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Abstract:

Vegetation indices derived from solar and photosynthetically active radiation (PAR) sensors (i.e.
radiation derived) have been under-utilized in inferring ecosystem function, despite measurement
capability at hundreds of sites. This under-utilization may be attributed to reported mismatches
among the seasonality of radiation- and satellite-derived vegetation indices and canopy
photosynthesis; herein referred to as measurement biases. Here biases in radiation derived
reflectance and vegetation indices were assessed using a decadal record of satellite and ground
based spectroradiometer data, ecosystem phenology and CO> fluxes, and radiation derived
vegetation indices (i.e. the Normalized Difference Vegetation Index [NDVI], the two band
Enhanced Vegetation Index [EVI2]) from a high latitude tundra site (i.e. Imnaviat). At Imnaviat,
we found poor correspondence between the three types of reflectance and vegetation indices,
especially during the latter part of the growing season. Radiation derived vegetation indices
resulted in incorrect estimates of phenological timing of up to a month and poor relationships
with canopy photosynthesis (i.e. Gross Ecosystem Exchange (GEE)). These mismatches were
attributed to solar position (i.e. solar zenith and azimuth angle) and a method, based on the diel
visible and near-infrared albedo variation, was developed to improve the performance of the
vegetation indices. The ability of radiation derived vegetation indices to infer GEE and
phenological dates drastically improved once radiation derived vegetation indices were corrected
for solar position associated biases at Imnaviat. Moreover, radiation derived vegetation indices
became better aligned with MODerate resolution Imaging Spectroradiometer (MODIS) satellite
estimates after solar position associated biases were corrected at Imnaviat and at 25 Fluxnet sites

(~90 site years) across North America. Corrections developed here provide a way forward in
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understanding daily ecosystem function or filling large gaps in eddy covariance data at a

significant number of Fluxnet sites.

Keywords: Phenology, NDVI, EVI2, Solar Zenith, Gross Ecosystem Exchange, Arctic LTER
1.0 Introduction:

Vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), have been
used to infer ecosystem structure and function over the past half century (Rouse 1974). These
indices utilize the low red reflectance -due to chlorophyll absorption-, and the high NIR
reflectance -due to low absorption and high scattering- of green leaves to infer ecosystem
function (e.g. leaf abundance, canopy physiology, and canopy phenology) (Gamon et al. 2010;
Gamon et al. 2006). Historically, these indices were derived from satellite based reflectance;
providing a proxy of ecosystem function at the global scale-albeit at low temporal resolution
(e.g. monthly, bi-monthly). However, these indices also can be derived from commonly used
up- and down-ward facing Photosynthetically Active Radiation (PAR) and solar radiation
sensors (i.e. radiation derived); providing a low cost continuous measure of ecosystem function
even when heavy cloud cover obscures satellite views of the surface (Huemmrich et al. 1999;
Rocha and Shaver 2009; Wilson and Meyers 2007). Although radiation derived vegetation
indices provide a powerful tool for understanding ecosystem function at sub-daily to annual

timescales, a critical assessment of their uncertainties are surprisingly lacking.

Despite the wide use of PAR and solar radiation sensors across many eddy covariance sites,
radiation derived vegetation indices have been under-utilized in inferring ecosystem function.

Only a handful of studies have used radiation derived vegetation indices to infer ecosystem
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function, as compared to the thousands that have used satellite derived vegetation indices
(Jenkins et al. 2007; Wohlfahrt et al. 2010; Wright and Rocha 2018). This imbalance may be
due to the historical precedent of satellite data, or a lack of mechanistic understanding of
measurement uncertainties in radiation derived indices. Radiation derived vegetation indices
differ in magnitude and exhibit less seasonality than those derived from satellite data (Rocha and
Shaver 2009). Jenkins et al. (2007) found that the slope of the relationship between radiation
derived vegetation indices and canopy photosynthesis differed in the early and later part of the
growing season. This contrasts with remote sensing work that models canopy photosynthesis
from satellite derived vegetation indices with a single relationship across the season, and
highlights a significant methodological knowledge gap (Sims et al. 2006; Sims et al. 2011; Xiao

et al. 2005).

Although various hypotheses have been proposed to resolve the differences in radiation- and
satellite- derived vegetation indices, the mechanisms are still debatable. The lack of
correspondence between radiation- and satellite-derived vegetation indices have often been
attributed to differences in the spatial scale of integration between the two measures or
differences in sensor spectral resolution (Disney et al. 2004; Tittebrand 2009; Wang et al. 2004;
Wang et al. 2012). Ground based radiation derived vegetation indices integrate a smaller area
(i.e. ~100 x 100 m) than satellites such as the MODerate resolution Imaging Spectroradiometer
(MODIS) (i.e. 100-1000 m) (Schmid 1997). Spatial mismatches are less likely to confound
ground radiation- and satellite- derived reflectance and vegetation index comparisons in
homogenous landscapes (Wittich and Kraft 2008). Radiation-derived vegetation indices also are

very broad and integrate spectral information across the visible and infrared wavelengths,
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whereas satellite derived vegetation indices use more narrow spectral bands that focus on the red
and NIR portions of the electromagnetic spectrum (Wittich and Kraft 2008). This spectral
mismatch is more likely to influence the magnitude- but not the seasonality-of the vegetation
indices. Although both these mechanisms are important at individual sites, they are unlikely to
account for the large magnitude and consistency of radiation- and satellite-derived differences

observed across many sites.

Sensor measurement biases have been largely overlooked when determining the causal
mechanism behind differences in radiation- and satellite-derived vegetation indices (Balzarolo et
al. 2011; Schaepman-Strub et al. 2006). Satellite sensors measure surface radiance and then
corrects reflectance to minimize solar illumination and sensor view effects using a Bi-Directional
Reflectance Function (BRDF) (Schaepman-Strub et al. 2006). The BRDF corrects for solar
illumination effects from solar position to compare reflectance at the same view angle-typically
defined at nadir. Such corrections are not made for radiation derived vegetation indices
(Balzarolo et al. 2011; Huemmrich et al. 1999; Wilson and Meyers 2007). Although the
radiation sensors are located above the canopy, these sensors integrate radiation from the entire
hemisphere. Despite this hemispherical field of view, shortwave albedo has been shown to be
sensitive to illumination angle (i.e. solar zenith and azimuth angles), which changes over the
course of a day and year (Huemmrich et al. 1999). For example, broadband albedo measured
with pyranometers have been shown to be dependent on solar zenith angle and illumination
intensity for surfaces with high reflectivity such as snow (Carroll and Fitch 1981; Kriebel 1979;

Wang et al. 2005; Wang and Zender 2010; Yang et al. 2008). However, little has been done to
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understand or correct the impact of illumination angle effects on radiation derived vegetation

indices.

Here we assessed the ability of PAR and solar radiation derived reflectance proxies and
vegetation indices to replicate MODIS satellite derived reflectance and vegetation indices; herein
referred to as measurement biases. We also assessed the ability of PAR and solar radiation
derived vegetation indices to infer ecosystem function (i.e. plant phenology and CO: fluxes).
We focus on two commonly used vegetation indices: NDVI and EVI2 (Rocha and Shaver 2009).
NDVI has more of a historical precedent in inferring ecosystem function, but EVI2 may provide
a better proxy of ecosystem function due to its insensitivity to non-vegetated background
reflectance (Jiang et al. 2008). Past remote sensing work has demonstrated the impact of solar
position in influencing reflectance and vegetation indices, but lacked biological data to
demonstrate the implications of ignoring such biases for inferring ecosystem function (Bhandari
etal. 2011; Huete 1987; Ma et al. 2019; Middleton 1992). We hypothesized that solar position
will lead to systematic biases in radiation derived vegetation indices that prevent these indices
from correctly inferring vegetation phenology and seasonality in canopy photosynthesis at
Imnaviat. We tested this hypothesis with a decadal record of PAR and solar radiation fluxes,
MODIS, and ground based spectral radiometer measurements at a high latitude tundra site
(Imnaviat), and further corroborated the patterns observed at Imnaviat with a synthesis of
Fluxnet datasets. Imnaviat was chosen because of its landscape homogeneity, its rich long term
ecological dataset (i.e. long term CO; fluxes and plant phenology), as well as its high latitude
location with a frequently high solar zenith angle. The attributes of these data provide an ideal

opportunity to determine the major sources of measurement biases leading to the discrepancy
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between satellite- and radiation-derived vegetation indices, and measures of seasonality in

ecosystem function.

2.0 Methods

2.1 Site Description, Instrumentation, and Available Data

This study was conducted on a west-facing hillslope within the Imnaviat Creek watershed on the
North Slope of Alaska, USA (68.61° N; 149.31° W). Vegetation at the site was characteristic of
moist acidic tussock tundra with tussock cottongrass [ Eriophorum vaginatum], dwarf birch
[Betula nanal, labrador tea [Rhododendron tomentosum|, sphagnum moss [Sphagnum spp.], and
scattered lichens covering the landscape (Euskirchen et al. 2012). The mean annual temperature
at the site was -7 °C and the mean annual precipitation was 318 mm, with 40% occurring as rain
and 60% as snow. Mean growing season (June-August) temperature was 6 °C, while mean non-

growing season temperature was -11 °C.

In July of 2008, Imnaviat was instrumented with three (1 upward and two downward) CMP3
pyranometers that measured shortwave solar radiation (SW: units: W m) [CMP3; Kipp and
Zonen], three PAR sensors that measured Photosynthetically Active Radiation (PAR: units:
umol m?2 s) [LI-190SA; Li-Cor, Lincoln NB], two downward looking surface temperature
radiometers [IRT Infrared Thermometer; Apogee Instruments], a HMP temperature and humidity
sensor [HMP45C-L; Campbell Scientific], and two TCAYV soil temperature sensors [TCAV-L;
Campbell Scientific]. Meteorological sensors were mounted at a height of 2.5 meters. Radiation

sensors were well maintained, frequently leveled, and sent for factory calibration every 2-3 years
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during the measurement period. The radiation tower ran nearly continuously from July 2008-
2018, and was powered by a battery bank connected to two solar panels, which were situated

away from the direct field of view of the sensors.

The radiation tower was located ~300 m away from three Arctic Observatory Network (AON)
flux towers located along the same west facing hillslope gradient (Euskirchen et al. 2012). The
flux towers measured the Net Ecosystem Exchange of CO> (NEE) via the eddy covariance
method, and a suite of meteorological variables including incoming and outgoing PAR and solar
radiation, air temperature, humidity, wind speed, soil moisture, soil temperature, and snow depth
(Baldocchi 2003). We analyzed the mean seasonal cycle of the daily Gross Ecosystem Exchange
(GEE) at the mid-slope Moist Acidic Tundra (MAT) site from 2008-2018 to determine the
relationship between vegetation indices and the seasonality of photosynthesis. The mid-slope
MAT flux tower was chosen because of its similar vegetation composition, slope position, and
NDVI seasonality to the nearby radiation tower [MAT Flux Tower NDVI vs. Imnaviat Radiation
Tower NDVI R?: 0.97; Slope: 1.01; Mean Absolute Error (MAE): 0.01]. AON data were

obtained online at http://aon.iab.uaf.edu.

NEE flux partitioning was described in detail in Euskirchen et al. (2012, 2017), and followed
standard Fluxnet protocols for partitioning NEE into canopy photosynthesis (Gross Ecosystem
Exchange: GEE) and ecosystem respiration (ER). Briefly, NEE flux partitioning was
accomplished by fitting a Q10 air temperature response function to well mixed (u-star>0.10 s m’
'Y NEE’s that occurred during low light conditions (PAR< 50 pmol m™ s™') (Ueyama et al. 2013;

Euskirchen et al. 2017)). The basal respiration and Q10 parameters of the exponential model
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were determined through least squares fitting with “low light” NEE and air temperature data
from a 30 day daily moving window. This empirically derived Q10 air temperature response
function was used to estimate half hourly ER. Half hourly GEE was inferred from NEE by

subtracting ER from NEE (GEE=NEE-ER), and temporally scaled up with daily summations.

