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Abstract

In arctic tundra, large and small mammalian herbivores have substantial impacts on the vegetation
community and consequently can affect the magnitude of carbon cycling. However, herbivores are
often absent from modern carbon cycle models, partly because relatively few field studies focus on
herbivore impacts on carbon cycling. Our objectives were to quantify the impact of 21 years of
large herbivore and large and small herbivore exclusion on carbon cycling during peak growing
season in a dry heath tundra community. When herbivores were excluded, we observed a
significantly greater leaf area index as well as greater vascular plant abundance. While we did not
observe significant differences in deciduous dwarf shrub abundance across treatments, evergreen
dwarf shrub abundance was greater where large and small herbivores were excluded. Both foliose
and fruticose lichen abundance were higher in the large herbivore, but not the small and large
herbivore exclosures. Net ecosystem exchange (NEE) likewise indicated the highest carbon uptake
in the exclosure treatments and lowest uptake in the control (CT), suggesting that herbivory
decreased the capacity of dry heath tundra to take up carbon. Moreover, our calculated NEE for
average light and temperature conditions for July 2017, when our measurements were taken,
indicated that the tundra was a carbon source in CT, but was a carbon sink in both exclosure
treatments, indicating removal of grazing pressure can change the carbon balance of dry heath
tundra. Collectively, these findings suggest that herbivore absence can lead to changes in plant
community structure of dry heath tundra that in turn can increase its capacity to take up carbon.

1. Introduction

Historically a carbon sink [1], the arctic tundra is
estimated to contain approximately a third of the
world’s soil carbon [2], the result of the long-term
imbalance of plant productivity and decomposition
rates [3]. This large carbon reservoir has drawn
concern because it might be particularly vulnerable
to climate change—as temperatures rise, the tun-
dra could become a major carbon source if decom-
position and respiration exceed carbon capture [4].

© 2021 The Author(s). Published by IOP Publishing Ltd

Therefore, to develop a predictive understanding of
carbon cycling across scales, from local to global,
it is crucial that the processes and feedbacks that
drive the tundra carbon cycle are well understood.
Modern carbon cycle models account for plant and
microbe driven biogeochemical processes such as
photosynthesis, and autotrophic and heterotrophic
respiration [5-7]. Herbivores can also have strong
impacts on carbon flux, particularly through their
impacts on vegetation [8—10] but are usually not
incorporated in these models. Here, we empirically
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assess the role of herbivory in Alaskan dry heath tun-
dra and consider how modern carbon cycle mod-
els can include herbivory to improve their predictive
capabilities.

Herbivores impact vegetation form and function
as well as the plants’ physical environment. Grazing
by herbivores removes photosynthetic biomass, dir-
ectly affecting photosynthetic capacity [8, 11]. Select-
ive grazing can also change vegetation community
composition and potentially alter community pro-
ductivity [8, 11, 12]. Herbivores can also phys-
ically modify the environment through activities
like trampling and burrowing, disturbing vegeta-
tion [13, 14] and affecting soil structure (e.g. soil
compaction), which can affect ecosystem respira-
tion rates [15]. Herbivores also redistribute nutrients
though waste products, changing soil nutrient pro-
files [12, 16], as well as site biogeochemistry, which
can also affect microbial respiration rates [9, 12, 17].
In arctic tundra, studies have also reported a variety
of herbivore impacts depending on the tundra type
and herbivore(s) in question. In shrub and graminoid
tundra, exclusion of caribou and muskoxen over an
8 year period increased net carbon uptake by almost
threefold [18]. In wet meadow, moist and mesic tun-
dra, plots that were not subject to early season goose
grubbing had a higher capacity to store carbon [19].
Long term lemming exclusion in seasonally flooded
graminoid tundra and wet graminoid tundra caused
the environment to shift from being a carbon sink to
a carbon source to the atmosphere [20]. These var-
ied responses emphasize the need for more studies
on how arctic tundra carbon exchange is impacted in
different tundra types and by different assemblages
of herbivores to incorporate their effects in climate
models.

