper limit for microbial growth
163 efficiency based on thermodynamic constraints, was 0.6 (Sinsabaugh *et al.*, 2016). $S_{c:x}$
164 represents the offset by extracellular enzyme activity of the imbalance between the elemental
165 composition of available resources and the composition of microbial biomass:

$$S_{c:x} = \left(\frac{1}{EEA_{c:x}} \right) \left(\frac{MB_{c:x}}{L_{c:x}} \right),$$

166 where L is the elemental composition of the substrate consumed (TOC, TN or PO_4). We used
167 TOC, TN and PO_4 to represent substrates rather than total soil C, N or P as water-soluble
168 nutrients likely represent a more sensitive measure of the soil substrate driving microbial activity
169 (Mooshammer *et al.* 2014).

170 Our assays included potentials (EEA) or calculations based on potentials (CUE), in
171 addition to comparison between different ecosystem processes. Therefore, we calculated the
172 effect of long-term nutrient addition on extracellular enzyme activity, CUE and vegetation
173 composition as the natural log of the response ratio (fertilized/control) for each block (Cusack *et*
174 *al.*, 2010). Significant effect sizes were determined based on their difference from zero ($\alpha =$
175 0.05).

176

177 **Results**

178 Microbial biomass C:N:P homeostasis was evident in the MAT ecosystem, for both C:N and C:P
179 (Fig. 1 a & b) and in the MNT system, for C:P (Fig. 1 d). In all three of these results,
180 homeostasis is assumed because the slopes of the organism: resource stoichiometries are not

181 different from zero. In contrast, in the MNT, microbial biomass C:N declined with resource C:N,
182 indicating no microbial homeostasis in this system: microbes reduced their biomass N
183 concentration in N-rich soils (Fig 1c).

184 Response ratios assess resource treatment relative to control, but also allow comparison
185 between ecosystem-level effects. Our combined plant and microbial analyses indicate that, in
186 both ecosystems, plant community changes generated since the inception of the nutrient addition
187 have a higher response ratio than microbial EEA or CUE (Fig 2a-f).

188 In the MAT with the addition of N alone, microbial CUE-N increased (Fig 2b), deciduous
189 shrubs increased in relative abundance, and evergreens decreased (Fig. 2c). With the addition of
190 P alone, microbial NAG activity declined (Fig 2a), microbial CUE-P increased (Fig 2b), there
191 was a trend for deciduous shrubs to decline and vole litter increased (Fig. 2c). With the addition
192 of both N and P, all responses were in the plant community: deciduous shrubs and forbs
193 increased, and mosses, graminoids and evergreens declined in relative abundance (Fig. 2c).

194 In the MNT with the addition of N alone, there was a trend for NAG to increase (Fig. 2d)
195 and graminoid relative abundance to increase (Fig. 2f). With P addition alone, there was no
196 detected microbial homeostatic response and only a trend for moss abundance to decline (Fig.
197 2f). With the addition of both N and P, all responses were again in the plant community: mosses
198 declined and vole litter increased (Fig. 2f).

199

200 **Discussion**

201 The mechanistic portion of our hypothesis, that a strong plant response would reduce the
202 variation in the stoichiometry of resources also reducing the microbial efforts to maintain
203 homeostasis, was not supported. The ecosystem with the stronger plant community response

204 (MAT) also had a wider range of soil resource stoichiometry (Fig. 1) and there was no indication
205 that microbial effort towards stoichiometry was lower in this community (Fig 2). Instead, the
206 microbial efforts to maintain homeostasis, as measured by changes in CUE and potential enzyme
207 activity, were generally low in both ecosystems (compared to the plant response) but significant
208 in the ecosystem with the stronger plant response (MAT). In the MAT there was an increase in
209 CUE (C:N) with N additions and CUE (C:P) with P additions, supporting microbial shifts in use
210 efficiencies with resource shifts (Mooshammer *et al.* 2014). There was also a decrease in NAG
211 production (extracellular enzyme which supports microbial N acquisition) with P additions in the
212 MAT, possibly in response to decreased N requirements for P uptake or enzyme synthesis.

