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Abstract: 48 

Vegetation indices derived from solar and photosynthetically active radiation (PAR) sensors (i.e. 49 

radiation derived) have been under-utilized in inferring ecosystem function, despite measurement 50 

capability at hundreds of sites. This under-utilization may be attributed to reported mismatches 51 

among the seasonality of radiation- and satellite-derived vegetation indices and canopy 52 

photosynthesis; herein referred to as measurement biases.  Here biases in radiation derived 53 

reflectance and vegetation indices were assessed using a decadal record of satellite and ground 54 

based spectroradiometer data, ecosystem phenology and CO2 fluxes, and radiation derived 55 

vegetation indices (i.e. the Normalized Difference Vegetation Index [NDVI], the two band 56 

Enhanced Vegetation Index [EVI2]) from a high latitude tundra site (i.e. Imnaviat).  At Imnaviat, 57 

we found poor correspondence between the three types of reflectance and vegetation indices, 58 

especially during the latter part of the growing season.  Radiation derived vegetation indices 59 

resulted in incorrect estimates of phenological timing of up to a month and poor relationships 60 

with canopy photosynthesis (i.e. Gross Ecosystem Exchange (GEE)).  These mismatches were 61 

attributed to solar position (i.e. solar zenith and azimuth angle) and a method, based on the diel 62 

visible and near-infrared albedo variation, was developed to improve the performance of the 63 

vegetation indices. The ability of radiation derived vegetation indices to infer GEE and 64 

phenological dates drastically improved once radiation derived vegetation indices were corrected 65 

for solar position associated biases at Imnaviat.  Moreover, radiation derived vegetation indices 66 

became better aligned with MODerate resolution Imaging Spectroradiometer (MODIS) satellite 67 

estimates after solar position associated biases were corrected at Imnaviat and at 25 Fluxnet sites 68 

(~90 site years) across North America. Corrections developed here provide a way forward in 69 
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understanding daily ecosystem function or filling large gaps in eddy covariance data at a 70 

significant number of Fluxnet sites.  71 

 72 

 73 
Keywords: Phenology, NDVI, EVI2, Solar Zenith, Gross Ecosystem Exchange, Arctic LTER  74 

 75 

1.0 Introduction:  76 

Vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), have been 77 

used to infer ecosystem structure and function over the past half century (Rouse 1974).  These 78 

indices utilize the low red reflectance -due to chlorophyll absorption-, and the high NIR 79 

reflectance -due to low absorption and high scattering- of green leaves to infer ecosystem 80 

function (e.g.  leaf abundance, canopy physiology, and canopy phenology) (Gamon et al. 2010; 81 

Gamon et al. 2006).  Historically, these indices were derived from satellite based reflectance; 82 

providing a proxy of ecosystem function at the global scale-albeit at low temporal resolution 83 

(e.g. monthly, bi-monthly).  However, these indices also can be derived from commonly used 84 

up- and down-ward facing Photosynthetically Active Radiation (PAR) and solar radiation 85 

sensors (i.e. radiation derived); providing a low cost continuous measure of ecosystem function 86 

even when heavy cloud cover obscures satellite views of the surface (Huemmrich et al. 1999; 87 

Rocha and Shaver 2009; Wilson and Meyers 2007).  Although radiation derived vegetation 88 

indices provide a powerful tool for understanding ecosystem function at sub-daily to annual 89 

timescales, a critical assessment of their uncertainties are surprisingly lacking.         90 

 91 

Despite the wide use of PAR and solar radiation sensors across many eddy covariance sites, 92 

radiation derived vegetation indices have been under-utilized in inferring ecosystem function. 93 

Only a handful of studies have used radiation derived vegetation indices to infer ecosystem 94 
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function, as compared to the thousands that have used satellite derived vegetation indices 95 

(Jenkins et al. 2007; Wohlfahrt et al. 2010; Wright and Rocha 2018).  This imbalance may be 96 

due to the historical precedent of satellite data, or a lack of mechanistic understanding of 97 

measurement uncertainties in radiation derived indices.  Radiation derived vegetation indices 98 

differ in magnitude and exhibit less seasonality than those derived from satellite data (Rocha and 99 

Shaver 2009). Jenkins et al. (2007) found that the slope of the relationship between radiation 100 

derived vegetation indices and canopy photosynthesis differed in the early and later part of the 101 

growing season.  This contrasts with remote sensing work that models canopy photosynthesis 102 

from satellite derived vegetation indices with a single relationship across the season, and 103 

highlights a significant methodological knowledge gap (Sims et al. 2006; Sims et al. 2011; Xiao 104 

et al. 2005). 105 

 106 

Although various hypotheses have been proposed to resolve the differences in radiation- and 107 

satellite- derived vegetation indices, the mechanisms are still debatable. The lack of 108 

correspondence between radiation- and satellite-derived vegetation indices have often been 109 

attributed to differences in the spatial scale of integration between the two measures or 110 

differences in sensor spectral resolution (Disney et al. 2004; Tittebrand 2009; Wang et al. 2004; 111 

Wang et al. 2012).  Ground based radiation derived vegetation indices integrate a smaller area 112 

(i.e. ~100 x 100 m) than satellites such as the MODerate resolution Imaging Spectroradiometer 113 

(MODIS) (i.e. 100-1000 m) (Schmid 1997).  Spatial mismatches are less likely to confound 114 

ground radiation- and satellite- derived reflectance and vegetation index comparisons in 115 

homogenous landscapes (Wittich and Kraft 2008). Radiation-derived vegetation indices also are 116 

very broad and integrate spectral information across the visible and infrared wavelengths, 117 
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whereas satellite derived vegetation indices use more narrow spectral bands that focus on the red 118 

and NIR portions of the electromagnetic spectrum (Wittich and Kraft 2008). This spectral 119 

mismatch is more likely to influence the magnitude- but not the seasonality-of the vegetation 120 

indices. Although both these mechanisms are important at individual sites, they are unlikely to 121 

account for the large magnitude and consistency of radiation- and satellite-derived differences 122 

observed across many sites.  123 

 124 

Sensor measurement biases have been largely overlooked when determining the causal 125 

mechanism behind differences in radiation- and satellite-derived vegetation indices (Balzarolo et 126 

al. 2011; Schaepman-Strub et al. 2006). Satellite sensors measure surface radiance and then 127 

corrects reflectance to minimize solar illumination and sensor view effects using a Bi-Directional 128 

Reflectance Function (BRDF) (Schaepman-Strub et al. 2006).  The BRDF corrects for solar 129 

illumination effects from solar position to compare reflectance at the same view angle-typically 130 

defined at nadir. Such corrections are not made for radiation derived vegetation indices 131 

(Balzarolo et al. 2011; Huemmrich et al. 1999; Wilson and Meyers 2007).  Although the 132 

radiation sensors are located above the canopy, these sensors integrate radiation from the entire 133 

hemisphere.  Despite this hemispherical field of view, shortwave albedo has been shown to be 134 

sensitive to illumination angle (i.e. solar zenith and azimuth angles), which changes over the 135 

course of a day and year (Huemmrich et al. 1999).  For example, broadband albedo measured 136 

with pyranometers have been shown to be dependent on solar zenith angle and illumination 137 

intensity for surfaces with high reflectivity such as snow (Carroll and Fitch 1981; Kriebel 1979; 138 

Wang et al. 2005; Wang and Zender 2010; Yang et al. 2008).  However, little has been done to 139 
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understand or correct the impact of illumination angle effects on radiation derived vegetation 140 

indices.                       141 

 142 

Here we assessed the ability of PAR and solar radiation derived reflectance proxies and 143 

vegetation indices to replicate MODIS satellite derived reflectance and vegetation indices; herein 144 

referred to as measurement biases.  We also assessed the ability of PAR and solar radiation 145 

derived vegetation indices to infer ecosystem function (i.e. plant phenology and CO2 fluxes).  146 

We focus on two commonly used vegetation indices: NDVI and EVI2 (Rocha and Shaver 2009). 147 

NDVI has more of a historical precedent in inferring ecosystem function, but EVI2 may provide 148 

a better proxy of ecosystem function due to its insensitivity to non-vegetated background 149 

reflectance (Jiang et al. 2008).  Past remote sensing work has demonstrated the impact of solar 150 

position in influencing reflectance and vegetation indices, but lacked biological data to 151 

demonstrate the implications of ignoring such biases for inferring ecosystem function (Bhandari 152 

et al. 2011; Huete 1987; Ma et al. 2019; Middleton 1992).  We hypothesized that solar position 153 

will lead to systematic biases in radiation derived vegetation indices that prevent these indices 154 

from correctly inferring vegetation phenology and seasonality in canopy photosynthesis at 155 

Imnaviat.  We tested this hypothesis with a decadal record of PAR and solar radiation fluxes, 156 

MODIS, and ground based spectral radiometer measurements at a high latitude tundra site 157 

(Imnaviat), and further corroborated the patterns observed at Imnaviat with a synthesis of 158 

Fluxnet datasets.  Imnaviat was chosen because of its landscape homogeneity, its rich long term 159 

ecological dataset (i.e. long term CO2 fluxes and plant phenology), as well as its high latitude 160 

location with a frequently high solar zenith angle.  The attributes of these data provide an ideal 161 

opportunity to determine the major sources of measurement biases leading to the discrepancy 162 
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between satellite- and radiation-derived vegetation indices, and measures of seasonality in 163 

ecosystem function.        164 

 165 

2.0 Methods 166 

 167 

2.1 Site Description, Instrumentation, and Available Data 168 

This study was conducted on a west-facing hillslope within the Imnaviat Creek watershed on the 169 

North Slope of Alaska, USA (68.61o N; 149.31o W).  Vegetation at the site was characteristic of 170 

moist acidic tussock tundra with tussock cottongrass [Eriophorum vaginatum], dwarf birch 171 

[Betula nana], labrador tea [Rhododendron tomentosum], sphagnum moss [Sphagnum spp.], and 172 

scattered lichens covering the landscape (Euskirchen et al. 2012). The mean annual temperature 173 

at the site was -7 oC and the mean annual precipitation was 318 mm, with 40% occurring as rain 174 

and 60% as snow. Mean growing season (June-August) temperature was 6 oC, while mean non-175 

growing season temperature was -11 oC.   176 

 177 

In July of 2008, Imnaviat was instrumented with three (1 upward and two downward) CMP3 178 

pyranometers that measured shortwave solar radiation (SW: units: W m-2) [CMP3; Kipp and 179 

Zonen], three PAR sensors that measured Photosynthetically Active Radiation (PAR: units: 180 

µmol m-2 s-1) [LI-190SA; Li-Cor, Lincoln NB], two downward looking surface temperature 181 

radiometers [IRT Infrared Thermometer; Apogee Instruments], a HMP temperature and humidity 182 

sensor [HMP45C-L; Campbell Scientific], and two TCAV soil temperature sensors [TCAV-L; 183 

Campbell Scientific].  Meteorological sensors were mounted at a height of 2.5 meters.  Radiation 184 

sensors were well maintained, frequently leveled, and sent for factory calibration every 2-3 years 185 
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during the measurement period.  The radiation tower ran nearly continuously from July 2008-186 

2018, and was powered by a battery bank connected to two solar panels, which were situated 187 

away from the direct field of view of the sensors.   188 

 189 

The radiation tower was located ~300 m away from three Arctic Observatory Network (AON) 190 

flux towers located along the same west facing hillslope gradient (Euskirchen et al. 2012). The 191 

flux towers measured the Net Ecosystem Exchange of CO2 (NEE) via the eddy covariance 192 

method, and a suite of meteorological variables including incoming and outgoing PAR and solar 193 

radiation, air temperature, humidity, wind speed, soil moisture, soil temperature, and snow depth 194 

(Baldocchi 2003). We analyzed the mean seasonal cycle of the daily Gross Ecosystem Exchange 195 

(GEE) at the mid-slope Moist Acidic Tundra (MAT) site from 2008-2018 to determine the 196 

relationship between vegetation indices and the seasonality of photosynthesis. The mid-slope 197 

MAT flux tower was chosen because of its similar vegetation composition, slope position, and 198 

NDVI seasonality to the nearby radiation tower [MAT Flux Tower NDVI vs. Imnaviat Radiation 199 

Tower NDVI R2: 0.97; Slope: 1.01; Mean Absolute Error (MAE): 0.01].   AON data were 200 

obtained online at http://aon.iab.uaf.edu.   201 

 202 

NEE flux partitioning was described in detail in Euskirchen et al. (2012, 2017), and followed 203 

standard Fluxnet protocols for partitioning NEE into canopy photosynthesis (Gross Ecosystem 204 

Exchange: GEE) and ecosystem respiration (ER). Briefly, NEE flux partitioning was 205 

accomplished by fitting a Q10 air temperature response function to well mixed (u-star> 0.10 s m-206 

1) NEE’s that occurred during low light conditions (PAR< 50 µmol m-2 s-1) (Ueyama et al. 2013; 207 

Euskirchen et al. 2017)).  The basal respiration and Q10 parameters of the exponential model 208 
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were determined through least squares fitting with “low light” NEE and air temperature data 209 

from a 30 day daily moving window.  This empirically derived Q10 air temperature response 210 

function was used to estimate half hourly ER. Half hourly GEE was inferred from NEE by 211 

subtracting ER from NEE (GEE=NEE-ER), and temporally scaled up with daily summations.          212 

 213 

2.2 Ground based Spectral Reflectance Measurements 214 

Ground based reflectance was measured within the footprint of the Imnaviat radiation tower 215 

using three different spectroradiometers over the years. Spectral reflectance was measured with a 216 

Unispec (UniSpec-SC, PP-Systems, Amesbury, MA; Spectral Range: 300-1200 nm at 2 nm 217 

resolution) from 2008-2009, a dual channel Unispec (Unispec-DC, PP-Systems, Amesbury, MA; 218 

Spectral Range: 300-1200 nm at 2 nm resolution) from 2010-2012, and a FieldSpec 4 (Analytical 219 