Our experiment focused on the dry heath eco-
system because it is a major tundra ecotype, is likely
to have ecotype-specific responses (because of the
high dominance of lichen and low stature of the vas-
cular plants) and is significantly understudied. Fur-
thermore, high variability in carbon fluxes have been
demonstrated among land cover types [21] highlight-
ing the importance of studying carbon fluxes in less
studied tundra types in order to develop a more
accurate and complete understanding of the arctic
carbon cycle. Our study focuses on two groups of
mammalian herbivores common in dry heath tun-
dra: large ungulates (e.g. caribou) and microtine
rodents (i.e. voles and lemmings). In various tun-
dra plant communities, both herbivore guilds have
been shown to have profound influence on their abi-
otic and biotic environment, particularly in terms
of vegetation cover type and abundance [22-24].
Long term caribou activity can cause major vegeta-
tion changes in tundra environments, shifting veget-
ation from moss and shrub dominated ecosystems
to sedge dominated ecosystems [22]. Caribou tramp-
ling potentially causes substantial losses of lichen
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particularly if lichen mats are dry [25]. Peak years of
lemming and vole populations have been associated
with a 12%-24% decrease in plant biomass estim-
ated using the normalized difference vegetation index
(NDVI) derived from satellite imagery the following
year [23]. As both herbivore types have demonstrably
significant impacts on vegetation, they can potentially
exert significant influence on the ecosystem’s carbon
flux.

We quantified the impact of long-term exclu-
sion of large herbivores (EXy) and the exclusion
of large and small herbivores (EXjg), on leaf area
index (LAI), vegetation abundance, and carbon diox-
ide (CO;) exchange in a dry heath tundra com-
munity located on the North Slope of the Brooks
Range near Toolik Lake, AK. By removing grazing
pressure and trampling by herbivores, we expected
to find an increase in overall vegetation abundance
in both exclusion treatments. We predicted higher
lichen abundance with the exclusion of caribou (in
both EX| and EX|,s treatments), which are major
consumers of lichen. Higher vegetation abundance
and LAI would suggest higher light absorption by
plants and increased photosynthesis. Consequently,
we expected to find higher gross primary productiv-
ity (GPP) and peak season NEE with herbivore
exclusion.

2. Methods

2.1. Study site and experiment setup

We conducted measurements at the Arctic Long Term
Ecological Research (LTER) site at Toolik Lake, Alaska
(68.2° N, 149.6° W, 760 m a.s.l.). Mean annual rain-
fall is 256.7 mm [26]. The plant community is largely
comprised of dwarf deciduous and evergreen shrubs
and lichen. Both large mammal herbivores, specific-
ally caribou (Rangifer tarandus), and small mammal
herbivores, mostly singing voles (Microtus miurus)
and collared lemmings (Dicrostonyx groenlandicus),
have been observed in the area [27, 28]. Toolik
lies within the range of the central arctic caribou
herd [29].

Three replicate blocks of multiple 5 m by 20 m
plots were established. In 1996 an herbivory exper-
iment was established on a previously undisturbed
plot within each block. Within each block, one plot
had a 5 x 10 m unfenced portion (CT), and a fenced
portion (5 X 10 m). The fenced area was surroun-
ded by a large-mesh fence (15.2 x 15.2 cm mesh) to
exclude caribou. Within that fence, a smaller-mesh
fence (1.3 x 1.3 cm mesh) was constructed that was
5 X 5 m in size to further exclude small mammals
(EXL4s). Thus EX| treatment was also 5 X 5 m in size
[30]. All measurements took place between 14 July
and 28 July 2017 during peak growing season at peak
leaf out [31, 32]. We made all measurements at least
0.5 m away from the fences to avoid artifacts due to
differences in snow accumulation immediately next
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to the fences. Within each treatment within a plot,
we selected three subplots arbitrarily and measured
each for vegetation abundance, LAI (via NDVI) and
carbon flux.