213 We present our lack of support for the mechanistic hypothesis not as confirmation that
214 these mechanisms are not important, but as a call to further research, in plant-soil systems with
215 either less variance or larger replication. Inherent variability in the microbial C:N, or especially
216 C:P ratios, temper our conclusions of homeostasis in both ecosystems, but a lack of ecosystem-
217 level research leaves us unable to conclude whether this variability is unusual. We are not aware
218 of other studies examining mechanisms for microbial homeostasis that occur in environments
219 where the both soil resource variability and plant composition vary strongly between areas on the
220 same soil type. Studies in which both plant communities and soil resources vary in concert
221 include either shifts in vegetation composition across strong environmental gradients (e.g.
222 elevational gradients – Nottingham *et al.* 2015) or only subtle changes in vegetation communities
223 with changing soil resources (e.g. shifts within a plant functional group – Griffiths *et al.* 2012).
224 Our two long-term study systems have a replication level (n=3 or 4) that is not unusually low
225 compared with other similar long-term studies, and this level of replication has been sufficient
226 for numerous investigations with significant results over the past three decades (Chapin *et al.*,

227 1995; Mack *et al.*, 2004; Hobbie *et al.*, 2005; Koyama *et al.*, 2013; McLaren & Buckeridge,
228 2019). Nonetheless, higher levels of replication may be necessary for studies that examine
229 coupled responses of vegetation and soil communities. Where possible, higher levels of
230 replication would also improve mechanistic insight into homeostasis, for instance to move
231 beyond binary (yes/no) responses and instead allow researchers to assess the degree of variation
232 in biomass stoichiometry, in different systems.

233 We found that the MAT ecosystem with a stronger plant biomass and community
234 response (Fig. 2, McLaren and Buckeridge 2019), showed microbial homeostasis for both N and
235 P whereas microbes in the MNT, with a weaker plant response, showed non-homeostatic
236 behaviour for N and homeostasis only for P. However, high heterogeneity in fertilized natural
237 systems may also make currently used metrics of homeostasis inappropriate. In the MAT, the
238 homeostatic relationship for P was much weaker than that for N due to the very high variability
239 in microbial C:P irrespective of resource C:P. In the MNT, we also saw very high variability in
240 microbial C:P. According to frequently used metrics for homeostasis, these three relationships
241 (MAT C:N and C:P and MNT C:P) are defined as homeostatic – variations in soil element ratios
242 do not significantly affect microbial biomass element ratios because the slopes of the regressions
243 (Fig. 2) do not significantly differ from zero (Persson *et al.* 2010). However, this metric of
244 homeostasis does not distinguish between strict homeostasis (changes in resource stoichiometry
245 has no influence on organism stoichiometry (Sterner and Elser 2002)) and those where the
246 microbial stoichiometry is highly variable but also not dependent on resource stoichiometry.
247 Persson *et al.* (2010) used a meta-analysis approach to examine whether studies with non-
248 significant slopes may have been misclassified as homeostatic, by using the residual variation in
249 the datasets that had a significant regression fit (i.e., classified as non-homeostatic, as with Fig

250 2b-d) as an estimate of background variation, and then comparing this with the variation in the
251 homeostatic datasets. With this approach, Persson et al. (2010) determined that for most of the
252 species they examined, the homeostatic relationships were correctly classified. However, in
253 studies with a more limited data set such as ours, for which estimating background variation in
254 this way is difficult, we propose an alternate index of variation (i.e. including a minimum R^2)
255 should be used to define homeostasis. Although the large spread in the resource C:P in our study
256 should be ideal for such a determination, many more data points are needed and are unavailable
257 in this or most long-term experimental manipulations. Therefore, we do not believe that our data
258 provide sufficient evidence of homeostasis.

