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Abstract—S-parameter de-embedding methods require multiple
fixtures to be identical. However, due to manufacturing variations,
the fixtures are never perfectly identical, which violates the assump-
tions for the de-embedding algorithms and, in turn, introduces
errors. In this article, a novel methodology is proposed to estimate
the errors due to de-embedding for practical transmission line
measurements. The circuit models of the thru and total lines with
fixtures are created. Perturbation in the fixtures is introduced based
on the fixture variation estimated by time-domain reflectometry
measurements. The method can predict the envelope and estimate
the confidence interval of the de-embedded insertion loss using a
limited number of simulation cases.

Index Terms—Confidence interval, de-embedding, error
analysis, fixtures, thru-reflect-line (TRL), transmission line
measurements, 2X-thru.

1. INTRODUCTION

ITH the evolution of high-speed electronic devices, the

data rates have been raised to the level of 50 Gb/s and
above. As communication speed increases, the characterization
of the high-speed channels has become a critical issue. At the
frequencies of tens of gigahertz, the nonideal transmission line
issues (such as copper surface roughness, dielectric dispersion,
and glass-weave effect) are no longer negligible and the attenu-
ation of transmission lines needs to be measured precisely.

The transmission lines on a fabricated printed circuit board
(PCB) often require test fixtures for interconnection. To re-
move the discontinuities introduced by the fixtures (such as
connector/probe attachments, vias, and transition sections), the
de-embedding procedures are applied; namely, the calibration
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reference planes are moved from the coaxial connectors to the
PCB interfaces [1].

Different de-embedding approaches were brought up for the
high-speed transmission line characterization. The prevailing
de-embedding methodologies include thru-reflect-line (TRL)
[2], 2X-thru [3], [4], and smart fixtures de-embedding (SFD)
[5], [6]. The TRL method can cover a wideband of frequencies
by measuring multiple line standards with different lengths
and has become a mainstream approach. Compared with the
TRL method, 2X-thru de-embedding methodology simplifies
the standard design and the measurement procedure. Alterna-
tively, the SFD commercial tool can be used to perform the
same task.

Theoretically, all de-embedding methods require identical
fixtures on total and thru lines. Besides, 2X-thru de-embedding
needs symmetric design in fixtures for both total and thru lines.
However, manufacturing variations make it challenging to im-
plement identical or symmetrical structures. As a result, the
identical assumptions are unavoidably violated, which results
in a de-embedding error. Besides, inappropriate operations in
measurement, such as loosely attached connectors or probes,
also contribute to de-embedding error.

The de-embedding procedure is the necessary step in many
transmission line characterization algorithms, for example,
crosstalk analysis [7]-[9], copper foil roughness modeling [10],
[11], and dielectric material property extraction [12]. As such,
the de-embedding error is introduced into the characterization
algorithms and may get amplified due to the nonlinear transfor-
mations afterward. Therefore, in order to estimate the accuracy
of characterization, it is important to assess the accuracy of the
raw data (S-parameters).

Sensitivity investigations for various de-embedding algo-
rithms were presented in [13]-[16] to illustrate the impact of the
nonideal fixtures. Generally, they follow the idea of establishing
“perfect” S-parameters with identical fixtures, then introducing a
perturbation factor in fixtures and rederive the de-embedding al-
gorithm with the perturbation factor. Such an approach provides
an insight into the mechanism of de-embedding error generation.
However, the difficulty in defining the “perfect” S-parameters
and the perturbation for practical measurements’ limits the usage
of these approaches.

In [16], another method was proposed to estimate the bound-
ary of de-embedded results. It is based on an a priori assumption
that the reflection coefficient Sy is varying within a circle on a
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Fig. 1. (a) Testing vehicle with several coupled striplines of different lengths.
Photos of the 1.3-in differential pair (b) without and (c) with connectors.

complex plane due to the fixture uncertainties [ 16, Fig. 6]. Based
on this assumption, the variation of de-embedded S5; can be
calculated analytically. However, such “circle” assumption for
S11 behavior overestimates its variations, since according to the
numerical simulation performed by the authors, the spread of
S11 (at least in certain cases) resembles an ellipse or a crescent
rather than a circle.