2.2 Ground based Spectral Reflectance Measurements

Ground based reflectance was measured within the footprint of the Imnaviat radiation tower
using three different spectroradiometers over the years. Spectral reflectance was measured with a
Unispec (UniSpec-SC, PP-Systems, Amesbury, MA; Spectral Range: 300-1200 nm at 2 nm
resolution) from 2008-2009, a dual channel Unispec (Unispec-DC, PP-Systems, Amesbury, MA;
Spectral Range: 300-1200 nm at 2 nm resolution) from 2010-2012, and a FieldSpec 4 (Analytical
Spectral Devices (ASD); Malvern Panalytical Ltd; United Kingdom; Spectral Range: 200-2400
nm at 2 nm resolution) from 2013-2018. Four ~100 m transects separated by ~30 m were
established on the North and South side of the radiation tower forming a 200x120m grid within
the tower footprint. Spectral reflectance was measured during midday hours (11:00 am-2:00 pm
AST) every ~3 meters along each of the four 100 m transects either weekly, bi-monthly, or
monthly during the growing season (June-August) of each year (n=240 scans per sampling date).
A total of 62 sampling campaigns were undertaken from July 2008 to August 2018 with each

campaign taking ~1 hour to accomplish.

Surface reflectance measurements followed standard procedures described in the
spectroradiometer user manuals. Prior to measurements, each instrument was allowed a 15-20

minute warm up period. A freshly cleaned white Spectralon® diffuse reflectance panel
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(Labsphere; North Sutton, NH) was used as a reflectance standard to convert spectroradiometer
derived radiance into surface reflectance. Dark current measurements were taken by closing the
detector “door”, which prevented light from hitting the detectors and minimized measurement
artifacts from background electrical instrument noise. Optimal measurement integration times
were dependent on illumination conditions and were automatically determined by each sensor.
White panel, dark current, and optimal measurement integration time measurements were taken
frequently (i.e. every 3-5 minutes depending on sky conditions) to ensure high quality
reflectance data. After each sampling campaign, surface reflectance data were quality checked
for anomalous spectra (i.e. spectra that were >3 standard deviations from the mean) and averaged
across all scans. These spectra were used to calculate NDVI and EVI2 using Equations [2] and
[3] below and spectrally averaged MODIS wavelength definitions for red- (average of 620-670
nm) and NIR- reflectance (average of 841-876 nm) (Schaaf et al. 2002). We also spectrally
averaged all wavelengths to calculate total and visible reflectance to derive a broad band visible,
NIR (using equation 1), NDVI and EVI2 based on ASD spectroradiometer data. ASD averaged
total reflectance was within 10% of the shortwave albedo, while ASD averaged visible

reflectance was within 5% of PAR albedo measured by radiation sensors at Imnaviat.

2.3 Ground based Phenology

Individual plant species phenologies were measured from 2008-2018 in moist acidic tundra at
the Toolik Lake Arctic Long Term Ecological Research (LTER) station. Toolik field station was
situated ~7 km away and experienced similar weather to Imnaviat. A variety of phenological
events (i.e. first snow free, first visible leaf, first leaf drop, first color change, and last leaf drop)

were measured in several plots around Toolik lake in each year for the dominant MAT species

10
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(i.e. Andromeda polifolia, Betula nana, Carex bigelowii, Cassiope tetragona, Empetrum nigrum,
Eriophorum vaginatum, Ledum palustre, Polygonum bistorta, Rubus chamaemorus, Salix
pulchra, Vaccinium uliginosum, Vaccinium vitis-idaea). These phenological data were used to
validate satellite- and radiation- derived NDVI and EVI2 estimates of the start-, end-, and length-
of the growing season. The average of the first visible leaf for all species served as a proxy for
the start of the growing season, whereas the maximum last leaf color change served as a proxy

for the end of the growing season.

2.4 Radiation derived Vegetation Indices

The radiation tower at Imnaviat measured surface albedo in the visible (400-700 nm) and total
shortwave wavelengths (300-2400 nm) of light. These albedo measures served as a proxy for red
and near infrared reflectance (Rocha and Shaver 2009). Visible (av) albedo was calculated as
the ratio between reflected () and incoming (;) PAR av = PAR,/PAR;, while total albedo (o)
was calculated as the ratio between reflected and incoming shortwave radiation [SW; & SW;,
respectively] ar = SW/SWi. av was used as a proxy for red reflectance, while both av and ot

were used in Equation 1 as a proxy for NIR reflectance (an) (Jenkins et al. 2007).

ay=W*a,-a, Equation [1]

W in Equation 1 equaled 2 for all vegetation types, and represented a weighting term to separate
an from av and ar. Derivations of red and near infrared reflectance from ground based
radiometers represented broadband definitions of narrowband quantities. an included dynamics

in the near- and short-wave infrared region of the reflectance spectrum, while av included

11



278  dynamics in the red, blue and green regions of the reflectance spectrum. Other ground

279  radiometer derivations of ox utilize similar assumptions (see Huemmrich et al., 1999 & Wilson
280 and Meyers, 2007). We used Jenkins et al. (2007) derivation because of its parsimony and its
281  high correlation with other ox derivations (Jenkins vs. Huemmrich R? [Mean Absolute Error:
282 MAE]: 0.91 [0.015]/ MAE Jenkins vs. Wilson & Meyers R? [MAE]: 0.99 [0.014]) for the sites
283  used in this study. We also found that the conclusions from our analyses were independent of the
284  different formulations of an.

285

286  We focused our analyses on the active growing season during snow-free periods. Data

287  influenced by snow covered ground were identified with an albedo threshold of >0.3 (i.e.

288  vegetation albedo <0.25 at all sites) and removed from the half hourly radiation datasets.

289  Incoming and reflected radiation were averaged over the course of a day (i.e. n=48 for each
290  value) to minimize diel solar zenith effects (Huemmrich et al. 1999; Rocha and Shaver 2009;
291  Wilson and Meyers 2007). Sensor drift and snow and dirt accumulation on the sensors were
292  identified as periods where PARi/SWi; fell beyond or below the mean plus or minus 2 standard
293  deviations and subsequently removed. The final “cleaned” dataset contained daily ground

294  radiometer values that were compared with MODIS reflectance and vegetation indices.

295

296  NDVI and EVI2 were calculated from radiation-, spectroradiometer- and MODIS-derived

297  measures of near infrared (an) and red reflectance (ar) with Equations [2] and [3] (Jiang et al.

298  2008).
299
NDyT = S %r
300 Uy + %y Equation [2]

12
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EVI2=25—"—""—
oy +24a, +1

Equation [3]

2.5 Fluxnet Data Synthesis

We conducted a broader survey of ground based radiation derived vegetation indices with
Fluxnet data to determine whether biases observed at the Imnaviat site were consistent across
other sites (Table 1). Data from the Fluxnet network consisted of 25 sites and 90 site years of
half hourly incoming (i) and reflected (;) PAR and shortwave data (Table 1). 12% of the sites
were from crops, 8% were from deciduous forests, 25% were from evergreen forests, 28% were
from grasslands, 20% were from arctic tundra, and 8% were from a shrub and grassland mix.
Sites had a minimum of two years of data with a maximum of 6 years at 2 sites, and an average
of 3.5 years for the entire dataset. PAR within the 400-700 nm spectral region was measured
with a LI190 quantum sensor (LI-COR Inc., Lincoln, Nebraska) at 85% of the sites, while the
remaining sites used either an Apogee quantum sensor (Apogee Instruments, Logan, Utah) or
BF3 sunshine sensor (Dynamax, Houston Texas). Shortwave radiation (SW) within the 300-
2800 nm spectral region was measured with a CM3 (Kipp & Zonen, Bohemia, NY ) at 90% of
the sites, while the remaining sites used an Apogee pyranometer (Apogee Instruments, Logan,
Utah) or L1200 pyranometer (LI-COR Inc., Lincoln, Nebraska). Data were aligned with MODIS
satellite data (see section 2.7) through 16- day averages that were centered on the MODIS

composite date.

2.6 Testing and Correcting for Solar Position Biases

13



323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

We corrected solar position biases using diel relationships between solar position and albedo
throughout the season. Diel NIR and visible albedo variability can be more than twice as large

as observed over the course of a season (Huemmrich 1999). These large diel visible and NIR
albedo variations cannot be representing changes in canopy leaf area, that are often related to
vegetation indices, because LAI changes over much longer time scales than a day (i.e. days to
weeks)(Stoy 2013). Rather, this large diel variation arises from the anisotropic properties of
surface reflectance (i.e. the bidirectional reflectance distribution function) and possibly other
sensor issues, such as a sensors’ cosine response function (Huete 1987; Middleton 1992; Rahman

et al. 1993).

Here we used the diel variation in albedo and solar position to empirically derive a correction
factor to apply over the course of the season. We removed vegetation phenology impacts on the
seasonal variability by dividing each daily averaged visible and NIR albedo into each half hourly
visible and NIR albedo value to focus solely on sub-daily variations associated with solar
position (Equation 4). These ratios provided 48 half hourly correction factors for each day and
albedo that can be related to sub-daily solar position changes. When multiplied with each half
hourly NIR or visible albedo, the correction factor scaled these values down to represent a
consistent daily average for all 48 half hourly periods. These constant daily NIR and visible
albedos were consistent with the fact that canopy leaf area does not significantly change on sub-

daily timescales.
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I Daily Value _ % Equation [4]
€or ™ Half Hourly Value ~ aj,

ocor Was calculated and three dimensional bin averaging on half hourly solar zenith, solar
azimuth, and acor helped establish the empirical relationship among the three variables. Because
acor Was derived across the season and years, we used bin averaging to further smooth the acor
response function in relation to solar zenith and azimuth. We found that twenty-five equal range
sized bins were sufficient enough to smooth the remaining variability associated with seasonal
changes in solar zenith and azimuth angle and random noise in the albedo measurements.
Machine learning methods with a squared exponential Gaussian process regression model along
with the binned half hourly av and an were used to derive the empirical correction factor
equations for each albedo measure (i.e. av and on) as a function of solar position. Empirical
correction factors for each day were predicted from the daily averaged solar zenith and azimuth
angle, and then multiplied by the daily averaged visible and NIR albedo to produce a solar
position corrected av and an. NDVI and EVI2 were then recalculated using the solar position
corrected av and on with Equations 2 and 3. Solar position was calculated for each site and half
hour using the site latitude and longitude and time of year (Myers 2017). Analyses were
accomplished with Matlab’s Regression Learner application (MATLAB 2019b; Mathworks Inc.

Natick, MA).

2.7 MODIS Data
We compared MODIS reflectance and vegetation indices to radiation derived proxies and
measures. MODIS version 4 data were extracted from a 0.25 km? area centered at each tower

location (http://daac.ornl.gov) (ORNL DAAC 2018). For Imnaviat, we used daily Nadir BRDF-
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Adjusted reflectance (MCD43A4) and extracted data at various spatial scales (i.e. 0.25, 6.25,
20.25, 210.25, and 420.25 km?) to determine the impact of spatial aggregation on the comparison
between ground and satellite based data (Shuai et al. 2013). For the Fluxnet Data Synthesis, we
used Nadir-BRDF adjusted 500 m resolution surface reflectance (MODIS NBAR; MCD43A)
from seven spectral bands (Schaaf et al. 2002). We also used the seven MODIS spectral bands
along with empirical equations from Liang (2000) to calculate a total and visible albedo that
were used to derive broadband vegetation indices following Equations 1-3. MCD43A reflectance
was reported every eight days, derived from both Terra and Aqua platforms, and adjusted to
local solar noon with a BRDF calculated over a 16-day interval. Data with >80% of pixels
passing quality control were used in the analyses. Only growing season MODIS data, as defined

by ground based snowless terrestrial albedo values, were used in the analyses.

2.8 Phenology Model

The start, end, and length of the growing season was determined with a phenology model fit to
the observed seasonal cycle of MODIS- and radiation- derived NDVI and EVI2 in each year at
Imnaviat. The phenology model was a double-logistic function that predicted each vegetation

index based on the day of year (t) (Beck et al. 2006; Fisher et al. 2006; Fisher et al. 2007)

(Equation 5):

U(t) = Umin t Vamp ( : . ) Equation [5]

1+ em1i—mt  14emz—nat

The model was fit by minimizing the sum of squared residuals between model predictions and

observed values. The fitted parameters of the model were viin and vamp, mi, ni, mz, and nz. Vimin

16
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and vamp were related to the minimum and amplitude values of the spectral index, respectively.
The parameters in the two exponents determined the seasonality with m; and #n; related to the rate
and timing of green-up, and m> and n> related to the rate and timing of senescence. The start of
the growing season was given by ¢ = m;/n;, the end of the growing season was given by ¢ =
m2/n2, and the length of the growing season was determined by the difference between the start

and end of the growing season.

