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Abstract
Specialized accelerators such as GPUs, TPUs, FPGAs, and

custom ASICs have been increasingly deployed to train deep
learning models. These accelerators exhibit heterogeneous
performance behavior across model architectures. Existing
schedulers for clusters of accelerators, which are used to ar-
bitrate these expensive training resources across many users,
have shown how to optimize for various multi-job, multi-
user objectives, like fairness and makespan. Unfortunately,
existing schedulers largely do not consider performance het-
erogeneity. In this paper, we propose Gavel, a heterogeneity-
aware scheduler that systematically generalizes a wide range
of existing scheduling policies. Gavel expresses these poli-
cies as optimization problems and then systematically trans-
forms these problems into heterogeneity-aware versions us-
ing an abstraction we call effective throughput. Gavel then
uses a round-based scheduling mechanism to ensure jobs re-
ceive their ideal allocation given the target scheduling policy.
Gavel’s heterogeneity-aware policies allow a heterogeneous
cluster to sustain higher input load, and improve end objec-
tives such as makespan and average job completion time by
1.4⇥ and 3.5⇥ compared to heterogeneity-agnostic policies.

1 Introduction
As Moore’s law comes to an end, specialized accelerators
such as GPUs, TPUs, FPGAs, and other domain-specific ar-
chitectures have emerged as an alternative to more general-
purpose CPUs. These accelerators have been deployed to
great effect [25, 35] to train state-of-the-art deep neural net-
work (DNN) models for many domains, including language,
image and video [14, 30, 31, 51, 55].

Consequently, users today must choose from a wide variety
of accelerators to train their DNNmodels. For example, public
cloud users can rent several generations of NVIDIA GPUs and
Google TPUs from cloud providers [1–3]. Even organizations
with private clusters have accumulated different accelerator
types over time [34]; anecdotally, our research group has
NVIDIA Titan V, Titan X, and P100 GPUs in its private
cluster. Resources in these multi-tenant settings are typically
arbitrated by a scheduler. GPU cluster schedulers such as
Themis [40], Tiresias [28], AlloX [37], and Gandiva [58] thus
need to decide how to allocate diverse resources to many
users while implementing complex cluster-wide scheduling
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(a) Throughput.

(b) Dollar-normalized.

Figure 1: Throughputs and dollar-normalized throughputs of train-
ing for various ML models. Dollar-normalized throughputs are com-
puted by dividing the corresponding throughput by the relevant GCP
on-demand price, The magnitude of speedup across GPU generations
varies significantly across models.

policies, optimizing objectives such as fairness or makespan.
Unfortunately, choosing the most effective accelerator types
in this context is difficult for three reasons:

Performance Heterogeneity. Commonly used models
show heterogeneous performance behavior across accelerator
types due to various architectural differences. For example,
Figure 1a shows that a ResNet-50 model sees a nearly 10⇥
speedup from an NVIDIA V100 GPU compared to a K80
GPU, while an A3C Deep Reinforcement Learning model
only sees a 2⇥ speedup. However, as shown in Figure 1b, the
V100 is no longer the optimal choice for all models when we
consider the number of samples trained per dollar – for many
models, the older P100 GPU is competitive or cheaper on a
per-dollar basis. Some scheduling policies can also benefit
from splitting a job between multiple resource types: for ex-
ample, minimizing a job’s cost subject to a latency SLO (e.g.,
complete a job in 10 hours) might involve using a cheaper
accelerator to begin training and then switching to a faster,
more expensive device to meet the SLO. Thus, for even simple
single-job settings, the choice of accelerator type is non-trivial
and depends on both the job and the policy. This gets more
complicated in multi-job settings as granting all jobs their
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preferred accelerator simultaneously might not be possible.
Existing schedulers like Gandiva, Tiresias, and Themis do not
consider this heterogeneous performance behavior.

Generality across Policies. Cluster operators might want
to implement different scheduling policies based on their busi-
ness goals, such as optimizing for time to complete a set of
batch jobs (makespan), fairness for ad-hoc jobs, or more so-
phisticated hierarchical policies that divide resources among
high-level entities (e.g., departments) using one policy, and
then individual jobs within the entity using another [34]. In
data analytics clusters, many job schedulers have support for
hierarchical allocation policies [6, 7, 12, 59] already. The two
recently proposed GPU schedulers that do consider heteroge-
neous resources, AlloX [37] and Gandivafair [18], optimize
for a single scheduling objective, and tightly couple their
scheduling mechanism to that objective (e.g., max-min fair-
ness). Thus, they cannot easily support the more sophisticated
policies often used in practice.

Colocation and Placement Optimizations. To improve
cluster utilization, existing GPU schedulers often deploy op-
timizations such as space sharing as in Gandiva [58], where
multiple jobs can use the same accelerator concurrently, and
placement sensitivity as in Themis and Tiresias [28, 40],
which involves the careful placement of tasks in a distributed
job to ensure good scaling performance. The performance
benefits of these optimizations should be considered explic-
itly while optimizing for global scheduling objectives, since
these optimizations are more effective when deployed in a
heterogeneity-aware way. We show that explicit modeling for
space sharing can improve objectives by 2.2⇥ compared to
Gandiva’s ad-hoc approach.

In this paper, we present Gavel, a new cluster scheduler
designed for DNN training in both on-premise and cloud de-
ployments, that effectively incorporates heterogeneity in both
hardware accelerators and workloads to generalize a wide
range of existing scheduling policies. For example, Gavel can
provide heterogeneity-aware versions of fair sharing / least
attained service [28], FIFO, minimum makespan, minimum
cost subject to SLOs, finish-time fairness [40], shortest job
first, and hierarchical policies [12, 59].

Gavel’s key observation is that many widely used schedul-
ing policies, including hierarchical ones, can be expressed as
optimization problems whose objective is a function of the
jobs’ achieved throughputs. For example, least attained ser-
vice is equivalent to maximizing the minimum scaled through-
put among the jobs, makespan is equivalent to minimizing
the maximum duration (computed as the ratio of number
of iterations to achieved throughput), and so on. Given the
optimization problem for a scheduling policy, Gavel intro-
duces a general way to transform the problem to make it
heterogenity-, colocation- and placement-aware. In particular,
Gavel changes the problem to search over a heterogeneous
allocation for each job, the fraction of time spent in various

resource configurations (e.g., 60% of time running alone on
a V100 GPU and 40% of time space-sharing an A100 GPU
with another job), and changes the throughput terms in the
objective function to effective throughput, i.e. the average
throughput of the job over the mix of resources in its alloca-
tion. Additional constraints need to be added to ensure that
the returned allocation is valid. We show that Gavel’s trans-
formed optimization problems are efficient to execute even
for clusters with hundreds of GPUs and jobs, and can sup-
port a wide range of policies. Many of these problems can be
solved using a sequence of one or more linear programs.

Gavel’s heterogeneity-aware allocations for each job need
to be mapped to actual scheduling decisions (placement of
jobs on specific resources in the cluster for a specified du-
ration of time). To achieve this, Gavel uses a preemptive
round-based scheduling mechanism to ensure that jobs re-
ceive resources in fractions similar to the computed target
allocation. Gavel’s scheduling mechanism needs to be able to
schedule both distributed training jobs, which request multiple
accelerators at once, as well as combinations of jobs running
concurrently on a given accelerator due to space sharing.
Gavel makes these scheduling decisions transparently: it

specifies an API between the scheduler and applications that
allow jobs written in existing deep learning frameworks like
PyTorch [48] and TensorFlow [13] to be moved between re-
sources with minimal code changes, and uses a mechanism
similar to Quasar [21] to estimate performance measurements
of colocated jobs, which are needed as inputs to Gavel’s poli-
cies, when not available a priori.