In this article, a new approach is proposed to analyze the
error of de-embedded insertion loss for practical measurements
on PCBs. The differences among the fixtures are modeled using
the circuits with perturbations determined by the time-domain
reflectometry (TDR) measurements. This article is an expanded
version of the work published earlier [17], which assumed
that the de-embedded transmission coefficient magnitude has
a Gaussian distribution. In this article, this assumption is not
used and the confidence intervals are estimated more accurately.
By using the proposed methodology, engineers can predict the
envelope and confidence intervals of the de-embedded insertion
loss for a given PCB using just a limited number of simulations.
The estimations can be used further to predict the accuracy of
the PCB material parameter extraction or to optimize the PCB
design to improve the measurement accuracy.

In this article, the method was applied to the differential
transmission coefficient, since it is the most important factor
limiting the data transmission speed on the high-speed PCBs
[18]. Creating models for the single-ended or common-mode
transmission coefficients was outside of the scope of this arti-
cle; however, a similar methodology could be applied to those
parameters as well.

This article is organized as follows. In Section II, the model of
the fixtures is constructed for the 2X-thru de-embedding method.
Section III introduces the error analysis method. The prediction
of the envelope of the de-embedding result and the criteria for
the estimation of the 99%, 95%, and 90% confidence intervals
are provided. The conclusions are given in Section I'V.

II. FIXTURE MODELING

Fig. 1demonstrates a PCB containing a number of striplines
that was used as a test vehicle. Two differential pairs with
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Fig. 2. Mixed-mode S-parameters of the 10-in stripline.

different lengths are selected as the thru and total standards. The
2X-thru de-embedding method is used to illustrate the proposed
error analysis approach.

To characterize the four-port transmission lines, the S-
parameters’ measurements using the Keysight N5245A vector
network analyzer (VNA) are performed. The working frequency
range of the VNA is from 10 MHz to 50 GHz. Prior to the
measurements, the VNA is calibrated and the reference planes
are set at the ends of the VNA coaxial cables. The four-port
nodal (or single-ended) S-parameters of the transmission lines
are measured and converted to modal ones to produce mixed-
mode or common/differential S-parameters [18], [19] to directly
observe the transmission of the common and differential modes.
Due to the symmetry of the lines, the modal conversion is small
(as shown in Fig. 2, the conversion terms do not exceed —20 dB),
and due to this, the de-embedding techniques are applied to the
differential part of the modal scattering matrix as if it represents a
single-ended line. However, at high frequencies, the conversion
terms become comparable or even larger than the differential
transmission coefficient, contributing to de-embedding errors.
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Fig. 3. (a) Thru and (b) total fixture definition. (c) Fixtures and DUT on the
total line. The trace width of the differential pairs is 6.58 mil. The spacing
between the traces is 5.3 mil. The thickness of the trace is 1.23 mil. The transition
length is 340 mil.
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Fig. 4. Overview of the circuit model of the transmission lines with fixtures.

Both thru and total lines include unwanted test fixtures. As
Fig. 3 illustrates, the fixtures are composed of the connectors,
pads, vias, and transition sections. Many factors will cause the
differences between the eight fixtures involved in the calibration
process, such as geometrical variations of the PCB layout, slight
mechanical displacement of the connectors relative to the PCB
layout, nonequal length of the back-drilled stubs in vias connect-
ing surface pads to the inner layer traces [20], and nonidentical
torque applied when tightening the connector nuts.

The de-embedding error is obtained by creating statistical
models for fixtures. A circuit model of the transmission lines
with fixtures was created, as shown in Figs. 4 and 5, following a
lumped/distributed modeling approach of the article presented
in [21]. Each fixture is modeled by excessive inductance L and
capacitance C along with the small portions of matched (to the
nominal impedance of 50 {2) transmission lines (TL1, TL2, TL3)
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Fig. 5.  Fixture circuit model (fixtures 1-4).
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Fig. 6. Measured and modeled fixture TDR responses. The black lines rep-

resent the measured curves for eight fixtures. The colored line represents the
modeled curves with minimum and maximum excessive L and C values.

added to account for the physical distance between the excessive
inductance/capacitance regions.

After the S-parameters are measured, the reflection coeffi-
cients are converted to the time domain, and the TDR responses
of the fixtures are calculated (see Fig. 6) using a transient solver
in the advanced design system [22].