Spectral Devices (ASD); Malvern Panalytical Ltd; United Kingdom; Spectral Range: 200-2400 220 

nm at 2 nm resolution) from 2013-2018. Four ~100 m transects separated by ~30 m were 221 

established on the North and South side of the radiation tower forming a 200x120m grid within 222 

the tower footprint. Spectral reflectance was measured during midday hours (11:00 am-2:00 pm 223 

AST) every ~3 meters along each of the four 100 m transects either weekly, bi-monthly, or 224 

monthly during the growing season (June-August) of each year (n=240 scans per sampling date).  225 

A total of 62 sampling campaigns were undertaken from July 2008 to August 2018 with each 226 

campaign taking ~1 hour to accomplish. 227 

   228 

Surface reflectance measurements followed standard procedures described in the 229 

spectroradiometer user manuals.  Prior to measurements, each instrument was allowed a 15-20 230 

minute warm up period.  A freshly cleaned white Spectralon® diffuse reflectance panel 231 
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(Labsphere; North Sutton, NH) was used as a reflectance standard to convert spectroradiometer 232 

derived radiance into surface reflectance. Dark current measurements were taken by closing the 233 

detector “door”, which prevented light from hitting the detectors and minimized measurement 234 

artifacts from background electrical instrument noise. Optimal measurement integration times 235 

were dependent on illumination conditions and were automatically determined by each sensor.  236 

White panel, dark current, and optimal measurement integration time measurements were taken 237 

frequently (i.e. every 3-5 minutes depending on sky conditions) to ensure high quality 238 

reflectance data.  After each sampling campaign, surface reflectance data were quality checked 239 

for anomalous spectra (i.e. spectra that were >3 standard deviations from the mean) and averaged 240 

across all scans. These spectra were used to calculate NDVI and EVI2 using Equations [2] and 241 

[3] below and spectrally averaged MODIS wavelength definitions for red- (average of 620-670 242 

nm) and NIR- reflectance (average of 841-876 nm) (Schaaf et al. 2002). We also spectrally 243 

averaged all wavelengths to calculate total and visible reflectance to derive a broad band visible, 244 

NIR (using equation 1), NDVI and EVI2 based on ASD spectroradiometer data.  ASD averaged 245 

total reflectance was within 10% of the shortwave albedo, while ASD averaged visible 246 

reflectance was within 5% of PAR albedo measured by radiation sensors at Imnaviat.         247 

 248 

2.3 Ground based Phenology 249 

Individual plant species phenologies were measured from 2008-2018 in moist acidic tundra at 250 

the Toolik Lake Arctic Long Term Ecological Research (LTER) station.  Toolik field station was 251 

situated ~7 km away and experienced similar weather to Imnaviat. A variety of phenological 252 

events (i.e. first snow free, first visible leaf, first leaf drop, first color change, and last leaf drop) 253 

were measured in several plots around Toolik lake in each year for the dominant MAT species 254 
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(i.e. Andromeda polifolia, Betula nana, Carex bigelowii, Cassiope tetragona, Empetrum nigrum, 255 

Eriophorum vaginatum, Ledum palustre, Polygonum bistorta, Rubus chamaemorus, Salix 256 

pulchra, Vaccinium uliginosum, Vaccinium vitis-idaea).  These phenological data were used to 257 

validate satellite- and radiation- derived NDVI and EVI2 estimates of the start-, end-, and length- 258 

of the growing season.  The average of the first visible leaf for all species served as a proxy for 259 

the start of the growing season, whereas the maximum last leaf color change served as a proxy 260 

for the end of the growing season.   261 

   262 

2.4 Radiation derived Vegetation Indices 263 

The radiation tower at Imnaviat measured surface albedo in the visible (400-700 nm) and total 264 

shortwave wavelengths (300-2400 nm) of light.  These albedo measures served as a proxy for red 265 

and near infrared reflectance (Rocha and Shaver 2009).  Visible (αV) albedo was calculated as 266 

the ratio between reflected (r) and incoming (i) PAR αV = PARr/PARi, while total albedo (αT) 267 

was calculated as the ratio between reflected and incoming shortwave radiation [SWr & SWi, 268 

respectively] αT = SWr/SWi. αV was used as a proxy for red reflectance, while both αV and αT 269 

were used in Equation 1 as a proxy for NIR reflectance (αN) (Jenkins et al. 2007).  270 

 271 

VTN W   *               Equation [1] 272 

 273 

W in Equation 1 equaled 2 for all vegetation types, and represented a weighting term to separate 274 

αN from αV and αT.  Derivations of red and near infrared reflectance from ground based 275 

radiometers represented broadband definitions of narrowband quantities.  αN included dynamics 276 

in the near- and short-wave infrared region of the reflectance spectrum, while αV included 277 
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dynamics in the red, blue and green regions of the reflectance spectrum.  Other ground 278 

radiometer derivations of αN utilize similar assumptions (see Huemmrich et al., 1999 & Wilson 279 

and Meyers, 2007).  We used Jenkins et al. (2007) derivation because of its parsimony and its 280 

high correlation with other αN derivations (Jenkins vs. Huemmrich R2 [Mean Absolute Error: 281 

MAE]: 0.91 [0.015]/ MAE Jenkins vs. Wilson & Meyers R2 [MAE]: 0.99 [0.014]) for the sites 282 

used in this study. We also found that the conclusions from our analyses were independent of the 283 

different formulations of αN.    284 

 285 

We focused our analyses on the active growing season during snow-free periods.  Data 286 

influenced by snow covered ground were identified with an albedo threshold of >0.3 (i.e. 287 

vegetation albedo <0.25 at all sites) and removed from the half hourly radiation datasets.  288 

Incoming and reflected radiation were averaged over the course of a day (i.e. n=48 for each 289 

value) to minimize diel solar zenith effects (Huemmrich et al. 1999; Rocha and Shaver 2009; 290 

Wilson and Meyers 2007).  Sensor drift and snow and dirt accumulation on the sensors were 291 

identified as periods where PARi/SWi fell beyond or below the mean plus or minus 2 standard 292 

deviations and subsequently removed. The final “cleaned” dataset contained daily ground 293 

radiometer values that were compared with MODIS reflectance and vegetation indices.   294 

 295 

NDVI and EVI2 were calculated from radiation-, spectroradiometer- and MODIS-derived 296 

measures of near infrared (αN) and red reflectance (αR) with Equations [2] and [3] (Jiang et al. 297 

2008).   298 

 299 

RN

RNNDVI









              Equation [2] 300 
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 301 

14.2
5.22






RN

RNEVI




                        Equation [3] 302 

 303 

2.5 Fluxnet Data Synthesis 304 

We conducted a broader survey of ground based radiation derived vegetation indices with 305 

Fluxnet data to determine whether biases observed at the Imnaviat site were consistent across 306 

other sites (Table 1). Data from the Fluxnet network consisted of 25 sites and 90 site years of 307 

half hourly incoming (i) and reflected (r) PAR and shortwave data (Table 1).  12% of the sites 308 

were from crops, 8% were from deciduous forests, 25% were from evergreen forests, 28% were 309 

from grasslands, 20% were from arctic tundra, and 8% were from a shrub and grassland mix.  310 

Sites had a minimum of two years of data with a maximum of 6 years at 2 sites, and an average 311 

of 3.5 years for the entire dataset.  PAR within the 400-700 nm spectral region was measured 312 

with a LI190 quantum sensor (LI-COR Inc., Lincoln, Nebraska) at 85% of the sites, while the 313 

remaining sites used either an Apogee quantum sensor (Apogee Instruments, Logan, Utah) or 314 

BF3 sunshine sensor (Dynamax, Houston Texas).  Shortwave radiation (SW) within the 300-315 

2800 nm spectral region was measured with a CM3 (Kipp & Zonen, Bohemia, NY ) at 90% of 316 

the sites, while the remaining sites used an Apogee pyranometer (Apogee Instruments, Logan, 317 

Utah) or LI200 pyranometer (LI-COR Inc., Lincoln, Nebraska). Data were aligned with MODIS 318 

satellite data (see section 2.7) through 16- day averages that were centered on the MODIS 319 

composite date.   320 

 321 

2.6 Testing and Correcting for Solar Position Biases  322 
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We corrected solar position biases using diel relationships between solar position and albedo 323 

throughout the season.  Diel NIR and visible albedo variability can be more than twice as large 324 

as observed over the course of a season (Huemmrich 1999).  These large diel visible and NIR 325 

albedo variations cannot be representing changes in canopy leaf area, that are often related to 326 

vegetation indices, because LAI changes over much longer time scales than a day (i.e. days to 327 

weeks)(Stoy 2013).  Rather, this large diel variation arises from the anisotropic properties of 328 

surface reflectance (i.e. the bidirectional reflectance distribution function) and possibly other 329 

sensor issues, such as a sensors’ cosine response function (Huete 1987; Middleton 1992; Rahman 330 

et al. 1993).  331 

 332 

Here we used the diel variation in albedo and solar position to empirically derive a correction 333 

factor to apply over the course of the season. We removed vegetation phenology impacts on the 334 

seasonal variability by dividing each daily averaged visible and NIR albedo into each half hourly 335 

visible and NIR albedo value to focus solely on sub-daily variations associated with solar 336 

position (Equation 4). These ratios provided 48 half hourly correction factors for each day and 337 

albedo that can be related to sub-daily solar position changes.  When multiplied with each half 338 

hourly NIR or visible albedo, the correction factor scaled these values down to represent a 339 

consistent daily average for all 48 half hourly periods.  These constant daily NIR and visible 340 

albedos were consistent with the fact that canopy leaf area does not significantly change on sub-341 

daily timescales.  342 

 343 

 344 
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𝛼𝐶𝑜𝑟 =
𝐷𝑎𝑖𝑙𝑦 𝑉𝑎𝑙𝑢𝑒

𝐻𝑎𝑙𝑓 𝐻𝑜𝑢𝑟𝑙𝑦 𝑉𝑎𝑙𝑢𝑒
=

𝛼𝑑

𝛼ℎ
 

 

Equation [4] 

αCor was calculated and three dimensional bin averaging on half hourly solar zenith, solar 345 

azimuth, and αCor helped establish the empirical relationship among the three variables. Because 346 

αCor was derived across the season and years, we used bin averaging to further smooth the αCor 347 

response function in relation to solar zenith and azimuth.  We found that twenty-five equal range 348 

sized bins were sufficient enough to smooth the remaining variability associated with seasonal 349 

changes in solar zenith and azimuth angle and random noise in the albedo measurements.   350 

Machine learning methods with a squared exponential Gaussian process regression model along 351 

with the binned half hourly αV and αN were used to derive the empirical correction factor 352 

equations for each albedo measure (i.e. αV and αN) as a function of solar position.  Empirical 353 

correction factors for each day were predicted from the daily averaged solar zenith and azimuth 354 

angle, and then multiplied by the daily averaged visible and NIR albedo to produce a solar 355 

position corrected αV and αN. NDVI and EVI2 were then recalculated using the solar position 356 

corrected αV and αN with Equations 2 and 3. Solar position was calculated for each site and half 357 

hour using the site latitude and longitude and time of year (Myers 2017).  Analyses were 358 

accomplished with Matlab’s Regression Learner application (MATLAB 2019b; Mathworks Inc. 359 

Natick, MA).  360 

 361 

2.7 MODIS Data 362 

We compared MODIS reflectance and vegetation indices to radiation derived proxies and 363 

measures.  MODIS version 4 data were extracted from a 0.25 km2 area centered at each tower 364 

location (http://daac.ornl.gov) (ORNL DAAC 2018).  For Imnaviat, we used daily Nadir BRDF-365 

http://daac.ornl.gov/
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Adjusted reflectance (MCD43A4) and extracted data at various spatial scales (i.e. 0.25, 6.25, 366 

20.25, 210.25, and 420.25 km2) to determine the impact of spatial aggregation on the comparison 367 

between ground and satellite based data (Shuai et al. 2013). For the Fluxnet Data Synthesis, we 368 

used Nadir-BRDF adjusted 500 m resolution surface reflectance (MODIS NBAR; MCD43A) 369 

from seven spectral bands (Schaaf et al. 2002).  We also used the seven MODIS spectral bands 370 

along with empirical equations from Liang (2000) to calculate a total and visible albedo that 371 

were used to derive broadband vegetation indices following Equations 1-3. MCD43A reflectance 372 

was reported every eight days, derived from both Terra and Aqua platforms, and adjusted to 373 

local solar noon with a BRDF calculated over a 16-day interval. Data with >80% of pixels 374 

passing quality control were used in the analyses. Only growing season MODIS data, as defined 375 

by ground based snowless terrestrial albedo values, were used in the analyses.   376 

 377 

2.8 Phenology Model  378 

The start, end, and length of the growing season was determined with a phenology model fit to 379 

the observed seasonal cycle of MODIS- and radiation- derived NDVI and EVI2 in each year at 380 

Imnaviat.  The phenology model was a double-logistic function that predicted each vegetation 381 

index based on the day of year (t) (Beck et al. 2006; Fisher et al. 2006; Fisher et al. 2007) 382 

(Equation 5): 383 

 384 

𝑣(𝑡) = 𝑣𝑚𝑖𝑛 + 𝑣𝑎𝑚𝑝 (
1

1+ 𝑒𝑚1−𝑛1𝑡 −
1

1+𝑒𝑚2−𝑛2𝑡)                                                           Equation [5] 385 

 386 

The model was fit by minimizing the sum of squared residuals between model predictions and 387 

observed values.  The fitted parameters of the model were vmin and vamp, m1, n1, m2, and n2. vmin 388 
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and vamp were related to the minimum and amplitude values of the spectral index, respectively.  389 

The parameters in the two exponents determined the seasonality with m1 and n1 related to the rate 390 

and timing of green-up, and m2 and n2 related to the rate and timing of senescence. The start of 391 

the growing season was given by t = m1/n1, the end of the growing season was given by t = 392 

m2/n2, and the length of the growing season was determined by the difference between the start 393 

and end of the growing season. 394 

 395 

2.9 Statistical Analyses:  396 

Statistical analyses included least squares linear regression to determine the relationship between 397 

two variables, and Mean Absolute Error (MAE) to determine the prediction error of a model or 398 

the error associated with the comparison of a set of similar observations (Ramsey 2013).  399 