By explicitly considering performance heterogeneity, Gavel
improves various policy objectives (e.g., average job comple-
tion time or makespan): on a smaller physical cluster, it im-
proves average JCT by 1.5⇥, and on a larger simulated cluster,
it increases the maximum input load a cluster can support,
while improving objectives such as average job completion
time by 3.5⇥, makespan by 2.5⇥, and cost by 1.4⇥.
To summarize, our main contributions are:

• A systematic method to convert existing cluster schedul-
ing policies into equivalent policies that consider het-
erogeneity and colocation; these equivalent optimization
problems are practical for current DNN clusters.

• A round-based scheduling mechanism to ensure that the
cluster realizes the allocations returned by these policies.

• Generalizations of many existing policies in our frame-
work that improve corresponding objectives.

Gavel is open sourced at https://github.com/
stanford-futuredata/gavel.

2 Background
In this section, we provide a brief overview of DNN training
(§2.1), and discuss performance optimizations used in existing
schedulers that Gavel can help deploy more effectively (§2.2).
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Figure 2: Gavel overview. Jobs are written in frameworks like PyTorch or TensorFlow. Gavel’s throughput estimator obtains performance
measurements for each runnable job on each available accelerator type if necessary; its policy then computes an allocation that optimizes a
user-specified objective such as fairness. Gavel’s scheduling mechanism accepts this computed allocation as an input, and makes per-round
placement decisions in proportions that faithfully mimic the computed allocation.

2.1 Deep Neural Network (DNN) Training
DNN training proceeds in iterations. In each iteration, the
DNN processes a collection of inputs (called a minibatch) and
subsequently updates the model parameters using gradients
derived from the input minibatch. Each minibatch is typically
of similar size, which means model training throughput using
short profiling runs (order of minutes). Gavel leverages this
fact in its throughput estimator. Jobs are typically fairly long-
running (on the order of hours to days), and can be distributed
over many workers [9, 58].

Modern DNN schedulers leverage the fact that DNN train-
ing is iterative to suspend and resume training at iteration
boundaries [28, 58]; this ensures that jobs can be time multi-
plexed over the existing physical resources. The latest model
parameters need to be checkpointed to stable storage when
a job is suspended to ensure training progress is not lost. In
this work, we show how time sharing should be deployed to
optimize various single- and multi-job objectives.

2.2 Performance Optimizations
Prior work has shown that GPUs can be severely under-
utilized in multi-tenant clusters [34]; for example, average
GPU utilization (measured as the percentage of GPU Stream-
ing Multiprocessors active over time) was as low as 52% on
a Microsoft cluster. Prior work has also shown the placement
of tasks for a distributed training job can have significant
impact on performance. Gavel can optionally deploy these
optimizations systematically, as we show in §3.1.

Space Sharing. Smaller models often do not leverage the
full computational capacity of modern GPUs. In such cases,
concurrently executing multiple models on the same GPU us-
ing NVIDIA’s Multi Process Service (MPS) or CUDA streams
can help improve utilization [10, 47].

Placement Sensitivity. DNN models show heterogeneity
in their distributed scaling behavior depending on the size of
the tensors that need to be exchanged between workers during
training: some models have compact weight representations
and can scale well even when workers are not on the same
server, while other models scale poorly when workers are
spread over many servers. Existing schedulers like Tiresias
use heuristics for placement sensitivity.

3 System Overview
Given a collection of jobs, Gavel arbitrates cluster resources
(in the form of accelerators of different types) among the
resident jobs, while optimizing for the desired cluster ob-
jective. This is accomplished in a two-step process: first, a
heterogeneity-aware policy computes the fraction of time
different jobs (and combinations) should run on different
accelerator types to optimize the desired objective. These
policies require as input the performance behavior (in terms
of throughputs) for each job on each accelerator type, which
can either be provided by the user, or can be measured on
the fly by Gavel’s throughput estimator. Allocations are in-
tended to be respected only between allocation recomputation
events; for example, if job 1 is much longer than job 2, the
allocation will be recomputed once job 2 completes. Gavel
can recompute its policy either when a reset event occurs (job
arrives or completes, worker in the cluster fails), or at peri-
odic intervals of time. Given the policy’s output allocation,
Gavel’s scheduling mechanism grants jobs time on the differ-
ent resources, and moves jobs between workers as necessary
to ensure that the true fraction of time each job spends on
different resources closely resembles the optimal allocation
returned by the policy. Gavel’s workflow is shown in Figure 2.

3.1 Heterogeneity-Aware Policies

Gavel expresses scheduling policies as optimization prob-
lems for various objectives of interest, such as fairness or
makespan, and allocations as matrices that specify the frac-
tion of wall-clock time a job should spend on each accelerator
type between allocation recomputations. A matrix X can rep-
resent allocations on a single accelerator type (homogeneous
setting), on multiple accelerator types (heterogeneous setting),
as well as with other optimizations. Consider Xexample:

Xexample =

V100 P100 K80
 !0.6 0.4 0.0 job 0

0.2 0.6 0.2 job 1
0.2 0.0 0.8 job 2

According to this allocation specified over three jobs and three
accelerator types, job 0 should spend 60% of the time this
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Figure 3: The cumulative time each job spends on accelerator types
between allocation recomputations for allocation Xexample.

Figure 4: Performance of several DNN models when run concur-
rently on a single P100 GPU. The cell at row i and column j re-
ports the normalized throughput (iterations/second) achieved by co-
located models i and j. Throughputs are normalized with respect to
the throughput achieved by each model when run in isolation. Black
squares show jobs that cannot co-locate due to memory constraints.

allocation is valid on a V100 GPU, and the remaining 40% of
time on a P100 GPU. This is shown visually in Figure 3.
Gavel finds an optimal value for the matrix X given a pol-

icy expressed as an optimization problem. To construct the
optimization problem for a given policy, Gavel requires a
throughput matrix T with each job’s throughput (in training
iterations per second) on different accelerators. Tmj can be
set to �• if job m does not run on accelerator type j (for
example, due to memory constraints).
Given T and X , we define the effective throughput

of a model m as the time-weighted average throughput
across accelerators and jobs. We denote this quantity
throughputT (m,X) or simply throughput(m,X) (dropping the
T ) for brevity. For allocations X without space sharing,

throughput(m,X) = Â
j2

accelerator types

Tmj ·Xmj

Different cluster scheduling policies can be expressed as opti-
mization problems for X while maximizing or minimizing an
appropriate objective function. Constraints need to be spec-
ified to ensure that X is a valid allocation. A hypothetical
policy that maximizes total effective throughput looks like,

MaximizeX Â
m2jobs

throughput(m,X)

Subject to the following constraints:

0 Xmj  1 8(m, j) (1)
Â j Xm j  1 8m (2)

ÂmXmj · scale_factorm  num_workers j 8 j (3)

These constraints ensure that each job-worker allocation is
non-negative and between 0 and 1 (equation 1), that the total
allocation for a job does not exceed 1 (equation 2), and that
the allocation does not oversubscribe workers (equation 3).