2.9 Statistical Analyses:

Statistical analyses included least squares linear regression to determine the relationship between
two variables, and Mean Absolute Error (MAE) to determine the prediction error of a model or
the error associated with the comparison of a set of similar observations (Ramsey 2013).

Statistical significance was determined at the 95% confidence level.

3. Results

3.1 Assessing Spatial Aggregation Biases

The scale of spatial integration had little impact on the comparison between tower and MODIS
based vegetation indices indicating landscape coherence in phenology within the region
surrounding Imnaviat (Figure 1). Here we minimized spectral definition differences among
sensors by comparing spectroradiometer- and MODIS- derived reflectance’s and vegetation
indices. Spectroradiometer derived NDVI explained 70% of the variability in MODIS derived
NDVI, whereas spectroradiometer derived EVI2 explained 60% of the variability in MODIS

derived EVI2. The MAE increased slightly from 6% of NDVI at the ecosystem/watershed level
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412 (0-10 km?) to 7% of NDVI at the regional scale (>300 km?). EVI2 exhibited greater sensitivity
413  to spatial integration with MAEs increasing from 14% of EVI2 at the ecosystem/watershed scale
414  to 20% of EVI2 at the regional scale.

415

416 3.2 MODIS- vs. radiation-derived reflectance and indices comparison

417  In general, spectroradiometer- and MODIS- derived reflectances and vegetation indices were
418  more related to each other than those derived from radiation fluxes at Imnaviat (Table 2).

419  Vegetation indices yielded higher correlations among measurement types than did red and NIR
420  reflectance. For example, reflectance R*’s ranged from 0.17-0.22 for NIR and red reflectance,
421 while vegetation index R?’s ranged from 0.34 to 0.67. Correlations among radiation-,

422  spectroradiometer-, and MODIS-derived measures were typically higher for EVI2 than for

423  NDVI. The poor relationships between radiation- and MODIS/spectroradiometer- derived

424  vegetation indices were largely attributed to differences in seasonality among the

425  MODIS/spectroradiometer- and radiation- derived measures.

426

427  Seasonality differed among radiation-, spectroradiometer-, and MODIS derived- reflectance and
428  vegetation indices at Imnaviat (Figure 2). Correspondence among the three measures was

429  greatest for red reflectance and smallest for NIR, NDVI, and EVI2. Red reflectance

430  demonstrated similar seasonality among the measures with higher reflectance in the shoulder
431  seasons and minimum values during the peak of the growing season. In contrast, NIR

432  reflectance, NDVI, and EVI2 were low at the start of the growing season, reached a maximum
433 during peak growing season, and then declined to a minimum at the end of the growing season.

434 All three measures of NIR, NDVI and EVI2 exhibited similar seasonality up until the peak of the
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growing season, but differed towards the end of the growing season. Radiation-derived NIR
reflectance and vegetation indices were larger than MODIS and spectroradiometer- derived
quantities towards the latter part of the growing season. Consequently, differences between
MODIS and spectroradiometer- and radiation-derived NIR, NDVI, and EVI2 exhibited strong

seasonality with the largest mismatch towards the second half of the growing season.

3.3 Assessing Sensor Biases

Seasonal differences between MODIS- and radiation- derived indices observed in Figure 2 were
correlated with solar zenith angle at Imnaviat (Figure 3). Larger solar zenith angles produced
larger differences between MODIS- and radiation- derived NIR, NDVI, and EVI2, but had no
impact on differences between MODIS- and radiation- derived red reflectance. Solar zenith
angle explained 41% of the variability in NIR reflectance biases, 28% of the variability in NDVI
biases, and 45% of the variability in EVI2 biases. This represented a bias of 0.004 per 1° change
in zenith angle for NIR reflectance, and a bias of 0.006 per 1° change in zenith angle for NDVI

and EVI2.

The relationship between measurement bias and solar zenith angle at Imnaviat were consistent
across Fluxnet sites located in vastly different biomes (Figure 4). However, in contrast to the
observed solar zenith dependent measurement biases at the Imnaviat site, there was a statistically
significant measurement bias dependence on solar zenith angle at some of the Fluxnet sites for
red reflectance. For the Fluxnet dataset, MODIS and radiation derived NIR differences positively
scaled with solar zenith angle and all biomes exhibited similar slopes that ranged from 0.002 to

0.003 per 1° change in zenith angle. The solar zenith dependent biases in NIR and red
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reflectance carried over to NDVI and EVI2, but sometimes canceled each other out. This
cancelling out effect was more predominant for NDVI than for EVI2. For example, NDVI
biases were unrelated to solar zenith angle for evergreens and grass shrublands, whereas solar
zenith angle was correlated with EVI2 biases in all biomes. The bias sensitivity to solar zenith
angle ranged from 0.001 to 0.005- for NDVI, and from 0.003 to 0.005- per 1° change in zenith

angle for EVI2.

3.4 Assessing Bandwidth Biases

We used the full range spectroradiometer ASD data (300-2400 nm) to determine whether the
measurement bias dependence on solar position was attributed to broadband versus narrowband
definitions of red and near infrared reflectance used by the radiation sensors (Figure 5).
Correlations between solar zenith angle and the difference between broadband and narrowband
(i.e. Bandwidth Biases) definitions for red (p-value: 0.94), NDVI (p-value: 0.21), and EVI2 (p-
value: 0.06) were not statistically significant. Bandwidth biases were marginally significant and
related to solar zenith angle for NIR (p-value: 0.05), but were opposite in sign to the expected
relationships observed in Figures 3 & 4. Moreover, solar zenith angle only explained 10% of the
variation in bandwidth biases, as opposed to the 67% of the variation in radiation tower and

MODIS differences explained by zenith angle in Figure 3.

Similar results were found across the Fluxnet sites using MODIS data and differencing broad-
and narrow- band vegetation indices (Figure 1S; Table 1S). Although many relationships were
statistically significant, solar zenith angle only explained <10% of the variation in bandwidth

biases for NDVI, and <11% of the variation in bandwidth biases for EVI2 across all Fluxnets
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sites on average (Supplementary Figure 1). Moreover, the bandwidth bias sensitivity to solar
zenith angle was sometimes the opposite sign of the expected positive relationships in Figures 3
and 4 and were on average one to two orders of magnitude lower than that observed for tower

and MODIS differences for red, NIR, NDVI, and EVI2 (Supplementary Table 1).

3.5 Correcting Solar Position Biases

Diel variability in solar position affected radiation derived visible and NIR albedos that were
used as red and NIR reflectance at Imnaviat (Figure 6). Over the growing season, daily averaged
solar zenith angle changed by 19°, while daily averaged solar azimuth angle changed by 7°
(Figure 6 inset). Visible and NIR albedo were more sensitive to solar zenith- than azimuth-
angles as illustrated by the small scatter in Figure 6. NIR albedo was more sensitive to solar
zenith angle than visible albedo and was almost two times higher than its expected value at an
80° zenith angle. Consequently, the correction factor for NIR albedo declined markedly above
70° from 0.85 to 0.59, whereas the correction factor for visible albedo changed by <1% above

70° solar zenith angle.

Correcting solar position biases using the machine learning approach described in section 2.6
improved the agreement between MODIS- and radiation- derived red and NIR reflectance,
NDVI, and EVI2 at Imnaviat (Figure 7). After correcting for the dependence of measurement
biases on solar position, MAE decreased and R? increased between MODIS- and radiation-
derived reflectance and vegetation indices (Table 3; Figure 7). An exception to this occurred for

MODIS red reflectance, where the R? and MAE did not significantly change after correction due
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to its low sensitivity to solar position. MAE decreased by 40% for NDVI and EVI2, and by 33%

for NIR reflectance after applying the correction factor for seasonal changes in solar position.

Correcting solar position biases using the machine learning approach also improved the
agreement between MODIS- and radiation-derived NDVI and EVI2 across the Fluxnet sites
(Figure 8). Correcting for measurement biases introduced by solar position reduced the MAE
between MODIS- and radiation- derived NDVI and EVI by 5% to 77%. Grasslands and tundra
experienced the largest decrease in MAE, while crops experienced the smallest decreases in
MAE once the impact of solar position on radiation derived albedo and vegetation indices were
corrected. There was quite a bit of variability in the improved correspondence between MODIS-
and radiation-derived vegetation indices among sites. However, it was difficult, if not
impossible, to attribute this variability to underlying environmental, biophysical or site specific
factors without additional site and sensor specific information. Regardless, correcting biases in
vegetation indices for solar position improved the correspondence between MODIS- and

radiation- derived vegetation indices at 85% of the sites investigated.

3.6 Implications for Inferring Ecosystem Function with radiation derived NDVI and EVI2

Biases associated with solar position confounded the ecophysiological interpretation of radiation
derived NDVI and EVI2 at Imnaviat (Figure 9). Uncorrected radiation derived vegetation indices
exhibited hysteretic relationships with GEE with different sensitivities-as measured by the slope
of the line- in the first and second half of the growing season. GEE was lower for the same value
of NDVI/EVI2 in the first part of the growing season, and higher for the same value of

NDVI/EVI2 in the second part of the growing season. The relationship between NDVI/EVI2
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became more linearized with a single relationship throughout the growing season once
vegetation indices were corrected for their solar position dependence (Figure 9 solid line).
Uncorrected NDVI explained 37% of the variability in GEE, whereas solar position corrected
NDVI explained 85% of the variability in GEE. Similar patterns were found for EVI2.
Uncorrected EVI2 explained 37% of the variability in GEE, whereas solar position corrected

EVI2 explained 89% of the variability in GEE.

Solar position also confounded the determination of the start, end, and length of the growing
season at Imnaviat (Figure 10). On average, correcting radiation derived vegetation indices for
solar position decreased the MAE between leaf level measures of phenology up to ~10 days.
Differences between corrected and uncorrected NDVI/EVI2 derived phenologies were greatest
for the length of the growing season due to compounding errors associated with the start and end
of the growing season estimates. Uncorrected NDVI/EVI2 demonstrated reduced skill at
determining the end of the growing season relative to the start; a finding that is consistent with
trends observed in Figure 2. Solar position corrected radiation derived NDVI/EVI2 performed
similarly to-or in some cases-better than MODIS in predicting the start and end of the growing
season, especially for EVI2. For example, solar position corrected radiation derived EVI2
performed better than MODIS EVI2 in predicting the start and length of the growing season.
When MODIS- and radiation- derived phenological predictions were combined, NDVI
outperformed EVI2 by 5 days for the start of the growing season and 7 days for the length of the

growing season, whereas EVI2 outperformed NDVI by 1 day for the end of the growing season.

4.0 Discussion:
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Solar position introduced significant bias on PAR and solar radiation derived vegetation indices,
especially during the latter part of the growing season. These errors were largely independent of
broad- to narrow-band definitions (Figures 5 & 1S; Table 1S), and sensor spatial aggregation
errors associated with landscape heterogeneity (Figure 1). The effect of satellite spatial
aggregation errors was minimized by focusing on a relatively homogenous site (i.e. Imnaviat),
and were much smaller than that observed for measurement biases [i.e. <0.02 change in
vegetation index MAE from 0-400 km? (Figure 1) compared to ~0.05 MAE for tower and
MODIS vegetation comparisons (Table 2)] (Wang et al. 2012). Measurement biases also were
universal and occurred across a wide variety of latitudes, biomes, and sites indicating a persistent
error that cannot be explained by individual site specific conditions (Figures 3,4,7,8). These
measurement biases accounted for some of the limitations and issues highlighted in previous
work with radiation derived vegetation indices (Jenkins et al. 2007; Rocha and Shaver 2009;
Wang et al. 2004; Wittich and Kraft 2008). To our knowledge, this is the first paper, since
Huemmrich et al.’s (1999) seminal work, to develop a methodology using the diel variation in
albedo to correct for these biases and improve the performance of these indices in inferring

ecosystem function.

