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ABSTRACT: Inorganic Chemistry teaches students the concept that
modifications to ligand structures, especially the donor properties, can have a
drastic impact on the reactivity and stability of the metal complexes.
Experiments described here reinforce this concept through the investigation
of two tetradentate ligands derived from o-phenylenediamine and salicylalde-
hyde. The Schiff base ligand, H2salophen, reacts with Ni(OAc)2·4H2O to yield a
maroon, square planar complex, Ni(salophen). Under the same conditions, the
amine-type ligand, H2salophan, forms a light-blue compound analyzed as
[Ni(Hsalophan)(OAc)]2. The Ni(salophan) complex free of acetate may be
produced from the reaction of H2salophan with Ni(OAc)2·4H2O in the
presence of NaOH but undergoes ligand dehydrogenation to yield Ni-
(salophen). Students conducting these experiments have the opportunity to
learn synthetic techniques and various characterization methods. Most
importantly, the inquiry-guided experimental design helps them develop critical
thinking skills and apply acquired knowledge to solving a research problem in a laboratory course.

KEYWORDS: Upper-Division Undergraduate, Inorganic Chemistry, Laboratory Instruction, Inquiry-Based/Discovery Learning,
IR Spectroscopy, Mass Spectrometry, Molecular Properties/Structure, NMR Spectroscopy, Transition Elements, X-ray Crystallography

■ INTRODUCTION
Tetradentate Schiff base ligands bearing a N2O2 donor set are
popular building blocks for constructing metal complexes used
as enzyme mimics,1 therapeutics,2 catalysts,3 and novel
materials.4 N,N′-bis(salicylidene)ethylenediamine (H2salen),
arguably the best-known ligand in this class, can be readily
prepared from the condensation reaction between ethylenedi-
amine and 2 equiv of salicylaldehyde (eq 1). This synthetic
strategy is applicable to a wide variety of diamines and
salicylaldehyde derivatives, providing an excellent opportunity
to tune the steric and electronic properties of the ligands. It is
thus not surprising that the coordination chemistry of these
Schiff base ligands has been continuously and extensively
explored with virtually every transition metal in the periodic
table.1−4

The imine functionalities of the Schiff base ligands are
reducible to amine groups, often accomplished by using a mild
reducing agent such as NaBH4. The products may still serve as
N2O2 tetradentate ligands; however, the donor properties are

significantly altered. In particular, the nitrogen sites change from
good π-acceptors (for imines) to pure σ-donors (for aliphatic
amines). Saturation of the CN bonds also renders the ligand
backbone more flexible, which can have a profound impact on
the geometry and the stability of the metal complexes. In
contrast to the numerous reports on M(salen)-type complexes,
transition metal complexes supported by the saturated N2O2

tetradentate ligands have been less frequently studied.5

Most undergraduate inorganic textbooks teach students how
the spin state of a metal ion is influenced by ligand field and
coordination geometry. Four-coordinate Ni(II) complexes, for
instance, are diamagnetic (S = 0) with a square planar geometry
when the ligands are sufficiently π-accepting, and the classical
example is [Ni(CN)4]

2−. With a weak-field ligand like chloride,
[NiCl4]

2− is paramagnetic (S = 1) and adopts a tetrahedral
geometry. A higher coordination number of 5 or 6 is also
possible with Ni(II), largely dependent on the availability and
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the properties of the supporting ligands. Five-coordinate Ni(II)
complexes can be diamagnetic or paramagnetic, whereas six-
coordinate Ni(II) complexes in an octahedral environment are
always paramagnetic.6 Some of these important coordination
chemistry concepts can be reinforced in an inorganic laboratory
course using theN2O2 tetradentate ligands described above. The
reactivities of M(salen)-type complexes have been previously
developed as laboratory course materials, although the emphasis
was placed on teaching how small molecules mimic enzymes.7