Space Sharing. Gavel’s allocation matrices can also incor-
porate space sharing (SS). While previous work has used
greedy algorithms for space sharing, we found that different
pairs of DNN applications in practice have vastly different
performance when colocated together, based on the resources
they consume (Figure 4). When using space sharing, X needs
to contain rows for each viable combination of jobs, and T
needs to have throughputs of the job combinations, like:

T =

V100 P100 K80
 !40.0 20.0 10.0 job 0

15.0 10.0 5.0 job 1
(20.0,7.5) 0.0 0.0 jobs (0, 1)

The SS-aware allocation X dictates the fraction of time that
each job combination should spend on each accelerator type.
We limit entries of T to combinations of at most 2 jobs;

we found empirically that larger combinations rarely increase
net throughput. Additionally, although the size of T grows
quadratically with the number of jobs even with job combi-
nations of size 2, we found that in practice we only need to
consider combinations that actually perform well. We evalu-
ate the scaling behavior of these SS-aware policies in §7.4.
Objectives in terms of throughput(m,X) remain the same;

however, throughput(m,X) now needs to be computed to in-
clude the throughputs of co-located jobs:

throughput(m,X) = Â
j2

accelerator types

Â
k2Cm

Tk jm ·Xk jm

The constraints need to be slighly modified as well to ensure
that X is a valid allocation in this new regime:

0 Xk j  1 8(k, j)
Âk2Cm Â j Xk j  1 8m

Âk Xk j · scale_factorm  num_workers j 8 j

Cm is the set of all job combinations that contain job m.

Placement Sensitivity. Similarly, Gavel’s allocation matri-
ces can also be extended to incorporate placement sensitivity.
The observed throughput for distributed jobs depends on the
location of tasks, as well as the model and accelerator type
(slower workers are less likely to be communication-bound,
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Figure 5: Priorities are used to move the received allocation to-
wards the intended allocation (in this case, Xexample). prioritiesn is
computed as X/rounds_receivedn (element-wise division).

which means consolidation of tasks is less effective). We
can make our policies placement-sensitive by considering the
performance of distributed jobs in: 1) a consolidated setting,
where as many accelerators are on the same server as possible
(for example, 8 GPUs per server if using 8-GPU servers), and
2) an unconsolidated setting, where accelerators are on inde-
pendent servers. These are extreme points in the placement
space, and are upper and lower bounds on performance. We
can model this in our policies by having two different worker
types (consolidated and unconsolidated) with corresponding
throughput values in T and allocation values in X .

3.2 Round-based Scheduling Mechanism
After computing the optimal allocation, Gavel’s next step is
to assign jobs (or job combinations, in the case of SS) to
accelerator types while matching the optimal allocation as
closely as possible. That is, to realize the allocation Xexample

above, the scheduling mechanism needs to make sure that
in the time period where jobs 0, 1, and 2 are the only three
runnable jobs in the cluster, jobs should receive resources
according to their computed optimal time fractions.
To do this, the scheduler computes a priority score for

every job and accelerator type combination that is high when
a job has received a smaller time fraction than the optimal
allocation. Scheduling is performed in rounds; in each round,
the scheduler runs jobs in decreasing priority order, while
ensuring that a given job is not scheduled on multiple workers
(or accelerators) in a given round. This is shown in Figure 5.
Priorities are updated as rounds complete. We have found
empirically that round durations of around 6 minutes allow
Gavel to effectively approximate the ideal allocation (§7.5).

3.3 Throughput Estimator
To estimate the throughputs of concurrent jobs (e.g., in the
case of space sharing), Gavel employs a throughput estima-
tor, similar to those found in prior work such as Quasar [21].
Gavel’s throughput estimator maps a new job to a set of pre-
profiled reference jobs. The throughputs of the closest ref-
erence job can then be used as the initial performance esti-
mate for the new job’s combinations. For individual jobs, the
throughput estimator is not needed, since throughputs can be

estimated on the fly as jobs run on different resource types.

3.4 Limitations and Non-Goals
While Gavel exposes a flexible API that supports a variety of
policies and objectives, we do not propose new scheduling
policies or performance optimizations in this work. Instead,
Gavel’s main goal is to determine how best to share resources
amongst many different users and jobs in a heterogeneity-
aware way, while supporting many existing cluster-wide ob-
jectives. Gavel accomplishes these goals with a policy frame-
work that easily allows policies to be made heterogeneity-,
colocation-, and placement-aware (§4), a reusable scheduling
mechanism (§5), and a narrow scheduler API that allows users
to deploy their applications with minimal code changes (§6).

4 Scheduling Policies
In this section, we show how various scheduling policies
such as max-min fairness (Least Attained Service or LAS)
and multi-level fairness can be expressed as optimization
problems in terms of effective throughput. We describe some
properties of the resulting heterogeneity-aware allocations at
the end of this section.

4.1 Max-Min Fairness as an Optimization Problem
The classical Least Attained Service (LAS) policy, used by
Tiresias [28], implements max-min fairness across active
users in the cluster, by round-robining resources across jobs
according to the total number of accelerator hours consumed.
This can be modified into a weighted max-min fairness policy
with per-user weights wm. On a homogeneous cluster, if a job
m with weight wm receives a fraction Xm (which is a scalar
since there is only one resource type), LAS can be expressed
as the following optimization problem:

MaximizeX min
m

1
wm

Xm

We need to add an additional constraint to ensure that the
cluster is not overprovisioned (ÂmXm  1).
However, this vanilla LAS policy is not fair in a heteroge-

neous setting; jobs might see unequal reductions in through-
put due to variations in performance across accelerator types.
For example, giving one job a K80 and another job a V100
would equalize their number of resources, but could result in
very low performance for the job with the K80.

To compute a more fair allocation, we can compute max-
min fairness over the weighted normalized effective through-
puts, as defined in §3.1. Let Xequal

m be the allocation given to
job m assuming it receives equal time share on each worker in
the cluster. For example, if the cluster had 1 V100 and 1 K80,
Xequal
m = [0.5,0.5]. Xequal

m scales the effective throughputs to
make them comparable across jobs.

MaximizeX min
m

1
wm

throughput(m,X)
throughput(m,Xequal

m )
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Policy Description
Makespan Minimize time taken by batch of jobs.
LAS [28] Max-min fairness by total compute time.
LAS w/ weights Max-min fairness with weights.
Finish Time Fairness [40] Maximize minimum job speedup.
FIFO First in, first out.
Shortest Job First Minimize time taken by shortest job.
Minimize cost Minimize total cost in public cloud.
Minimize cost w/ SLOs Minimize total cost subject to SLOs.
Hierarchical [59] Multi-level policy: FIFO, fairness, etc.

Table 1: Policies that can be expressed in Gavel.