2.2. LAI

NDVI, a measure of greenness obtained from spectral
reflectance measurements, can be used as a proxy for
tundra LAI [33]. We collected reflectance data from
each of our subplots using a field portable spectro-
meter (Unispec, PP Systems, Haverhill, MA, USA)
calibrated with a measurement on a 99% reflect-
ance standard (Spectralon, Lab Sphere, North Sutton,
NH, USA) before each measurement. Data were taken
at shoulder height (approximately 1.4 m above the
ground) for a sample area of 0.18 m? and five repeat
measurements were taken and averaged for each sub-
plot. We calculated NDVI from the red and near infra-
red reflectance values as shown in equation (1) [34]:

— R8(11‘7R6ﬁ()
NDVI = Rgoo+Reeo  * (1)

All data were taken within a week of species abund-
ance data to accurately compare vegetation abund-
ance and reflectance. NDVI was then used to calcu-
late LAI (172 1¢a¢ M2 ground) for each subplot according
to the model described by Shaver et al [33] and Street
etal [35]:

LAl = 0.0026e840783XNDVI . (2)

2.3. Vegetation abundance

We used a circular point frame [36] with a 40 cm
radius and a grid with marked points 10 cm apart
(total of 62 points) to measure vegetation and spe-
cies abundance. At each point, along pin was dropped
perpendicular to the ground, and all vegetation
touching the pin was recorded by species name. If
the pin did not touch any vegetation, bare ground
was recorded. We separated plant species into growth
forms, vascular and non-vascular. Vascular plants
were further subdivided into deciduous shrubs, ever-
green shrubs and graminoids. No mosses or forbs
were present. We recorded lichens by growth form-
crustose, foliose and fruticose—as two of these lichen
types (foliose and fruticose) are particularly import-
ant to winter diets of caribou [37].

2.4. Carbon flux measurements

Carbon flux measurements were taken from 10 am to
4 pm over five discontinuous days. We measured CO,
exchange using a Li-6400XT (IRGA, Li-Cor, Lincoln,
NE, USA) infrared gas analyzer operating in closed
mode and connected to a clear, polycarbonate, cyl-
indrical chamber with a clear lid (height = 31 cm,
diameter = 75.5 cm). We placed the chamber over
each subplot to measure changes to CO, concen-
tration, water vapor, photosynthetically active radi-
ation (PAR), and air temperature over an interval of
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40 s following the establishment of stable environ-
mental conditions. To minimize air leakage between
the chamber and the ground, we attached a thick
plastic skirt tightly to the bottom of the chamber and
weighed down by a heavy chain. Gas flux measure-
ments for each subplot were made at five different
light levels ranging from full sun to complete dark-
ness. Light levels were changed by covering the cham-
ber with shade cloths of different thicknesses (for
intermediate light levels), a blackout cloth for dark
measurements, and leaving the chamber exposed to
full sun. We made a minimum of three measurements
for each light level. Only measurements made under
stable environmental variables for the duration of
the measurement interval, particularly the light level,
were used for further analysis. Measurements with
obvious leaks (e.g. negative NEE during dark meas-
urements) were discarded.

We calculated net ecosystem exchange (NEE)
(umol m~2 s72) for each subplot using equation (3)
[33,35]:

dc
NEE = 2% 3)

Air density, p, is equal to P/(RT) where P is pressure,
Ris the universal gas constant and T is temperature in
K. V is the volume of the flux chamber, A is the surface
area the chamber covers and dC/dt is the change in
CO; concentration adjusted for water vapor. A negat-
ive NEE value indicates a carbon flux from the atmo-
sphere to the environment.

2.5. Modeled NEE

To compare NEE among treatments, we applied our
data to the PLIRTLE model, which has previously
been used to calculate CO, fluxes in the tundra
[33, 38].

NEE = RE — GPP . (4)

Parameters for modeled ecosystem respiration (RE)
were estimated according to the model described by
equation (6) in Shaver et al (2007) (equation (5)).
Because measurement temperature varied among
treatments, we applied all dark NEE measurements
for a given treatment to equation (5) to estimate the
respiration parameters Ry, Ry, and (.

RE = (Rg x LAI 4 Ry)e?*T (5)

where Ry (pmol m™2 s7!), R, (umol
m—? ground s71),and 3 (°C™1) are empirically derived
parameters, and T is air temperature inside the cham-
ber (°C). Ry, R and [ values were restricted to
values >0.