Historically, solar position biases on radiation- derived albedo and vegetation indices were
assumed to be negligible over the course of a season, despite known diel variation (Huemmrich
et al. 1999). This incorrect assumption was likely due to data limitations from looking at a single
site over a short time period, the exclusion of solar azimuthal effects, and a lack of multi-sensor
comparisons. Unlike past work, our conclusions were supported by multiple independent

physical and ecological observations. First, solar position corrections improved correspondence
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between satellite- and radiation- derived vegetation indices at Imnaviat and Fluxnet sites (Figures
7 and 8; Table 3). Second, solar position corrections improved the ability of radiation derived
vegetation indices in capturing phenological timing and C fluxes (Figures 9 and 10). It is clear
that our use of combining long time series data obtained from different sensors and scales was
essential in validating and assessing measurement biases in radiation derived vegetation indices.
Our results also demonstrated that, in some cases, solar position associated NIR and visible
biases canceled each other out in the calculation of the vegetation index. This cancelation effect
may explain the discrepancy between this study and past work at single sites that assumed

negligible solar position biases.

Addressing solar position biases in visible and NIR albedo are important because these biases
resulted in poor relationships with MODIS data and poor inferences of ecosystem function.
Without correcting for solar position, measurement biases reduced the explained variation in
canopy photosynthesis and increased estimation error of the start, end, and length of the growing
season (Figures 9,10). Radiation derived vegetation indices also exhibited less seasonality than
MODIS, which was consistent with previous work with higher than expected NIR and vegetation
indices towards the latter part of the growing season (Rocha and Shaver 2009; Wittich and Kraft
2008). These unique attributes of radiation derived vegetation indices have been previously
reported, but often incorrectly attributed to bandwidth biases rather than solar position ( Rocha
and Shaver 2009; Jenkins et al. 2007; Wang et al. 2004). Broadband derivations of red and NIR
reflectance incorporate dynamics in the shortwave infrared that could potentially confound the
seasonality of the broadband red, NIR, NDVI, and EVI2 measured by PAR and shortwave

radiation sensors. However, bandwidth errors exhibited weak to non-existent relationships with
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solar position for broadband radiation derived indices across Imnaviat and the Fluxnet sites
(Figures 5 and 1S; Table 1S). On the other hand, measurement bias sensitivity to solar zenith
angle was an order of magnitude larger than that observed for broadband biases across both
Imnaviat and Fluxnet sites (Figures 5; Figure 1S; Table 2S). The improved ability of radiation
derived vegetation indices to replicate MODIS narrowband reflectance and VIs once solar
position correction was applied provides strong evidence to attribute radiation derived biases to

solar position, rather than bandwidth errors (Figures 7,8, 1S).

Here we used a simple machine learning empirically based model based on actual half hourly
data to correct the seasonal biases in visible and NIR albedo. Our empirical model had high
predictive power, explaining 85-95% of solar position biases, followed an expected BRDF
response (i.e. a non-linear positive response with solar zenith angle), and included additional
factors that may be difficult to parameterize in a BRDF model (Figure 6). For example, radiation
sensors may have internal measurement biases due to solar position, known as a sensors cosine
response (Blonquist et al. 2009; Ross and Sulev 2000). A sensor’s cosine response describes how
solar radiation is integrated across all solar zenith and azimuthal positions on a Lambertian
receiver. This response differs among sensors and would be subject to measurement drift issues
that would be difficult to quantify without additional information. Differences in a sensor’s
cosine response also may explain the differences in the sensitivity of radiation derived

measurements to solar zenith angle among sites (Figures 4,8).

Quantifying and understanding measurement errors and limitations remains an important process

in the scientific community (Kratzenberg et al. 2006; Richardson et al. 2008; Ross and Sulev
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2000). This is especially true in ecosystem ecology as new, interdisciplinary, and automated
remote- and near-sensing measurement techniques are being more commonly used.
Understanding error sources and applying the proper corrections will result in improved
understanding or quantification of ecosystem function. For example, the strong relationship
between solar position corrected radiation derived vegetation indices and canopy photosynthesis
demonstrate promise in using these data to fill long gaps in eddy covariance flux data.
Moreover, the high correspondence between solar position corrected radiation- and satellite-
derived vegetation indices indicates that these data can be valuable in gap filling MODIS data
during cloudy periods (Figure 7). However, we caution future users of such data to also consider
other potential important sources of measurement error, such as sensor drift and sensor spectral
sensitivity, that may significantly alter the continuity of high quality radiation based vegetation
indices (Kratzenberg et al. 2006; Ross and Sulev 2000). We encourage future work to
implement, or improve upon, our methodology to gain further understanding the temporal
dynamics of ecosystem C cycling and phenology with vegetation indices derived from solar and

photosynthetically active radiation fluxes.
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641
642
643
644
645

Site Name Latitude Years PFT PAR Pyranometer
Sensor Sensor

Bondville! 40 2004-2007  Crop Apogee L1200
ARM SGP! 36.5 2004-2009  Crop LI190 CM3
Sioux Falls? 43.2 2007-2009  Crop NA NA
UCI 19893 55.9 2002-2005  Deciduous  LI190 CM3
UCI 1998° 56.5 2002-2005  Deciduous  LI190 CM3
Black Hills* 44.2 2004-2008  Evergreen  LI190 CM3
Flagstaff Managed® 35.1 2006-2009  Evergreen = BF3/LI190 CM3
UCI 1850° 55.9 2002-2005 Evergreen  LI190 CM3
UCI 1930° 55.9 2002-2005  Evergreen  LI190 CM3
UCI 1964° 55.9 2002-2005  Evergreen  LI190 CM3
UCT 1981° 55.9 2002-2005  Evergreen  LI190 CM3
Brookings* 44.3 2004-2010  Grassland  NA NA
Canaan Valley* 39.1 2004-2010  Grassland  Apogee CM3
Cottonwood* 43.9 2006-2009  Grassland  NA NA
Flagstaff Wildfire>  35.4 2005-2009  Grassland ~ BF3/LI190 CM3
Fort Peck* 48.3 2002-2008  Grassland  LI190 Apogee
Goodwin Creek* 343 2002-2006  Grassland ~ Apogee CM3
Kendall® 31.7 2004-2009  Grassland NA NA
Audubon* 31.8 2004-2009  Grassland ~ LI190 CM3
Ivotuk’ 68.5 2004-2006  Tundra LI190 CM3
Imnaviat® 68.6 2009-2011  Tundra LI190 CM3
Unburned’ 68.9 2008-2011  Tundra LI190 CM3
Severe’ 68.9 2008-2011  Tundra L1190 CM3
Moderate’ 68.9 2008-2011  Tundra L1190 CM3
Santa Rita 31.8 2004-2007  Grassland/ NA NA
Mesquite'” Shrub

646  Table 1. Site names, location, years, Plant Functional Type (PFT) and sensors used at each of the
647  sites used in this study. 'Hollinger et al. (1994); ?Verma et al. (2005); *Goulden et al. (2011);
648  “Wilson and Myers (2007); *Dore et al. (2016); ’Scott et al. (2010); "McEwing et al. (2015);
649  ®This study; "Rocha and Shaver (2011); '%Scott et al. (2009)

650
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657

658

659

660

661
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662
663

664
665
666
667
668

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

685

Spectroradiometer Spectroradiometer MODIS v. Radiation

v. MODIS v. Radiation F

R? [MAE] R? [MAE] R° IMAE]
Red 0.220.01] 0.21 [0.01] 0.19[0.01]
NIR 0.17 [0.03] 0.20 [0.03] 0.22 [0.03]
EVI2 0.67 [0.03] 0.42[0.09] 0.42 [0.05]
NDVI 0.55[0.05] 0.34 [0.11] 0.34 [0.05]

Table 2. R-squared and Mean Absolute Error (MAE) of relationships among spectroradiometer-
, MODIS-, uncorrected radiation- derived reflectance and vegetation indices.

MRoagil:t‘i’(;r?- MODIS \2/ C-Radiation
R? [MAE] R? [MAE]
Red 0.1910.01] 0.1910.01]
NIR 0.22 [0.03] 0.47 [0.02]
EVI2 0.42 [0.05] 0.56 [0.03]
NDVI 0.34 [0.05] 0.56 [0.03]

Table 3. R-squared and Mean Absolute Error (MAE) of relationships among MODIS-,
uncorrected (U) radiation-, and corrected (C) radiation- derived reflectance and vegetation
indices.
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Figure 1: Mean Absolute Error (MAE {unitless VI ratios}: blue circles left y-axis) and r-squared
(R%{unitless}: red triangles right y-axis) of the relationship between spectroradiometer- and
MODIS- derived NDVI (top) and EVI2 (bottom) at different MODIS spatial integration scales at

Imnaviat.

Figure 2: Seasonal cycle of spectroradiometer- (black diamonds), radiation- (blue dots), and
MODIS-derived (red dots) red (A) and near-infrared (B) reflectances, and NDVI (C) and EVI2

(D) from quality controlled 2008-2018 Imnaviat data.

Figure 3: Dependence of MODIS- and radiation- derived differences on solar zenith angle for
red reflectance (A), near infrared reflectance (B), NDVI (C), and EVI2 (D) at Imnaviat.

Regression lines indicate significant relationships at the 95% confidence level.

Figure 4: Dependence of MODIS- and radiation- derived differences on solar zenith angle for
red reflectance (A), near infrared reflectance (B), NDVI (C), and EVI2 (D) from Fluxnet sites
across biome types. Lines in panels C and D are only for statistically significant relationships at

the 95% confidence level.

Figure 5: Dependence of ground based spectroradiometer broad- and narrow-band derived
differences (i.e. broadband-narrowband) on solar zenith angle for red reflectance (A), near
infrared reflectance (B), NDVI (C), and EVI2 (D) at Imnaviat. Regression lines indicate

significant relationships at the 95% confidence level.
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Figure 6: The correction factor dependence on solar zenith angle for visible (solid dots) and near
infrared (open dots) albedo. The inset plot shows seasonal changes in daily averaged solar zenith
angle (solid line) and daily averaged azimuth angle (dotted line). The grey highlighted area

denotes the growing season period at Imnaviat.

Figure 7: Correspondence between radiation- and MODIS- derived red (A) and near infrared (B)
reflectances, and NDVI (C) and EVI2 (D) at Imnaviat. Grey dots are MODIS and uncorrected
radiation derived reflectance and indices, whereas triangles are MODIS and radiation derived

reflectance and indices that were corrected for solar position biases.

Figure 8: Average percent change in the Mean Absolute Error (MAE) between MODIS satellite-
and radiation-derived NDVI (black bars) and EVI2 (grey bars) relative to the uncorrected values
at the Fluxnet sites. Fluxnet sites were grouped by ecosystem type, and error bars represent

standard errors.

Figure 9: Relationship between Imnaviat Gross Ecosystem Exchange (GEE) and solar position
corrected (open triangles) and uncorrected (grey circles) radiation derived vegetation indices.
NDVI-GEE relationships are in left panel (A), whereas EVI2-GEE are in right panel (B). The
solid line represents the correlation between the solar position corrected vegetation index and
GEE, whereas the dotted line represents the correlation between uncorrected vegetation indices
and GEE. Hatched arrows in left panel represent the hysteresis in the relationship between

uncorrected NDVI and GEE, while numbers represent the day of year of each observation.
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Figure 10: Mean Absolute Error (MAE) of the start-(SOS), length-(LOS), and end-(EOS) of the
growing season derived from MODIS- (black bar), uncorrected radiation- (grey), and solar

position corrected radiation- (dark grey) derived NDVI (A) and EVI2 (B) at Imnaviat.
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Table 1S: Summary statistics for bandwidth bias correlation with solar zenith angle in Figure
1S. The number represents the R? of the relationship, while the number in [brackets] represents
the sensitivity to solar zenith angle measured as the slope of the line.