Statistical significance was determined at the 95% confidence level.  400 

 401 

3. Results  402 

 403 

3.1 Assessing Spatial Aggregation Biases 404 

The scale of spatial integration had little impact on the comparison between tower and MODIS 405 

based vegetation indices indicating landscape coherence in phenology within the region 406 

surrounding Imnaviat (Figure 1). Here we minimized spectral definition differences among 407 

sensors by comparing spectroradiometer- and MODIS- derived reflectance’s and vegetation 408 

indices.  Spectroradiometer derived NDVI explained 70% of the variability in MODIS derived 409 

NDVI, whereas spectroradiometer derived EVI2 explained 60% of the variability in MODIS 410 

derived EVI2.  The MAE increased slightly from 6% of NDVI at the ecosystem/watershed level 411 
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(0-10 km2) to 7% of NDVI at the regional scale (>300 km2).  EVI2 exhibited greater sensitivity 412 

to spatial integration with MAEs increasing from 14% of EVI2 at the ecosystem/watershed scale 413 

to 20% of EVI2 at the regional scale.    414 

 415 

3.2 MODIS- vs. radiation-derived reflectance and indices comparison 416 

In general, spectroradiometer- and MODIS- derived reflectances and vegetation indices were 417 

more related to each other than those derived from radiation fluxes at Imnaviat (Table 2). 418 

Vegetation indices yielded higher correlations among measurement types than did red and NIR 419 

reflectance. For example, reflectance R2’s ranged from 0.17-0.22 for NIR and red reflectance, 420 

while vegetation index R2’s ranged from 0.34 to 0.67.  Correlations among radiation-, 421 

spectroradiometer-, and MODIS-derived measures were typically higher for EVI2 than for 422 

NDVI. The poor relationships between radiation- and MODIS/spectroradiometer- derived 423 

vegetation indices were largely attributed to differences in seasonality among the 424 

MODIS/spectroradiometer- and radiation- derived measures.          425 

 426 

Seasonality differed among radiation-, spectroradiometer-, and MODIS derived- reflectance and 427 

vegetation indices at Imnaviat (Figure 2).  Correspondence among the three measures was 428 

greatest for red reflectance and smallest for NIR, NDVI, and EVI2.  Red reflectance 429 

demonstrated similar seasonality among the measures with higher reflectance in the shoulder 430 

seasons and minimum values during the peak of the growing season.  In contrast, NIR 431 

reflectance, NDVI, and EVI2 were low at the start of the growing season, reached a maximum 432 

during peak growing season, and then declined to a minimum at the end of the growing season. 433 

All three measures of NIR, NDVI and EVI2 exhibited similar seasonality up until the peak of the 434 
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growing season, but differed towards the end of the growing season. Radiation-derived NIR 435 

reflectance and vegetation indices were larger than MODIS and spectroradiometer- derived 436 

quantities towards the latter part of the growing season.  Consequently, differences between 437 

MODIS and spectroradiometer- and radiation-derived NIR, NDVI, and EVI2 exhibited strong 438 

seasonality with the largest mismatch towards the second half of the growing season.    439 

 440 

3.3 Assessing Sensor Biases 441 

Seasonal differences between MODIS- and radiation- derived indices observed in Figure 2 were 442 

correlated with solar zenith angle at Imnaviat (Figure 3).  Larger solar zenith angles produced 443 

larger differences between MODIS- and radiation- derived NIR, NDVI, and EVI2, but had no 444 

impact on differences between MODIS- and radiation- derived red reflectance. Solar zenith 445 

angle explained 41% of the variability in NIR reflectance biases, 28% of the variability in NDVI 446 

biases, and 45% of the variability in EVI2 biases. This represented a bias of 0.004 per 1o change 447 

in zenith angle for NIR reflectance, and a bias of 0.006 per 1o change in zenith angle for NDVI 448 

and EVI2. 449 

 450 

The relationship between measurement bias and solar zenith angle at Imnaviat were consistent 451 

across Fluxnet sites located in vastly different biomes (Figure 4).  However, in contrast to the 452 

observed solar zenith dependent measurement biases at the Imnaviat site, there was a statistically 453 

significant measurement bias dependence on solar zenith angle at some of the Fluxnet sites for 454 

red reflectance. For the Fluxnet dataset, MODIS and radiation derived NIR differences positively 455 

scaled with solar zenith angle and all biomes exhibited similar slopes that ranged from 0.002 to 456 

0.003 per 1o change in zenith angle.  The solar zenith dependent biases in NIR and red 457 
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reflectance carried over to NDVI and EVI2, but sometimes canceled each other out. This 458 

cancelling out effect was more predominant for NDVI than for EVI2.  For example, NDVI 459 

biases were unrelated to solar zenith angle for evergreens and grass shrublands, whereas solar 460 

zenith angle was correlated with EVI2 biases in all biomes.  The bias sensitivity to solar zenith 461 

angle ranged from 0.001 to 0.005- for NDVI, and from 0.003 to 0.005- per 1o change in zenith 462 

angle for EVI2. 463 

       464 

3.4 Assessing Bandwidth Biases 465 

We used the full range spectroradiometer ASD data (300-2400 nm) to determine whether the 466 

measurement bias dependence on solar position was attributed to broadband versus narrowband 467 

definitions of red and near infrared reflectance used by the radiation sensors (Figure 5). 468 

Correlations between solar zenith angle and the difference between broadband and narrowband 469 

(i.e. Bandwidth Biases) definitions for red (p-value: 0.94), NDVI (p-value: 0.21), and EVI2 (p-470 

value: 0.06) were not statistically significant. Bandwidth biases were marginally significant and 471 

related to solar zenith angle for NIR (p-value: 0.05), but were opposite in sign to the expected 472 

relationships observed in Figures 3 & 4.  Moreover, solar zenith angle only explained 10% of the 473 

variation in bandwidth biases, as opposed to the 67% of the variation in radiation tower and 474 

MODIS differences explained by zenith angle in Figure 3.   475 

 476 

Similar results were found across the Fluxnet sites using MODIS data and differencing broad- 477 

and narrow- band vegetation indices (Figure 1S; Table 1S).  Although many relationships were 478 

statistically significant, solar zenith angle only explained <10% of the variation in bandwidth 479 

biases for NDVI, and <11% of the variation in bandwidth biases for EVI2 across all Fluxnets 480 



21 
 

sites on average (Supplementary Figure 1).  Moreover, the bandwidth bias sensitivity to solar 481 

zenith angle was sometimes the opposite sign of the expected positive relationships in Figures 3 482 

and 4 and were on average one to two orders of magnitude lower than that observed for tower 483 

and MODIS differences for red, NIR, NDVI, and EVI2 (Supplementary Table 1).      484 

 485 

3.5 Correcting Solar Position Biases 486 

Diel variability in solar position affected radiation derived visible and NIR albedos that were 487 

used as red and NIR reflectance at Imnaviat (Figure 6). Over the growing season, daily averaged 488 

solar zenith angle changed by 19o, while daily averaged solar azimuth angle changed by 7o 489 

(Figure 6 inset).  Visible and NIR albedo were more sensitive to solar zenith- than azimuth- 490 

angles as illustrated by the small scatter in Figure 6.  NIR albedo was more sensitive to solar 491 

zenith angle than visible albedo and was almost two times higher than its expected value at an 492 

80o zenith angle.  Consequently, the correction factor for NIR albedo declined markedly above 493 

70o from 0.85 to 0.59, whereas the correction factor for visible albedo changed by <1% above 494 

70o solar zenith angle.     495 

 496 

Correcting solar position biases using the machine learning approach described in section 2.6 497 

improved the agreement between MODIS- and radiation- derived red and NIR reflectance, 498 

NDVI, and EVI2 at Imnaviat (Figure 7).  After correcting for the dependence of measurement 499 

biases on solar position, MAE decreased and R2 increased between MODIS- and radiation- 500 

derived reflectance and vegetation indices (Table 3; Figure 7). An exception to this occurred for 501 

MODIS red reflectance, where the R2 and MAE did not significantly change after correction due 502 
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to its low sensitivity to solar position.  MAE decreased by 40% for NDVI and EVI2, and by 33% 503 

for NIR reflectance after applying the correction factor for seasonal changes in solar position.   504 

 505 

Correcting solar position biases using the machine learning approach also improved the 506 

agreement between MODIS- and radiation-derived NDVI and EVI2 across the Fluxnet sites 507 

(Figure 8).  Correcting for measurement biases introduced by solar position reduced the MAE 508 

between MODIS- and radiation- derived NDVI and EVI by 5% to 77%.  Grasslands and tundra 509 

experienced the largest decrease in MAE, while crops experienced the smallest decreases in 510 

MAE once the impact of solar position on radiation derived albedo and vegetation indices were 511 

corrected.  There was quite a bit of variability in the improved correspondence between MODIS- 512 

and radiation-derived vegetation indices among sites. However, it was difficult, if not 513 

impossible, to attribute this variability to underlying environmental, biophysical or site specific 514 

factors without additional site and sensor specific information. Regardless, correcting biases in 515 

vegetation indices for solar position improved the correspondence between MODIS- and 516 

radiation- derived vegetation indices at 85% of the sites investigated.        517 

 518 

3.6 Implications for Inferring Ecosystem Function with radiation derived NDVI and EVI2 519 

Biases associated with solar position confounded the ecophysiological interpretation of radiation 520 

derived NDVI and EVI2 at Imnaviat (Figure 9). Uncorrected radiation derived vegetation indices 521 

exhibited hysteretic relationships with GEE with different sensitivities-as measured by the slope 522 

of the line- in the first and second half of the growing season.  GEE was lower for the same value 523 

of NDVI/EVI2 in the first part of the growing season, and higher for the same value of 524 

NDVI/EVI2 in the second part of the growing season.  The relationship between NDVI/EVI2 525 
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became more linearized with a single relationship throughout the growing season once 526 

vegetation indices were corrected for their solar position dependence (Figure 9 solid line).  527 

Uncorrected NDVI explained 37% of the variability in GEE, whereas solar position corrected 528 

NDVI explained 85% of the variability in GEE.  Similar patterns were found for EVI2.  529 

Uncorrected EVI2 explained 37% of the variability in GEE, whereas solar position corrected 530 

EVI2 explained 89% of the variability in GEE.   531 

 532 

Solar position also confounded the determination of the start, end, and length of the growing 533 

season at Imnaviat (Figure 10). On average, correcting radiation derived vegetation indices for 534 

solar position decreased the MAE between leaf level measures of phenology up to ~10 days.  535 

Differences between corrected and uncorrected NDVI/EVI2 derived phenologies were greatest 536 

for the length of the growing season due to compounding errors associated with the start and end 537 

of the growing season estimates.  Uncorrected NDVI/EVI2 demonstrated reduced skill at 538 

determining the end of the growing season relative to the start; a finding that is consistent with 539 

trends observed in Figure 2.  Solar position corrected radiation derived NDVI/EVI2 performed 540 

similarly to-or in some cases-better than MODIS in predicting the start and end of the growing 541 

season, especially for EVI2. For example, solar position corrected radiation derived EVI2 542 

performed better than MODIS EVI2 in predicting the start and length of the growing season.  543 

When MODIS- and radiation- derived phenological predictions were combined, NDVI 544 

outperformed EVI2 by 5 days for the start of the growing season and 7 days for the length of the 545 

growing season, whereas EVI2 outperformed NDVI by 1 day for the end of the growing season.  546 

 547 

4.0 Discussion:  548 
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Solar position introduced significant bias on PAR and solar radiation derived vegetation indices, 549 

especially during the latter part of the growing season.  These errors were largely independent of 550 

broad- to narrow-band definitions (Figures 5 & 1S; Table 1S), and sensor spatial aggregation 551 

errors associated with landscape heterogeneity (Figure 1).  The effect of satellite spatial 552 

aggregation errors was minimized by focusing on a relatively homogenous site (i.e. Imnaviat), 553 

and were much smaller than that observed for measurement biases [i.e. <0.02 change in 554 

vegetation index MAE from 0-400 km2 (Figure 1) compared to ~0.05 MAE for tower and 555 

MODIS vegetation comparisons (Table 2)] (Wang et al. 2012). Measurement biases also were 556 

universal and occurred across a wide variety of latitudes, biomes, and sites indicating a persistent 557 

error that cannot be explained by individual site specific conditions (Figures 3,4,7,8). These 558 

measurement biases accounted for some of the limitations and issues highlighted in previous 559 

work with radiation derived vegetation indices (Jenkins et al. 2007; Rocha and Shaver 2009; 560 

Wang et al. 2004; Wittich and Kraft 2008). To our knowledge, this is the first paper, since 561 

Huemmrich et al.’s (1999) seminal work, to develop a methodology using the diel variation in 562 

albedo to correct for these biases and improve the performance of these indices in inferring 563 

ecosystem function. 564 

 565 

Historically, solar position biases on radiation- derived albedo and vegetation indices were 566 

assumed to be negligible over the course of a season, despite known diel variation (Huemmrich 567 

et al. 1999). This incorrect assumption was likely due to data limitations from looking at a single 568 

site over a short time period, the exclusion of solar azimuthal effects, and a lack of multi-sensor 569 

comparisons.  Unlike past work, our conclusions were supported by multiple independent 570 

physical and ecological observations.  First, solar position corrections improved correspondence 571 
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between satellite- and radiation- derived vegetation indices at Imnaviat and Fluxnet sites (Figures 572 

7 and 8; Table 3).  Second, solar position corrections improved the ability of radiation derived 573 

vegetation indices in capturing phenological timing and C fluxes (Figures 9 and 10).  It is clear 574 

that our use of combining long time series data obtained from different sensors and scales was 575 

essential in validating and assessing measurement biases in radiation derived vegetation indices. 576 