The experiments discussed herein, which were successfully
implemented and refined at the University of Cincinnati in
2018−2020 (for CHEM4020LInorganic Chemistry Labo-
ratory),8 focus more on synthesis and characterization,
specifically in the context of studying nickel complexes.
To discourage the practice of finding answers by simply using

web search engines, N,N′-bis(salicylidene)-1,2-phenylenedi-
amine (H2salophen, Figure 1) is chosen over the more

searchable H2salen as the starting ligand.
9 The reagents needed

for the experiments are relatively inexpensive, and the time
required for making each ligand or nickel complex is
conveniently short (30−60 min), which, in a typical 3 h
laboratory session, leaves students ample time to learn various
characterization techniques. The later step of the synthesis
involves a reaction of the saturated N2O2 tetradentate ligand
(H2salophan, Figure 1) with Ni(OAc)2·4H2O, which leads to an
open-ended project due to the ambiguity of the structure for the
isolated product. Students are guided to design additional
experiments and propose analytical tools to decipher what the
nickel complex might look like.

■ LEARNING OBJECTIVES
The synthetic part of the experiments strengthens the basic
techniques such as weighing, mixing, refluxing, vacuum
filtration, and recrystallization that students may have already
learned from general and organic chemistry laboratory courses.
The analytical part of the experiments focuses on training in IR
and NMR spectroscopy, complemented by mass spectrometry
(MS), elemental analysis (EA), and X-ray crystallography that
students are less familiar with. Additional pedagogical objectives,
specifically for an upper-division laboratory course, include the
following:

(1) enhance the understanding of ligand field theory with
real-life examples;

(2) develop critical thinking skills through designing exper-
iments;

(3) learn how to search the chemical literature and know that
the literature could be wrong.

■ DESCRIPTION OF THE EXPERIMENTS
The experiments are divided into activities for 3 h laboratory
sessions spanning 5 weeks. For the course offered at the
University of Cincinnati, 12−24 students were enrolled each

year, mostly chemistry or biochemistry majors with a few
prepharmacy students. For a larger class or if limited by
instrumentation, instructors may consider pairing students. The
reagents and glassware needed for the syntheses are readily
available in most chemistry laboratories or from multiple
vendors at affordable prices. Each compound synthesized by our
students was analyzed by IR and 1H NMR spectroscopy;
however, in the interest of time and cost, only one representative
sample from the class was selected for 13C{1H} NMR, mass
spectrometric, elemental, or X-ray crystallographic analysis.
Students were provided with the experiment guide and safety
data sheets (SDSs) for the chemicals to be used, typically 5 days
before the scheduled laboratory session. Prior to the laboratory
work, they were required to complete a prelab quiz, which was
intended to test their preparation for the experiments and
understanding of potential safety hazards. As assessments, a
postlab assignment mainly on processing NMR data was given
following the Week 2 experiments, and instructions for a
combined lab report were provided following the Week 3
experiments.

Week 1: Synthesis of the H2salophen Ligand

First, a short prelab lecture should be delivered to emphasize the
importance of observing safety guidelines, appropriate ways of
disposing chemical waste and used gloves, and the expectation
for the multiweek experiments. Students can then proceed with
the synthesis of the Schiff base ligand from salicylaldehyde and o-
phenylenediamine (eq 2). The condensation reaction has been
reported to take place in ethanol under refluxing conditions for
2−12 h10 or at room temperature for 12 h.11 In our students’
hands, the room-temperature reaction was complete in 30 min.
It is, however, recommended to perform the synthesis in
refluxing ethanol for 15 min, because at room temperature both
o-phenylenediamine and H2salophen are poorly dissolved.12

The orange precipitate can be collected by vacuum filtration,
washed with ethanol, and dried in air. It is important to remind
students that a wet product will negatively impact the
subsequent steps because the amount of H2salophen used will
be overestimated. The identity and purity of the isolated product
can be confirmed by 1H and 13C{1H} NMR spectroscopy. For
students who have not prepared an NMR sample before, a short
NMR lecture is needed in class, especially on the sensitivity of
the technique and the reason for using a deuterated solvent.