PFT

Red
(R? [Slope])

NIR
(R [Slope])

NDVI
(R* [Slope])

EVI2
(R* [Slope])

Crop

Deciduous
Evergreen
Grass
Grass/Shrub
Tundra

0.06 [-0.0001]
0.46 [-0.0003]

0.06 [0.0001]
0.62 [0.0002]
0.10 [0.0001]
0.16 [0.0005]

0.09 [-0.0005]
0.14 [-0.0006]

0.12 [0.0003]
0.11 [-0.0006]
0.08 [-0.0005]
0.22 [-0.0008]

0.01 [0.0002]
0.03 [0.0003]
0.06 [0.00093]
0.06 [0.0009]
0.01 [0.00003]
0.01 [-0.0001]

0.37 [-0.0007]
0.52 [-0.0046]

0.02 [0.0003]
0.29 [0.002]
0.22 [-0.0005]
0.29 [0.002]

*Numbers in bold represent statistically significant relationships at the 95% Confidence level.
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Abstract:

Vegetation indices derived from solar and photosynthetically active radiation (PAR) sensors (i.e.
radiation derived) have been under-utilized in inferring ecosystem function, despite measurement
capability at hundreds of sites. This under-utilization may be attributed to reported mismatches
among the seasonality of radiation- and satellite-derived vegetation indices and canopy
photosynthesis; herein referred to as measurement biases. Here biases in radiation derived
reflectance and vegetation indices were assessed using a decadal record of satellite and ground
based spectroradiometer data, ecosystem phenology and CO> fluxes, and radiation derived
vegetation indices (i.e. the Normalized Difference Vegetation Index [NDVI], the two band
Enhanced Vegetation Index [EVI2]) from a high latitude tundra site (i.e. Imnaviat). At Imnaviat,
we found poor correspondence between the three types of reflectance and vegetation indices,
especially during the latter part of the growing season. Radiation derived vegetation indices
resulted in incorrect estimates of phenological timing of up to a month and poor relationships
with canopy photosynthesis (i.e. Gross Ecosystem Exchange (GEE)). These mismatches were
attributed to solar position (i.e. solar zenith and azimuth angle) and a method, based on the diel
visible and near-infrared albedo variation, was developed to improve the performance of the
vegetation indices. The ability of radiation derived vegetation indices to infer GEE and
phenological dates drastically improved once radiation derived vegetation indices were corrected
for solar position associated biases at Imnaviat. Moreover, radiation derived vegetation indices
became better aligned with MODerate resolution Imaging Spectroradiometer (MODIS) satellite
estimates after solar position associated biases were corrected at Imnaviat and at 25 Fluxnet sites

(~90 site years) across North America. Corrections developed here provide a way forward in
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understanding daily ecosystem function or filling large gaps in eddy covariance data at a

significant number of Fluxnet sites.

Keywords: Phenology, NDVI, EVI2, Solar Zenith, Gross Ecosystem Exchange, Arctic LTER
1.0 Introduction:

Vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), have been
used to infer ecosystem structure and function over the past half century (Rouse 1974). These
indices utilize the low red reflectance -due to chlorophyll absorption-, and the high NIR
reflectance -due to low absorption and high scattering- of green leaves to infer ecosystem
function (e.g. leaf abundance, canopy physiology, and canopy phenology) (Gamon et al. 2010;
Gamon et al. 2006). Historically, these indices were derived from satellite based reflectance;
providing a proxy of ecosystem function at the global scale-albeit at low temporal resolution
(e.g. monthly, bi-monthly). However, these indices also can be derived from commonly used
up- and down-ward facing Photosynthetically Active Radiation (PAR) and solar radiation
sensors (i.e. radiation derived); providing a low cost continuous measure of ecosystem function
even when heavy cloud cover obscures satellite views of the surface (Huemmrich et al. 1999;
Rocha and Shaver 2009; Wilson and Meyers 2007). Although radiation derived vegetation
indices provide a powerful tool for understanding ecosystem function at sub-daily to annual

timescales, a critical assessment of their uncertainties are surprisingly lacking.

Despite the wide use of PAR and solar radiation sensors across many eddy covariance sites,
radiation derived vegetation indices have been under-utilized in inferring ecosystem function.

Only a handful of studies have used radiation derived vegetation indices to infer ecosystem
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function, as compared to the thousands that have used satellite derived vegetation indices
(Jenkins et al. 2007; Wohlfahrt et al. 2010; Wright and Rocha 2018). This imbalance may be
due to the historical precedent of satellite data, or a lack of mechanistic understanding of
measurement uncertainties in radiation derived indices. Radiation derived vegetation indices
differ in magnitude and exhibit less seasonality than those derived from satellite data (Rocha and
Shaver 2009). Jenkins et al. (2007) found that the slope of the relationship between radiation
derived vegetation indices and canopy photosynthesis differed in the early and later part of the
growing season. This contrasts with remote sensing work that models canopy photosynthesis
from satellite derived vegetation indices with a single relationship across the season, and
highlights a significant methodological knowledge gap (Sims et al. 2006; Sims et al. 2011; Xiao

et al. 2005).

Although various hypotheses have been proposed to resolve the differences in radiation- and
satellite- derived vegetation indices, the mechanisms are still debatable. The lack of
correspondence between radiation- and satellite-derived vegetation indices have often been
attributed to differences in the spatial scale of integration between the two measures or
differences in sensor spectral resolution (Disney et al. 2004; Tittebrand 2009; Wang et al. 2004;
Wang et al. 2012). Ground based radiation derived vegetation indices integrate a smaller area
(i.e. ~100 x 100 m) than satellites such as the MODerate resolution Imaging Spectroradiometer
(MODIS) (i.e. 100-1000 m) (Schmid 1997). Spatial mismatches are less likely to confound
ground radiation- and satellite- derived reflectance and vegetation index comparisons in
homogenous landscapes (Wittich and Kraft 2008). Radiation-derived vegetation indices also are

very broad and integrate spectral information across the visible and infrared wavelengths,
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whereas satellite derived vegetation indices use more narrow spectral bands that focus on the red
and NIR portions of the electromagnetic spectrum (Wittich and Kraft 2008). This spectral
mismatch is more likely to influence the magnitude- but not the seasonality-of the vegetation
indices (Elvidge and Chen 1995; Zhao et al. 2007). Although both these mechanisms are
important at individual sites, they are unlikely to account for the inconsistency of radiation- and

satellite-derived seasonality differences observed across many sites.

Sensor measurement biases have been largely overlooked when determining the causal
mechanism behind differences in radiation- and satellite-derived vegetation indices (Balzarolo et
al. 2011; Schaepman-Strub et al. 2006). Satellite sensors measure surface radiance, which are
ultimately converted into a corrected surface reflectance that minimizes solar illumination and
sensor view effects using a Bi-Directional Reflectance Function (BRDF) (Schaepman-Strub et al.
2006). The BRDF corrects for solar illumination effects from solar position to compare
reflectance at the same view angle-typically defined at nadir. Such corrections are not made for
radiation derived vegetation indices (Balzarolo et al. 2011; Huemmrich et al. 1999; Wilson and
Meyers 2007). Although the radiation sensors are located above the canopy, these sensors
integrate radiation from the entire hemisphere. Despite this hemispherical field of view,
shortwave albedo has been shown to be sensitive to illumination angle (i.e. solar zenith and
azimuth angles), which changes over the course of a day and year (Huemmrich et al. 1999). For
example, broadband albedo measured with pyranometers have been shown to be dependent on
solar zenith angle and illumination intensity for surfaces with high reflectivity such as snow

(Carroll and Fitch 1981; Kriebel 1979; Wang et al. 2005; Wang and Zender 2010; Yang et al.
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2008). However, little has been done to understand or correct the impact of illumination angle

effects on radiation derived vegetation indices.

Here we assessed the ability of PAR and solar radiation derived reflectance proxies and
vegetation indices to replicate MODIS satellite derived reflectance and vegetation indices; herein
referred to as measurement biases. We also assessed the ability of PAR and solar radiation
derived vegetation indices to infer ecosystem function (i.e. plant phenology and CO: fluxes).
We focus on two commonly used vegetation indices: NDVI and EVI2 (Rocha and Shaver 2009).
NDVI has more of a historical precedent in inferring ecosystem function, but EVI2 may provide
a better proxy of ecosystem function due to its insensitivity to non-vegetated background
reflectance (Jiang et al. 2008). Past remote sensing work has demonstrated the impact of solar
position in influencing reflectance and vegetation indices, but lacked biological data to
demonstrate the implications of ignoring such biases for inferring ecosystem function (Bhandari
etal. 2011; Huete 1987; Ma et al. 2019; Middleton 1992). We hypothesized that solar position
will lead to systematic biases in radiation derived vegetation indices that prevent these indices
from correctly inferring vegetation phenology and seasonality in canopy photosynthesis at
Imnaviat. We tested this hypothesis with a decadal record of PAR and solar radiation fluxes,
MODIS, and ground based spectral radiometer measurements at a high latitude tundra site
(Imnaviat), and further corroborated the patterns observed at Imnaviat with a synthesis of
Fluxnet datasets. Imnaviat was chosen because of its landscape homogeneity, its rich long term
ecological dataset (i.e. long term CO; fluxes and plant phenology), as well as its high latitude
location with a frequently high solar zenith angle. The attributes of these data provide an ideal

opportunity to determine the major sources of measurement biases leading to the discrepancy
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between satellite- and radiation-derived vegetation indices, and measures of seasonality in

ecosystem function.

2.0 Methods

2.1 Site Description, Instrumentation, and Available Data

This study was conducted on a west-facing hillslope within the Imnaviat Creek watershed on the
North Slope of Alaska, USA (68.61° N; 149.31° W). Vegetation at the site was characteristic of
moist acidic tussock tundra with tussock cottongrass [ Eriophorum vaginatum], dwarf birch
[Betula nanal, labrador tea [Rhododendron tomentosum|, sphagnum moss [Sphagnum spp.], and
scattered lichens covering the landscape (Euskirchen et al. 2012). The mean annual temperature
at the site was -7 °C and the mean annual precipitation was 318 mm, with 40% occurring as rain
and 60% as snow. Mean growing season (June-August) temperature was 6 °C, while mean non-

growing season temperature was -11 °C.

In July of 2008, Imnaviat was instrumented with three (1 upward and two downward) CMP3
pyranometers that measured shortwave solar radiation (SW: units: W m) [CMP3; Kipp and
Zonen], three PAR sensors that measured Photosynthetically Active Radiation (PAR: units:

umol m?2 s) [LI-190SA; Li-Cor, Lincoln NB], two downward looking surface temperature
radiometers [IRT Infrared Thermometer; Apogee Instruments], a HMP temperature and humidity
sensor [HMP45C-L; Campbell Scientific], and two TCAYV soil temperature sensors [TCAV-L;
Campbell Scientific]. Meteorological sensors were mounted at a height of 2.5 meters. Radiation

sensors were well maintained, frequently leveled, and sent for factory calibration every 2-3 years
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during the measurement period. The radiation tower ran nearly continuously from July 2008-
2018, and was powered by a battery bank connected to two solar panels, which were situated

away from the direct field of view of the sensors.

The radiation tower was located ~300 m away from three Arctic Observatory Network (AON)
flux towers located along the same west facing hillslope gradient (Euskirchen et al. 2012). The
flux towers measured the Net Ecosystem Exchange of CO> (NEE) via the eddy covariance
method, and a suite of meteorological variables including incoming and outgoing PAR and solar
radiation, air temperature, humidity, wind speed, soil moisture, soil temperature, and snow depth
(Baldocchi 2003). We analyzed the mean seasonal cycle of the daily Gross Ecosystem Exchange
(GEE) at the mid-slope Moist Acidic Tundra (MAT) site from 2008-2018 to determine the
relationship between vegetation indices and the seasonality of photosynthesis. The mid-slope
MAT flux tower was chosen because of its similar vegetation composition, slope position, and
NDVI seasonality to the nearby radiation tower [MAT Flux Tower NDVI vs. Imnaviat Radiation
Tower NDVI R?: 0.97; Slope: 1.01; Mean Absolute Error (MAE): 0.01]. AON data were

obtained online at http://aon.iab.uaf.edu.

NEE flux partitioning was described in detail in Euskirchen et al. (2012, 2017), and followed
standard Fluxnet protocols for partitioning NEE into canopy photosynthesis (Gross Ecosystem
Exchange: GEE) and ecosystem respiration (ER). Briefly, NEE flux partitioning was
accomplished by fitting a Q10 air temperature response function to well mixed (u-star>0.10 s m’
'Y NEE’s that occurred during low light conditions (PAR< 50 pmol m™ s™') (Ueyama et al. 2013;

Euskirchen et al. 2017)). The basal respiration and Q10 parameters of the exponential model
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were determined through least squares fitting with “low light” NEE and air temperature data
from a 30 day daily moving window. This empirically derived Q10 air temperature response
function was used to estimate half hourly ER. Half hourly GEE was inferred from NEE by

subtracting ER from NEE (GEE=NEE-ER), and temporally scaled up with daily summations.