Light response curves were built by fitting the
NEE values measured at different light levels for a
given treatment to equation (6), which was adap-
ted from the earlier NEE model [33]. At low LAI
values, such as those observed in dry heath tundra,
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equation (7) from Shaver et al [33] converges
with equation (6) (supp 1 (available online at
stacks.iop.org/ERL/16/024027/mmedia)):

Praxt. X LAI x Ey x PAR
NEE = RE — —m2& 0 (6)
PmaxL + EO x PAR

where Pp.yq, is the theoretical light saturated pho-
tosynthesis rate (umol m~2leaf s~1), Ej is the light
use efficiency or the initial slope of the light response
curve (pmol CO, pmol™! photons) and PAR is
the photosynthetically active radiation at the top of
the canopy (umol photons m~2 ground s™!). We
modeled NEE for each treatment using values of RE
that were calculated from equation (5) with the para-
meters estimated for each treatment. The model para-
meters (equations (5) and (6)), for each treatment
were then used to model NEE (equation (4)) over
the range of ambient light and temperatures recor-
ded during our measurements. Note we substituted
the dry heath parameters reported by Shaver et al [33]
for the CT treatment because of the limited num-
ber of high temperature dark measurements from
these plots. Model performance for each treatment
was assessed using root-mean-square error (RMSE)
and R?. The fitted NEE and RE parameters for each
treatment were then used to estimate NEE, GPP, and
RE for corresponding subplots, using subplot specific
LA, for two sets of light and temperature conditions:
600 PAR and mean noontime temperature (14.46 °C)
(NEEgp0, GPPggo and REgqp, respectively), and average
PAR (355.3 umol photons m~2 ground s~! PAR) and
average temperature (12.56 °C) of July 2017 (NEE v,
GPPayg, and REsvg). The weather data for July 2017
were collected at Toolik Field Station [26].

2.6. Statistical analysis

We analyzed data using a (generalized) linear mixed-
effects model with treatment as a fixed effect and
block as a random effect. For both linear mixed effect
models and generalized linear mixed effect mod-
els, p-values for treatment significance were obtained
from the likelihood ratio test. For linear mixed effect
models, p-values for differences among treatment
were obtained via Satterthwaite’s degrees of freedom
method from the ImerTest R package [39]. For gener-
alized linear mixed effects models, p-value differences
among treatments were obtained using maximum
likelihood estimation. In the case of overdispersed
data, an observation level random factor was added.
In the cases where this additional random effect res-
ulted in a singular fit, the results from the original
model were reported (vascular plant counts and bare
ground counts). For cases where the model resulted in
a singular fit, the effect of block was checked for sig-
nificance using a likelihood ratio test, then the block
random effect was excluded from the original model
(we did not have any cases where the likelihood ratio
test indicated a significant block effect). Normality
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Figure 1. LAI per treatment. CT, EXy, and EX; 1 indicate
treatments (control, large mammal exclusion and small and
large mammal exclusion, respectively). Letters indicate
significant differences between treatments. The dark bar,
lower edge and upper edge of the box represent the median,
first and third quartile respectively. Whisker edges represent
the maximum and minimum values as defined as 1.5 times
the interquartile range less than the first quartile or more
than the third quartile. Open circles indicate outlier points
that fall beyond the whiskers. N = 27.

and heteroscedasticity were checked using Shapiro—
Wilk tests and Levene’s tests respectively. A p-value
of <0.05 was considered significant. All analyses were
completed in R v 3.5.1 [40] using the packages Ime4
[41], ImerTest [39], car [42], and Ismeans [43].

3. Results

3.1. LAI and vegetation abundance

Herbivore exclusion significantly increased LAI
and vegetation abundance. Mean LAI increased by
22.9% in EX; (M = 0.30 £ 0.02) and by 65.4%
in EX; 45 (M = 0.38 + 0.03) compared to CT
(M = 0.24 £ 0.02) (figure 1). We also observed sig-
nificantly greater vegetation abundance with herbi-
vore exclusion. Lichens were significantly greater in
EXy treatment by almost 40% (M = 91.2 + 5.52),
but not in EX; s (M = 62.3 £ 4.05) compared to
CT (M = 65.5 £ 4.21) (figure 2(a)). Vascular plants
abundance was significantly greater with herbivore
exclusion compared to CT (61.0 & 2.70), however
there was no significant difference between EXp
(M = 75.7 + 3.03) and EX; 45 (M = 83.2 &+ 3.19)
treatments (figure 2(b)). Pin hits recording bare
ground were significantly lower in both EXj
(M = 0.44 + 0.22) and EX[ 45 (M = 1 & 0.34) com-
pared to CT (M = 3 4 0.59) (figure 2(c)).