Our results also demonstrated that, in some cases, solar position associated NIR and visible 577 

biases canceled each other out in the calculation of the vegetation index.  This cancelation effect 578 

may explain the discrepancy between this study and past work at single sites that assumed 579 

negligible solar position biases. 580 

   581 

Addressing solar position biases in visible and NIR albedo are important because these biases 582 

resulted in poor relationships with MODIS data and poor inferences of ecosystem function. 583 

Without correcting for solar position, measurement biases reduced the explained variation in 584 

canopy photosynthesis and increased estimation error of the start, end, and length of the growing 585 

season (Figures 9,10).  Radiation derived vegetation indices also exhibited less seasonality than 586 

MODIS, which was consistent with previous work with higher than expected NIR and vegetation 587 

indices towards the latter part of the growing season (Rocha and Shaver 2009; Wittich and Kraft 588 

2008).  These unique attributes of radiation derived vegetation indices have been previously 589 

reported, but often incorrectly attributed to bandwidth biases rather than solar position ( Rocha 590 

and Shaver 2009; Jenkins et al. 2007; Wang et al. 2004).  Broadband derivations of red and NIR 591 

reflectance incorporate dynamics in the shortwave infrared that could potentially confound the 592 

seasonality of the broadband red, NIR, NDVI, and EVI2 measured by PAR and shortwave 593 

radiation sensors.  However, bandwidth errors exhibited weak to non-existent relationships with 594 
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solar position for broadband radiation derived indices across Imnaviat and the Fluxnet sites 595 

(Figures 5 and 1S; Table 1S). On the other hand, measurement bias sensitivity to solar zenith 596 

angle was an order of magnitude larger than that observed for broadband biases across both 597 

Imnaviat and Fluxnet sites (Figures 5; Figure 1S; Table 2S).   The improved ability of radiation 598 

derived vegetation indices to replicate MODIS narrowband reflectance and VIs once solar 599 

position correction was applied provides strong evidence to attribute radiation derived biases to 600 

solar position, rather than bandwidth errors (Figures 7,8, 1S). 601 

 602 

Here we used a simple machine learning empirically based model based on actual half hourly 603 

data to correct the seasonal biases in visible and NIR albedo.  Our empirical model had high 604 

predictive power, explaining 85-95% of solar position biases, followed an expected BRDF 605 

response (i.e. a non-linear positive response with solar zenith angle), and included additional 606 

factors that may be difficult to parameterize in a BRDF model (Figure 6).  For example, radiation 607 

sensors may have internal measurement biases due to solar position, known as a sensors cosine 608 

response (Blonquist et al. 2009; Ross and Sulev 2000). A sensor’s cosine response describes how 609 

solar radiation is integrated across all solar zenith and azimuthal positions on a Lambertian 610 

receiver. This response differs among sensors and would be subject to measurement drift issues 611 

that would be difficult to quantify without additional information. Differences in a sensor’s 612 

cosine response also may explain the differences in the sensitivity of radiation derived 613 

measurements to solar zenith angle among sites (Figures 4,8).    614 

 615 

Quantifying and understanding measurement errors and limitations remains an important process 616 

in the scientific community (Kratzenberg et al. 2006; Richardson et al. 2008; Ross and Sulev 617 
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2000).  This is especially true in ecosystem ecology as new, interdisciplinary, and automated 618 

remote- and near-sensing measurement techniques are being more commonly used. 619 

Understanding error sources and applying the proper corrections will result in improved 620 

understanding or quantification of ecosystem function.  For example, the strong relationship 621 

between solar position corrected radiation derived vegetation indices and canopy photosynthesis 622 

demonstrate promise in using these data to fill long gaps in eddy covariance flux data.  623 

Moreover, the high correspondence between solar position corrected radiation- and satellite- 624 

derived vegetation indices indicates that these data can be valuable in gap filling MODIS data 625 

during cloudy periods (Figure 7).  However, we caution future users of such data to also consider 626 

other potential important sources of measurement error, such as sensor drift and sensor spectral 627 

sensitivity, that may significantly alter the continuity of high quality radiation based vegetation 628 

indices (Kratzenberg et al. 2006; Ross and Sulev 2000). We encourage future work to 629 

implement, or improve upon, our methodology to gain further understanding the temporal 630 

dynamics of ecosystem C cycling and phenology with vegetation indices derived from solar and 631 

photosynthetically active radiation fluxes.    632 
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 641 
 642 
 643 
 644 
 645 

Site Name Latitude Years PFT PAR 
Sensor 

Pyranometer 
Sensor 

Bondville1 40 2004-2007 Crop Apogee LI200 
ARM SGP1 36.5 2004-2009 Crop LI190 CM3 
Sioux Falls2 43.2 2007-2009 Crop NA NA 
UCI 19893 55.9 2002-2005 Deciduous LI190 CM3 
UCI 19983 56.5  2002-2005 Deciduous LI190 CM3 
Black Hills4 44.2 2004-2008 Evergreen LI190 CM3 
Flagstaff Managed5 35.1 2006-2009 Evergreen BF3/LI190 CM3 
UCI 18503 55.9 2002-2005 Evergreen LI190 CM3 
UCI 19303 55.9 2002-2005 Evergreen  LI190 CM3 
UCI 19643 55.9 2002-2005 Evergreen LI190 CM3 
UCI 19813 55.9 2002-2005 Evergreen LI190 CM3 
Brookings4 44.3 2004-2010 Grassland NA NA 
Canaan Valley4 39.1 2004-2010 Grassland Apogee CM3 
Cottonwood4 43.9 2006-2009 Grassland NA NA 
Flagstaff Wildfire5 35.4 2005-2009 Grassland BF3/LI190 CM3 
Fort Peck4 48.3 2002-2008 Grassland LI190 Apogee 
Goodwin Creek4 34.3 2002-2006 Grassland Apogee CM3 
Kendall6 31.7  2004-2009 Grassland NA NA 
Audubon4 31.8 2004-2009 Grassland LI190 CM3 
Ivotuk7 68.5 2004-2006 Tundra LI190 CM3 
Imnaviat8 68.6 2009-2011 Tundra LI190 CM3 
Unburned9 68.9 2008-2011 Tundra LI190 CM3 
Severe9 68.9 2008-2011 Tundra LI190 CM3 
Moderate9 68.9 2008-2011 Tundra LI190 CM3 
Santa Rita 
Mesquite10 

31.8 2004-2007 Grassland/
Shrub 

NA NA 

Table 1. Site names, location, years, Plant Functional Type (PFT) and sensors used at each of the 646 
sites used in this study.  1Hollinger et al. (1994); 2Verma et al. (2005); 3Goulden et al. (2011); 647 
4Wilson and Myers (2007); 5Dore et al. (2016); 6Scott et al. (2010); 7McEwing et al. (2015); 648 
8This study; 9Rocha and Shaver (2011); 10Scott et al. (2009) 649 
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 662 
 663 

 Spectroradiometer 
v. MODIS 
R2 [MAE] 

Spectroradiometer 
v. Radiation 

R2 [MAE] 

MODIS v. Radiation 
R2 [MAE] 

Red 0.22 [0.01] 0.21 [0.01] 0.19 [0.01] 
NIR 0.17 [0.03] 0.20 [0.03] 0.22 [0.03] 
EVI2 0.67 [0.03] 0.42 [0.09] 0.42 [0.05] 
NDVI 0.55 [0.05] 0.34 [0.11] 0.34 [0.05] 

Table 2.  R-squared and Mean Absolute Error (MAE) of relationships among spectroradiometer-664 
, MODIS-, uncorrected radiation- derived reflectance and vegetation indices.  665 
 666 
 667 
 668 

 MODIS v. U-
Radiation 
R2 [MAE] 

MODIS v. C-Radiation 
R2 [MAE] 

Red 0.19 [0.01] 0.19 [0.01] 
NIR 0.22 [0.03] 0.47 [0.02] 
EVI2 0.42 [0.05] 0.56 [0.03] 
NDVI 0.34 [0.05] 0.56 [0.03] 

Table 3. R-squared and Mean Absolute Error (MAE) of relationships among MODIS- , 669 
uncorrected (U) radiation-, and corrected (C) radiation- derived reflectance and vegetation 670 
indices. 671 
 672 
 673 
 674 
 675 
 676 
 677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 



30 
 

 686 

Figure 1: Mean Absolute Error (MAE {unitless VI ratios}: blue circles left y-axis) and r-squared 687 

(R2{unitless}: red triangles right y-axis) of the relationship between spectroradiometer-  and 688 

MODIS- derived NDVI (top) and EVI2 (bottom) at different MODIS spatial integration scales at 689 

Imnaviat.  690 

 691 

Figure 2: Seasonal cycle of spectroradiometer- (black diamonds), radiation- (blue dots), and 692 

MODIS-derived (red dots) red (A) and near-infrared (B) reflectances, and NDVI (C) and EVI2 693 

(D) from quality controlled 2008-2018 Imnaviat data.   694 

 695 

Figure 3: Dependence of MODIS- and radiation- derived differences on solar zenith angle for 696 

red reflectance (A), near infrared reflectance (B), NDVI (C), and EVI2 (D) at Imnaviat. 697 

Regression lines indicate significant relationships at the 95% confidence level. 698 

 699 

Figure 4: Dependence of MODIS- and radiation- derived differences on solar zenith angle for 700 

red reflectance (A), near infrared reflectance (B), NDVI (C), and EVI2 (D) from Fluxnet sites 701 

across biome types. Lines in panels C and D are only for statistically significant relationships at 702 

the 95% confidence level.    703 

 704 

Figure 5: Dependence of ground based spectroradiometer broad- and narrow-band derived 705 

differences (i.e. broadband-narrowband) on solar zenith angle for red reflectance (A), near 706 

infrared reflectance (B), NDVI (C), and EVI2 (D) at Imnaviat. Regression lines indicate 707 

significant relationships at the 95% confidence level. 708 
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 709 

Figure 6: The correction factor dependence on solar zenith angle for visible (solid dots) and near 710 

infrared (open dots) albedo. The inset plot shows seasonal changes in daily averaged solar zenith 711 

angle (solid line) and daily averaged azimuth angle (dotted line). The grey highlighted area 712 

denotes the growing season period at Imnaviat. 713 

   714 

Figure 7: Correspondence between radiation- and MODIS- derived red (A) and near infrared (B) 715 

reflectances, and NDVI (C) and EVI2 (D) at Imnaviat. Grey dots are MODIS and uncorrected 716 

radiation derived reflectance and indices, whereas triangles are MODIS and radiation derived 717 

reflectance and indices that were corrected for solar position biases.      718 

 719 

Figure 8: Average percent change in the Mean Absolute Error (MAE) between MODIS satellite- 720 

and radiation-derived NDVI (black bars) and EVI2 (grey bars) relative to the uncorrected values 721 

at the Fluxnet sites.  Fluxnet sites were grouped by ecosystem type, and error bars represent 722 

standard errors.  723 

 724 

Figure 9: Relationship between Imnaviat Gross Ecosystem Exchange (GEE) and solar position 725 

corrected (open triangles) and uncorrected (grey circles) radiation derived vegetation indices. 726 

NDVI-GEE relationships are in left panel (A), whereas EVI2-GEE are in right panel (B).  The 727 

solid line represents the correlation between the solar position corrected vegetation index and 728 

GEE, whereas the dotted line represents the correlation between uncorrected vegetation indices 729 

and GEE. Hatched arrows in left panel represent the hysteresis in the relationship between 730 

uncorrected NDVI and GEE, while numbers represent the day of year of each observation.   731 
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 732 

 Figure 10: Mean Absolute Error (MAE) of the start-(SOS), length-(LOS), and end-(EOS) of the 733 

growing season derived from MODIS- (black bar), uncorrected radiation- (grey), and solar 734 

position corrected radiation- (dark grey) derived NDVI (A) and EVI2 (B) at Imnaviat.   735 
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Figure 3.  780 
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Supplement: 954 

 955 

 956 
Figure 1S: Dependence of bandwidth biases (broadband-narrowband) derived differences on 957 
solar zenith angle for red reflectance (A), near infrared reflectance (B), NDVI (C), and EVI2 (D) 958 
from Fluxnet sites across biome types. Note that the y-axes are scaled to be the same as those 959 
observed in Figure 4. 960 
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Table 1S: Summary statistics for bandwidth bias correlation with solar zenith angle in Figure 977 

1S.  The number represents the R2 of the relationship, while the number in [brackets] represents 978 
the sensitivity to solar zenith angle measured as the slope of the line.   979 

 
PFT 

Red  
(R2 [Slope]) 

NIR 
 (R2 [Slope]) 

NDVI  
(R2 [Slope]) 

EVI2  
(R2 [Slope]) 

Crop 0.06 [-0.0001]  0.09 [-0.0005] 0.01 [0.0002] 0.37 [-0.0007] 

Deciduous 0.46 [-0.0003] 0.14 [-0.0006] 0.03 [0.0003] 0.52 [-0.0046] 

Evergreen 0.06 [0.0001] 0.12 [0.0003] 0.06 [0.00093] 0.02 [0.0003] 

Grass 0.62 [0.0002] 0.11 [-0.0006] 0.06 [0.0009] 0.29 [0.002] 

Grass/Shrub 0.10 [0.0001] 0.08 [-0.0005] 0.01 [0.00003] 0.22 [-0.0005] 

Tundra 0.16 [0.0005] 0.22 [-0.0008] 0.01 [-0.0001] 0.29 [0.002] 
*Numbers in bold represent statistically significant relationships at the 95% Confidence level. 980 
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Abstract: 48 

Vegetation indices derived from solar and photosynthetically active radiation (PAR) sensors (i.e. 49 

radiation derived) have been under-utilized in inferring ecosystem function, despite measurement 50 

capability at hundreds of sites. This under-utilization may be attributed to reported mismatches 51 

among the seasonality of radiation- and satellite-derived vegetation indices and canopy 52 

photosynthesis; herein referred to as measurement biases.  Here biases in radiation derived 53 

reflectance and vegetation indices were assessed using a decadal record of satellite and ground 54 

based spectroradiometer data, ecosystem phenology and CO2 fluxes, and radiation derived 55 

vegetation indices (i.e. the Normalized Difference Vegetation Index [NDVI], the two band 56 