259 Finally, we propose that concepts and methods with which ecologists currently define
260 stoichiometry may not be relevant at the microbial scale. Specifically, soil resource C:N:P is an
261 operational name, characterized by the total organic C and the inorganic and/or organic N and P
262 that is extractable in the soil solution. The actual pool of C (and N and P if organic N and P were
263 included) that is used in this calculation varies by extraction protocol and soil type. These pools
264 (especially C) undoubtedly contain large and variable amounts of C, N or P that is not directly
265 assimilable by soil microbes (Fig. 3). Plants may alter this assimilable pool C:N:P, both
266 indirectly and directly, by the mechanisms outlined in the paragraph in the introduction of this
267 study, including nutrient inputs, outputs and shifting plant-microbial associations. For example,
268 in a study across 9 different soil type and vegetation community combinations, microbes
269 maintained homeostasis partially through changing EEA stoichiometry, which was regulated
270 more strongly by the characteristics of the plant community than soil physiochemical variables
271 (Cui *et al.*, 2018). Shifts in plant communities within the same soil type such as we investigate in
272 this study may produce similar soil resource C:N:P between control and resource-amended

273 communities, but may have very different assimilable pool C:N:P, and thus may result in
274 different microbial mechanisms used to maintain homeostasis. We encourage greater
275 understanding of the C available to microbes from the soil resource pool. In much the same way
276 that we measure inorganic N and P, we can dig deeper into the microbial resource C pool at a
277 molecular scale. A number of methodological improvements already exist in the literature,
278 including (1) isotopic tracer methods of low molecular weight (i.e. assimilable) carbon (Lynch *et*
279 *al.*, 2018); (2) size-based filtration fractionation of soil extractions (Farrell *et al.*, 2011); (3)
280 molecular-level exploration of C quality in soil extractions (i.e. with HPLC, GC/MS, nanoSIMS,
281 NMR; Hall *et al.* 2011), or (4) a companion incubation of the soil extract to assess the
282 bioavailable fraction. Any of these methods could then be used to scale the C, N or P content in
283 the C:N:P ratio. This consideration and those suggested above should improve process-level
284 assessment of microbial response to soil resource C:N:P across scales.

285 In summary, we proposed that ecosystems with strong plant community response to
286 fertilisation would allow maintenance of microbial homeostasis with minimal microbial effort.
287 We found little support for our hypothesis because although we found higher indications of
288 microbial homeostasis in the ecosystem with stronger plant community response to steep
289 resource gradients, these did not appear to be dictated by less microbial resource cost. Therefore,
290 we remain uncertain to what extent plant community dynamics impact microbial homeostasis in
291 ecosystems with changing plant communities across strong resource gradients. Our results
292 highlighted issues with variability in ecosystem-level experimental systems of microbial
293 homeostasis with a strong plant community response on the same soil type, and potential issues
294 with how we quantify the microbial assimilable pool of soil resources. We respond with a call
295 for further ecosystem-level investigations of microbial homeostasis where resource gradients

296 exist on the same soil type in natural ecosystems, such as those in long-term nutrient addition
297 experiments. We suggest using designs that increase field-level replication, isolate potential
298 plant-microbial associations, and enhance the molecular-level quantification of the microbial-
299 assimilable resource pool.

300

301 **Acknowledgements**

302 We are grateful for the analytical and intellectual support for this independent research, by our
303 former post-doctoral advisors Laura Gough (JRM, National Science Foundation (NSF) OPP-
304 0909507), Joshua Schimel (KMB, NSF ARC-0806451) and Sharon Billings (KMB). Support for
305 analyses and writing time was also provided by funding from the University of Texas at El Paso
306 and NSF (OPP-1603677) to JRM and the NERC funded U-Grass project to KMB. The long-term
307 experiments have been maintained by the Toolik LTER project (NSF DEB-1637459 and earlier
308 awards). Caroline Brocious and Fiona Devon helped with fieldwork and Kenny Marchus with
309 lab processing. Logistical support was provided by Toolik Field Station, University of Alaska
310 Fairbanks.

311

312 **References**

313 Bret-Harte MS, Shaver GR, Chapin III FS (2002) Primary and secondary stem growth in arctic
314 shrubs: implications for community response to environmental change. *Journal of Ecology*,
315 **90**, 251–267.

316 Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of arctic
317 tundra to experimental and observed changes in climate. *Ecology*, **76**, 694–711.

318 Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the

319 microbial biomass? *Biogeochemistry*, **85**, 235–252.