Week 2: Synthesis of the Ni(salophen) Complex

If students have not previously learned how to process rawNMR
data, instructors should consider starting the second week with a
tutorial on how to useMestReNova/Mnova or a vendor-specific
NMR software like Topspin. The experimental part of the class
involves refluxing a 1:1 mixture of H2salophen and Ni(OAc)2·
4H2O in ethanol (eq 3), which results in an immediate color
change from orange to dark red. Reported synthetic methods for
Ni(salophen) mention a reaction time of 1−2 h.13 However, our
students found that the reaction was complete in 20 min. The
nickel complex can be isolated as a maroon powder following a
workup procedure similar to that used for H2salophen. As with

Figure 1. Structures of H2salophen and H2salophan.
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the ligand, Ni(salophen) can be analyzed by 1H and 13C{1H}
NMR spectroscopy for its identity and purity. In our experience,
students understandably took longer to complete the task in
Week 1. For that reason, characterization of H2salophen by IR
spectroscopy was postponed to Week 2, when the IR spectrum
of the newly prepared Ni(salophen) was also recorded. This
plan has an additional advantage, because students are able to
immediately note the spectral change after complexation. The
success of nickel coordination can be further confirmed by
analyzing the NMR data of both H2salophen and Ni(salophen),
which is recommended as a postlab assignment for practicing
using the NMR software.

Week 3: Synthesis of the H2salophan Ligand and the
Corresponding Nickel Complex

By the third week,14 students should be proficient with the
synthetic techniques, making it feasible to complete the
synthesis and characterization of a new ligand and a new nickel
complex in one laboratory session. The reduction of H2salophen
to H2salophan can be accomplished by using excess NaBH4
followed by a hydrolytic workup. Most literature procedures
employ methanol as the solvent for this reaction,15 likely due to
the higher solubility of NaBH4 in methanol (13 g/100 mL) than
in ethanol (3.16 g/100 mL).16 However, Atwood and co-
workers reported that the reduction in ethanol also occurred at a
reasonably fast rate.17 Given the lower toxicity and flammability,
ethanol was chosen as the reaction medium (eq 4). The progress
of the reduction can be visualized, as the product is colorless in
ethanol. Typically, it takes ca. 20 min for the orange color of
H2salophen to fade completely. The desired H2salophan ligand
precipitates from the reaction mixture upon treatment with
water. The solid can be collected by vacuum filtration, rinsed
with distilled water and hexanes, and then air-dried at room
temperature. Our characterization methods once again relied
primarily on 1H NMR, 13C{1H} NMR, and IR spectroscopy.

For comparison, complexation of Ni(OAc)2·4H2O with
H2salophan should be performed following the procedure
identical to the one used with H2salophen. Students are likely
self-convinced that the reaction gives Ni(salophan), analogous
to the formation of Ni(salophen) (eq 5). They will, however,
notice something different from the Week 2 experiment: the
reaction mixture turns into a green solution first but quickly
forms a precipitate, which, after the typical workup steps (i.e.,
filtration, washing, and drying), yields a light-blue solid. Unlike
Ni(salophen), the presumed “Ni(salophan)” does not dissolve
in CDCl3 or C6D6. It is only sparingly soluble in acetone and
acetonitrile. While it is challenging to obtain the NMR spectra

due to limited solubility in common deuterated solvents, the
isolated compound can be characterized by IR spectroscopy.

Despite the lack of NMR data, the light-blue color and the
paramagnetism (μeff = 3.09 μB, see the Supporting Information)
suggested to us that the isolated nickel complex was not
Ni(salophan) with a square planar geometry as shown in eq 5.
Students were asked to prepare samples of this unknown
compound in acetone, acetonitrile, and dimethylformamide
(DMF) (all exposed to air) with the intention of growing single
crystals for crystallographic analysis. In the meantime, one
sample from the class was submitted for mass spectral and
elemental analyses, which were expected to provide additional
structural information.
After 3 weeks of experiments, students already have sufficient

data to write a complete story in a lab report, which ideally
should follow the format of a scientific paper (see the Supporting
Information for instructions). Students should be strongly
encouraged to use a chemical database such as SciFinder to
search for relevant references. If a web search engine is used, they
should be advised to read the primary literature.
Weeks 4 and 5: Further Investigation of the Nickel Complex
Derived from H2salophan