Enhanced Vegetation Index [EVI2]) from a high latitude tundra site (i.e. Imnaviat).  At Imnaviat, 57 

we found poor correspondence between the three types of reflectance and vegetation indices, 58 

especially during the latter part of the growing season.  Radiation derived vegetation indices 59 

resulted in incorrect estimates of phenological timing of up to a month and poor relationships 60 

with canopy photosynthesis (i.e. Gross Ecosystem Exchange (GEE)).  These mismatches were 61 

attributed to solar position (i.e. solar zenith and azimuth angle) and a method, based on the diel 62 

visible and near-infrared albedo variation, was developed to improve the performance of the 63 

vegetation indices. The ability of radiation derived vegetation indices to infer GEE and 64 

phenological dates drastically improved once radiation derived vegetation indices were corrected 65 

for solar position associated biases at Imnaviat.  Moreover, radiation derived vegetation indices 66 

became better aligned with MODerate resolution Imaging Spectroradiometer (MODIS) satellite 67 

estimates after solar position associated biases were corrected at Imnaviat and at 25 Fluxnet sites 68 

(~90 site years) across North America. Corrections developed here provide a way forward in 69 
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understanding daily ecosystem function or filling large gaps in eddy covariance data at a 70 

significant number of Fluxnet sites.  71 

 72 

 73 
Keywords: Phenology, NDVI, EVI2, Solar Zenith, Gross Ecosystem Exchange, Arctic LTER  74 

 75 

1.0 Introduction:  76 

Vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), have been 77 

used to infer ecosystem structure and function over the past half century (Rouse 1974).  These 78 

indices utilize the low red reflectance -due to chlorophyll absorption-, and the high NIR 79 

reflectance -due to low absorption and high scattering- of green leaves to infer ecosystem 80 

function (e.g.  leaf abundance, canopy physiology, and canopy phenology) (Gamon et al. 2010; 81 

Gamon et al. 2006).  Historically, these indices were derived from satellite based reflectance; 82 

providing a proxy of ecosystem function at the global scale-albeit at low temporal resolution 83 

(e.g. monthly, bi-monthly).  However, these indices also can be derived from commonly used 84 

up- and down-ward facing Photosynthetically Active Radiation (PAR) and solar radiation 85 

sensors (i.e. radiation derived); providing a low cost continuous measure of ecosystem function 86 

even when heavy cloud cover obscures satellite views of the surface (Huemmrich et al. 1999; 87 

Rocha and Shaver 2009; Wilson and Meyers 2007).  Although radiation derived vegetation 88 

indices provide a powerful tool for understanding ecosystem function at sub-daily to annual 89 

timescales, a critical assessment of their uncertainties are surprisingly lacking.         90 

 91 

Despite the wide use of PAR and solar radiation sensors across many eddy covariance sites, 92 

radiation derived vegetation indices have been under-utilized in inferring ecosystem function. 93 

Only a handful of studies have used radiation derived vegetation indices to infer ecosystem 94 
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function, as compared to the thousands that have used satellite derived vegetation indices 95 

(Jenkins et al. 2007; Wohlfahrt et al. 2010; Wright and Rocha 2018).  This imbalance may be 96 

due to the historical precedent of satellite data, or a lack of mechanistic understanding of 97 

measurement uncertainties in radiation derived indices.  Radiation derived vegetation indices 98 

differ in magnitude and exhibit less seasonality than those derived from satellite data (Rocha and 99 

Shaver 2009). Jenkins et al. (2007) found that the slope of the relationship between radiation 100 

derived vegetation indices and canopy photosynthesis differed in the early and later part of the 101 

growing season.  This contrasts with remote sensing work that models canopy photosynthesis 102 

from satellite derived vegetation indices with a single relationship across the season, and 103 

highlights a significant methodological knowledge gap (Sims et al. 2006; Sims et al. 2011; Xiao 104 

et al. 2005). 105 

 106 

Although various hypotheses have been proposed to resolve the differences in radiation- and 107 

satellite- derived vegetation indices, the mechanisms are still debatable. The lack of 108 

correspondence between radiation- and satellite-derived vegetation indices have often been 109 

attributed to differences in the spatial scale of integration between the two measures or 110 

differences in sensor spectral resolution (Disney et al. 2004; Tittebrand 2009; Wang et al. 2004; 111 

Wang et al. 2012).  Ground based radiation derived vegetation indices integrate a smaller area 112 

(i.e. ~100 x 100 m) than satellites such as the MODerate resolution Imaging Spectroradiometer 113 

(MODIS) (i.e. 100-1000 m) (Schmid 1997).  Spatial mismatches are less likely to confound 114 

ground radiation- and satellite- derived reflectance and vegetation index comparisons in 115 

homogenous landscapes (Wittich and Kraft 2008). Radiation-derived vegetation indices also are 116 

very broad and integrate spectral information across the visible and infrared wavelengths, 117 
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whereas satellite derived vegetation indices use more narrow spectral bands that focus on the red 118 

and NIR portions of the electromagnetic spectrum (Wittich and Kraft 2008). This spectral 119 

mismatch is more likely to influence the magnitude- but not the seasonality-of the vegetation 120 

indices (Elvidge and Chen 1995; Zhao et al. 2007). Although both these mechanisms are 121 

important at individual sites, they are unlikely to account for the inconsistency of radiation- and 122 

satellite-derived seasonality differences observed across many sites.  123 

 124 

Sensor measurement biases have been largely overlooked when determining the causal 125 

mechanism behind differences in radiation- and satellite-derived vegetation indices (Balzarolo et 126 

al. 2011; Schaepman-Strub et al. 2006). Satellite sensors measure surface radiance, which are 127 

ultimately converted into a corrected surface reflectance that minimizes solar illumination and 128 

sensor view effects using a Bi-Directional Reflectance Function (BRDF) (Schaepman-Strub et al. 129 

2006).  The BRDF corrects for solar illumination effects from solar position to compare 130 

reflectance at the same view angle-typically defined at nadir. Such corrections are not made for 131 

radiation derived vegetation indices (Balzarolo et al. 2011; Huemmrich et al. 1999; Wilson and 132 

Meyers 2007).  Although the radiation sensors are located above the canopy, these sensors 133 

integrate radiation from the entire hemisphere.  Despite this hemispherical field of view, 134 

shortwave albedo has been shown to be sensitive to illumination angle (i.e. solar zenith and 135 

azimuth angles), which changes over the course of a day and year (Huemmrich et al. 1999).  For 136 

example, broadband albedo measured with pyranometers have been shown to be dependent on 137 

solar zenith angle and illumination intensity for surfaces with high reflectivity such as snow 138 

(Carroll and Fitch 1981; Kriebel 1979; Wang et al. 2005; Wang and Zender 2010; Yang et al. 139 
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2008).  However, little has been done to understand or correct the impact of illumination angle 140 

effects on radiation derived vegetation indices.                       141 

 142 

Here we assessed the ability of PAR and solar radiation derived reflectance proxies and 143 

vegetation indices to replicate MODIS satellite derived reflectance and vegetation indices; herein 144 

referred to as measurement biases.  We also assessed the ability of PAR and solar radiation 145 

derived vegetation indices to infer ecosystem function (i.e. plant phenology and CO2 fluxes).  146 

We focus on two commonly used vegetation indices: NDVI and EVI2 (Rocha and Shaver 2009). 147 

NDVI has more of a historical precedent in inferring ecosystem function, but EVI2 may provide 148 

a better proxy of ecosystem function due to its insensitivity to non-vegetated background 149 

reflectance (Jiang et al. 2008).  Past remote sensing work has demonstrated the impact of solar 150 

position in influencing reflectance and vegetation indices, but lacked biological data to 151 

demonstrate the implications of ignoring such biases for inferring ecosystem function (Bhandari 152 

et al. 2011; Huete 1987; Ma et al. 2019; Middleton 1992).  We hypothesized that solar position 153 

will lead to systematic biases in radiation derived vegetation indices that prevent these indices 154 

from correctly inferring vegetation phenology and seasonality in canopy photosynthesis at 155 

Imnaviat.  We tested this hypothesis with a decadal record of PAR and solar radiation fluxes, 156 

MODIS, and ground based spectral radiometer measurements at a high latitude tundra site 157 

(Imnaviat), and further corroborated the patterns observed at Imnaviat with a synthesis of 158 

Fluxnet datasets.  Imnaviat was chosen because of its landscape homogeneity, its rich long term 159 

ecological dataset (i.e. long term CO2 fluxes and plant phenology), as well as its high latitude 160 

location with a frequently high solar zenith angle.  The attributes of these data provide an ideal 161 

opportunity to determine the major sources of measurement biases leading to the discrepancy 162 
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between satellite- and radiation-derived vegetation indices, and measures of seasonality in 163 

ecosystem function.        164 

 165 

2.0 Methods 166 

 167 

2.1 Site Description, Instrumentation, and Available Data 168 

This study was conducted on a west-facing hillslope within the Imnaviat Creek watershed on the 169 

North Slope of Alaska, USA (68.61o N; 149.31o W).  Vegetation at the site was characteristic of 170 

moist acidic tussock tundra with tussock cottongrass [Eriophorum vaginatum], dwarf birch 171 

[Betula nana], labrador tea [Rhododendron tomentosum], sphagnum moss [Sphagnum spp.], and 172 

scattered lichens covering the landscape (Euskirchen et al. 2012). The mean annual temperature 173 

at the site was -7 oC and the mean annual precipitation was 318 mm, with 40% occurring as rain 174 

and 60% as snow. Mean growing season (June-August) temperature was 6 oC, while mean non-175 

growing season temperature was -11 oC.   176 

 177 

In July of 2008, Imnaviat was instrumented with three (1 upward and two downward) CMP3 178 

pyranometers that measured shortwave solar radiation (SW: units: W m-2) [CMP3; Kipp and 179 

Zonen], three PAR sensors that measured Photosynthetically Active Radiation (PAR: units: 180 

µmol m-2 s-1) [LI-190SA; Li-Cor, Lincoln NB], two downward looking surface temperature 181 

radiometers [IRT Infrared Thermometer; Apogee Instruments], a HMP temperature and humidity 182 

sensor [HMP45C-L; Campbell Scientific], and two TCAV soil temperature sensors [TCAV-L; 183 

Campbell Scientific].  Meteorological sensors were mounted at a height of 2.5 meters.  Radiation 184 

sensors were well maintained, frequently leveled, and sent for factory calibration every 2-3 years 185 
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during the measurement period.  The radiation tower ran nearly continuously from July 2008-186 

2018, and was powered by a battery bank connected to two solar panels, which were situated 187 

away from the direct field of view of the sensors.   188 

 189 

The radiation tower was located ~300 m away from three Arctic Observatory Network (AON) 190 

flux towers located along the same west facing hillslope gradient (Euskirchen et al. 2012). The 191 

flux towers measured the Net Ecosystem Exchange of CO2 (NEE) via the eddy covariance 192 

method, and a suite of meteorological variables including incoming and outgoing PAR and solar 193 

radiation, air temperature, humidity, wind speed, soil moisture, soil temperature, and snow depth 194 

(Baldocchi 2003). We analyzed the mean seasonal cycle of the daily Gross Ecosystem Exchange 195 

(GEE) at the mid-slope Moist Acidic Tundra (MAT) site from 2008-2018 to determine the 196 

relationship between vegetation indices and the seasonality of photosynthesis. The mid-slope 197 

MAT flux tower was chosen because of its similar vegetation composition, slope position, and 198 

NDVI seasonality to the nearby radiation tower [MAT Flux Tower NDVI vs. Imnaviat Radiation 199 

Tower NDVI R2: 0.97; Slope: 1.01; Mean Absolute Error (MAE): 0.01].   AON data were 200 

obtained online at http://aon.iab.uaf.edu.   201 

 202 

NEE flux partitioning was described in detail in Euskirchen et al. (2012, 2017), and followed 203 

standard Fluxnet protocols for partitioning NEE into canopy photosynthesis (Gross Ecosystem 204 

Exchange: GEE) and ecosystem respiration (ER). Briefly, NEE flux partitioning was 205 

accomplished by fitting a Q10 air temperature response function to well mixed (u-star> 0.10 s m-206 

1) NEE’s that occurred during low light conditions (PAR< 50 µmol m-2 s-1) (Ueyama et al. 2013; 207 

Euskirchen et al. 2017)).  The basal respiration and Q10 parameters of the exponential model 208 
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were determined through least squares fitting with “low light” NEE and air temperature data 209 

from a 30 day daily moving window.  This empirically derived Q10 air temperature response 210 

function was used to estimate half hourly ER. Half hourly GEE was inferred from NEE by 211 

subtracting ER from NEE (GEE=NEE-ER), and temporally scaled up with daily summations.          212 

 213 

2.2 Ground based Spectral Reflectance Measurements 214 

Ground based reflectance was measured within the footprint of the Imnaviat radiation tower 215 

using three different spectroradiometers over the years. Spectral reflectance was measured with a 216 

Unispec (UniSpec-SC, PP-Systems, Amesbury, MA; Spectral Range: 300-1200 nm at 2 nm 217 

resolution) from 2008-2009, a dual channel Unispec (Unispec-DC, PP-Systems, Amesbury, MA; 218 

Spectral Range: 300-1200 nm at 2 nm resolution) from 2010-2012, and a FieldSpec 4 (Analytical 219 

Spectral Devices (ASD); Malvern Panalytical Ltd; United Kingdom; Spectral Range: 200-2400 220 

nm at 2 nm resolution) from 2013-2018. Four ~100 m transects separated by ~30 m were 221 

established on the North and South side of the radiation tower forming a 200x120m grid within 222 

the tower footprint. Spectral reflectance was measured during midday hours (11:00 am-2:00 pm 223 