320 Cui Y, Fang L, Guo X, Wang X, Zhang Y, Li P, Zhang X (2018) Ecoenzymatic stoichiometry
321 and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess
322 Plateau, China. *Soil Biology and Biochemistry*, **116**, 11–21.

323 Cusack DF, Torn MS, McDowell WH, Silver WL (2010) The response of heterotrophic activity
324 and carbon cycling to nitrogen additions and warming in two tropical soils. *Global Change
325 Biology*, **16**, 2555–2572.

326 Danger M, Gessner MO, Bärlocher F (2016) Ecological stoichiometry of aquatic fungi: Current
327 knowledge and perspectives. *Fungal Ecology*, **19**, 100–111.

328 Dormann CF, Woodin SJ (2002) Climate change in the Arctic: using plant functional types in a
329 meta-analysis of field experiments. *Functional Ecology*, **16**, 4–17.

330 Fanin N, Moorhead D, Bertrand I (2016) Eco-enzymatic stoichiometry and enzymatic vectors
331 reveal differential C, N, P dynamics in decaying litter along a land-use gradient.
332 *Biogeochemistry*, **129**, 21–36.

333 Farrell M, Hill PW, Farrar J, Bardgett RD, Jones DL (2011) Seasonal variation in soluble soil
334 carbon and nitrogen across a grassland productivity gradient. *Soil Biology and
335 Biochemistry*, **43**, 835–844.

336 Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome.
337 *Nature Reviews Microbiology*, **15**, 579–590.

338 Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition
339 through two soil depth profiles. *Soil Biology and Biochemistry*, **35**, 167–176.

340 Griffiths BS, Spilles A, Bonkowski M (2012) C:N:P stoichiometry and nutrient limitation of the
341 soil microbial biomass in a grazed grassland site under experimental P limitation or excess.

342 *Ecological Processes*, **1**, 1–11.

343 Guiz J, Hillebrand H, Borer ET et al. (2016) Long-term effects of plant diversity and
344 composition on plant stoichiometry. *Oikos*, **125**, 613–621.

345 Hall EK, Maixner F, Franklin O, Daims H, Richter A, Battin T (2011) Linking microbial and
346 ecosystem ecology using ecological stoichiometry: a synthesis of conceptual and empirical
347 approaches. *Ecosystems*, **14**, 261–273.

348 Heuck C, Weig A, Spohn M (2015) Soil microbial biomass C:N:P stoichiometry and microbial
349 use of organic phosphorus. *Soil Biology and Biochemistry*, **85**, 119–129.

350 Hobbie SE, Gough L, Shaver GR (2005) Species compositional differences on different-aged
351 glacial landscapes drive contrasting responses of tundra to nutrient addition. *Journal of
352 Ecology*, **93**, 770–782.

353 Joergensen RG, Scheu S (1999) Response of soil microorganisms to the addition of carbon,
354 nitrogen and phosphorus in a forest Rendzina. *Soil Biology and Biochemistry*, **31**, 859–866.

355 Koyama A, Wallenstein MD, Simpson RT, Moore JC (2013) Carbon-degrading enzyme
356 activities stimulated by increased nutrient availability in Arctic tundra soils. *PLoS ONE*, **8**,
357 1–12.

358 Lynch LM, Machmuller MB, Cotrufo MF, Paul EA, Wallenstein MD (2018) Tracking the fate of
359 fresh carbon in the Arctic tundra: Will shrub expansion alter responses of soil organic
360 matter to warming? *Soil Biology and Biochemistry*, **120**, 134–144.

361 Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon
362 storage in arctic tundra reduced by long-term nutrient fertilization. *Nature*, **431**, 440–443.

363 Manzoni S, Čapek P, Mooshammer M, Lindahl BD, Richter A, Šantrůčková H (2017) Optimal
364 metabolic regulation along resource stoichiometry gradients. *Ecology Letters*, **20**, 1182–

365 1191.

366 McLaren JR, Buckeridge KM (2019) Decoupled above- and belowground responses to multi-
367 decadal nitrogen and phosphorus amendments in two tundra ecosystems. *Ecosphere*, **10**,
368 e02735.