2.2 Ground based Spectral Reflectance Measurements

Ground based reflectance was measured within the footprint of the Imnaviat radiation tower
using three different spectroradiometers over the years. Spectral reflectance was measured with a
Unispec (UniSpec-SC, PP-Systems, Amesbury, MA; Spectral Range: 300-1200 nm at 2 nm
resolution) from 2008-2009, a dual channel Unispec (Unispec-DC, PP-Systems, Amesbury, MA;
Spectral Range: 300-1200 nm at 2 nm resolution) from 2010-2012, and a FieldSpec 4 (Analytical
Spectral Devices (ASD); Malvern Panalytical Ltd; United Kingdom; Spectral Range: 200-2400
nm at 2 nm resolution) from 2013-2018. Four ~100 m transects separated by ~30 m were
established on the North and South side of the radiation tower forming a 200x120m grid within
the tower footprint. Spectral reflectance was measured during midday hours (11:00 am-2:00 pm
AST) every ~3 meters along each of the four 100 m transects either weekly, bi-monthly, or
monthly during the growing season (June-August) of each year (n=240 scans per sampling date).
A total of 62 sampling campaigns were undertaken from July 2008 to August 2018 with each

campaign taking ~1 hour to accomplish.

Surface reflectance measurements followed standard procedures described in the
spectroradiometer user manuals. Prior to measurements, each instrument was allowed a 15-20

minute warm up period. A freshly cleaned white Spectralon® diffuse reflectance panel
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(Labsphere; North Sutton, NH) was used as a reflectance standard to convert spectroradiometer
derived radiance into surface reflectance. Dark current measurements were taken by closing the
detector “door”, which prevented light from hitting the detectors and minimized measurement
artifacts from background electrical instrument noise. Optimal measurement integration times
were dependent on illumination conditions and were automatically determined by each sensor.
White panel, dark current, and optimal measurement integration time measurements were taken
frequently (i.e. every 3-5 minutes depending on sky conditions) to ensure high quality
reflectance data. After each sampling campaign, surface reflectance data were quality checked
for anomalous spectra (i.e. spectra that were >3 standard deviations from the mean) and averaged
across all scans. These spectra were used to calculate NDVI and EVI2 using Equations [2] and
[3] below and spectrally averaged MODIS wavelength and sensor response definitions for red-
(MODIS spectral response weighted average of 620-670 nm) and NIR- reflectance (MODIS
spectral response weighted average of 841-876 nm) (Xiong et al. 2006; Schaaf et al. 2002). We
also spectrally averaged all wavelengths to calculate total and visible reflectance to derive a
broad band visible, NIR (using equation 1), NDVI and EVI2 based on ASD spectroradiometer
data. ASD averaged total reflectance was within 10% of the shortwave albedo, while ASD
averaged visible reflectance was within 5% of PAR albedo measured by radiation sensors at

Imnaviat.

2.3 Ground based Phenology
Individual plant species phenologies were measured from 2008-2018 in moist acidic tundra at
the Toolik Lake Arctic Long Term Ecological Research (LTER) station. Toolik field station was

situated ~7 km away and experienced similar weather to Imnaviat. A variety of phenological
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events (i.e. first snow free, first visible leaf, first leaf drop, first color change, and last leaf drop)
were measured in several plots around Toolik lake in each year for the dominant MAT species
(i.e. Andromeda polifolia, Betula nana, Carex bigelowii, Cassiope tetragona, Empetrum nigrum,
Eriophorum vaginatum, Ledum palustre, Polygonum bistorta, Rubus chamaemorus, Salix
pulchra, Vaccinium uliginosum, Vaccinium vitis-idaea). These phenological data were used to
validate satellite- and radiation- derived NDVI and EVI2 estimates of the start-, end-, and length-
of the growing season. The average of the first visible leaf for all species served as a proxy for
the start of the growing season, whereas the maximum last leaf color change served as a proxy

for the end of the growing season.

2.4 Radiation derived Vegetation Indices

The radiation tower at Imnaviat measured surface albedo in the visible (400-700 nm) and total
shortwave wavelengths (300-2400 nm) of light. These albedo measures served as a proxy for red
and near infrared reflectance (Rocha and Shaver 2009). Visible (av) albedo was calculated as
the ratio between reflected (;) and incoming (i) PAR av = PAR/PAR;, while total albedo (ar)
was calculated as the ratio between reflected and incoming shortwave radiation [SW; & SWj,
respectively] ar = SW/SWi. av was used as a proxy for red reflectance, while both av and ot

were used in Equation 1 as a proxy for NIR reflectance (an) (Jenkins et al. 2007).

oy =W*a, -a, Equation [1]

W in Equation 1 equaled 2 for all vegetation types, and represented a weighting term to separate

an from av and ar. Derivations of red and near infrared reflectance from ground based

11



278  radiometers represented broadband definitions of narrowband quantities. an included dynamics
279  in the near- and short-wave infrared region of the reflectance spectrum, while av included

280  dynamics in the red, blue and green regions of the reflectance spectrum. Other ground

281  radiometer derivations of ox utilize similar assumptions (see Huemmrich et al., 1999 & Wilson
282  and Meyers, 2007). We used Jenkins et al. (2007) derivation because of its parsimony and its
283 high correlation with other ox derivations (Jenkins vs. Huemmrich R? [Mean Absolute Error:
284  MAE]: 0.91 [0.015]/ MAE Jenkins vs. Wilson & Meyers R? [MAE]: 0.99 [0.014]) for the sites
285  used in this study. We also found that the conclusions from our analyses were independent of the
286  different formulations of an.

287

288  We focused our analyses on the active growing season during snow-free periods. Data

289 influenced by snow covered ground were identified with an albedo threshold of >0.3 (i.e.

290  vegetation albedo <0.25 at all sites) and removed from the half hourly radiation datasets.

291  Incoming and reflected radiation were averaged over the course of a day (i.e. n=48 for each
292 value) to minimize diel solar zenith effects (Huemmrich et al. 1999; Rocha and Shaver 2009;
293 Wilson and Meyers 2007). Sensor drift and snow and dirt accumulation on the sensors were
294  identified as periods where PARi/SWi; fell beyond or below the mean plus or minus 2 standard
295  deviations and subsequently removed. The final “cleaned” dataset contained daily ground

296  radiometer values that were compared with MODIS reflectance and vegetation indices.

297

298  NDVI and EVI2 were calculated from radiation-, spectroradiometer- and MODIS-derived

299  measures of near infrared (an) and red reflectance (ar) with Equations [2] and [3] (Jiang et al.

300  2008).
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NDyT =% "%
ay +ag Equation [2]
EVi2=25— "%

ay +2.4a, +1 Equation [3]

2.5 Fluxnet Data Synthesis

We conducted a broader survey of ground based radiation derived vegetation indices with
Fluxnet data to determine whether biases observed at the Imnaviat site were consistent across
other sites (Table 1). Data from the Fluxnet network consisted of 25 sites and 90 site years of
half hourly incoming (i) and reflected (;) PAR and shortwave data (Table 1). 12% of the sites
were from crops, 8% were from deciduous forests, 25% were from evergreen forests, 28% were
from grasslands, 20% were from arctic tundra, and 8% were from a shrub and grassland mix.
Sites had a minimum of two years of data with a maximum of 6 years at 2 sites, and an average
of 3.5 years for the entire dataset. PAR within the 400-700 nm spectral region was measured
with a LI190 quantum sensor (LI-COR Inc., Lincoln, Nebraska) at 85% of the sites, while the
remaining sites used either an Apogee quantum sensor (Apogee Instruments, Logan, Utah) or
BF3 sunshine sensor (Dynamax, Houston Texas). Shortwave radiation (SW) within the 300-
2800 nm spectral region was measured with a CM3 (Kipp & Zonen, Bohemia, NY ) at 90% of
the sites, while the remaining sites used an Apogee pyranometer (Apogee Instruments, Logan,
Utah) or L1200 pyranometer (LI-COR Inc., Lincoln, Nebraska). Data were aligned with MODIS
satellite data (see section 2.7) through 16- day averages that were centered on the MODIS

composite date.
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2.6 Testing and Correcting for Solar Position Biases

We corrected solar position biases using diel relationships between solar position and albedo
throughout the season. Diel NIR and visible albedo variability can be more than twice as large
as observed over the course of a season (Huemmrich 1999). These large diel visible and NIR
albedo variations cannot be representing changes in canopy leaf area, that are often related to
vegetation indices, because LAI changes over much longer time scales than a day (i.e. days to
weeks)(Stoy 2013). Rather, this large diel variation arises from the anisotropic properties of
surface reflectance (i.e. the bidirectional reflectance distribution function) and possibly other
sensor issues, such as a sensors’ cosine response function (Huete 1987; Middleton 1992; Rahman

et al. 1993).

Here we used the diel variation in albedo and solar position to empirically derive a correction
factor to apply over the course of the season. Solar position was calculated for each site and half
hour using the site latitude and longitude and time of year (Myers 2017). We removed divided
each daily averaged visible and NIR albedo into each half hourly visible and NIR albedo value to
remove vegetation phenology effects and focus solely on sub-daily variations associated with

solar position (Equation 4).

Daily "unbiased" Value aq Equation [4]

Feor = Half Hourly "biased" Value ~ o,
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Here, given the large sub-daily variation in solar position, we assumed that the half hourly NIR
and visible albedos were more “biased” in response to solar position than the daily averaged
values (i.e. “unbiased). Hence, acor represented a correction factor that could be used to remove
the solar position bias from the albedo measurements. For each day, we calculated 48 half
hourly acor ratios, which could be used to create a temporally consistent albedo value throughout
the day through multiplication (i.e. Half Hourly biased *Daily average unbiased/ Half Hourly
biased = Daily averaged unbiased). This sub-daily consistency of NIR and visible albedos were
more aligned with the fact that LAI changes occur over longer time scales than a day. By
understanding the dependence of acor on solar position, we could remove any measurement bias
introduced by seasonal changes in solar zenith and azimuth. If radiation derived albedos were
not dependent on solar position, then acor would equal one across different solar azimuth and
zenith angles. If radiation derived albedos were dependent on solar position, then acor would

significantly differ from 1 and scale with solar azimuth and zenith angles.

Here we used the solar position dependence of acor at the half hourly time scale to reduce any
solar position biases observed across the season. Half hourly acor was empirically related to half
hourly solar-zenith and -azimuth angles through a machine learning squared exponential
Gaussian process regression model. This half hourly statistical model was used to predict a.cor
across the season using daily averaged solar zenith and azimuth angles as dependent variables.
Regression model predicted daily acor was multiplied by the daily averaged visible and NIR
albedos to produce solar position (i.e. “biased free”) corrected av and an. Solar position

corrected av and onx were then used to recalculate NDVI and EVI2 using Equations 2 and 3.
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Analyses were accomplished with Matlab’s Regression Learner application (MATLAB 2019b;

Mathworks Inc. Natick, MA).

2.7 MODIS Data

We compared MODIS reflectance and vegetation indices to radiation derived proxies and
measures. For the Fluxnet data synthesis, MODIS Nadir-BRDF adjusted 500 m resolution
collection 4 surface reflectance data (MODIS NBAR; MCD43A) were extracted from a 2.5 x 2.5

km? area centered at each tower location in 2012 (http://daac.ornl.gov) (Schaaf et al. 2002;

ORNL DAAC 2018). We also used the equations from Liang (2000) to calculate a total and
visible albedo from the seven MODIS spectral bands. These MODIS derived total and visible
albedos were used to derive broadband vegetation indices following Equations 1-3. For
Imnaviat, we used collection 6 version 1 daily Nadir BRDF-Adjusted reflectance (MCD43A4)
and extracted data at various spatial scales (i.e. 0.25, 6.25, 20.25, 210.25, and 420.25 km?) to
determine the impact of spatial aggregation on the comparison between ground and satellite
based data (Shuai et al. 2013). Data with >80% of pixels passing quality control were used in the
analyses. Only growing season MODIS data, as defined by ground based snowless terrestrial

albedo values greater than 0.25, were used in the analyses.

2.8 Phenology Model
The start, end, and length of the growing season was determined with a phenology model fit to
the observed seasonal cycle of MODIS- and radiation- derived NDVI and EVI2 in each year at

Imnaviat. The phenology model was a double-logistic function that predicted each vegetation
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index based on the day of year (t) (Beck et al. 2006; Fisher et al. 2006; Fisher et al. 2007)

(Equation 5):

v(t) = Vimin + Vamp (1+ eTil_nlt - 1+emlz_n2t) Equation [5]
The model was fit by minimizing the sum of squared residuals between model predictions and
observed values. The fitted parameters of the model were viin and vamp, mi, ni, mz, and n2. Vimin
and vamp were related to the minimum and amplitude values of the spectral index, respectively.
The parameters in the two exponents determined the seasonality with m; and »; related to the rate
and timing of green-up, and m. and n; related to the rate and timing of senescence. The start of
the growing season was given by ¢ = m;/n;, the end of the growing season was given by ¢ =
m2/n2, and the length of the growing season was determined by the difference between the start

and end of the growing season.