As specified in §3.1, additional constraints need to be specified
to ensure that allocations are valid.
As an example, consider 3 jobs which benefit differently

when moved from a K80 GPU to a V100 GPU:

T =

V100 K80
 !40.0 10.0 job 0

12.0 4.0 job 1
100.0 50.0 job 2

Solving the above optimization problem with wm = 1, and a
cluster with 1 V100 and 1 K80 yields the following allocation:

Xhet. =

V100 K80
 !0.45 0.0 job 0
0.45 0.09 job 1
0.09 0.91 job 2

Jobs receive about 10% higher throughput compared to an al-
location where every user is given 1/n of the time on each ac-
celerator (here, n= 3), also called an isolated allocation [26].
Fairness policy objective functions need to be modified to

take into account muti-resource jobs with scale_factorm > 1,
since these multi-resource jobs occupy a larger share of the
cluster per unit time. An easy way to do this is to multiply the
max-min objectives from before by scale_factorm. Concretely,
the LAS objective from before now becomes,

MaximizeX min
m

1
wm

throughput(m,X)
throughput(m,Xequal

m )
· scale_factorm

4.2 Other Policies as Optimization Problems
We can express many other common cluster schedul-
ing policies, some proposed by recent papers, using
throughput(m,X); we list these policies in Table 1. Most of
these policies can be expressed using a single linear program,
with a few exceptions: the cost policies are formulated as a
linear-fractional program [8], which can be reduced to a se-
quence of linear programs. These optimization problems yield
corresponding heterogeneity-aware allocations. The optimal
allocation can be computed using off-the-shelf solvers.

Minimize Makespan. The makespan minimization policy
tries to complete all active jobs as soon as possible. Gandiva
uses a version of this policy to finish higher-level tasks such
as hyperparameter tuning and AutoML, which involve train-
ing a large number of variants of a model. If num_stepsm is
the number of iterations remaining to train model m, then the
makespan is the maximum of the durations of all active jobs,
where the duration of job m is the ratio of the number of itera-
tions to throughput(m,X) (expressed in iterations / second).
Overall, this can be framed as,

MinimizeX max
m

num_stepsm
throughput(m,X)

Minimize Finish-Time Fairness (Themis). Themis [40]
proposes a new metric called finish-time fairness (represented
as r), which is the ratio of the time taken to finish a job using a
given allocation and the time taken to finish the job using 1/n
of the cluster (X isolated), assuming n users using the cluster.
This can be expressed in terms of throughput(m,X) as follows
(num_stepsm is the number of iterations remaining to train
model m, tm is the time elapsed since the start of training for
model m, and t isolatedm is the hypothetical time elapsed since
the start of training if model m had 1/n of the cluster to itself),

rT (m,X) =
tm+ num_stepsm

throughput(m,X)

t isolatedm + num_stepsm
throughput(m,X isolated)

The final optimization problem is then,

MinimizeX max
m

rT (m,X)

FIFO. The First-In-First-Out (FIFO) policy schedules jobs
in the order they arrive. In a heterogeneous regime, jobs
should be placed on the fastest available accelerator type.
Mathematically, we can write this as maximizing the through-
put of job m relative to its throughput on the fastest type
(throughput(m,X fastest)). Assuming that jobs are enumerated
in order of their arrival time (m arrived before m+1), a FIFO
allocation can be computed with the following objective:

MaximizeX Â
m

throughput(m,X)
throughput(m,X fastest)

(M�m)

where M is the total number of jobs.

Shortest Job First. The Shortest Job First policy finds the
allocation that minimizes the duration of the shortest job,

MinimizeX min
m

num_stepsm
throughput(m,X)

Minimizing Total Cost and Cost subject to SLOs. We
can express policies for deployments that use elastic public
cloud resources. Since cloud VMs are charged on a per-time
basis, we can express policies that explicitly optimize for total
cost, speed, or both.
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Figure 6: Example of a hierarchical policy: weighted fairness across
two entities: a product and research team, fairness across jobs within
the product team, and FIFO within the research team.

Consider a simple policy that maximizes total throughput,

MinimizeX Â
m
throughput(m,X)

The above policy can be extended to incorporate cost by
optimizing the following cost-adjusted objective,

MaximizeX
Âm throughput(m,X)

Âm(Â j cost j ·Xmj)

where cost j is the cost of accelerator type j. The numerator in
the above objective is the time-averaged effective throughput,
and the denominator is the time-averaged cost. When using
space sharing, care must be taken to not double count the
cost of instances running job combinations (all jobs in a job
combination derive value in the form of some throughput).

Jobs can have time SLOs as well, e.g., certain high-priority
jobs might need to complete every 12 hours. We can add
additional constraints: given SLOm for each model m (models
without SLOs can have SLOm = •),

throughput(m,X)� num_stepsm/SLOm

4.3 Hierarchical Scheduling Policies
Modern cluster schedulers do not only deploy “single-level”
policies. Hierarchical policies are common [6, 12, 59]: a large
organization might share a single physical cluster among
many sub-organizations (or entities) using a fairness policy.
In turn, each entity can share resources among individual
jobs according to a distinct per-entity policy, such as per-user
fairness or FIFO. We give an example in Figure 6, where a re-
search and product team share the same physical cluster. The
research team runs ad-hoc experiments that can be executed
in FIFO order, but the product team needs to ensure that all
its jobs receive a fair share of the cluster.
Gavel can currently support fairness in the upper levels

and fairness or FIFO in the lower levels, which matches the
hierarchical policies supported by the Hadoop scheduler [6].
Determining how to extend this to other hierarchical policy
sets (for example, with finish time fairness) is future work.
Gavel solves hierarchical objectives using a procedure

called water filling [15], which is used in other max-min fair-
ness problems such as link allocation in networks [49]. At a
high level, the water-filling algorithm increases the allocation
given to all parties at an equal rate to respect max-min fairness,

until a party saturates. The saturated party is then taken out,
and the procedure repeated iteratively until all commodities
are saturated. We adapt this procedure to our setting, solving
a series of optimization problems iteratively: an LP that com-
putes a fair allocation across entities while respecting each
entity’s internal policy, and an MILP that identifies bottle-
necked jobs, i.e., jobs whose effective throughputs cannot be
improved without lowering other jobs’ effective throughput.

We assume that each entity s is associated with a weight ws;
the jobs belonging to this entity receive a total cluster share
proportional to this weight. We denote wjob

m to be the weight
of job m, set such that Âm2s w

job
m = ws. Jobs are assigned

priorities in accordance to the relevant entity’s policy; for
example, a fairness policy within an entity would assign each
job a weight proportional to its individual weight within the
entity, while for FIFO, the first job in the queue would initially
receive the entire weight of the entity.

In each iteration, we solve the following modified LP (as-
suming scale_factorm = 1 for all m for simplicity):

MaximizeX min
{m:wjob

m >0}

1
wjob
m

✓
throughput(m,X)

throughput(m,Xequal
m )

� tm
◆

tm is the normalized effective throughput of job m in the
previous iteration (tm := 0 in the first iteration). The above
objective can be appropriately modified for scale_factorm > 1.
Bottlenecked jobs are given priority 0 and no longer consid-
ered in future iterations. Priorities are redistributed among
non-bottlenecked jobs according to the entity’s policy at the
end of every iteration. For instance, in the example shown
in Figure 6, if job 4 is bottlenecked, then its weight is reas-
signed to job 5 in accordance to the FIFO policy, while if job
2 is bottlenecked, its weight is distributed equally between
jobs 1 and 3 in accordance with the entity’s fairness policy.
The LP then solves the max-min problem on the resources
remaining while ensuring each job’s throughput does not
drop compared to the previous iteration’s allocation Xprev, ex-
pressed as throughput(m,X) � throughput(m,Xprev) for all
m. Iterations continue until all jobs are bottlenecked. To make
this procedure more concrete, consider an example with 4
identical jobs: job 1 with a weight of 3.0, and jobs 2 to 4 with
a weight of 1.0; and 4 identical GPUs. In the first iteration,
job 1 is assigned resources such that its throughput is 1.0,
and jobs 2, 3, and 4 are assigned resources such that their
throughput is 0.33 to respect weights. Job 1 is a bottleneck;
the throughput of the remaining jobs can still be increased. In
the next iteration, jobs 2 to 4 are given full-GPU allocations.