The values of the excessive inductance L and the excessive
capacitance C in the fixture model are turned to match the ex-
treme values of the measurement results, as illustrated in Fig. 6.
Since two differential lines are used for each measurement, a
total of eight TDR curves are available to estimate the spread of
the parameters of the fixture models for the thru/total pair. The
dielectric constant and attenuation of the coupled stripline in the
model in Fig. 4 are tuned to match the de-embedded transmission
coefficient in Fig. 2. For the example in Fig. 6, the excessive
capacitance is estimated to range from 40.32 to 52.8 fF; the
excessive inductance is estimated to range from 1.75to 17.5 pH.
Since the positions of the excessive reactances practically do
not change from fixture to fixture (as black curves in Fig. 6
demonstrate), the length of the transmission lines TL1, TL2,
and TL3 in the fixture model are kept constant for all fixtures.
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Fig. 7. S4q21 envelopes obtained by the Monte—Carlo simulations.

III. ERROR ANALYSIS

A. Envelope Calculation

To imitate the error caused by the fixture, the perturbations of
inductances and capacitances can be added to the fixture model.
Since the values of the excessive reactances are bounded, the
raw S-parameters of the whole circuit model are bounded too.
Considering that the singularity caused by the de-embedding
procedure is usually avoided in practice, the de-embedded result
should also be bounded. The envelope of the de-embedded re-
sults (100% confidence interval) represents, therefore, the worst
effect of fixtures.

A Monte—Carlo method is commonly applied in stochastic
error simulations [23], [24]. A Monte—Carlo simulation of the
perturbations for the fixture in the model in Fig. 4 is per-
formed. The excessive reactances are modeled as uniformly
distributed random variables with the bounds determined by the
TDR responses. For each combination of the random variable
values, the S-parameters of the lines are calculated using an
ac circuit simulator. Finally, the thru/total pairs are created for
de-embedding. The envelopes (i.e., the maximum and minimum
values at each frequency) of the de-embedded magnitude of the
differential transmission coefficient are shown in Fig. 7 along
with the nominal curve (no perturbations).

After the Monte—Carlo simulation is performed, it is possible
to estimate the relative 100% confidence intervals for the Sj401
calculated as
maxSfS, — Sy

Snominal
dd21

CIupper =

nominal : MC
Sadar " — minSggy )
Snominal

dd21

CIlower =

where S}S, is the set of the values produced by the Monte—
Carlo simulation (at each frequency). The corresponding curves
are presented in Fig. 8.

As the number of trials in the Monte—Carlo simulations tends
to infinity, the confidence intervals (1) will converge to the true
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Fig. 8. 100% confidence interval obtained by the Monte—Carlo simulations.
(a) Upper boundary. (b) Lower boundary.

100% probability confidence intervals. As can be seen from
the plot, the confidence intervals produced by the Monte—Carlo
simulation do converge to a certain value (a difference between
the intervals for 10 000 and 30 000 can hardly be noticed).

However, it is extremely difficult to determine the true en-
velopes using the Monte—Carlo simulation. Indeed, the worst
effect is likely to be observed when the differences between
the fixtures are the largest, i.e., when the fixture reactances take
extreme values. But, since the number of random variables is
relatively high (16 reactances for a combination of two lines),
the probability of having extreme values in all fixtures is very
low.

On the other hand, it is possible to set extreme values to the
fixtures directly to calculate the envelopes. Each model in the
pair will generate, therefore, 256 cases (two extreme values per
eight reactances). The 256 total and 256 thru lines result in
65 536 combinations in total (256%). The envelopes calculated
this way are shown in Figs. 9 and 10 in comparison with the
results of the Monte—Carlo simulation. As can be seen, the actual
100% confidence intervals are significantly wider than the ones
predicted by the Monte—Carlo simulation.
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Fig. 10.  100% confidence intervals calculated using the Monte—Carlo sim-
ulation and the extreme values of reactances. (a) Upper boundary. (b) Lower
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It is possible to reduce the number of simulations needed to
predict the envelopes further. First of all, all symmetrical cases
can be excluded (i.e., when fixture 1 is equal to fixture 2, fixture
1 is equal to fixture 3, etc., but not the cases when fixture 1 is
equal to fixture 4). This will result in only 4 cases for each line,
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Fig. 11.  Four extreme fixture reactance cases used for the envelope prediction.
(a) Case a. (b) Case b. (c) Case c. (d) Case d.