369 McLaren JR, Turkington R (2010) Plant functional group identity differentially affects leaf and
370 root decomposition. *Global Change Biology*, **16**, 3075–3084.

371 Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A (2014) Stoichiometric
372 imbalances between terrestrial decomposer communities and their resources: Mechanisms
373 and implications of microbial adaptations to their resources. *Frontiers in Microbiology*, **5**,
374 1–10.

375 Nottingham AT, Turner BL, Whitaker J et al. (2015) Soil microbial nutrient constraints along a
376 tropical forest elevation gradient: A belowground test of a biogeochemical paradigm.
377 *Biogeosciences*, **12**, 6071–6083.

378 Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016) Perspective Climate-
379 smart soils. *Nature*, **532**, 49–57.

380 Persson J, Fink P, Goto A, Hood JM, Jonas J, Kato S (2010) To be or not to be what you eat:
381 Regulation of stoichiometric homeostasis among autotrophs and heterotrophs. *Oikos*, **119**,
382 741–751.

383 Pinsonneault AJ, Moore TR, Roulet NT (2016) Effects of long-term fertilization on peat
384 stoichiometry and associated microbial enzyme activity in an ombrotrophic bog.
385 *Biogeochemistry*, **129**, 149–164.

386 Shaver GR, Chapin III FS (1980) Response to fertilization by various plant growth forms in an
387 Alaskan tundra: nutrient accumulation and growth. *Ecology*, **61**, 662–675.

388 Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009) Ecoenzymatic stoichiometry of microbial
389 organic nutrient acquisition in soil and sediment. *Nature*, **462**, 795–798.

390 Sinsabaugh RL, Turner BL, Talbot JM et al. (2016) Stoichiometry of microbial carbon use
391 efficiency in soils. *Ecological Monographs*, **86**, 172–189.

392 Sokol NW, Sanderman J, Bradford MA (2018) Pathways of mineral - associated soil organic
393 matter formation : Integrating the role of plant carbon source , chemistry , and point of
394 entry. 1–13.

395 Sterner RW, Elser JJ (2002) *Ecological stoichiometry: The biology of elements from molecules
396 to the biosphere*. Princeton University Press, Princeton, NJ, 437 pp. p.

397 Suding KN, Collins SL, Gough L et al. (2005) Functional- and abundance-based mechanisms
398 explain diversity loss due to N fertilization. *Proceedings of the National Academy of
399 Sciences of the United States of America*, **102**, 4387–4392.

400 Tipping E, Somerville CJ, Luster J (2016) The C:N:P:S stoichiometry of soil organic matter.
401 *Biogeochemistry*, **130**, 117–131.

402 Xia J, Wan S (2008) Global response patterns of terrestrial plant species to nitrogen addition.
403 *New Phytologist*, **179**, 428–439.

404 Zechmeister-Boltenstern S, Keiblunger KM, Mooshammer M, Penuelas J, Richter A, Sardans J,
405 Wanek W (2015) The application of ecological stoichiometry to plant-microbial-soil
406 organic matter transformation. *Ecological Monographs*, **85**, 133–155.

407 Zhou Z, Wang C, Jin Y (2017) Stoichiometric responses of soil microflora to nutrient additions
408 for two temperate forest soils. *Biology and Fertility of Soils*, **53**, 397–406.