The final allocation satisfies both inter-entity and intra-
entity policies. We note that the above water-filling procedure
can also be used for single-level fairness policies such as
the one described in §4.1 to improve the throughput of non-
bottelenecked jobs.
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4.4 Properties of Gavel’s Policies

Existing scheduling schemes have been analyzed in terms
of properties like sharing incentive, Pareto efficiency, and
strategy proofness [26]. We formalize Gavel’s heterogeneity-
aware policies in the context of these properties as well.

Homogeneous Clusters. For homogeneous clusters,
Gavel’s heterogeneity-aware policies are equivalent to the
baseline policies (throughput(m,X) = Xm · Tm), since the
heterogeneity-aware optimization problems reduce to the
original optimization problems with one accelerator type.

Sharing Incentive. For heterogeneous clusters, the policy’s
objective metric (maximize least job share in LAS, comple-
tion time of first job in FIFO, or makespan) is at least as well
off as it would be under a policy that naïvely splits all re-
sources equally among all runnable jobs. This is because the
allocation corresponding to giving each user 1/n of each re-
source is a feasible solution to Gavel’s optimization problem,
so Gavel’s solution will be at least as good. All Gavel policies
have sharing incentive [26], which encourages users to use
the shared cluster rather than a static private share.

Colocation. Solutions with colocation are always at least
as good as without colocation.

Pareto Efficiency. Allocations of max-min fairness poli-
cies with water filling are Pareto efficient: that is, the alloca-
tion for a particular job cannot be increased without decreas-
ing the allocation for another job.
Note that some of Gavel’s policies may not satisfy other

desirable properties. For example, Sun et al. [53] showed
that no fair-sharing policy can simultaneously satisfy Pareto
efficiency, sharing incentive and strategy proofness in a set-
ting with interchangeable resources. If users manipulate their
throughputs, then they can possibly obtain larger shares of
the cluster (e.g., jobs can be placed on a faster accelerator
type) for certain objectives. Exploring how to make Gavel’s
policies strategy-proof is interesting future work.

5 Scheduling Mechanism
Gavel’s scheduling mechanism schedules training iterations
of runnable jobs on the available workers (with possibly differ-
ent accelerators), such that for each schedulable job (or com-
bination), the fraction of wall-clock time it spends on each
accelerator type is approximately equal to the computed opti-
mal allocation Xopt between allocation recomputation events.
This is challenging for two main reasons: 1) Jobs can run on
multiple accelerators. Moreover, since distributed training can
be communication intensive [19,46], jobs should be placed
on accelerators “close” to each other (for example, on accel-
erators on the same server, or on accelerators in servers in the
same rack). 2) Combinations of up to two jobs can run on a set
of accelerators in order to improve resource utilization (space
sharing). Each distinct job can have  1 job combination
running in a given round to prevent work duplication.

Gavel makes its scheduling decisions in rounds. This is
similar in spirit to Tiresias’s [28] priority discretization in
some respects. However, Gavel’s scheduling mechanism dif-
fers from Tiresias’s in three ways:

• Gavel needs to schedule jobs on different accelerator
types: it needs to decide which job should be active in
any round and which accelerator type to use.

• Gavel needs to grant resources to jobs while respecting
an arbitrary allocation returned by the policy.

• Gavel’s round-based scheduler grants time to jobs while
ensuring that multiple job combinations sharing a job do
not run in the same round; Tiresias does not consider job
combinations and does not need to deal with this.

Gavel’s scheduler tries to place work on all available work-
ers for a specific duration (this time period is configurable; we
use 6 minutes in our experiments). We call the work handed
to each worker in a given round a micro-task. Without rounds,
jobs that request many accelerators can suffer from starva-
tion. For example, consider a cluster with 8 total accelerators
and 4 available. The scheduler can handle a 8-accelerator
job waiting for resources in one of two ways: a) wait for
8 accelerators to become available; 4 accelerators will be
unused until the full quota of 8 accelerators becomes avail-
able, b) keep the 8-accelerator job in the queue, and give 4
accelerators to another job that requests a fewer number of
resources. However, this situation can repeat itself, leading
to starvation [59]. Scheduling is thus performed in rounds
to limit resource under-utilization, simplify scheduling logic,
and ensure that jobs with large scale factors do not experience
prolonged starvation.
Since the number of active, schedulable jobs might far

exceed the total number of workers, Gavel first determines
the job combinations that should run in the upcoming round.
To do this, Gavel maintains the time tm j spent by a job (or
combination) m on accelerator type j, which is updated as
jobs run on different accelerator types every round. Given
tm j, Gavel’s scheduler can then compute the fraction of total
wall-clock time spent by each job (or combination) m on
each accelerator type j as fm j = tm j/(Âm0 tm0 j). The matrix of
priorities is then just the element-wise division of Xopt by f .

Algorithm. In every round, we want to move fm j closer to
Xopt
mj . This can be achieved by giving high-priority jobs time

on accelerator type j.
This problem can be solved exactly if jobs only request

single accelerators and if space sharing is not deployed by
finding the num_workers j jobs with highest priority (for ex-
ample, using a heap). However, jobs submitted to Gavel can
be distributed, and space sharing can be used to improve re-
source utilization. Solving this problem exactly with these
added requirements makes the problem similar to a multiple-
choice knapsack problem [52], which is NP-hard.
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Figure 7: Round-based scheduling mechanism in action to achieve
an allocation Xhet.+SS. Space sharing is shown with vertically split
boxes. Each round is denoted by a box.

Algorithm 1 Algorithm for Gavel’s scheduling mechanism
1: function SCHEDULE_JOBS
2: active_combinations  all active job combinations
3: num_workers_rem.  number of total workers
4: while num_workers_rem.g > 0 do
5: j  job combination with highest priority
6: Remove j from active_combinations
7: if j.scale_factor > num_workers_rem. then
8: continue
9: for all j0 that conflict (share a job k) with j do
10: Remove j0 from active_combinations