2.9 Statistical Analyses:

Statistical analyses included least squares linear regression to determine the relationship between
two variables, and Mean Absolute Error (MAE) to determine the prediction error of a model or
the error associated with the comparison of a set of similar observations (Ramsey 2013).

Statistical significance was determined at the 95% confidence level.
3. Results

3.1 Assessing Spatial Aggregation Biases
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The scale of spatial integration had little impact on the comparison between tower and MODIS
based vegetation indices indicating landscape coherence in phenology within the region
surrounding Imnaviat (Figure 1). Here we minimized spectral definition differences among
sensors by comparing spectroradiometer- and MODIS- derived reflectance’s and vegetation
indices. Spectroradiometer derived NDVI explained 70% of the variability in MODIS derived
NDVI, whereas spectroradiometer derived EVI2 explained 60% of the variability in MODIS
derived EVI2. The MAE increased slightly from 6% of NDVI at the ecosystem/watershed level
(0-10 km?) to 7% of NDVI at the regional scale (>300 km?). EVI2 exhibited greater sensitivity
to spatial integration with MAEs increasing from 14% of EVI2 at the ecosystem/watershed scale

to 20% of EVI2 at the regional scale.

3.2 MODIS- vs. radiation-derived reflectance and indices comparison

In general, spectroradiometer- and MODIS- derived reflectances and vegetation indices were
more related to each other than those derived from radiation fluxes at Imnaviat (Table 2).
Vegetation indices yielded higher correlations among measurement types than did red and NIR
reflectance. For example, reflectance R*’s ranged from 0.17-0.22 for NIR and red reflectance,
while vegetation index R?’s ranged from 0.34 to 0.67. Correlations among radiation-,
spectroradiometer-, and MODIS-derived measures were typically higher for EVI2 than for
NDVI. The poor relationships between radiation- and MODIS/spectroradiometer- derived
vegetation indices were largely attributed to differences in seasonality among the

MODIS/spectroradiometer- and radiation- derived measures.
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Seasonality differed among radiation-, spectroradiometer-, and MODIS derived- reflectance and
vegetation indices at Imnaviat (Figure 2). Correspondence among the three measures was
greatest for red reflectance and smallest for NIR, NDVI, and EVI2. Red reflectance
demonstrated similar seasonality among the measures with higher reflectance in the shoulder
seasons and minimum values during the peak of the growing season. In contrast, NIR
reflectance, NDVI, and EVI2 were low at the start of the growing season, reached a maximum
during peak growing season, and then declined to a minimum at the end of the growing season.
All three measures of NIR, NDVI and EVI2 exhibited similar seasonality up until the peak of the
growing season, but differed towards the end of the growing season. Radiation-derived NIR
reflectance and vegetation indices were larger than MODIS and spectroradiometer- derived
quantities towards the latter part of the growing season. Consequently, differences between
MODIS and spectroradiometer- and radiation-derived NIR, NDVI, and EVI2 exhibited strong

seasonality with the largest mismatch towards the second half of the growing season.

3.3 Assessing Sensor Biases

Seasonal differences between MODIS- and radiation- derived indices observed in Figure 2 were
correlated with solar zenith angle at Imnaviat (Figure 3). Larger solar zenith angles produced
larger differences between MODIS- and radiation- derived NIR, NDVI, and EVI2, but had no
impact on differences between MODIS- and radiation- derived red reflectance. Solar zenith
angle explained 41% of the variability in NIR reflectance biases, 28% of the variability in NDVI
biases, and 45% of the variability in EVI2 biases. This represented a bias of 0.004 per 1° change
in zenith angle for NIR reflectance, and a bias of 0.006 per 1° change in zenith angle for NDVI

and EVI2.
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The relationship between measurement bias and solar zenith angle at Imnaviat were consistent
across Fluxnet sites located in vastly different biomes (Figure 4). However, in contrast to the
observed solar zenith dependent measurement biases at the Imnaviat site, there was a statistically
significant measurement bias dependence on solar zenith angle at some of the Fluxnet sites for
red reflectance. For the Fluxnet dataset, MODIS and radiation derived NIR differences positively
scaled with solar zenith angle and all biomes exhibited similar slopes that ranged from 0.002 to
0.003 per 1° change in zenith angle. The solar zenith dependent biases in NIR and red
reflectance carried over to NDVI and EVI2, but sometimes canceled each other out. This
cancelling out effect was more predominant for NDVI than for EVI2. For example, NDVI
biases were unrelated to solar zenith angle for evergreens and grass shrublands, whereas solar
zenith angle was correlated with EVI2 biases in all biomes. The bias sensitivity to solar zenith
angle ranged from 0.001 to 0.005- for NDVI, and from 0.003 to 0.005- per 1° change in zenith

angle for EVI2.

3.4 Assessing Bandwidth Biases

We used the full range spectroradiometer ASD data (300-2400 nm) to determine whether the
measurement bias dependence on solar position was attributed to broadband versus narrowband
definitions of red and near infrared reflectance used by the radiation sensors (Figure 5).
Correlations between solar zenith angle and the difference between broadband and narrowband
(i.e. Bandwidth Biases) definitions for red (p-value: 0.94), NDVI (p-value: 0.21), and EVI2 (p-
value: 0.06) were not statistically significant. Bandwidth biases were marginally significant and

related to solar zenith angle for NIR (p-value: 0.04), but were opposite in sign to the expected
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relationships observed in Figures 3 & 4. Moreover, solar zenith angle only explained 10% of the
variation in bandwidth biases, as opposed to the 67% of the variation in radiation tower and

MODIS differences explained by zenith angle in Figure 3.

Similar results were found across the Fluxnet sites using MODIS data and differencing broad-
and narrow- band vegetation indices (Figure 1S; Table 1S). Although many relationships were
statistically significant, solar zenith angle only explained <10% of the variation in bandwidth
biases for NDVI, and <11% of the variation in bandwidth biases for EVI2 across all Fluxnets
sites on average (Supplementary Figure 1). Moreover, the bandwidth bias sensitivity to solar
zenith angle was sometimes the opposite sign of the expected positive relationships in Figures 3
and 4 and were on average one to two orders of magnitude lower than that observed for tower

and MODIS differences for red, NIR, NDVI, and EVI2 (Supplementary Table 1).

3.5 Correcting Solar Position Biases

Diel variability in solar position affected radiation derived visible and NIR albedos that were
used as red and NIR reflectance at Imnaviat (Figure 6). Over the growing season, daily averaged
solar zenith angle changed by 19°, while daily averaged solar azimuth angle changed by 7°
(Figure 6 inset). Visible and NIR albedo were more sensitive to solar zenith- than azimuth-
angles as illustrated by the small scatter in Figure 6. NIR albedo was more sensitive to solar
zenith angle than visible albedo and was almost two times higher than its expected value at an
80° zenith angle. Consequently, the correction factor for NIR albedo declined markedly above
70° from 0.85 to 0.59, whereas the correction factor for visible albedo changed by <1% above

70° solar zenith angle.
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Correcting solar position biases using the machine learning approach described in section 2.6
improved the agreement between MODIS- and radiation- derived red and NIR reflectance,
NDVI, and EVI2 at Imnaviat (Figure 7). After correcting for the dependence of measurement
biases on solar position, MAE decreased and R? increased between MODIS- and radiation-
derived reflectance and vegetation indices (Table 3; Figure 7). An exception to this occurred for
MODIS red reflectance, where the R? and MAE did not significantly change after correction due
to its low sensitivity to solar position. MAE decreased by 40% for NDVI and EVI2, and by 33%

for NIR reflectance after applying the correction factor for seasonal changes in solar position.

Correcting solar position biases using the machine learning approach also improved the
agreement between MODIS- and radiation-derived NDVI and EVI2 across the Fluxnet sites
(Figure 8). Correcting for measurement biases introduced by solar position reduced the MAE
between MODIS- and radiation- derived NDVI and EVI by 5% to 77%. Grasslands and tundra
experienced the largest decrease in MAE, while crops experienced the smallest decreases in
MAE once the impact of solar position on radiation derived albedo and vegetation indices were
corrected. There was quite a bit of variability in the improved correspondence between MODIS-
and radiation-derived vegetation indices among sites. However, it was difficult, if not
impossible, to attribute this variability to underlying environmental, biophysical or site specific
factors without additional site and sensor specific information. Regardless, correcting biases in
vegetation indices for solar position improved the correspondence between MODIS- and

radiation- derived vegetation indices at 85% of the sites investigated.
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3.6 Implications for Inferring Ecosystem Function with radiation derived NDVI and EVI2

Biases associated with solar position confounded the ecophysiological interpretation of radiation
derived NDVI and EVI2 at Imnaviat (Figure 9). Uncorrected radiation derived vegetation indices
exhibited hysteretic relationships with GEE with different sensitivities-as measured by the slope
of the line- in the first and second half of the growing season. GEE was lower for the same value
of NDVI/EVI2 in the first part of the growing season, and higher for the same value of
NDVI/EVI2 in the second part of the growing season. The relationship between NDVI/EVI2
became more linearized with a single relationship throughout the growing season once
vegetation indices were corrected for their solar position dependence (Figure 9 solid line).
Uncorrected NDVI explained 37% of the variability in GEE, whereas solar position corrected
NDVI explained 85% of the variability in GEE. Similar patterns were found for EVI2.
Uncorrected EVI2 explained 37% of the variability in GEE, whereas solar position corrected

EVI2 explained 89% of the variability in GEE.

Solar position also confounded the determination of the start, end, and length of the growing
season at Imnaviat (Figure 10). On average, correcting radiation derived vegetation indices for
solar position decreased the MAE between leaf level measures of phenology up to ~10 days.
Differences between corrected and uncorrected NDVI/EVI2 derived phenologies were greatest
for the length of the growing season due to compounding errors associated with the start and end
of the growing season estimates. Uncorrected NDVI/EVI2 demonstrated reduced skill at
determining the end of the growing season relative to the start; a finding that is consistent with
trends observed in Figure 2. Solar position corrected radiation derived NDVI/EVI2 performed

similarly to-or in some cases-better than MODIS in predicting the start and end of the growing
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season, especially for EVI2. For example, solar position corrected radiation derived EVI2
performed better than MODIS EVI2 in predicting the start and length of the growing season.
When MODIS- and radiation- derived phenological predictions were combined, NDVI
outperformed EVI2 by 5 days for the start of the growing season and 7 days for the length of the

growing season, whereas EVI2 outperformed NDVI by 1 day for the end of the growing season.

4.0 Discussion:

Solar position introduced significant bias on PAR and solar radiation derived vegetation indices,
especially during the latter part of the growing season. These errors were largely independent of
broad- to narrow-band definitions (Figures 5 & 1S; Table 1S), and sensor spatial aggregation
errors associated with landscape heterogeneity (Figure 1). The effect of satellite spatial
aggregation errors was minimized by focusing on a relatively homogenous site (i.e. Imnaviat),
and were much smaller than that observed for measurement biases [i.e. <0.02 change in
vegetation index MAE from 0-400 km? (Figure 1) compared to ~0.05 MAE for tower and
MODIS vegetation comparisons (Table 2)] (Wang et al. 2012). Measurement biases also were
universal and occurred across a wide variety of latitudes, biomes, and sites indicating a persistent
error that cannot be explained by individual site specific conditions (Figures 3,4,7,8). These
measurement biases accounted for some of the limitations and issues highlighted in previous
work with radiation derived vegetation indices (Jenkins et al. 2007; Rocha and Shaver 2009;
Wang et al. 2004; Wittich and Kraft 2008). To our knowledge, this is the first paper, since
Huemmirich et al.’s (1999) seminal work, to develop a methodology using the diel variation in
albedo to correct for these biases and improve the performance of these indices in inferring

ecosystem function.
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Historically, solar position biases on radiation- derived albedo and vegetation indices were
assumed to be negligible over the course of a season, despite known diel variation (Huemmrich
et al. 1999). This incorrect assumption was likely due to data limitations from looking at a single
site over a short time period, the exclusion of solar azimuthal effects, and a lack of multi-sensor
comparisons. Unlike past work, our conclusions were supported by multiple independent
physical and ecological observations. First, solar position corrections improved correspondence
between satellite- and radiation- derived vegetation indices at Imnaviat and Fluxnet sites (Figures
7 and §; Table 3). Second, solar position corrections improved the ability of radiation derived
vegetation indices in capturing phenological timing and C fluxes (Figures 9 and 10). It is clear
that our use of combining long time series data obtained from different sensors and scales was
essential in validating and assessing measurement biases in radiation derived vegetation indices.
Our results also demonstrated that, in some cases, solar position associated NIR and visible
biases canceled each other out in the calculation of the vegetation index. This cancelation effect
may explain the discrepancy between this study and past work at single sites that assumed

negligible solar position biases.