In actuality, when we implemented the experiments, 2 weeks
elapsed after Week 3. Depending on the availability of
instrumentation or the promptness of analytical services, this
brief hiatus in the project may or may not be needed. We used
the gap time to ask students to prepare the related Co(salophen)
and Cu(salophen) complexes,13a but for the scope of this paper,
these experiments will not be discussed. Alternatively,
instructors may consider additional physical methods to
characterize the compounds made in Weeks 1−3 (e.g., UV−
vis spectroscopy, melting point, magnetic susceptibility, and
cyclic voltammetry) while waiting for the EA and MS data or
single crystals to grow.
It is important to engage students in the discussion of

potential structures for the light-blue compound that they made
in Week 3. Figure 2 shows several structures proposed by the
students after hinting that ligands originating from Ni(OAc)2·
4H2O may remain bound. Some students may find literature
precedents supporting structures A18 and B.19 The latter is even
more convincing because the reported color and UV−vis data
match with our results. However, the EA data argue against the
formulas Ni(salophan) (A), Ni(salophan)(H2O)2 (B), and
Ni(H2salophan)(OAc)2 (C) and instead support the formula
Ni(Hsalophan)(OAc) (D).20 The presence of acetate can be
further confirmed by the MS and IR data.
For the samples dissolved in acetone and acetonitrile, students

will notice a color change from almost colorless (due to low
concentrations) to orange or red in a week. This process appears
to be promoted by O2, which can be tested if gloveboxes or
Schlenk lines are available to the class. The sample prepared in
DMF quickly turns to green and then to dark red in less than 24
h. Students are most likely to obtain single crystals from slow
evaporation of the DMF solution; the key is to use as little DMF

Journal of Chemical Education pubs.acs.org/jchemeduc Laboratory Experiment

https://dx.doi.org/10.1021/acs.jchemed.0c01117
J. Chem. Educ. 2021, 98, 592−599

594

https://pubs.acs.org/doi/10.1021/acs.jchemed.0c01117?fig=eq3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c01117?fig=eq4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c01117?fig=eq5&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.0c01117/suppl_file/ed0c01117_si_009.zip
http://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.0c01117/suppl_file/ed0c01117_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.0c01117/suppl_file/ed0c01117_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c01117?fig=eq3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c01117?fig=eq4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.0c01117?fig=eq5&ref=pdf
pubs.acs.org/jchemeduc?ref=pdf
https://dx.doi.org/10.1021/acs.jchemed.0c01117?ref=pdf


as possible to dissolve the unknown compound. In the event that
students fail to produce crystals suited for X-ray study,
instructors may consider asking students to prepare a saturated
solution of Ni(salophen) in hot ethanol, which yields single
crystals readily upon cooling and evaporation. This back-up plan
using pure Ni(salophen) to grow crystals does not shed light on
the structure of the unknown compound but still gives students
the opportunity to learn X-ray crystallography using their own
samples.
In Week 4, students are divided into two groups: one solving

the crystal structure and the other attempting another synthesis
of Ni(salophan). They switch the activities in the following
week. Such division may or may not be needed, depending on
logistics and class size. If an X-ray diffractometer is unavailable
for instructional use, the entire class can focus on the synthesis
only.
In the X-ray lab, students learn various morphologies of solid

samples and, under a microscope, identify crystals suitable for X-
ray diffraction. Other training activities include mounting a
crystal and transferring it to the goniostat of the diffractometer
for data collection. Given the time constraint, a preacquired data
set shall be provided to the students so that they can learn how to
use the SHELX suite of programs to solve a structure (OLEX-2
may also be used for structure refinement). Crystal lattices and
unit cells are often covered in the lecture-based Inorganic
Chemistry course; they can be refreshed in the laboratory.
In the synthetic lab, students repeat the reaction in eq 5 except

that NaOH (0.1 M in water) is also added to assist the
elimination of HOAc. Students can be instructed to do so,
although it is more beneficial to guide them to this path by asking
them what modification to the procedures should be made in
order to obtain Ni(salophan). Knowing that the unknown
compound has the formula Ni(Hsalophan)(OAc), students may
propose to use a base such as NaOH, Na2CO3, or Et3N to
remove HOAc while driving the reaction to form Ni(salophan).
The inquiry-guided experimental design also leads to discussion
about the amount of base used (1 or 2 equiv) and the starting
materials employed (the light-blue unknown compound or
H2salophan/Ni(OAc)2·4H2O). These variations to the proce-
dures can of course all be tested, preferably by students working
in pairs or groups. For simplicity, we had the entire class perform
the synthesis using a 1:1:2 mixture of H2salophan, Ni(OAc)2·

4H2O, andNaOH. The isolated product is no longer a light-blue
solid but a rust-colored powder, which can be analyzed by both
1H NMR and IR spectroscopy.