We also observed shifts in plant growth form
abundances in response to herbivore exclusion.
Vascular plants were classified as dwarf decidu-
ous shrubs (Betula nana, Vaccinium uliginosum,
and Arctostaphylos alpina), dwarf evergreen shrubs
(Rhododendron tomentosum, Loiseleuria procumbens,
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Figure 2. Graphs (a)—(c) show vascular plant, lichen and bare ground counts per treatment. Vascular plants abundances
subdivided by growth forms per treatment are given in graphs (d)—(f). Lichen growth form abundances per treatment are given in
(g)—(i). Letters indicate significant differences between treatments. Treatment, median, first and third quartiles, whiskers and

outliers are defined as in figure 1.

Vaccinium vitis-idaea and Empetrum nigrum) and
graminoids (Carex spp.). While we observed greater
mean pin hits for dwarf deciduous shrubs by approx-
imately 80% in both EX; and EXj.g treatments
compared to CT, these differences were not signi-
ficant because of the large variability and low replic-
ation (CT M = 12.1 £ 2.7, EX; M = 21.7 + 4.6,
EXi+s M = 21.8 + 4.7) (figure 2(d)). However,
dwarf evergreen shrub abundance was signific-
antly greater by 28% in EX;,s compared to CT
(CT M = 46.0 £ 3.6, EX; M = 50.6 + 3.9,
EXpys = 59.0 & 4.4) (figure 2(e)). Graminoid spe-
cies were rare and no differences among treatments
were observed (CT M =14 0.3, EX; M = 1.3 + 0.4,
EXp4+s M = 0.6 £ 0.2) (figure 2(f)).

Lichen was subdivided into three func-
tional types, crustose (Lepraria neglecta), foliose

(Masonhalea richardsonii, Thamnolia tomentosum,
and Cladonia carneola) and fruticose (Cladonia spp.,
Alectoria ochroleuca, and Stereocaulon tomentosum).
Crustose lichen were much rarer than the other lichen
functional types and had the highest abundance in
CT (CT M = 3.19 £ 0.66, EX; M = 1.1 &+ 0.36,
EXpys M = 1.1 £ 0.36) (figure 2(g)).The abund-
ance of both foliose and fruticose lichens were
significantly higher in EX| treatment than in CT
or EXjys. Mean foliose abundance was greater
by approximately 61% in EXp than in CT (CT
M =129 + 1.20, EXpy M = 20.8 £ 1.52, EXy4s
M 10.2 £+ 1.07) (figure 2(h)), while mean
fruticose abundance was greater by more than
38% in EX; than in CT (CTM =49.0 £+ 4.45,
EXy M = 68.0 & 5.94, EX; ;s M= 49.5 £+ 4.50)
(figure 2(i)).
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3.2. Modeled carbon flux

Our modeled carbon flux results show a higher
carbon uptake by the environment with herbivore
exclusion (table 2). Herbivore exclusion significantly
affected both NEEg,, and NEEAyg as both EX; and
EX| +s had lower NEE and thus greater carbon uptake
than CT. Treatment did not have a significant effect
on either GPPgyp or GPPayg, although mean values
for both GPP fluxes were lower in the exclosures com-
pared to CT. We observed a significant difference
in both REgy and REayg, specifically that EX; had
lower respiration than both EXy s and CT (table 2).
Praxt. X LAI was highest in EX; ;s and lowest in CT
(table 1 has parameter estimates only).

4. Discussion

Herbivores can have a major impact on vegetation
through both selective (grazing) and nonselective
(trampling) activities and consequently can impact
carbon cycling [9, 12]. Our study shows that the long-
term exclusion of large and small mammalian herbi-
vores in dry heath tundra led to significantly greater
LAI and abundance of some plant growth forms and
lichens, and that these changes have the potential to
change dry heath tundra from a carbon source to sink
during the peak growing season. Our modeled carbon
flux suggests that under average light and temperat-
ure conditions, dry heath tundra is a carbon source,
which is in agreement with previously published lit-
erature [44]. Herbivore exclusion treatments signific-
antly affected modeled carbon flux, as indicated by
the more negative values of NEEgo and NEEayg for
both EX| and EX| ;s compared to CT (table 2). Our
results underscore the key role herbivores play in reg-
ulating the carbon balance in dry heath tundra.