409

410 **Figure legends:**

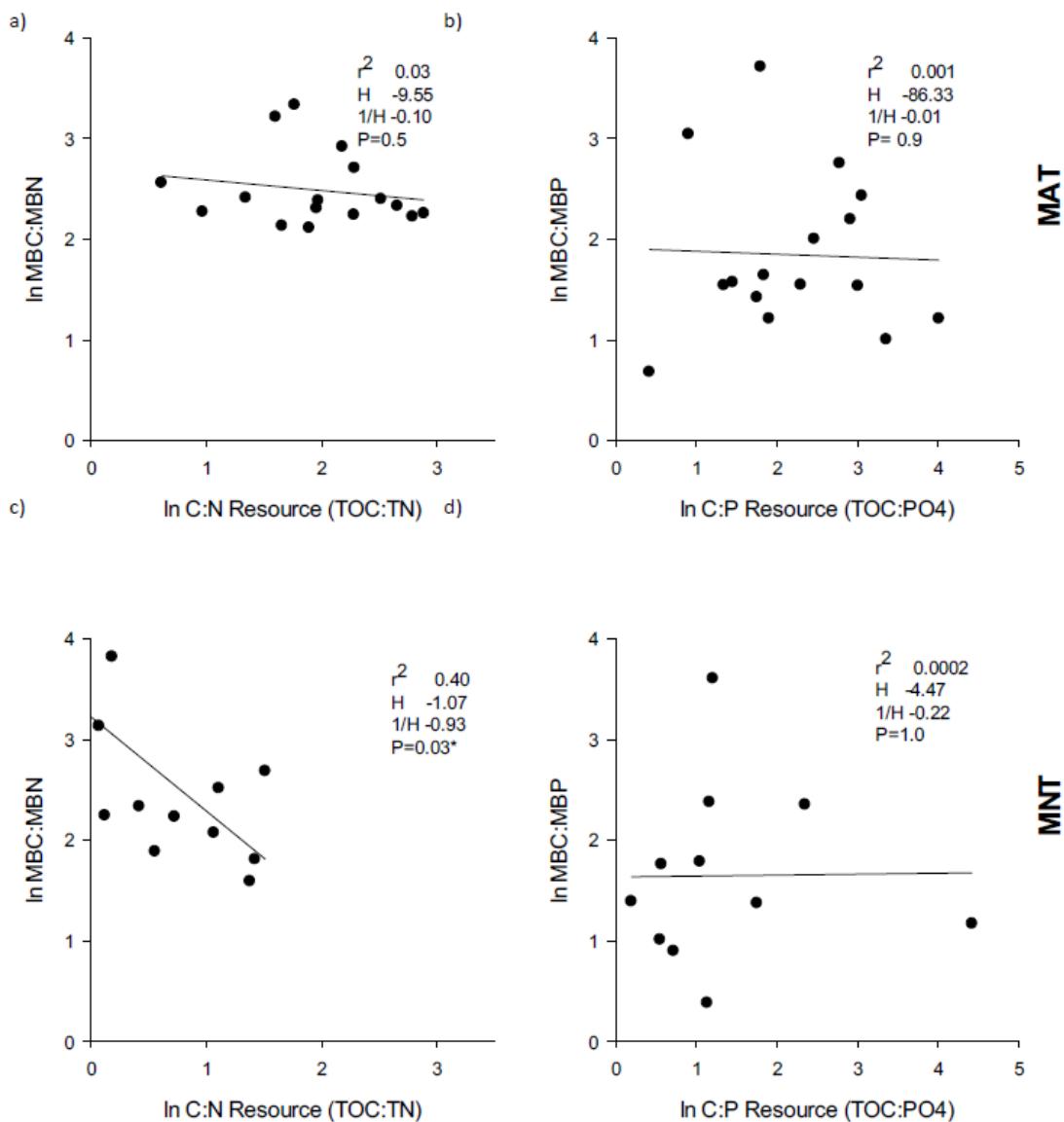
411

412 **Figure 1.** Scatter plots of log-transformed soil available versus microbial biomass C:N (a, c) or
413 C:P (b, d), where variation in soil resources is driven by long-term N and P factorial fertilization
414 treatments in Moist Acidic Tundra (MAT: a,b) and Moist Non-acidic Tundra (MNT: c,d) at the
415 Arctic LTER at Toolik Lake, Alaska. Each point represents an individual plot in the fertilization
416 experiment and the black line indicates slope of the regression regardless of significance – a
417 significant relationship indicates non-homeostasis in the microbial resource ratio (c only).

418

419 **Figure 2.** Mean (\pm SE) response ratio for extracellular enzyme activity (a, d), carbon use
420 efficiency (b, e) and plant functional group abundance (c, f) for three nutrient addition treatments
421 (N, P and NP combined) relative to control plots in a long-term fertilization experiment in Moist
422 Acidic Tundra (MAT: a-c) and Moist Non-acidic Tundra (MNT: d-f) at the Arctic LTER at
423 Toolik Lake, Alaska. A significant or trending response ratio (testing difference from 0 for each
424 variable in each treatment) is indicated as + ($p < 0.1$), * ($p < 0.05$) and ** ($p < 0.01$).