■ HAZARDS
Students must wear safety glasses, lab coats, and nitrile gloves
while working in the laboratory. As prelab preparation, they are
also required to read SDS information for the chemicals to be
used. Handling some of these chemicals requires extra
precaution. In particular, o-phenylenediamine is very toxic to
aquatic life and harmful when in contact with skin or if inhaled.
CDCl3 is toxic if inhaled and suspected of causing cancer.
Ni(OAc)2·4H2O is a known carcinogen and may cause an
allergic skin reaction. All nickel complexes made by the students
should also be treated as such, considering that the safety
information regarding complexes is very limited in the literature.
NaBH4 should be kept in a dry place, ideally under an inert
atmosphere. Special care should be taken to ensure that it does
not make contact with water during storage, which may release
flammable gases. Salicylaldehyde and organic solvents used in
the study including EtOH, Et2O, and hexanes are flammable and
easily ignited by heat, sparks, or flames. A stock solution of
NaOH is used for the final synthesis; though the concentration is
relatively low (0.1 M), students should be reminded that it can
be corrosive and cause skin irritation and eye damage. All X-ray
equipment present hazards. Trained personnel should be
present in the X-ray laboratory to ensure that students behave
safely and to conduct the manipulations on the diffractometer.21

■ RESULTS AND DISCUSSION
The 1H NMR spectra of H2salophen, Ni(salophen), and
H2salophan are most informative for judging success of the

syntheses and purity of the products. In CDCl3, H2salophen
shows several aromatic resonances in the 6.90−7.40 ppm range,
an imine CHN resonance at 8.63 ppm, and an OH resonance
at 13.05 ppm. The latter is shifted downfield from the OH
resonance of a typical phenol-type compound (4−7 ppm),
which can be rationalized by the presence of intramolecular
hydrogen bonds (OH···N).11 Nevertheless, the molecule is
symmetric, displaying 10 different carbon resonances as
expected for the structure shown in eq 2. Students should be
given reference NMR spectra of o-phenylenediamine and
salicylaldehyde as well as the data for common NMR

Figure 2. Potential structures for the light-blue complex synthesized
fromNi(OAc)2·4H2O andH2salophan (ligand coordination modemay
vary).

Figure 3.ORTEP drawing of Ni(salophen) at the 50% probability level.
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impurities,22 which will help them identify the cause for an
impure product. Complexation of Ni(OAc)2·4H2O with
H2salophen is evident from the 1H NMR spectrum of the
isolated product, where the OH resonance is absent, and the
imine CHN resonance is shifted to 8.26 ppm (in CDCl3). The
imine carbon resonance is also shifted upfield from 163.8 ppm in
H2salophen to 154.4 ppm in Ni(salophen). The remaining
proton and carbon resonances are similar to those for the ligand
but sufficiently different to conclude that a nickel complex is
made. Reduction of H2salophen to H2salophan is confirmed by
the disappearance of the imine CHN resonance and the
observation of a singlet at 4.41 ppm attributed to the CH2NH
resonance. TheOH andNH resonances of H2salophan appear at
7.85 and 3.72 ppm, respectively. Students who fail to dry the
product thoroughlymay see significant broadening and/or slight
shifting of these two resonances, which results from a rapid
proton exchange with ethanol or water. The success of imine
reduction is further supported by the observation of a carbon
resonance at 47.9 ppm for the methylene group in H2salophan.
Assigning all IR bands is unrealistic; however, when given a

chart of IR frequency ranges for various vibration modes,23

students are able to identify the more characteristic NH, C
H, CN, and CO stretching bands. For example, the CN
band is located at 1609 cm−1 for H2salophen and 1602 cm