4.1. LAI and vegetation abundance

As anticipated, we observed significantly greater LAI
and lower bare ground with herbivore exclusion,
while vascular plant abundance was higher, indic-
ating herbivore activity reduced plant abundance.
Roy et al [45] reported that herbivore exclusion had
no significant effect on relative abundance of indi-
vidual plant growth forms in the same experimental
plots. Point frame measurements incorporate struc-
tural complexity that can be missed with percent
cover measurements, which may partially explain dif-
ferences in our results. The difference in spatial scale
of our measurements (Roy et al surveyed 8 m? plot~!)
in combination with the heterogeneity of dry heath
tundra might have also contributed to the differ-
ences in our findings. Herbivore exclusion resulted
in greater evergreen plant abundance, in agreement
with a 10 year herbivore exclusion study in dry heath
tundra [46]. We observed no difference in deciduous
shrub abundance, which was unexpected, but might
be explained by the unpalatability of resinous B. nana
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[47], which comprised a major portion of decidu-
ous shrubs in our plots. Evergreen shrubs species
have lower leaf level photosynthetic rates compared
to deciduous shrubs, potentially resulting in a lower
carbon uptake for a given light level and LAI if they
become the more dominant species [48]. There was a
larger mean difference in the abundance of deciduous
plants between EX; and CT than in EXy ;s to CT, with
EXy having a slightly greater abundance than EX ;.
Evergreen plants on the other hand were more abund-
ant in EXj s than in EX;. The high abundance of
evergreen plants in EX; s might therefore also par-
tially explain this treatment’s lower Py despite its
higher LAI relative to EX|.

We observed that fruticose and foliose lichen
abundances were higher in EX;, compared to CT; this
result was expected as caribou are major consumers
of these lichen [49] and is in agreement with other
studies that report higher lichen biomass and cover
with reduced caribou grazing pressure in heath tun-
dra [22, 28, 50]. Crustose lichens, which only rarely
occurred in our plots and unlike foliose and fru-
ticose lichens are not preferentially foraged by caribou
[51], had lower abundances in the exclosures than
in CT. We did not observe a similarly greater lichen
abundance in EXj g, which was surprising as cari-
bou are also excluded in this treatment. Exclusion
of both size classes of herbivores have been repor-
ted to both increase [28] and decrease [52] lichen
cover, suggesting that decreased grazing by caribou
is not the only determinant of lichen abundance.
Lichen abundance also varies in caribou-only exclu-
sion experiments depending on the ecosystem [50].
It is possible that small mammal herbivory in EXp
provided lichen with a competitive edge against vas-
cular plants, because small mammals preferentially
graze on vascular plants [27]; that competitive edge
was not present in the EXjs. The exact composi-
tion of the vegetation community may also affect rel-
ative abundances of lichen and vascular plants as it
has also been reported that lichen can both reduce
and enhance vascular plant seedling establishment
depending on the types of vegetation present [53].

4.2. Modeled carbon flux

Dry heath tundra has been reported to be a net carbon
source [44, 54-56] even during the growing season
[44]. Our results agree with these previous studies,
as NEE,. is positive, indicating carbon release, in
CT during peak growing season. R*> values for the
NEE models ranged from 0.50 to 0.68 were lower
than those reported for dry heath type tundra in
Shaver et al [33], which may be partially explained
by our lower sample size, but RMSE values, which
ranged from 0.670 to 1.117, were in line with pre-
vious reported values. Herbivore absence in tundra
ecosystems has been linked to increases in carbon
uptake [18, 57, 58], with exceptions [20]. We anticip-
ated that there would be higher carbon uptake in the
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Table 1. Estimated parameters and statistics for the three treatments. Parameters were fit using a non-linear least squares. NEE values
were calculated using Monte Carlo simulation. Italicized values indicate parameters taken from Shaver et al [33] or otherwise have no

calculated standard error.