425


426 **Figure 3.** Schematic of mechanisms (white background) that control pool sizes and their C:N:P
427 stoichiometry (colour background) modified from Mooshammer et al. (2014) to include the
428 relevance of plant community shifts for ecosystem-level studies, and the effect of plant
429 community studies on the soil extractable vs microbial assimilable resource pool.

430

431

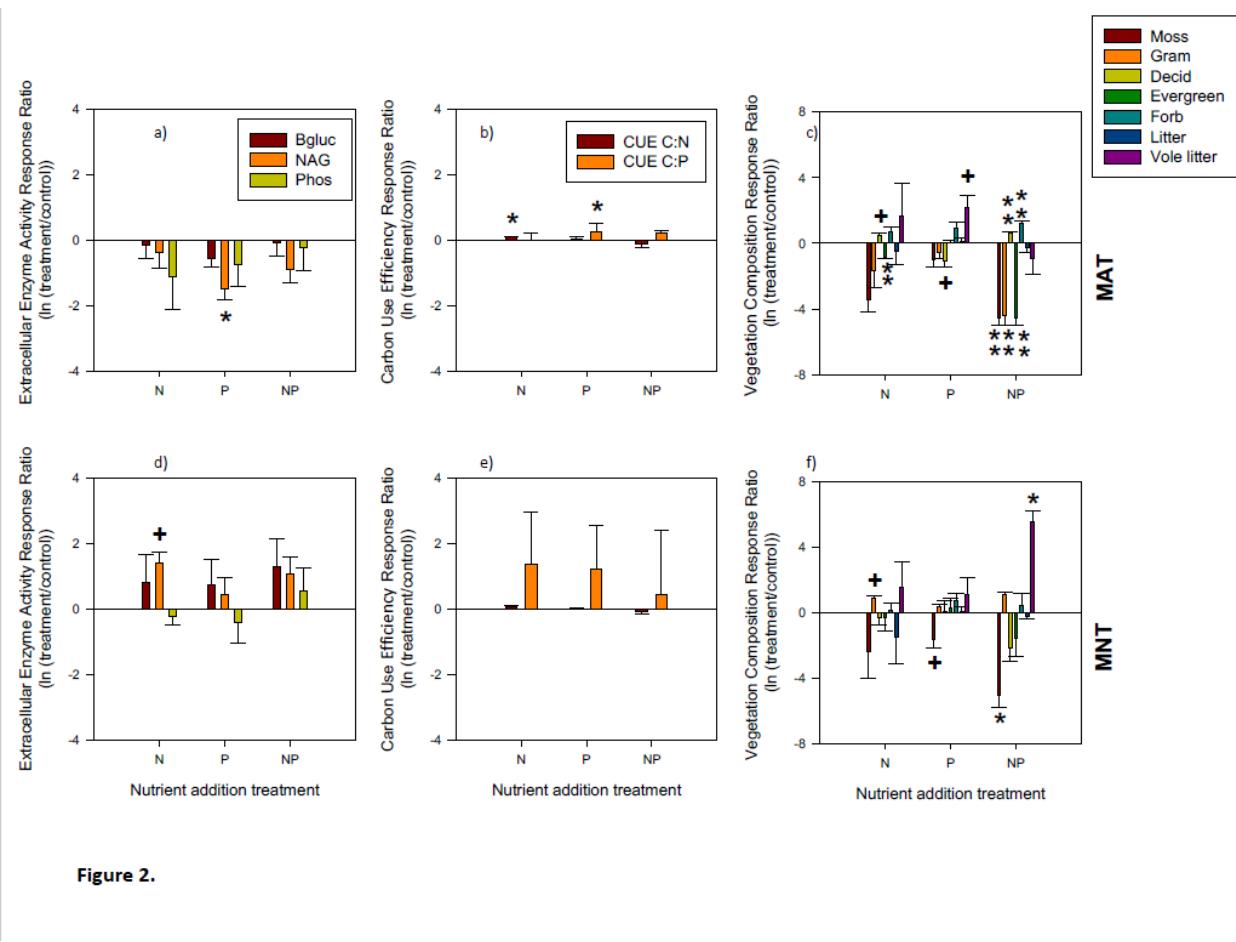
432

433

Figure 1.