−1 for
Ni(salophen). Due to hydrogen-bonding interactions, the O
H bands in H2salophen and H2salophan are too broad to be
definitively assigned. In contrast, the NH band of H2salophan
is observed at 3287 cm−1.
According to the EA data, Ni(Hsalophan)(OAc) is the

formula for the light-blue compound isolated from the reaction
of H2salophan with Ni(OAc)2·4H2O. The presence of acetate is
also supported by IR spectroscopy, which shows medium-
intensity bands at 1555 and 1424 cm−1 for the unsymmetrical
and symmetrical C−O stretches, respectively.24 Two weak
bands are found in the region for O−H/N−H stretches (3213
and 3160 cm−1), though on the lower end. UnderMS conditions
(electrospray ionization, in ethanol), this compound gives mass
ions corresponding to Ni(Hsalophan) (MH+), aggregatesM2H

+

and M3H
+, and two acetate-containing species [M(NiOAc)]+

and [M2(NiOAc)]
+. These data are in agreement with structure

D in Figure 2, its isomer involving κ2 or free [OAc]− or with the
[Hsalophan]− ligand adopting a different coordination mode, or
its dimer or higher-order oligomers. The mass spectrum also
reveals an ion for [MH−2H]+, suggesting that the compound
readily undergoes dehydrogenation.
In fact, the light-blue compound dissolved in acetone,

acetonitrile, or DMF (without excluding O2) changes color to
red over time. The dark-red crystals grown from DMF solve as
Ni(salophen) (Figure 3),25,26 indicating that dehydrogenation
or oxidation of the ligand backbone indeed has occurred. NMR
analysis of the dark-red crystals further confirms the formation of
Ni(salophen). The rust-colored powder isolated from the
reaction of H2salophan with Ni(OAc)2·4H2O and 2 equiv of
NaOH is consistent with Ni(salophan), which is supported by
the IR data (one O−H/N−H band at 3261 cm−1 and the lack of
acetate). However, ∼50% of the students in our class obtained a
material analyzed as a mixture of Ni(salophan) and Ni-
(salophen). In any case, the rust-colored powder is partially
soluble in CDCl3, and the dissolved species is confirmed as
Ni(salophen). Taken together, these results suggest that both
Ni(Hsalophan)(OAc) and Ni(salophan) can be readily
converted to the more stable Ni(salophen), especially in the
presence of O2 and under heating. Students who obtained the
mixture of Ni(salophan) and Ni(salophen) for the final
synthesis likely had excessive heating. The related tetrahy-
drosalen complexes of Ni(II) have been reported to undergo
partial ligand dehydrogenation with O2 (eq 6),27 in contrast to
complete ligand dehydrogenation observed with the salophan-
ligated complexes.

Finally, it is possible to more firmly establish the structure of
the light-blue compound, provided that single crystals are grown
from an acetonitrile solution evaporated under an inert
atmosphere. As illustrated in Figure 4, the structure28 features

Figure 4. ORTEP drawing of [Ni(Hsalophan)(OAc)]2 at the 50% probability level and the corresponding ChemDraw structure.
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a dimer of D with the unprotonated oxygen donor bridging two
nickel centers. The protonated oxygen donor interacts with the
acetate through an intramolecular hydrogen bond, which is
reminiscent of the stabilizing effect of hydrogen bonds in the
well-known nickel bis(dimethylglyoximate).29 The observation
of hydrogen covalently bound to the [salophan]2− ligand instead
of the acetate can also be discussed with students through
comparing the acidities of phenol-type molecules and acetic
acid.

■ SUMMARY
The reactivity and stability of inorganic compounds are highly
dependent on the donor properties and ligand flexibility, even if
the same set of donor atoms are involved. This is well illustrated
here for a Ni(II) system supported by a N2O2 tetradentate
ligand. The experiments initially focus on training students in
synthetic techniques and physical methods and then transition
to an open-ended project that requires them to apply learned
knowledge to solve a chemistry mystery. In addition to
developing critical thinking skills, students also gain research-
focused experience, which is typically unavailable in a course
simply using procedures drawn from a laboratory manual.
Furthermore, students become more critical in reading the
literature, as they will find that published data could be wrong or
misinterpreted. The ligands are simple and can be altered
slightly if desired (e.g., using a different diamine or
salicylaldehyde derivative as the starting material). Given the
rich coordination chemistry of salen-type complexes, the course
materials can also be expanded to semester-long experiments
(e.g., studying different metal systems7,13a,30).
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Hernańdez, K. E.; Solano-Peralta, A.; Flores-Álamo, M.; Flores-Parra,
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