TABLE I
TEN CASES FOR THE ENVELOPE PREDICTION

1 2 3 4 5 6 7 8 9 10
Thru |Casea |Casea |Casea |Casea |Caseb |Casec |Casec |Casec |Casec | Cased
Total | Casea |Caseb | Casec |Cased |Casea |Casea |Caseb |Casec |Cased | Casec

as shown in Fig. 11, giving 16 cases in total (for all possible
pairs of lines). Out of the 16 cases, 6 equivalent cases can be
excluded (for example, combinations a—c and b—d are identical
with respect to mirroring), leaving just 10 cases, as summarized
in Table I.

Fig. 12 demonstrates that the envelopes calculated by using
10 remaining cases are the same as the ones obtained by the
exhaustive simulation with 65 536 extreme cases.

B. Confidence Interval Estimation

The 100% confidence intervals determined in Section III-A
give important insight into the accuracy of the de-embedding.
However, as demonstrated earlier, the probability of the worst
cases is very low, and the confidence intervals corresponding to
the reduced probability might be of larger practical interest.

The reduced probability confidence intervals can be calcu-
lated using linear sweeps. Due to the large number of variables,
the sweeps cannot be done exhaustively. For example, 8§ random
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variables with just 5 values within the bounds would produce
32 768 cases for each line, resulting in 1 073 741 824 possible
thru/total combinations. However, similarly to the estimation
of the envelopes, the number of combinations can be reduced
by excluding the symmetrical cases. This leaves only 4 cases
for each transmission line, resulting in just 390 625 cases for
5 values within the bounds (5% - 5*), which can be practically
implemented to estimate the confidence intervals.

On the other hand, exhaustive sweep with the large number of
variables might be difficult to implement in typical engineering
practice, and the simulation can be time-consuming. As an alter-
native, we propose a confidence interval estimation method that
is based on scaling the envelopes (100% confidence intervals).

Suppose the confidence intervals are determined by the linear
sweep, then it is possible to calculate the ratio of the boundaries
of the envelopes to the boundaries of the confidence intervals.
The examples of such calculations are presented in Figs. 13 and
14. As can be seen, the ratios are frequency dependent. However,
their spread is relatively small. Approximately each ratio can
be represented by its mean value (dashed curves in the figures).
After this is done, the confidence interval for probability p (lower
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or upper boundary) can be estimated as

est CIP

CI;" ~ Clrooet Clioo% (2)
where (-) represents averaging over the frequency range, CI;g9
is the envelope, and CI,, is the actual confidence interval for the
probability p calculated by linearly sweeping the parameters (in
the cases presented next, 5 values were taken within the bounds
for each parameter; for each transmission line, 4 parameters were
swept, resulting in 625 (5%) cases and 390 625 combinations in
total).

Of course, using the mean ratio instead of the actual
frequency-dependent value introduces the additional errors, but
they are relatively low in the entire frequency range on average.
For example, the root-mean-square error between the average
and the actual curve for Fig. 13 is 15% and for Fig. 14 is 18%.

Approach (1) could be useful only if the mean ratio depends
on the probability level only and does not depend (or at least
depends weakly) on the fixtures, transmission line parameters
(length, attenuation), etc. In other words, the probability distri-
bution of the attenuation curve is invariant.

To investigate that, a series of simulations were performed
with the model parameters. To achieve this, all available trans-
mission lines PCB in Fig. 1 were used as thru [resulting in
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TABLE I

CI TO ENVELOPE MEAN RATIO FOR DIFFERENT DUT LENGTHS
DUT length Upper Lower
4.5 inch 0.5107 0.5292

Clagy, »
i 5.0 inch 0.5034 0.5260

100% -
9.5 inch 0.5028 0.5347
4.5 inch 0.3460 0.3461

Closy, 0inch

I 5.0 inc! 0.3385 0.3458

100% -
9.5 inch 0.3654 0.3516
4.5 inch 0.2634 0.2536

Clogy, :
T 5.0 inch 0.2562 0.2524

100% .
9.5 inch 0.2684 0.2685

Fixture delay=0.025 ps, fixture reactances: C € [40.32fF;52.8fF]; L €

[1.75pH; 17.5 pH].