11: num_workers_rem. �= j.scale_factor

To overcome these challenges, we observe that it is ac-
ceptable to make greedy sub-optimal scheduling decisions
occasionally in any given round, since we can recover from
these sub-optimal decisions in subsequent rounds: our goal is
to ensure that the average allocation each job receives over
multiple rounds resemble the computed allocation (the allo-
cations returned by policies are optimal, which follows from
how policies in Gavel are expressed as optimization prob-
lems). We study the impact of this design choice in §7.5.
A job (combination) not run in a particular round will have
increased priority in subsequent rounds until it receives ac-
celerator time, while a job that runs in a particular round will
have decreased priority. This ensures that jobs do not suffer
from starvation if they have a non-zero optimal allocation.
Gavel uses a greedy algorithm to pick the highest-priority

job combinations that fit in the provided resource budget.
The algorithm maintains a set of eligible job combinations
(eligible_job_combinations) that can be scheduled in the
upcoming scheduling round. The scheduling mechanism then
tries to add job combinations with highest priority into a
job_combinations_to_schedule set. Once a job combina-
tion is added to this set, all conflicting job combinations are
removed from the set of eligible combinations to ensure that
a given job is not run more than once in a given scheduling
round. Job combinations that cannot fit in the current round
due to space limitations (required number of accelerators
unavailable) are also removed from the set of eligible combi-
nations. This procedure is detailed in Algorithm 1. Gavel’s
scheduling mechanism is decoupled from its policies, ensur-
ing that the same scheduling mechanism can be used for
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Figure 8: Gavel’s throughput estimator. Profiling is combined with
matrix completion to obtain a fingerprint for every new job. The
fingerprint is then used to find the closest reference job.

many different policies. Figure 7 shows Gavel’s scheduling
mechanism in action.
Once Gavel has decided what jobs (and combinations)

should run in a given round on different accelerator types,
Gavel must decide how to place these jobs. Gavel’s scheduler
places jobs in decreasing order of the number of requested
workers, and tries to give jobs accelerators on the same physi-
cal server to minimize fragmentation.

6 Implementation
We implemented a prototype of Gavel in approximately
9000 lines of Python code, and implemented a simulator in
about 500 LOC. We used cvxpy [23] to implement Gavel’s
heterogeneity-aware policies, and gRPC [4] to communicate
control messages between the scheduler and workers.

Interface between Scheduler and Applications. Gavel
currently supports user applications written in PyTorch [48];
support for TensorFlow [13] is left for future work. The
scheduler and user applications then interact through a nar-
row API. Gavel ships with a Python library that users can
import into their code. This library provides an implemen-
tation for a wrapper around existing framework-provided
data iterators (GavelIterator). GavelIterator ensures that
each task in a distributed job runs for the same number
of iterations, and synchronizes the conclusion of rounds
between the scheduler and workers. GavelIterator is in-
stantiated with arguments train_loader (base data loader),
load_checkpoint, save_checkpoint, and a configuration ob-
ject. load_checkpoint is a pointer to a function that loads
all necessary parameters and metadata from a checkpoint at
the start of a round, and save_checkpoint is a pointer to a
function that creates a checkpoint at the end of a round; these
need to call appropriate framework methods (< 5 LOC).

GavelIterator contacts the scheduler near a round end to
see if the same job will run in the next round on the same
worker. We call this a lease renewal. If the lease is not re-
newed, the iterator calls save_checkpoint at round end. The
scheduler can then launch another job on the worker.

Throughput Estimation. Gavel uses a similar technique
to Quasar [21] to estimate colocated throughputs when us-
ing the optional space sharing optimization (if they are not
available a priori), mixing profiling with matrix completion.
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Model Task Dataset /
Application Batch size(s)

ResNet-50 [5, 31] Image
Classification ImageNet [22] 16, 32,

64, 128

ResNet-18 [31, 39] Image
Classification CIFAR-10 [36] 16, 32, 64,

128, 256
A3C [27,44] Deep RL Pong 4

LSTM [11] Language
Modeling Wikitext-2 [42] 5, 10, 20,

40, 80

Transformer [33, 55] Language
Translation

Multi30k [24]
(de-en)

16, 32, 64,
128, 256

CycleGAN [38,60] Image-to-Image
Translation monet2photo [60] 1

Recoder [45]
(Autoencoder) Recommendation ML-20M [29]

512, 1024,
2048, 4096,
8192

Table 2:Models used in the evaluation.

Trace System Objective Physical Simulation
Continuous Gavel Average JCT 3.4 hrs 3.7 hrs
Continuous LAS Average JCT 5.1 hrs 5.4 hrs

Static Gavel Makespan 17.7 hrs 17.6 hrs
Static Gandiva Makespan 21.3 hrs 22.1 hrs

Table 3: Comparison of end objective between physical experiment
and simulation for two different traces. For the continuous trace, we
measure the average JCT of 25 jobs in a steady-state cluster. For the
static trace, we measure the total time needed to complete 100 jobs
submitted at the start of the run. The heterogeneity-aware policies
improve target objectives, and results on the physical cluster are in
agreement with results on simulated cluster (< 8%).

Model Overhead without Overhead with
lease renewals lease renewals

ResNet-18 0.94% 0.17%
ResNet-50 1.58% 0.25%
A3C 0.22% 0%
LSTM 2.91% 0.47%
Transformer 0.77% 0.11%
CycleGAN 0.77% 0.11%

Table 4: Overhead of using preemptive scheduling in Gavel, with
and without lease renewals, and with a round duration of 6 minutes.

Matrix completion enables sparse low rank matrices to be
reconstructed with low error [17,43]. With matrix completion,
Gavel is able to extrapolate measurements obtained through
direct profiling on separate workers dedicated to profiling,
and determine the job’s most similar pre-profiled reference
job. The throughput estimator can then use the reference job’s
throughput measurements as an initial throughput estimate.
Gavel’s throughput estimator is diagrammed in Figure 8.

7 Evaluation
In this section, we seek to answer the following questions:

• Do Gavel’s heterogeneity-aware policies improve objec-
tive metrics in a physical cluster (§7.2) and in simula-
tions of larger clusters (§7.3)?

• How do Gavel’s policies scale? (§7.4)

(a) Average job completion time vs. cluster load.

(b) CDF of job completion times (input job rate = 5.6 jobs/hr).

Figure 9: Comparison of heterogeneity-agnostic least attained ser-
vice (LAS) policy to a heterogeneity-aware LAS policy (Gavel), in
simulation on the continuous-single trace.

• How well does Gavel’s scheduling mechanism realize
Gavel’s heterogeneity-aware allocations? (§7.5)

• Is Gavel able to accurately estimate the throughputs of
co-located jobs when using space sharing? (§7.6)

7.1 Experiment Setup
We run experiments on both a physical and simulated cluster.

Clusters. We run physical cluster experiments on a cluster
with 8 V100s, 16 P100s, and 24 K80s. Simulated cluster
experiments are run on a cluster with 36 GPUs of each type.

Traces. We run physical and simulated experiments on two
types of traces: one where all jobs are available at the start
of the trace and jobs are not subsequently added (“static”),
and another where jobs are continuously added to the cluster
(“continuous”). For the continuous trace, job arrival times are
generated according to a Poisson arrival process with an inter-
arrival rate l. For the simulated experiments, we vary l to
show the extra load each heterogeneity-aware policy is able to
sustain in steady state. We run 3 seeds for every l, and show
standard deviations. For the physical cluster experiments, we
use a single l that keeps the cluster well-utilized in steady
state. The online traces used in the simulated experiments
have a variable number of jobs (at least 5000) and span 20-30
days. We measure the completion times of jobs with ID 4000
to 5000 to study steady state behavior (new jobs continue
to be added until jobs of interest complete). Job types are
uniformly sampled from the job table with 26 distinct job (or
model) types, shown in Table 2. The online traces used in the
physical experiments span a day and have 100 jobs.
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(a) Average job completion time vs. cluster load.

(b) CDF of job completion times (input job rate = 2.6 jobs/hr).