AST) every ~3 meters along each of the four 100 m transects either weekly, bi-monthly, or 224 

monthly during the growing season (June-August) of each year (n=240 scans per sampling date).  225 

A total of 62 sampling campaigns were undertaken from July 2008 to August 2018 with each 226 

campaign taking ~1 hour to accomplish. 227 

   228 

Surface reflectance measurements followed standard procedures described in the 229 

spectroradiometer user manuals.  Prior to measurements, each instrument was allowed a 15-20 230 

minute warm up period.  A freshly cleaned white Spectralon® diffuse reflectance panel 231 
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(Labsphere; North Sutton, NH) was used as a reflectance standard to convert spectroradiometer 232 

derived radiance into surface reflectance. Dark current measurements were taken by closing the 233 

detector “door”, which prevented light from hitting the detectors and minimized measurement 234 

artifacts from background electrical instrument noise. Optimal measurement integration times 235 

were dependent on illumination conditions and were automatically determined by each sensor.  236 

White panel, dark current, and optimal measurement integration time measurements were taken 237 

frequently (i.e. every 3-5 minutes depending on sky conditions) to ensure high quality 238 

reflectance data.  After each sampling campaign, surface reflectance data were quality checked 239 

for anomalous spectra (i.e. spectra that were >3 standard deviations from the mean) and averaged 240 

across all scans. These spectra were used to calculate NDVI and EVI2 using Equations [2] and 241 

[3] below and spectrally averaged MODIS wavelength and sensor response definitions for red- 242 

(MODIS spectral response weighted average of 620-670 nm) and NIR- reflectance (MODIS 243 

spectral response weighted average of 841-876 nm) (Xiong et al. 2006; Schaaf et al. 2002). We 244 

also spectrally averaged all wavelengths to calculate total and visible reflectance to derive a 245 

broad band visible, NIR (using equation 1), NDVI and EVI2 based on ASD spectroradiometer 246 

data.  ASD averaged total reflectance was within 10% of the shortwave albedo, while ASD 247 

averaged visible reflectance was within 5% of PAR albedo measured by radiation sensors at 248 

Imnaviat.         249 

 250 

2.3 Ground based Phenology 251 

Individual plant species phenologies were measured from 2008-2018 in moist acidic tundra at 252 

the Toolik Lake Arctic Long Term Ecological Research (LTER) station.  Toolik field station was 253 

situated ~7 km away and experienced similar weather to Imnaviat. A variety of phenological 254 
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events (i.e. first snow free, first visible leaf, first leaf drop, first color change, and last leaf drop) 255 

were measured in several plots around Toolik lake in each year for the dominant MAT species 256 

(i.e. Andromeda polifolia, Betula nana, Carex bigelowii, Cassiope tetragona, Empetrum nigrum, 257 

Eriophorum vaginatum, Ledum palustre, Polygonum bistorta, Rubus chamaemorus, Salix 258 

pulchra, Vaccinium uliginosum, Vaccinium vitis-idaea).  These phenological data were used to 259 

validate satellite- and radiation- derived NDVI and EVI2 estimates of the start-, end-, and length- 260 

of the growing season.  The average of the first visible leaf for all species served as a proxy for 261 

the start of the growing season, whereas the maximum last leaf color change served as a proxy 262 

for the end of the growing season.   263 

   264 

2.4 Radiation derived Vegetation Indices 265 

The radiation tower at Imnaviat measured surface albedo in the visible (400-700 nm) and total 266 

shortwave wavelengths (300-2400 nm) of light.  These albedo measures served as a proxy for red 267 

and near infrared reflectance (Rocha and Shaver 2009).  Visible (αV) albedo was calculated as 268 

the ratio between reflected (r) and incoming (i) PAR αV = PARr/PARi, while total albedo (αT) 269 

was calculated as the ratio between reflected and incoming shortwave radiation [SWr & SWi, 270 

respectively] αT = SWr/SWi. αV was used as a proxy for red reflectance, while both αV and αT 271 

were used in Equation 1 as a proxy for NIR reflectance (αN) (Jenkins et al. 2007).  272 

 273 

VTN W   *               Equation [1] 274 

 275 

W in Equation 1 equaled 2 for all vegetation types, and represented a weighting term to separate 276 

αN from αV and αT.  Derivations of red and near infrared reflectance from ground based 277 
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radiometers represented broadband definitions of narrowband quantities.  αN included dynamics 278 

in the near- and short-wave infrared region of the reflectance spectrum, while αV included 279 

dynamics in the red, blue and green regions of the reflectance spectrum.  Other ground 280 

radiometer derivations of αN utilize similar assumptions (see Huemmrich et al., 1999 & Wilson 281 

and Meyers, 2007).  We used Jenkins et al. (2007) derivation because of its parsimony and its 282 

high correlation with other αN derivations (Jenkins vs. Huemmrich R2 [Mean Absolute Error: 283 

MAE]: 0.91 [0.015]/ MAE Jenkins vs. Wilson & Meyers R2 [MAE]: 0.99 [0.014]) for the sites 284 

used in this study. We also found that the conclusions from our analyses were independent of the 285 

different formulations of αN.    286 

 287 

We focused our analyses on the active growing season during snow-free periods.  Data 288 

influenced by snow covered ground were identified with an albedo threshold of >0.3 (i.e. 289 

vegetation albedo <0.25 at all sites) and removed from the half hourly radiation datasets.  290 

Incoming and reflected radiation were averaged over the course of a day (i.e. n=48 for each 291 

value) to minimize diel solar zenith effects (Huemmrich et al. 1999; Rocha and Shaver 2009; 292 

Wilson and Meyers 2007).  Sensor drift and snow and dirt accumulation on the sensors were 293 

identified as periods where PARi/SWi fell beyond or below the mean plus or minus 2 standard 294 

deviations and subsequently removed. The final “cleaned” dataset contained daily ground 295 

radiometer values that were compared with MODIS reflectance and vegetation indices.   296 

 297 

NDVI and EVI2 were calculated from radiation-, spectroradiometer- and MODIS-derived 298 

measures of near infrared (αN) and red reflectance (αR) with Equations [2] and [3] (Jiang et al. 299 

2008).   300 
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 301 
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




              Equation [2] 302 

 303 

14.2
5.22






RN

RNEVI




                        Equation [3] 304 

 305 

2.5 Fluxnet Data Synthesis 306 

We conducted a broader survey of ground based radiation derived vegetation indices with 307 

Fluxnet data to determine whether biases observed at the Imnaviat site were consistent across 308 

other sites (Table 1). Data from the Fluxnet network consisted of 25 sites and 90 site years of 309 

half hourly incoming (i) and reflected (r) PAR and shortwave data (Table 1).  12% of the sites 310 

were from crops, 8% were from deciduous forests, 25% were from evergreen forests, 28% were 311 

from grasslands, 20% were from arctic tundra, and 8% were from a shrub and grassland mix.  312 

Sites had a minimum of two years of data with a maximum of 6 years at 2 sites, and an average 313 

of 3.5 years for the entire dataset.  PAR within the 400-700 nm spectral region was measured 314 

with a LI190 quantum sensor (LI-COR Inc., Lincoln, Nebraska) at 85% of the sites, while the 315 

remaining sites used either an Apogee quantum sensor (Apogee Instruments, Logan, Utah) or 316 

BF3 sunshine sensor (Dynamax, Houston Texas).  Shortwave radiation (SW) within the 300-317 

2800 nm spectral region was measured with a CM3 (Kipp & Zonen, Bohemia, NY ) at 90% of 318 

the sites, while the remaining sites used an Apogee pyranometer (Apogee Instruments, Logan, 319 

Utah) or LI200 pyranometer (LI-COR Inc., Lincoln, Nebraska). Data were aligned with MODIS 320 

satellite data (see section 2.7) through 16- day averages that were centered on the MODIS 321 

composite date.   322 
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 323 

2.6 Testing and Correcting for Solar Position Biases  324 

We corrected solar position biases using diel relationships between solar position and albedo 325 

throughout the season.  Diel NIR and visible albedo variability can be more than twice as large 326 

as observed over the course of a season (Huemmrich 1999).  These large diel visible and NIR 327 

albedo variations cannot be representing changes in canopy leaf area, that are often related to 328 

vegetation indices, because LAI changes over much longer time scales than a day (i.e. days to 329 

weeks)(Stoy 2013).  Rather, this large diel variation arises from the anisotropic properties of 330 

surface reflectance (i.e. the bidirectional reflectance distribution function) and possibly other 331 

sensor issues, such as a sensors’ cosine response function (Huete 1987; Middleton 1992; Rahman 332 

et al. 1993).  333 

 334 

Here we used the diel variation in albedo and solar position to empirically derive a correction 335 

factor to apply over the course of the season. Solar position was calculated for each site and half 336 

hour using the site latitude and longitude and time of year (Myers 2017).  We removed divided 337 

each daily averaged visible and NIR albedo into each half hourly visible and NIR albedo value to 338 

remove vegetation phenology effects and focus solely on sub-daily variations associated with 339 

solar position (Equation 4).  340 

 341 

𝛼𝐶𝑜𝑟 =
𝐷𝑎𝑖𝑙𝑦 "𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑" 𝑉𝑎𝑙𝑢𝑒

𝐻𝑎𝑙𝑓 𝐻𝑜𝑢𝑟𝑙𝑦 "𝑏𝑖𝑎𝑠𝑒𝑑" 𝑉𝑎𝑙𝑢𝑒
=

𝛼𝑑

𝛼ℎ
 

 

Equation [4] 
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Here, given the large sub-daily variation in solar position, we assumed that the half hourly NIR 342 

and visible albedos were more “biased” in response to solar position than the daily averaged 343 

values (i.e. “unbiased).  Hence, αCor represented a correction factor that could be used to remove 344 

the solar position bias from the albedo measurements.  For each day, we calculated 48 half 345 

hourly αCor ratios, which could be used to create a temporally consistent albedo value throughout 346 

the day through multiplication (i.e. Half Hourly biased *Daily average unbiased/ Half Hourly 347 

biased = Daily averaged unbiased).  This sub-daily consistency of NIR and visible albedos were 348 

more aligned with the fact that LAI changes occur over longer time scales than a day.  By 349 

understanding the dependence of αCor on solar position, we could remove any measurement bias 350 

introduced by seasonal changes in solar zenith and azimuth.  If radiation derived albedos were 351 

not dependent on solar position, then αCor would equal one across different solar azimuth and 352 

zenith angles. If radiation derived albedos were dependent on solar position, then αCor would 353 

significantly differ from 1 and scale with solar azimuth and zenith angles.   354 

 355 

Here we used the solar position dependence of αCor at the half hourly time scale to reduce any 356 

solar position biases observed across the season.  Half hourly αCor was empirically related to half 357 

hourly solar-zenith and -azimuth angles through a machine learning squared exponential 358 

Gaussian process regression model.  This half hourly statistical model was used to predict αCor 359 

across the season using daily averaged solar zenith and azimuth angles as dependent variables. 360 

Regression model predicted daily αCor was multiplied by the daily averaged visible and NIR 361 

albedos to produce solar position (i.e. “biased free”) corrected αV and αN. Solar position 362 

corrected αV and αN were then used to recalculate NDVI and EVI2 using Equations 2 and 3.  363 
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Analyses were accomplished with Matlab’s Regression Learner application (MATLAB 2019b; 364 

Mathworks Inc. Natick, MA).  365 

 366 

2.7 MODIS Data 367 

We compared MODIS reflectance and vegetation indices to radiation derived proxies and 368 

measures.  For the Fluxnet data synthesis, MODIS Nadir-BRDF adjusted 500 m resolution 369 

collection 4 surface reflectance data (MODIS NBAR; MCD43A) were extracted from a 2.5 x 2.5 370 

km2 area centered at each tower location in 2012 (http://daac.ornl.gov) (Schaaf et al. 2002; 371 

ORNL DAAC 2018).  We also used the equations from Liang (2000) to calculate a total and 372 

visible albedo from the seven MODIS spectral bands.  These MODIS derived total and visible 373 

albedos were used to derive broadband vegetation indices following Equations 1-3.  For 374 

Imnaviat, we used collection 6 version 1 daily Nadir BRDF-Adjusted reflectance (MCD43A4) 375 

and extracted data at various spatial scales (i.e. 0.25, 6.25, 20.25, 210.25, and 420.25 km2) to 376 

determine the impact of spatial aggregation on the comparison between ground and satellite 377 

based data (Shuai et al. 2013). Data with >80% of pixels passing quality control were used in the 378 

analyses. Only growing season MODIS data, as defined by ground based snowless terrestrial 379 

albedo values greater than 0.25, were used in the analyses.   380 

 381 

2.8 Phenology Model  382 

The start, end, and length of the growing season was determined with a phenology model fit to 383 

the observed seasonal cycle of MODIS- and radiation- derived NDVI and EVI2 in each year at 384 

Imnaviat.  The phenology model was a double-logistic function that predicted each vegetation 385 

http://daac.ornl.gov/
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index based on the day of year (t) (Beck et al. 2006; Fisher et al. 2006; Fisher et al. 2007) 386 

(Equation 5): 387 

 388 

𝑣(𝑡) = 𝑣𝑚𝑖𝑛 + 𝑣𝑎𝑚𝑝 (
1

1+ 𝑒𝑚1−𝑛1𝑡 −
1

1+𝑒𝑚2−𝑛2𝑡)                                                           Equation [5] 389 

 390 

The model was fit by minimizing the sum of squared residuals between model predictions and 391 

observed values.  The fitted parameters of the model were vmin and vamp, m1, n1, m2, and n2. vmin 392 

and vamp were related to the minimum and amplitude values of the spectral index, respectively.  393 