434

435


436

437

438

439

440

Figure 2.

441

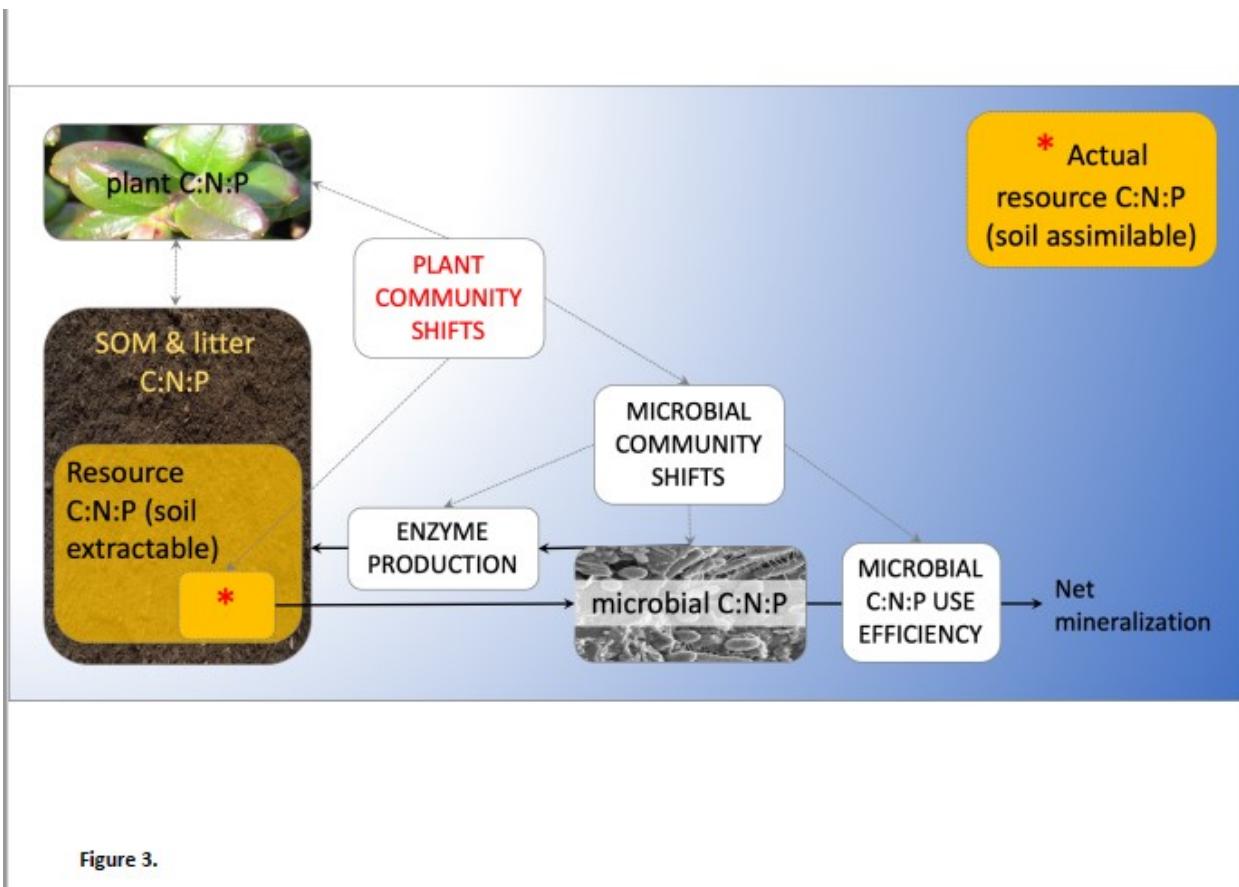
442

443

444

445

446


447

448

449

450

451

452

Figure 3.

453