Figure 10: Comparison of heterogeneity-agnostic least attained ser-
vice (LAS) policy to a heterogeneity-aware LAS policy (Gavel), in
simulation on the continuous-multiple trace. Each input job rate is
run with 3 seeds; shaded regions show the standard deviation.

The duration of each job on a V100 GPU is sampled from
an exponential distribution: jobs have duration 10x minutes,
where x is drawn uniformly from [1.5,3] with 80% proba-
bility, and from [3,4] with 20% probability. Given the job’s
observed throughput on the V100 GPU, the number of train-
ing steps is then inferred by multiplying the throughput (in
steps/sec) by the duration. This matches the process used
by Gandiva [58]. For the simulated experiments, we show
results in two regimes: one where all jobs use a single worker
(“continuous-single”), and another where 70% of jobs request
a single worker, another 25% request between 2 and 4 work-
ers, and the remaining 5% request 8 workers, as observed in
published traces from Microsoft [9] (“continuous-multiple”).

Metrics. For fairness and FIFO policies, our target metric
is average job completion time of steady-state jobs, which
is the same metric used by related work [28, 41]. We also
show finish time fairness (FTF) for policies that explicitly
optimize for FTF. For makespan policies, our target metric
is the time needed to complete a job batch. For cost-related
policies, the metric is cost (in dollars), and the percentage of
jobs that violate time SLOs.

7.2 End-to-End Results on Physical Cluster
For our physical cluster experiments, we run a heterogeneity-
aware and a heterogeneity-agnostic fairness policy on a con-
tinuous trace, and a heterogeneity-aware makespan policy
against a baseline that uses Gandiva’s ad-hoc space shar-
ing on a static trace. Results are shown in Table 3. Gavel’s
heterogeneity-aware policies improved average job comple-
tion time by 1.5⇥ and makespan by 1.2⇥. For the makespan

objective, we do not run Gavel with space sharing; in theory,
space sharing would additionally reduce makespan.
We also compare the real performance to simulations and

observe that for both policies, the difference between metrics
in simulation and on the physical cluster is small (< 8%),
indicating that our simulator has high fidelity.
Table 4 shows the overhead of using Gavel’s preemptive

scheduler with a round duration of 6 minutes, with and without
lease renewals. Allocations and worker assignments can be
computed asynchronously. The only synchronous overhead is
the loading and saving of checkpoints, which is dependent on
the size of the model. Lease renewals decrease this overhead
by allowing jobs to run on the same worker for extra rounds.
The overhead of preemption, even without lease renewals and
with a short round duration, is low (< 3%).

7.3 End-to-End Results in Simulation

We use a larger simulated cluster to evaluate the efficacy of
Gavel’s heterogeneity-aware policies across a range of objec-
tives, and compare with heterogeneity-agnostic versions from
previous work using a round duration of 6 minutes. As appro-
priate, we compare to other baselines like AlloX. Magnitudes
of speedups are higher for these experiments compared to the
physical cluster experiments since the simulated traces show
job behavior over weeks, while the physical cluster traces are
only a day long; consequently, queue buildups are less ex-
treme for the traces used in the physical cluster experiments.

Least Attained Service (LAS). Figures 9 and 10 compare
the vanilla LAS policy with its heterogeneity-aware variants.
We compare with two other baselines: a modified LAS policy
that uses Gandiva’s ad-hoc space sharing, and an AlloX policy
that explicitly optimizes average job completion time (but
only for single-worker jobs). We make three observations.

First, the heterogeneity-aware policies support higher load
on the same cluster, reduce average JCT by 3.5⇥ for the
continuous-single trace, and by 2.2⇥ for the continuous-
multiple trace (graph can be read by comparing average JCT
value for a given input job rate or x-intercept) at high load
(5.6 jobs/hr for continuous-single, 2.6 jobs/hr for continuous-
multiple). Second, the heterogeneity-aware LAS policy sup-
ports higher load than AlloX, since AlloX can give short jobs
preferential treatment in the interest of optimizing average
JCT, leading to long jobs experiencing starvation (long tail in
JCT CDF). At moderate load, AlloX represents a best-case
scenario since it explicitly optimizes for average JCT on a het-
erogeneous cluster. Gavel is able to essentially match this best
case scenario, while also supporting other objectives. Third,
Gandiva-style packing, which randomly explores job com-
binations until a combination that improves performance is
found, is ineffective compared to Gavel’s principled packing
(2.2⇥ better average JCT for both traces at high load).

Finish Time Fairness (FTF). We compare the
heterogeneity-aware version of Finish Time Fairness

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation    491



(a) Average job completion time vs. cluster load.

(b) CDF of finish time fairness metric (input job rate = 2.6 jobs/hr).

Figure 11: Comparison of a heterogeneity-agnostic policy that opti-
mizes for finish time fairness (“Minimize FTF”) to a heterogeneity-
aware one (Gavel), in simulation with the continuous-multiple trace.

(FTF) to its heterogeneity-agnostic counterpart in Figure 11.
The heterogeneity-aware policy reduces average JCTs by 3⇥
and improves average FTF by 2.8⇥. FTF is the ratio of the
time taken to finish a job using a given allocation and the
time taken to finish the job using 1/n of the cluster (X isolated),
assuming n users use the cluster. Lower FTF means jobs take
less time with the provided allocation compared to X isolated.

Makespan. Gavel’s heterogeneity-aware makespan policy
reduces makespan by 2.5⇥ compared to a FIFO baseline, and
by 1.4⇥ compared to a baseline that uses Gandiva’s ad-hoc
space sharing. Makespan is reduced by a further 8% when the
number of jobs in the trace is high when using space sharing.

FIFO. The heterogeneity-aware versions of FIFO allow the
cluster to support average input job rate. At high load, the
heterogeneity-aware version without space sharing reduces
average JCT by 2.7⇥, and the heterogeneity-aware version
with space sharing reduces average JCT by 3.8⇥ at high load.
Space sharing is less effective for distributed jobs: it reduces
average JCT by 1.1⇥ with distributed jobs, compared to 1.4⇥
for the continuous-single trace.

LAS with priorities. We also run an experiment with the
LAS policies where 20% of jobs have higher priority. At high
load, Gavel reduces the average JCT of high-priority jobs by
1.5⇥ and the average JCT of low-priority jobs by 2.7⇥.

Cost. We simulate each of the cost policies on a 500-job
workload comprised of ResNet-50 and A3C jobs. As we
observe in Figure 1b, the ResNet-50 job has the best cost-
normalized throughput on the V100 while the A3C job has

(a) Fraction of total throughput for each job with time.

(b) Total throughput vs. time.

Figure 12: Behavior of a multi-level fairness policy with time as
jobs are added to a small cluster with 3 V100 GPUs, 3 P100 GPUs,
and 3 K80 GPUs. Each line represents a separate job, and jobs are
added every 4 timesteps. The first 6 jobs belong to entity 0 (weight
of entity, w0 = 1), the next 6 jobs belong to entity 1 (w1 = 2), and
the last 6 jobs belong to entity 2 (w2 = 3).

the best cost-normalized throughput on the K80. Each job’s
duration is chosen from {0.5,1,2,4,8} days, and each job’s
SLO is chosen from {1.2⇥,2⇥,10⇥} its duration.