Addressing solar position biases in visible and NIR albedo are important because these biases
resulted in poor relationships with MODIS data and poor inferences of ecosystem function.
Without correcting for solar position, measurement biases reduced the explained variation in
canopy photosynthesis and increased estimation error of the start, end, and length of the growing
season (Figures 9,10). Radiation derived vegetation indices also exhibited less seasonality than

MODIS, which was consistent with previous work with higher than expected NIR and vegetation
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indices towards the latter part of the growing season (Rocha and Shaver 2009; Wittich and Kraft
2008). These unique attributes of radiation derived vegetation indices have been previously
reported, but often incorrectly attributed to bandwidth biases rather than solar position ( Rocha
and Shaver 2009; Jenkins et al. 2007; Wang et al. 2004). Broadband derivations of red and NIR
reflectance incorporate dynamics in the shortwave infrared that could potentially confound the
seasonality of the broadband red, NIR, NDVI, and EVI2 measured by PAR and shortwave
radiation sensors. However, bandwidth errors exhibited weak to non-existent relationships with
solar position for broadband radiation derived indices across Imnaviat and the Fluxnet sites
(Figures 5 and 1S; Table 1S). On the other hand, measurement bias sensitivity to solar zenith
angle was an order of magnitude larger than that observed for broadband biases across both
Imnaviat and Fluxnet sites (Figures 5; Figure 1S; Table 2S). The improved ability of radiation
derived vegetation indices to replicate MODIS narrowband reflectance and VIs once solar
position correction was applied provides strong evidence to attribute radiation derived biases to

solar position, rather than bandwidth errors (Figures 7,8, 1S).

Here we used a simple machine learning empirically based model based on actual half hourly
data to correct the seasonal biases in visible and NIR albedo. Our empirical model had high
predictive power, explaining 85-95% of solar position biases, followed an expected BRDF
response (i.e. a non-linear positive response with solar zenith angle), and included additional
factors that may be difficult to parameterize in a BRDF model (Figure 6). For example, radiation
sensors may have internal measurement biases due to solar position, known as a sensors cosine
response (Blonquist et al. 2009; Ross and Sulev 2000). A sensor’s cosine response describes how

solar radiation is integrated across all solar zenith and azimuthal positions on a Lambertian
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receiver. This response differs among sensors and would be subject to measurement drift issues
that would be difficult to quantify without additional information. Differences in a sensor’s
cosine response also may explain the differences in the sensitivity of radiation derived

measurements to solar zenith angle among sites (Figures 4,8).

Quantifying and understanding measurement errors and limitations remains an important process
in the scientific community (Kratzenberg et al. 2006; Richardson et al. 2008; Ross and Sulev
2000). This is especially true in ecosystem ecology as new, interdisciplinary, and automated
remote- and near-sensing measurement techniques are being more commonly used.
Understanding error sources and applying the proper corrections will result in improved
understanding or quantification of ecosystem function. For example, the strong relationship
between solar position corrected radiation derived vegetation indices and canopy photosynthesis
demonstrate promise in using these data to fill long gaps in eddy covariance flux data.
Moreover, the high correspondence between solar position corrected radiation- and satellite-
derived vegetation indices indicates that these data can be valuable in gap filling MODIS data
during cloudy periods (Figure 7). However, we caution future users of such data to also consider
other potential important sources of measurement error, such as sensor drift and sensor spectral
sensitivity, that may significantly alter the continuity of high quality radiation based vegetation
indices (Kratzenberg et al. 2006; Ross and Sulev 2000). We encourage future work to
implement, or improve upon, our methodology to gain further understanding the temporal
dynamics of ecosystem C cycling and phenology with vegetation indices derived from solar and

photosynthetically active radiation fluxes.
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Site Name Latitude Years PFT PAR Pyranometer
Sensor Sensor

Bondville! 40 2004-2007  Crop Apogee L1200
ARM SGP! 36.5 2004-2009  Crop LI190 CM3
Sioux Falls? 43.2 2007-2009  Crop NA NA
UCI 1989° 55.9 2002-2005  Deciduous  LI190 CM3
UCI 19983 56.5 2002-2005  Deciduous  LI190 CM3
Black Hills* 44.2 2004-2008  Evergreen  LI190 CM3
Flagstaff Managed® 35.1 2006-2009  Evergreen = BF3/LI190 CM3
UCI 1850° 55.9 2002-2005  Evergreen  LI190 CM3
UCI 1930° 55.9 2002-2005  Evergreen  LI190 CMm3
UCI 1964° 55.9 2002-2005  Evergreen  LI190 CM3
UCI 1981° 55.9 2002-2005  Evergreen  LI190 CM3
Brookings* 44.3 2004-2010 Grassland NA NA
Canaan Valley* 39.1 2004-2010  Grassland  Apogee CM3
Cottonwood* 43.9 2006-2009  Grassland  NA NA
Flagstaff Wildfire®  35.4 2005-2009  Grassland ~ BF3/LI190 CM3
Fort Peck* 48.3 2002-2008  Grassland  LI190 Apogee
Goodwin Creek* 34.3 2002-2006  Grassland  Apogee CM3
Kendall® 31.7 2004-2009  Grassland NA NA
Audubon* 31.8 2004-2009  Grassland ~ LI190 CM3
Ivotuk’ 68.5 2004-2006  Tundra LI190 CM3
Imnaviat® 68.6 2009-2011  Tundra LI190 CM3
Unburned’ 68.9 2008-2011  Tundra LI190 CM3
Severe’ 68.9 2008-2011  Tundra LI190 CM3
Moderate’ 68.9 2008-2011  Tundra L1190 CM3
Santa Rita 31.8 2004-2007  Grassland/ NA NA
Mesquite'” Shrub
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Table 1. Site names, location, years, Plant Functional Type (PFT) and sensors used at each of the
sites used in this study. 'Hollinger et al. (1994); *Verma et al. (2005); *Goulden et al. (2011);
*Wilson and Myers (2007); *Dore et al. (2016); ®Scott et al. (2010); "McEwing et al. (2015);
$This study; "Rocha and Shaver (2011); '°Scott et al. (2009)

Spectroradiometer

Spectroradiometer MODIS v. Radiation

v. MODIS v. Radiation g

R2 [MAE] R2 [MAE] A
Red 0.22[0.01] 0.21[0.01] 0.19[0.01]
NIR 0.17[0.03] 0.20 [0.03] 0.22[0.03]
EVI2 0.67[0.03] 0.42[0.09] 0.42[0.05]
NDVI 0.55[0.05] 0.34[0.11] 0.34[0.05]

Table 2. R-squared and Mean Absolute Error (MAE) of relationships among spectroradiometer-
, MODIS-, uncorrected radiation- derived reflectance and vegetation indices.

MRzziI:t‘iI;:- MODIS \2/ C-Radiation
R? [MAE] R [MAE]
Red 0.19[0.01] 0.19[0.01]
NIR 0.22 10.03] 0.4710.02]
EVI2 0.42 [0.05] 0.56 [0.03]
NDVI 0.34 [0.05] 0.56 [0.03]

Table 3. R-squared and Mean Absolute Error (MAE) of relationships among MODIS- ,
uncorrected (U) radiation-, and corrected (C) radiation- derived reflectance and vegetation

indices.
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Figure 1: Mean Absolute Error (MAE {unitless VI ratios}: blue circles left y-axis) and r-squared
(R?{unitless}: red triangles right y-axis) of the relationship between spectroradiometer- and
MODIS- derived NDVI (top) and EVI2 (bottom) at different MODIS spatial integration scales at

Imnaviat.

Figure 2: Seasonal cycle of spectroradiometer- (black diamonds), radiation- (blue dots), and
MODIS-derived (red dots) red (A) and near-infrared (B) reflectances, and NDVI (C) and EVI2

(D) from quality controlled 2008-2018 Imnaviat data.

Figure 3: Dependence of MODIS- and radiation- derived differences on solar zenith angle for

red reflectance (A), near infrared reflectance (B), NDVI (C), and EVI2 (D) at Imnaviat.

Regression lines indicate significant relationships at the 95% confidence level.
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Figure 4: Dependence of MODIS- and radiation- derived differences on solar zenith angle for
red reflectance (A), near infrared reflectance (B), NDVI (C), and EVI2 (D) from Fluxnet sites
across biome types. Lines in panels C and D are only for statistically significant relationships at

the 95% confidence level.

Figure 5: Dependence of ground based spectroradiometer broad- and narrow-band derived
differences (i.e. broadband-narrowband) on solar zenith angle for red reflectance (A), near
infrared reflectance (B), NDVI (C), and EVI2 (D) at Imnaviat. Regression lines indicate

significant relationships at the 95% confidence level.

Figure 6: The correction factor dependence on solar zenith angle for visible (solid dots) and near
infrared (open dots) albedo. The inset plot shows seasonal changes in daily averaged solar zenith
angle (solid line) and daily averaged azimuth angle (dotted line). The grey highlighted area

denotes the growing season period at Imnaviat.

Figure 7: Correspondence between radiation- and MODIS- derived red (A) and near infrared (B)
reflectances, and NDVI (C) and EVI2 (D) at Imnaviat. Grey dots are MODIS and uncorrected
radiation derived reflectance and indices, whereas triangles are MODIS and radiation derived

reflectance and indices that were corrected for solar position biases.

Figure 8: Average percent change in the Mean Absolute Error (MAE) between MODIS satellite-

and radiation-derived NDVT (black bars) and EVI2 (grey bars) relative to the uncorrected values
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at the Fluxnet sites. Fluxnet sites were grouped by ecosystem type, and error bars represent

standard errors.

Figure 9: Relationship between Imnaviat Gross Ecosystem Exchange (GEE) and solar position
corrected (open triangles) and uncorrected (grey circles) radiation derived vegetation indices.
NDVI-GEE relationships are in left panel (A), whereas EVI2-GEE are in right panel (B). The
solid line represents the correlation between the solar position corrected vegetation index and
GEE, whereas the dotted line represents the correlation between uncorrected vegetation indices
and GEE. Hatched arrows in left panel represent the hysteresis in the relationship between

uncorrected NDVI and GEE, while numbers represent the day of year of each observation.

Figure 10: Mean Absolute Error (MAE) of the start-(SOS), length-(LOS), and end-(EOS) of the

growing season derived from MODIS- (black bar), uncorrected radiation- (grey), and solar

position corrected radiation- (dark grey) derived NDVI (A) and EVI2 (B) at Imnaviat.
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observed in Figure 4.

Table 1S: Summary statistics for bandwidth bias correlation with solar zenith angle in Figure
1S. The number represents the R? of the relationship, while the number in [brackets] represents
the sensitivity to solar zenith angle measured as the slope of the line.
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988

989
990
991

992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014

1015
1016
1017

PFT

Red
(R [Slope])

NIR
(R? [Slope])

NDVI
(R [Slope])

EVI2
(R? [Slope])

Crop

Deciduous
Evergreen
Grass
Grass/Shrub

Tundra

0.06 [-0.0001]
0.46 [-0.0003]

0.06 [0.0001]
0.62 [0.0002]
0.10 [0.0001]
0.16 [0.0005]

0.09 [-0.0005]
0.14 [-0.0006]

0.12 [0.0003]
0.11 [-0.0006]
0.08 [-0.0005]
0.22 [-0.0008]

0.01 [0.0002]
0.03 [0.0003]
0.06 [0.00093]
0.06 [0.0009]
0.01 [0.00003]
0.01 [-0.0001]

0.37 [-0.0007]
0.52 [-0.0046]

0.02 [0.0003]
0.29 [0.002]
0.22 [-0.0005]
0.29 [0.002]

*Numbers in bold represent statistically significant relationships at the 95% Confidence level.
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