The parameters in the two exponents determined the seasonality with m1 and n1 related to the rate 394 

and timing of green-up, and m2 and n2 related to the rate and timing of senescence. The start of 395 

the growing season was given by t = m1/n1, the end of the growing season was given by t = 396 

m2/n2, and the length of the growing season was determined by the difference between the start 397 

and end of the growing season. 398 

 399 

2.9 Statistical Analyses:  400 

Statistical analyses included least squares linear regression to determine the relationship between 401 

two variables, and Mean Absolute Error (MAE) to determine the prediction error of a model or 402 

the error associated with the comparison of a set of similar observations (Ramsey 2013).  403 

Statistical significance was determined at the 95% confidence level.  404 

 405 

3. Results  406 

 407 

3.1 Assessing Spatial Aggregation Biases 408 
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The scale of spatial integration had little impact on the comparison between tower and MODIS 409 

based vegetation indices indicating landscape coherence in phenology within the region 410 

surrounding Imnaviat (Figure 1). Here we minimized spectral definition differences among 411 

sensors by comparing spectroradiometer- and MODIS- derived reflectance’s and vegetation 412 

indices.  Spectroradiometer derived NDVI explained 70% of the variability in MODIS derived 413 

NDVI, whereas spectroradiometer derived EVI2 explained 60% of the variability in MODIS 414 

derived EVI2.  The MAE increased slightly from 6% of NDVI at the ecosystem/watershed level 415 

(0-10 km2) to 7% of NDVI at the regional scale (>300 km2).  EVI2 exhibited greater sensitivity 416 

to spatial integration with MAEs increasing from 14% of EVI2 at the ecosystem/watershed scale 417 

to 20% of EVI2 at the regional scale.    418 

 419 

3.2 MODIS- vs. radiation-derived reflectance and indices comparison 420 

In general, spectroradiometer- and MODIS- derived reflectances and vegetation indices were 421 

more related to each other than those derived from radiation fluxes at Imnaviat (Table 2). 422 

Vegetation indices yielded higher correlations among measurement types than did red and NIR 423 

reflectance. For example, reflectance R2’s ranged from 0.17-0.22 for NIR and red reflectance, 424 

while vegetation index R2’s ranged from 0.34 to 0.67.  Correlations among radiation-, 425 

spectroradiometer-, and MODIS-derived measures were typically higher for EVI2 than for 426 

NDVI. The poor relationships between radiation- and MODIS/spectroradiometer- derived 427 

vegetation indices were largely attributed to differences in seasonality among the 428 

MODIS/spectroradiometer- and radiation- derived measures.          429 

 430 
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Seasonality differed among radiation-, spectroradiometer-, and MODIS derived- reflectance and 431 

vegetation indices at Imnaviat (Figure 2).  Correspondence among the three measures was 432 

greatest for red reflectance and smallest for NIR, NDVI, and EVI2.  Red reflectance 433 

demonstrated similar seasonality among the measures with higher reflectance in the shoulder 434 

seasons and minimum values during the peak of the growing season.  In contrast, NIR 435 

reflectance, NDVI, and EVI2 were low at the start of the growing season, reached a maximum 436 

during peak growing season, and then declined to a minimum at the end of the growing season. 437 

All three measures of NIR, NDVI and EVI2 exhibited similar seasonality up until the peak of the 438 

growing season, but differed towards the end of the growing season. Radiation-derived NIR 439 

reflectance and vegetation indices were larger than MODIS and spectroradiometer- derived 440 

quantities towards the latter part of the growing season.  Consequently, differences between 441 

MODIS and spectroradiometer- and radiation-derived NIR, NDVI, and EVI2 exhibited strong 442 

seasonality with the largest mismatch towards the second half of the growing season.    443 

 444 

3.3 Assessing Sensor Biases 445 

Seasonal differences between MODIS- and radiation- derived indices observed in Figure 2 were 446 

correlated with solar zenith angle at Imnaviat (Figure 3).  Larger solar zenith angles produced 447 

larger differences between MODIS- and radiation- derived NIR, NDVI, and EVI2, but had no 448 

impact on differences between MODIS- and radiation- derived red reflectance. Solar zenith 449 

angle explained 41% of the variability in NIR reflectance biases, 28% of the variability in NDVI 450 

biases, and 45% of the variability in EVI2 biases. This represented a bias of 0.004 per 1o change 451 

in zenith angle for NIR reflectance, and a bias of 0.006 per 1o change in zenith angle for NDVI 452 

and EVI2. 453 
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 454 

The relationship between measurement bias and solar zenith angle at Imnaviat were consistent 455 

across Fluxnet sites located in vastly different biomes (Figure 4).  However, in contrast to the 456 

observed solar zenith dependent measurement biases at the Imnaviat site, there was a statistically 457 

significant measurement bias dependence on solar zenith angle at some of the Fluxnet sites for 458 

red reflectance. For the Fluxnet dataset, MODIS and radiation derived NIR differences positively 459 

scaled with solar zenith angle and all biomes exhibited similar slopes that ranged from 0.002 to 460 

0.003 per 1o change in zenith angle.  The solar zenith dependent biases in NIR and red 461 

reflectance carried over to NDVI and EVI2, but sometimes canceled each other out. This 462 

cancelling out effect was more predominant for NDVI than for EVI2.  For example, NDVI 463 

biases were unrelated to solar zenith angle for evergreens and grass shrublands, whereas solar 464 

zenith angle was correlated with EVI2 biases in all biomes.  The bias sensitivity to solar zenith 465 

angle ranged from 0.001 to 0.005- for NDVI, and from 0.003 to 0.005- per 1o change in zenith 466 

angle for EVI2. 467 

       468 

3.4 Assessing Bandwidth Biases 469 

We used the full range spectroradiometer ASD data (300-2400 nm) to determine whether the 470 

measurement bias dependence on solar position was attributed to broadband versus narrowband 471 

definitions of red and near infrared reflectance used by the radiation sensors (Figure 5). 472 

Correlations between solar zenith angle and the difference between broadband and narrowband 473 

(i.e. Bandwidth Biases) definitions for red (p-value: 0.94), NDVI (p-value: 0.21), and EVI2 (p-474 

value: 0.06) were not statistically significant. Bandwidth biases were marginally significant and 475 

related to solar zenith angle for NIR (p-value: 0.04), but were opposite in sign to the expected 476 
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relationships observed in Figures 3 & 4.  Moreover, solar zenith angle only explained 10% of the 477 

variation in bandwidth biases, as opposed to the 67% of the variation in radiation tower and 478 

MODIS differences explained by zenith angle in Figure 3.   479 

 480 

Similar results were found across the Fluxnet sites using MODIS data and differencing broad- 481 

and narrow- band vegetation indices (Figure 1S; Table 1S).  Although many relationships were 482 

statistically significant, solar zenith angle only explained <10% of the variation in bandwidth 483 

biases for NDVI, and <11% of the variation in bandwidth biases for EVI2 across all Fluxnets 484 

sites on average (Supplementary Figure 1).  Moreover, the bandwidth bias sensitivity to solar 485 

zenith angle was sometimes the opposite sign of the expected positive relationships in Figures 3 486 

and 4 and were on average one to two orders of magnitude lower than that observed for tower 487 

and MODIS differences for red, NIR, NDVI, and EVI2 (Supplementary Table 1).      488 

 489 

3.5 Correcting Solar Position Biases 490 

Diel variability in solar position affected radiation derived visible and NIR albedos that were 491 

used as red and NIR reflectance at Imnaviat (Figure 6). Over the growing season, daily averaged 492 

solar zenith angle changed by 19o, while daily averaged solar azimuth angle changed by 7o 493 

(Figure 6 inset).  Visible and NIR albedo were more sensitive to solar zenith- than azimuth- 494 

angles as illustrated by the small scatter in Figure 6.  NIR albedo was more sensitive to solar 495 

zenith angle than visible albedo and was almost two times higher than its expected value at an 496 

80o zenith angle.  Consequently, the correction factor for NIR albedo declined markedly above 497 

70o from 0.85 to 0.59, whereas the correction factor for visible albedo changed by <1% above 498 

70o solar zenith angle.     499 
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 500 

Correcting solar position biases using the machine learning approach described in section 2.6 501 

improved the agreement between MODIS- and radiation- derived red and NIR reflectance, 502 

NDVI, and EVI2 at Imnaviat (Figure 7).  After correcting for the dependence of measurement 503 

biases on solar position, MAE decreased and R2 increased between MODIS- and radiation- 504 

derived reflectance and vegetation indices (Table 3; Figure 7). An exception to this occurred for 505 

MODIS red reflectance, where the R2 and MAE did not significantly change after correction due 506 

to its low sensitivity to solar position.  MAE decreased by 40% for NDVI and EVI2, and by 33% 507 

for NIR reflectance after applying the correction factor for seasonal changes in solar position.   508 

 509 

Correcting solar position biases using the machine learning approach also improved the 510 

agreement between MODIS- and radiation-derived NDVI and EVI2 across the Fluxnet sites 511 

(Figure 8).  Correcting for measurement biases introduced by solar position reduced the MAE 512 

between MODIS- and radiation- derived NDVI and EVI by 5% to 77%.  Grasslands and tundra 513 

experienced the largest decrease in MAE, while crops experienced the smallest decreases in 514 

MAE once the impact of solar position on radiation derived albedo and vegetation indices were 515 

corrected.  There was quite a bit of variability in the improved correspondence between MODIS- 516 

and radiation-derived vegetation indices among sites. However, it was difficult, if not 517 

impossible, to attribute this variability to underlying environmental, biophysical or site specific 518 

factors without additional site and sensor specific information. Regardless, correcting biases in 519 

vegetation indices for solar position improved the correspondence between MODIS- and 520 

radiation- derived vegetation indices at 85% of the sites investigated.        521 

 522 
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3.6 Implications for Inferring Ecosystem Function with radiation derived NDVI and EVI2 523 

Biases associated with solar position confounded the ecophysiological interpretation of radiation 524 

derived NDVI and EVI2 at Imnaviat (Figure 9). Uncorrected radiation derived vegetation indices 525 

exhibited hysteretic relationships with GEE with different sensitivities-as measured by the slope 526 

of the line- in the first and second half of the growing season.  GEE was lower for the same value 527 

of NDVI/EVI2 in the first part of the growing season, and higher for the same value of 528 

NDVI/EVI2 in the second part of the growing season.  The relationship between NDVI/EVI2 529 

became more linearized with a single relationship throughout the growing season once 530 

vegetation indices were corrected for their solar position dependence (Figure 9 solid line).  531 

Uncorrected NDVI explained 37% of the variability in GEE, whereas solar position corrected 532 

NDVI explained 85% of the variability in GEE.  Similar patterns were found for EVI2.  533 

Uncorrected EVI2 explained 37% of the variability in GEE, whereas solar position corrected 534 

EVI2 explained 89% of the variability in GEE.   535 

 536 

Solar position also confounded the determination of the start, end, and length of the growing 537 

season at Imnaviat (Figure 10). On average, correcting radiation derived vegetation indices for 538 

solar position decreased the MAE between leaf level measures of phenology up to ~10 days.  539 

Differences between corrected and uncorrected NDVI/EVI2 derived phenologies were greatest 540 

for the length of the growing season due to compounding errors associated with the start and end 541 

of the growing season estimates.  Uncorrected NDVI/EVI2 demonstrated reduced skill at 542 

determining the end of the growing season relative to the start; a finding that is consistent with 543 

trends observed in Figure 2.  Solar position corrected radiation derived NDVI/EVI2 performed 544 

similarly to-or in some cases-better than MODIS in predicting the start and end of the growing 545 
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season, especially for EVI2. For example, solar position corrected radiation derived EVI2 546 

performed better than MODIS EVI2 in predicting the start and length of the growing season.  547 

When MODIS- and radiation- derived phenological predictions were combined, NDVI 548 

outperformed EVI2 by 5 days for the start of the growing season and 7 days for the length of the 549 

growing season, whereas EVI2 outperformed NDVI by 1 day for the end of the growing season.  550 

 551 

4.0 Discussion:  552 

Solar position introduced significant bias on PAR and solar radiation derived vegetation indices, 553 

especially during the latter part of the growing season.  These errors were largely independent of 554 

broad- to narrow-band definitions (Figures 5 & 1S; Table 1S), and sensor spatial aggregation 555 

errors associated with landscape heterogeneity (Figure 1).  The effect of satellite spatial 556 

aggregation errors was minimized by focusing on a relatively homogenous site (i.e. Imnaviat), 557 

and were much smaller than that observed for measurement biases [i.e. <0.02 change in 558 

vegetation index MAE from 0-400 km2 (Figure 1) compared to ~0.05 MAE for tower and 559 

MODIS vegetation comparisons (Table 2)] (Wang et al. 2012). Measurement biases also were 560 

universal and occurred across a wide variety of latitudes, biomes, and sites indicating a persistent 561 

error that cannot be explained by individual site specific conditions (Figures 3,4,7,8). These 562 

measurement biases accounted for some of the limitations and issues highlighted in previous 563 

work with radiation derived vegetation indices (Jenkins et al. 2007; Rocha and Shaver 2009; 564 

Wang et al. 2004; Wittich and Kraft 2008). To our knowledge, this is the first paper, since 565 

Huemmrich et al.’s (1999) seminal work, to develop a methodology using the diel variation in 566 

albedo to correct for these biases and improve the performance of these indices in inferring 567 

ecosystem function. 568 
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 569 

Historically, solar position biases on radiation- derived albedo and vegetation indices were 570 

assumed to be negligible over the course of a season, despite known diel variation (Huemmrich 571 

et al. 1999). This incorrect assumption was likely due to data limitations from looking at a single 572 

site over a short time period, the exclusion of solar azimuthal effects, and a lack of multi-sensor 573 

comparisons.  Unlike past work, our conclusions were supported by multiple independent 574 

physical and ecological observations.  First, solar position corrections improved correspondence 575 

between satellite- and radiation- derived vegetation indices at Imnaviat and Fluxnet sites (Figures 576 

7 and 8; Table 3).  Second, solar position corrections improved the ability of radiation derived 577 

vegetation indices in capturing phenological timing and C fluxes (Figures 9 and 10).  It is clear 578 

that our use of combining long time series data obtained from different sensors and scales was 579 

essential in validating and assessing measurement biases in radiation derived vegetation indices. 580 