TABLE III
CI TO ENVELOPE MEAN RATIO FOR DIFFERENT FIXTURE DELAYS
Fixture Delay Upper Lower
0.0125 ps 0.5240 0.5314
Clogy,
T 0.025 ps 0.5107 0.5292
100%
0.050 ps 0.5172 0.5304
cl 0.0125 ps 0.3207 0.3663
95%
o 0.025 ps 0.3460 0.3461
100%
0.050 ps 0.3395 0.3462
C 0.0125 ps 0.2462 0.2734
Ioo,
T 0.025 ps 0.2634 0.2536
100%
0.050 ps 0.2571 0.2535
DUT  length=9.5 in, fixture reactances: C € [40.32 fF; 52.8 fF];
L € [1.75 pH; 17.5 pH].
TABLE IV
CI TO ENVELOPE MEAN RATIO FOR DIFFERENT FIXTURE REACTANCE BOUNDS
Fixture reactance Upper Lower
C € [40.32 fF;52.8 fF]
L € [1.75 pH; 17.5 pH] 0.5107 0.5292
Clogy, C € [80.64 fF; 105.6 fF]
oo L € [3.5 pH; 35 pH] 0.4931 0.5427
C € [20.16 fF; 26.4 F]
L € [0.875 pH; 8.75 pH] 0.4826 0.5144
C € [40.32 fF;52.8 fF]
L € [1.75 pH; 17.5 pH] 0.3460 0.3461
Clysy, C € [80.64 fF; 105.6 fF]
oo L € [3.5 pH; 35 pH] 0.3485 0.3674
C € [20.16 fF; 26.4 fF]
L € [0.875 pH; 8.75 pH] 0.3137 0.3709
C € [40.32 fF;52.8 fF]
L € [1.75 pH; 17.5 pH] 0.2634 0.2536
Clagy, C € [80.64 fF; 105.6 fF]
T L € [3.5 pH; 35 pH] 0.2394 0.2543
C € [20.16 fF; 26.4 fF]
L € [0.875 pH; 8.75 pH] 0.2399 0.2785

DUT length=9.5 in, fixture delay=0.025 ps.

device under tests with the equivalent lengths of 4.5 in (5.8-1.3),
5.0 in (10.8-5.8), and 9.5 in (10.8-1.3)]. The fixture delay and
fixture reactances were scaled up and down by two resulting in
additional cases. The ratios for 99%, 95%, and 90% confidence
intervals were calculated for the original and modified cases.
The results are summarized in the following tables:

1) three DUT length (see Table II);

2) three fixture delay (see Table III);
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3) two scaled fixture reactance bounds (see Table IV).

As can be seen, the ratios CI?% remain relatively constant
and are close to 0.5 for 99% probability, 0.35 for 95% probability,
and 0.25 for 90% probability.
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95% confidence interval. (c) 90% confidence interval.

The estimated confidence intervals calculated according to (2)
using the mean ratios of 0.5, 0.35, and 0.25 for 99%, 95%, and
90% probabilities correspondingly are shown in Figs. 15 and
16.

Finally, Fig. 17 shows a comparison between the confidence
intervals estimated by (2) and determined by the linear sweep
of the fixture parameters, demonstrating practically acceptable
agreement.

IV. CONCLUSION

This article presents a methodology to perform error esti-
mation for de-embedding methods. Unlike other de-embedding
sensitivity investigations, it is proposed for practical PCB mea-
surement. The differences among fixtures are modeled using
circuits with extreme values determined by TDR measurement.
The envelope of the insertion loss variance can be predicted

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 62, NO. 4, AUGUST 2020

using just ten simulation cases. The 99%, 95%, and 90% confi-
dence intervals are estimated by scaling the envelopes with the
corresponding mean ratios.

The proposed methodology can be used to estimate the
achievable accuracy of the existing measurement fixtures or to
optimize the fixture design (requited fixture reactances and their
spread, optimal thru/total pair, etc.) in order to meet a certain
de-embedding accuracy target.
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