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3.3. Discussion 

The SiNC-NS presented here is comparable to other ionophore- 
mediated fluorescence sensors in the literature for most analytical fea
tures. Swapping SiNC for standard organic fluorophores has no effect on 
the size or biocompatibility of the sensor. The dynamic range of the 
sensor, 4 mM–277 mM, is similar to other recent ionophore-mediated 
Na+ sensor reports [28] and covers the physiologically relevant range 
of Na+ (135–145 mM). The selectivity of the SiNC-NS is also in line with 
most reports, [26,28,38] though there are now some strategies that lead 
to notably improved selectivity [43]. The SiNC-NS also shows satisfac
tory reversibility in normal operating conditions, though extreme pH 
environments irreversibly affects SiNCs. The SiNC-NS is notably slow 
compared to other sensors in its class, and improvement will be the focus 
of future work. The strength of the SiNC-NS compared to others in the 
class comes from the unique and optimal features of the SiNC. SiNC have 
high photostability and brightness comparable to carbon dots and 
quantum dots, without the toxicity issues of quantum dots. The SiNC-NS 
platform also does not require a pH-sensitive absorbing dye, unlike 
similar sensors that use carbon dots, quantum dots, or phosphorescent 
microparticles, improving the overall photostability of the system. In 
addition, SiNC have size-controllable emission in the visible to near-IR 
range, a powerful tool that can be used to create 
application-optimized sensors through both minimized background 
interference and minimized overlap with ratiometric dyes. For more 
comparisons of the analytical response between this work and other 
sodium sensors, see Table S1 in the supplementary material. 

The data presented in this paper allows us to develop an informed 
theory on the sensor response mechanism. It is clear from the data 
presented in Fig. 4 that the mechanism is ionophore mediated. It is also 
clear from Fig. 7 that the SiNC-NS is responsive to pH. The evidence 
suggests that the SiNC-NS may be responding to a pH change in the 
nanosensor core triggered by the event of Na+ extraction by the iono
phore into the nanosensor core, similar to the way that ionophore-based 
optical sensors operate when organic fluorophores are used for signal 
transduction. However, unlike with organic fluorophores, in both the 
response to Na+ shown in Fig. 3a and the response to pH in Fig. 7, there 
appear to be “fast” and “slow” components. It is well-understood that 
luminescence-quenching defects are introduced to SiNCs by removing 
hydrogen atoms from the surfaces; in aqueous environments, studies 
have shown a loss of hydrogen termination and concomitant reduction 
in photoluminescence in alkaline aqueous environments [44–46]. This 
change in photoluminescence intensity is reversible, and can be 
regained by passivating the surface with hydrogen, which is known to 
happen to SiNCs in acidic aqueous environments [44]. The “fast” and 
“slow” responses may be due to the fact that alkyl-terminated SiNC 
surface sites are only partially occupied by alkyl groups, and also con
tains Si-H, Si-H2, and SiH3 groups [47] that may possess different re
action kinetics. For example, some sites may be more easily accessed, 
such corner or edge sites on a faceted SiNC; whereas Si-H sites are ex
pected to primarily lie on planar facets that may be sterically hindered 
by alkyl groups attached to proximal surface atoms. We cannot exclude 
the possibility that certain Si-HX sites are more reactive than others, nor 
is there evidence to support this. Given current understanding of the 
chemistry of the SiNC surface, we propose that (in alkaline environ
ments) the patchy alkyl-terminated SiNC surfaces have some Si-HX sites 
that are more readily accessible and quickly dehydrogenated (causing 
the “fast” response), and other sites Si that dehydrogenate slower, most 
likely due to steric protection from the dodecyl groups. We should note 
that this mechanism depends on assumptions regarding the pH experi
enced by the SiNC; however, the true pH within the nanosensor is un
known. The mechanism that we propose here is consistent with the 
current understanding of the complex surface chemistry of SiNCs and 
their pH dependent-emission, and accounts for the pH-dependence of 
the SiNC-NS both with and without the ionophore; however, more ex
periments are necessary to confirm this mechanism and will be the focus 

of future experiments. 
The current shortcomings of the SiNC-NS documented above, such as 

the fast and slow response, degradation in response to strong acid/base 
solutions, and limited shelf-life are not necessary inherent flaws in the 
platform, and have the potential to be addressed in future studies. For 
example, SiNC are known to be exceptionally bright, but their total 
emission is passivated substantially in the SiNC-NS formulation due to 
the use of tetrahydrofuran (data not shown) as a solvent for PVC and 
BEHS during nanosensor synthesis. The next-generation of SiNC-NS 
should aim to reformulate the particles by replacing tetrahydrofuran 
with toluene and a compatible polymer/plasticizer combination to 
substantially increase the brightness of the sensor. Future work should 
also focus on improving upon the combined fast and slow response ki
netics of the SiNC-NS. If diffusion-limited surface reactions are respon
sible for the sluggish behavior (as we propose), then improvements 
could be brought about by engineering of the SiNC surface. For example, 
using shorter alkyl-chain surface ligands that pose a lower steric barrier, 
or ligands that are otherwise designed to make the surface more readily 
accessible may offer faster response times. In addition, the response time 
may be improved by incorporating surface functionalization techniques 
that have previously demonstrated to increase the pH-sensitivity of SiNC 
photoluminescence [19]. 

4. Conclusions 

In this work, we developed and characterized a silicon nanocrystal 
nanosensor (SiNC-NS) for Na+ detection by replacing the standard 
organic chromoionophore reporter with fluorescent silicon nanocrystals 
in a typical ionophore-based optical sensor formulation. The SiNC-NS 
responded to Na+ without the inclusion of a non-fluorescent pH-sensi
tive dye for signal gating, though the Na+-selective ionophore was 
shown to be necessary to impart selectivity to Na+ over competing ions. 
This work therefore shows the first use of SiNCs for signal transduction 
in polymeric nanosensors and the first report of an ionophore-mediated 
fluorescence response from SiNCs. The nanosensors were able to detect 
changes in Na+ concentration over the typical physiologic range, with a 
response midpoint of 52 mM, and a reversible response. With additional 
development, these SiNC-based nanosensors show promise to be a 
photostable alternative to organic fluorophores for and offer the benefit 
of fine-tunable emission wavelength for cation-responsive polymeric 
nanosensors 
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