Our results also demonstrated that, in some cases, solar position associated NIR and visible 581 

biases canceled each other out in the calculation of the vegetation index.  This cancelation effect 582 

may explain the discrepancy between this study and past work at single sites that assumed 583 

negligible solar position biases. 584 

   585 

Addressing solar position biases in visible and NIR albedo are important because these biases 586 

resulted in poor relationships with MODIS data and poor inferences of ecosystem function. 587 

Without correcting for solar position, measurement biases reduced the explained variation in 588 

canopy photosynthesis and increased estimation error of the start, end, and length of the growing 589 

season (Figures 9,10).  Radiation derived vegetation indices also exhibited less seasonality than 590 

MODIS, which was consistent with previous work with higher than expected NIR and vegetation 591 
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indices towards the latter part of the growing season (Rocha and Shaver 2009; Wittich and Kraft 592 

2008).  These unique attributes of radiation derived vegetation indices have been previously 593 

reported, but often incorrectly attributed to bandwidth biases rather than solar position ( Rocha 594 

and Shaver 2009; Jenkins et al. 2007; Wang et al. 2004).  Broadband derivations of red and NIR 595 

reflectance incorporate dynamics in the shortwave infrared that could potentially confound the 596 

seasonality of the broadband red, NIR, NDVI, and EVI2 measured by PAR and shortwave 597 

radiation sensors.  However, bandwidth errors exhibited weak to non-existent relationships with 598 

solar position for broadband radiation derived indices across Imnaviat and the Fluxnet sites 599 

(Figures 5 and 1S; Table 1S). On the other hand, measurement bias sensitivity to solar zenith 600 

angle was an order of magnitude larger than that observed for broadband biases across both 601 

Imnaviat and Fluxnet sites (Figures 5; Figure 1S; Table 2S).   The improved ability of radiation 602 

derived vegetation indices to replicate MODIS narrowband reflectance and VIs once solar 603 

position correction was applied provides strong evidence to attribute radiation derived biases to 604 

solar position, rather than bandwidth errors (Figures 7,8, 1S). 605 

 606 

Here we used a simple machine learning empirically based model based on actual half hourly 607 

data to correct the seasonal biases in visible and NIR albedo.  Our empirical model had high 608 

predictive power, explaining 85-95% of solar position biases, followed an expected BRDF 609 

response (i.e. a non-linear positive response with solar zenith angle), and included additional 610 

factors that may be difficult to parameterize in a BRDF model (Figure 6).  For example, radiation 611 

sensors may have internal measurement biases due to solar position, known as a sensors cosine 612 

response (Blonquist et al. 2009; Ross and Sulev 2000). A sensor’s cosine response describes how 613 

solar radiation is integrated across all solar zenith and azimuthal positions on a Lambertian 614 
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receiver. This response differs among sensors and would be subject to measurement drift issues 615 

that would be difficult to quantify without additional information. Differences in a sensor’s 616 

cosine response also may explain the differences in the sensitivity of radiation derived 617 

measurements to solar zenith angle among sites (Figures 4,8).    618 

 619 

Quantifying and understanding measurement errors and limitations remains an important process 620 

in the scientific community (Kratzenberg et al. 2006; Richardson et al. 2008; Ross and Sulev 621 

2000).  This is especially true in ecosystem ecology as new, interdisciplinary, and automated 622 

remote- and near-sensing measurement techniques are being more commonly used. 623 

Understanding error sources and applying the proper corrections will result in improved 624 

understanding or quantification of ecosystem function.  For example, the strong relationship 625 

between solar position corrected radiation derived vegetation indices and canopy photosynthesis 626 

demonstrate promise in using these data to fill long gaps in eddy covariance flux data.  627 

Moreover, the high correspondence between solar position corrected radiation- and satellite- 628 

derived vegetation indices indicates that these data can be valuable in gap filling MODIS data 629 

during cloudy periods (Figure 7).  However, we caution future users of such data to also consider 630 

other potential important sources of measurement error, such as sensor drift and sensor spectral 631 

sensitivity, that may significantly alter the continuity of high quality radiation based vegetation 632 

indices (Kratzenberg et al. 2006; Ross and Sulev 2000). We encourage future work to 633 

implement, or improve upon, our methodology to gain further understanding the temporal 634 

dynamics of ecosystem C cycling and phenology with vegetation indices derived from solar and 635 

photosynthetically active radiation fluxes.    636 

 637 
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 645 
 646 
 647 
 648 
 649 

Site Name Latitude Years PFT PAR 
Sensor 

Pyranometer 
Sensor 

Bondville1 40 2004-2007 Crop Apogee LI200 
ARM SGP1 36.5 2004-2009 Crop LI190 CM3 
Sioux Falls2 43.2 2007-2009 Crop NA NA 
UCI 19893 55.9 2002-2005 Deciduous LI190 CM3 
UCI 19983 56.5  2002-2005 Deciduous LI190 CM3 
Black Hills4 44.2 2004-2008 Evergreen LI190 CM3 
Flagstaff Managed5 35.1 2006-2009 Evergreen BF3/LI190 CM3 
UCI 18503 55.9 2002-2005 Evergreen LI190 CM3 
UCI 19303 55.9 2002-2005 Evergreen  LI190 CM3 
UCI 19643 55.9 2002-2005 Evergreen LI190 CM3 
UCI 19813 55.9 2002-2005 Evergreen LI190 CM3 
Brookings4 44.3 2004-2010 Grassland NA NA 
Canaan Valley4 39.1 2004-2010 Grassland Apogee CM3 
Cottonwood4 43.9 2006-2009 Grassland NA NA 
Flagstaff Wildfire5 35.4 2005-2009 Grassland BF3/LI190 CM3 
Fort Peck4 48.3 2002-2008 Grassland LI190 Apogee 
Goodwin Creek4 34.3 2002-2006 Grassland Apogee CM3 
Kendall6 31.7  2004-2009 Grassland NA NA 
Audubon4 31.8 2004-2009 Grassland LI190 CM3 
Ivotuk7 68.5 2004-2006 Tundra LI190 CM3 
Imnaviat8 68.6 2009-2011 Tundra LI190 CM3 
Unburned9 68.9 2008-2011 Tundra LI190 CM3 
Severe9 68.9 2008-2011 Tundra LI190 CM3 
Moderate9 68.9 2008-2011 Tundra LI190 CM3 
Santa Rita 
Mesquite10 

31.8 2004-2007 Grassland/
Shrub 

NA NA 
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Table 1. Site names, location, years, Plant Functional Type (PFT) and sensors used at each of the 650 

sites used in this study.  1Hollinger et al. (1994); 2Verma et al. (2005); 3Goulden et al. (2011); 651 
4Wilson and Myers (2007); 5Dore et al. (2016); 6Scott et al. (2010); 7McEwing et al. (2015); 652 
8This study; 9Rocha and Shaver (2011); 10Scott et al. (2009) 653 

 654 
 655 
 656 
 657 

 658 
 659 
 660 
 661 
 662 
 663 
 664 
 665 
 666 
 667 

 Spectroradiometer 
v. MODIS 
R2 [MAE] 

Spectroradiometer 
v. Radiation 

R2 [MAE] 

MODIS v. Radiation 
R2 [MAE] 

Red 0.22 [0.01] 0.21 [0.01] 0.19 [0.01] 
NIR 0.17 [0.03] 0.20 [0.03] 0.22 [0.03] 
EVI2 0.67 [0.03] 0.42 [0.09] 0.42 [0.05] 
NDVI 0.55 [0.05] 0.34 [0.11] 0.34 [0.05] 

Table 2.  R-squared and Mean Absolute Error (MAE) of relationships among spectroradiometer-668 
, MODIS-, uncorrected radiation- derived reflectance and vegetation indices.  669 
 670 
 671 
 672 

 MODIS v. U-
Radiation 
R2 [MAE] 

MODIS v. C-Radiation 
R2 [MAE] 

Red 0.19 [0.01] 0.19 [0.01] 
NIR 0.22 [0.03] 0.47 [0.02] 
EVI2 0.42 [0.05] 0.56 [0.03] 
NDVI 0.34 [0.05] 0.56 [0.03] 

Table 3. R-squared and Mean Absolute Error (MAE) of relationships among MODIS- , 673 
uncorrected (U) radiation-, and corrected (C) radiation- derived reflectance and vegetation 674 

indices. 675 
 676 
 677 
 678 
 679 
 680 
 681 
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 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

Figure 1: Mean Absolute Error (MAE {unitless VI ratios}: blue circles left y-axis) and r-squared 691 

(R2{unitless}: red triangles right y-axis) of the relationship between spectroradiometer-  and 692 

MODIS- derived NDVI (top) and EVI2 (bottom) at different MODIS spatial integration scales at 693 

Imnaviat.  694 

 695 

Figure 2: Seasonal cycle of spectroradiometer- (black diamonds), radiation- (blue dots), and 696 

MODIS-derived (red dots) red (A) and near-infrared (B) reflectances, and NDVI (C) and EVI2 697 

(D) from quality controlled 2008-2018 Imnaviat data.   698 

 699 

Figure 3: Dependence of MODIS- and radiation- derived differences on solar zenith angle for 700 

red reflectance (A), near infrared reflectance (B), NDVI (C), and EVI2 (D) at Imnaviat. 701 

Regression lines indicate significant relationships at the 95% confidence level. 702 

 703 
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Figure 4: Dependence of MODIS- and radiation- derived differences on solar zenith angle for 704 

red reflectance (A), near infrared reflectance (B), NDVI (C), and EVI2 (D) from Fluxnet sites 705 

across biome types. Lines in panels C and D are only for statistically significant relationships at 706 

the 95% confidence level.    707 

 708 

Figure 5: Dependence of ground based spectroradiometer broad- and narrow-band derived 709 

differences (i.e. broadband-narrowband) on solar zenith angle for red reflectance (A), near 710 

infrared reflectance (B), NDVI (C), and EVI2 (D) at Imnaviat. Regression lines indicate 711 

significant relationships at the 95% confidence level. 712 

 713 

Figure 6: The correction factor dependence on solar zenith angle for visible (solid dots) and near 714 

infrared (open dots) albedo. The inset plot shows seasonal changes in daily averaged solar zenith 715 

angle (solid line) and daily averaged azimuth angle (dotted line). The grey highlighted area 716 

denotes the growing season period at Imnaviat. 717 

   718 

Figure 7: Correspondence between radiation- and MODIS- derived red (A) and near infrared (B) 719 

reflectances, and NDVI (C) and EVI2 (D) at Imnaviat. Grey dots are MODIS and uncorrected 720 

radiation derived reflectance and indices, whereas triangles are MODIS and radiation derived 721 

reflectance and indices that were corrected for solar position biases.      722 

 723 

Figure 8: Average percent change in the Mean Absolute Error (MAE) between MODIS satellite- 724 

and radiation-derived NDVI (black bars) and EVI2 (grey bars) relative to the uncorrected values 725 
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at the Fluxnet sites.  Fluxnet sites were grouped by ecosystem type, and error bars represent 726 

standard errors.  727 

 728 

Figure 9: Relationship between Imnaviat Gross Ecosystem Exchange (GEE) and solar position 729 

corrected (open triangles) and uncorrected (grey circles) radiation derived vegetation indices. 730 

NDVI-GEE relationships are in left panel (A), whereas EVI2-GEE are in right panel (B).  The 731 

solid line represents the correlation between the solar position corrected vegetation index and 732 

GEE, whereas the dotted line represents the correlation between uncorrected vegetation indices 733 

and GEE. Hatched arrows in left panel represent the hysteresis in the relationship between 734 

uncorrected NDVI and GEE, while numbers represent the day of year of each observation.   735 

 736 

 Figure 10: Mean Absolute Error (MAE) of the start-(SOS), length-(LOS), and end-(EOS) of the 737 

growing season derived from MODIS- (black bar), uncorrected radiation- (grey), and solar 738 

position corrected radiation- (dark grey) derived NDVI (A) and EVI2 (B) at Imnaviat.   739 

 740 
 741 
 742 
 743 
 744 
 745 
 746 
 747 
 748 
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Figure 1. 750 
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Figure 3.  785 
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 964 
Figure 1S: Dependence of bandwidth biases (broadband-narrowband) derived differences on 965 
solar zenith angle for red reflectance (A), near infrared reflectance (B), NDVI (C), and EVI2 (D) 966 

from Fluxnet sites across biome types. Note that the y-axes are scaled to be the same as those 967 
observed in Figure 4. 968 

 969 
 970 
 971 

 972 

 973 
 974 
 975 
 976 

 977 
 978 

 979 
 980 
 981 
 982 
 983 

 984 
Table 1S: Summary statistics for bandwidth bias correlation with solar zenith angle in Figure 985 
1S.  The number represents the R2 of the relationship, while the number in [brackets] represents 986 

the sensitivity to solar zenith angle measured as the slope of the line.   987 
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PFT 

Red  
(R2 [Slope]) 

NIR 
 (R2 [Slope]) 

NDVI  
(R2 [Slope]) 

EVI2  
(R2 [Slope]) 

Crop 0.06 [-0.0001]  0.09 [-0.0005] 0.01 [0.0002] 0.37 [-0.0007] 

Deciduous 0.46 [-0.0003] 0.14 [-0.0006] 0.03 [0.0003] 0.52 [-0.0046] 

Evergreen 0.06 [0.0001] 0.12 [0.0003] 0.06 [0.00093] 0.02 [0.0003] 

Grass 0.62 [0.0002] 0.11 [-0.0006] 0.06 [0.0009] 0.29 [0.002] 

Grass/Shrub 0.10 [0.0001] 0.08 [-0.0005] 0.01 [0.00003] 0.22 [-0.0005] 

Tundra 0.16 [0.0005] 0.22 [-0.0008] 0.01 [-0.0001] 0.29 [0.002] 
*Numbers in bold represent statistically significant relationships at the 95% Confidence level. 988 
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