Eo
Praxt. (pmol CO2 Ry Ry NEE¢0o NEE)1,
(gmolm~2  pmol ™! (pmol (pmolm=2 8 (pmol (mol
leafs™!) photons) m s ) ground s7hH (ec™hH R*> RMSE m2s7!) m~2s7h)
CT 15.07 0.03 1.62 0.69 0.03 0.66 0.67 —0.34 1.22 + 0.0
EXy, 19.21 +3.84 0.03 +£0.01 0+ 1.15 0.62 £0.63 0.05+0.03 050 1.02 —0.97+£2.17 —0.45+0.0
EXi4+s 15.67 +2.23 0.02+0.00 0.554+0.65 0.57 £0.36 0.05+0.02 0.67 1.12 —0.71+£1.25 0.37+£0.0

Table 2. Mean NEE, GPP and RE values were calculated for each treatment using the appropriate model parameters and subplot specific

LAL Superscript letters indicate statistical significance.

NEEso0 GPPso0 REs00 NEEave GPPave REAvE

(pumol m2s7h (pumol m~2s7h (pmol m~2s7h (pmol m~2s7h) (ppmol m~2s7h) (pmol m2s7h
CT —0.19 £ 0.20° —1.80 £ 0.25 1.61 & 0.05* 0.15 4 0.14* —1.37 £ 0.18 1.53 + 0.05%
EXy  —099+020° —236+0.25 1.37 4+ 0.05° —0.484+0.14> —1.71+0.18 1.23 +0.05°
EXip+s —0.78 £ 0.20° —2.40 £0.25 1.62 4 0.05* —0.24 +0.14° —1.72 £ 0.18 1.47 4 0.05°

exclosures, concurrent with the increase in vascular
plants we observed, which our modeled NEE¢y, and
NEE,,. support. Furthermore, under average temper-
ature and light conditions for July 2017, herbivore
exclusion switched the dry heath tundra from carbon
source to sink. On average, we observed lower GPP
(greater photosynthetic carbon uptake) in the exclos-
ures than in CT, but differences between treatments
were not significant, contrary to LAI and vascular
abundance, which were both higher in the exclosures.
This is possibly because the higher LAI and vascular
plant abundances were driven by less productive spe-
cies (i.e. evergreen dwarf shrubs) [48]. However, the
higher vascular abundance and LAI in the exclosures
were reflected in NEE, which indicated significantly
higher carbon uptake. Carbon uptake in drier tun-
dra types (such as our study site) have been reported
to be higher with herbivore exclusion [57] in agree-
ment with our findings, though not always signific-
antly [20]. Stronger responses appear to be related to
shifts in vegetation composition, specifically increases
in vascular plants [57], which likely have a more direct
impact on carbon flux than lichen.

Higher lichen cover in EX| is a possible explan-
ation for the lower RE observed in that treatment
compared to EX; s and CT as it can insulate soils
and lower the temperature experienced by the micro-
bial community underneath [59, 60]. There was no
distinction between the exclusion of large and small
herbivores and large herbivores only on growing
season NEE despite the difference in diets between
the two herbivore assemblages, similar to what was
found in European heath tundra [57]. However, the
unexpectedly lower RE in EXy indicates that these
treatments may have subtle differences that are not
apparent under weather conditions experienced in
our study. Microbial activity in more insulated soils
can have different temperature sensitivity than in

less insulated soils [61], raising the possibility that
the treatments might have differing responses to
warming.

Studies suggest climate change will have negat-
ive impacts on many arctic animal species, includ-
ing caribou [62, 63] and small mammals [64—67].
Many caribou herd populations have been declining,
including those in northern Canada [68] though the
Porcupine Herd in northeast Alaska has recently seen
record highs [69]. Climate change can potentially
have a dampening effect on boom and bust cycles
of small mammals like voles and lemmings [70-72].
These future projections underscore the importance
of understanding herbivore and carbon cycling inter-
actions in the arctic tundra.

5. Conclusion

We have shown that herbivore absence correlates with
increases in vegetation abundance and LAI in arctic
dry heath tundra, which in turn is associated with
increased carbon uptake. Moreover, our modeled
NEE predicts herbivore absence has the potential to
change dry heath tundra from a carbon source to
sink during peak growing season. As climate change
causes rapid changes to the arctic tundra ecosys-
tems, incorporating the relationship between herbi-
vores and ecosystem productivity in carbon cycling
models is crucial to accurately predicting tundra car-
bon balance.
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