The policy that minimizes cost reduces the total cost com-
pared to the policy that maximizes throughput by a factor of
roughly 1.4⇥. However, approximately 35% of jobs violate
their SLO as this policy prioritizes cheaper but slower GPUs;
in particular, the A3C jobs are scheduled on K80 GPUs which
results in violations for tight SLOs. In comparison, the policy
that includes SLOs as well eliminates all violations for a small
increase in cost (a cost reduction of 1.2⇥ compared to the
baseline policy), by ensuring that A3C jobs with tight SLOs
are run on instances with V100 GPUs.

Multi-level Hierarchical Policies. Figure 12 shows the be-
havior of a multi-level fairness policy as new jobs belonging
to multiple entities are added to a heterogeneous cluster with
equal numbers of K80, P100, and V100 GPUs. Resources are
granted to jobs in a way that respects both the higher-level
and lower-level policies: in Figure 12a, fairness is enforced
both within and across entities (as can be seen by the widths
of the colored bands, which represents cross-entity fairness,
and the widths of bands within a color, which represents fair-
ness across jobs within an entity), and allocations are adjusted
as new jobs come in. Figure 13 shows results with a fair-
ness+FIFO policy; later jobs in each entity 0 do not receive
any GPU time to respect the per-entity FIFO policy.
The multi-level fairness policy can also be implemented

in a heterogeneity-agnostic manner by statically partitioning
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Figure 13: Behavior of a hierarchical policy (weighted fairness as
top-level policy, FIFO as bottom-level policy) with time as jobs are
added to a small cluster with 3 V100 GPUs, 3 P100 GPUs, and 3
K80 GPUs. Each line represents a separate job, and jobs are added
every 4 timesteps. The first 6 jobs belong to entity 0 (weight of entity,
w0 = 1), the next 6 jobs belong to entity 1 (w1 = 2), and the last 6
jobs belong to entity 2 (w2 = 3).

(a) LAS. (b) Hierarchical.
Figure 14: Scaling of LAS and hierarchical policies with the num-
ber of active jobs on a heterogeneous cluster with an equal number
of V100, P100, and K80 GPUs. The size of the cluster is increased
as the number of active jobs is increased.

resources across users while respecting per-entity and per-
user weights. While this results in a fair allocation as well,
we observe that total effective throughput is about 17% lower
compared to the heterogeneity-aware policy (Figure 12b).

7.4 Scalability of Heterogeneity-Aware Policies
Figure 14 shows the scaling behavior of the heterogeneity-
aware LAS and multi-level fairness policies with and without
space sharing. We observe that even with 2048 active jobs,
the hierarchical policy without space sharing can be run in
< 10 minutes. With space sharing, the policy can be run
with 512 jobs in < 10 minutes. The single-level LAS policy
is much cheaper to compute in comparison. We note that
allocations do not need to be recomputed every scheduling
round – however, the longer the policy takes to run, the longer
it takes for the new allocation to be acted upon (jobs can still
be given heterogeneity-agnostic allocations in the interim,
and consequently time on resources). We believe latencies
of < 30 minutes for large clusters are still preferable to non-
preemptive schedulers where jobs experience large queuing
delays, or preemptive schedulers with heterogeneity-agnostic
policies which lead to worse objective values, as shown above.

7.5 Efficacy of Scheduling Mechanism
Figure 15a shows the effect of the round length on average
JCT for the heterogeneity-aware LAS policy with a single-

(a) Effect of round length. (b) Mechanism vs. ideal.
Figure 15: (a) Effect of round length on average JCT for the
heterogeneity-aware LAS policy. (b) Comparison of scheduling
mechanism to an ideal baseline that allocates resources to jobs ex-
actly according to the computed allocation for the same policy.

Figure 16: Comparison of SS-aware LAS policy with estimated
throughputs, compared to the SS-aware with oracle throughputs and
LAS without space sharing on a heterogeneous 12-GPU cluster.

GPU trace. We observed similar behavior on traces with multi-
GPU jobs, as well as other policies. A smaller round length
gives Gavel’s scheduling mechanism more rounds to course
correct, allowing the true allocation and computed optimal
allocation to more closely match. We found that the time
needed to load and save checkpoints for our target models is
< 5 seconds, which means that a round length of 6 minutes
gives a good tradeoff between fidelity with the optimal allo-
cation and preemption overhead (preemption overhead with
6-minute rounds shown in Table 4).
We compare this to an ideal baseline that allocates re-

sources to jobs exactly according to their computed allocation.
As shown in Figure 15b, Gavel’s scheduling mechanism with
a round duration of 6 minutes behaves almost identically to
this ideal baseline with a single-GPU trace (behavior with a
multi-GPU trace is similar). We note that the ideal baseline is
impractical to use in practice, since jobs with different scale
factors can complete at different times (leading to starvation),
and preemptions can be often since allocations for some (job,
accelerator type) pairs are small, leading to high overhead.

7.6 Impact of Throughput Estimation

Figure 16 shows the effect of Gavel’s throughput estimator on
average JCT when using the space sharing-aware LAS policy
compared to the LAS policy without space sharing, and the
LAS policy with space sharing and oracle throughputs. The
throughput estimator is able to determine missing throughputs
in an online fashion accurately enough to observe a very small
decrease in average JCT at high load (orange and blue lines).
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8 Related Work and Discussion
In this section, we compare Gavel to related work.

Existing DNNTraining Schedulers. Several recent papers
have proposed schedulers targeting DNN training workloads.

Gandiva [58] uses time and space sharing to reduce queuing
delay and improve resource utilization, but does not specify an
explicit scheduling policy and does not support configurable
objectives. It uses a profiling-based methodology to deter-
mine whether to co-locate jobs on an accelerator. However,
it does not incorporate model performance data (isolated or
co-located performance) explicitly into its scheduling policy,
resorting to random exploration of job combinations until a
combination that improves performance is found.
Tiresias [28] and Themis [40] use different objectives to

achieve multi-job fairness. However, both do not incorporate
jobs’ affinities for different accelerator types in their schedul-
ing objectives, and have scheduling mechanisms strongly cou-
pled with the target policy, making it hard to support other
more sophisticated policies like multi-level fairness.

AlloX [37] and Gandivafair [18] are recent DNN schedulers
that do consider worker and model heterogeneity. However,
both only work for single policies (average job completion
time for AlloX, max-min fairness for Gandivafair). Moreover,
Gandivafair uses a second-price auction mechanism to im-
prove the performance of a heterogeneity-agnostic max-min
fairness scheme, but does not provide guarantees as to the
optimality of the final allocation. On the other hand, Gavel
formalizes each policy as an optimization problem, and can
provide a guarantee that the returned solution is “optimal” ac-
cording to the provided objective. Gavel is also able to support
more sophisticated policies such as multi-level fairness.

Traditional Cluster Schedulers. Traditional schedulers
such as Mesos [32], Borg [57], TetriSched [54], and
YARN [56] support workloads with fixed heterogeneous re-
source requests, but do not reason about the diverse perfor-
mance characteristics of jobs across accelerators. Mesos and
YARN do not reason about interchangeable resource types
that can run the same computation: for example, Mesos’s
DRF multi-resource sharing policy [26] decides how to give
jobs allocations of distinct resource types, such as RAM and
CPUs, but assumes that each job has declared which resources
it needs to use and in what ratio (unlike our case, where we
consider heterogeneity over accelerators themselves).
The multi-interchangeable resource allocation (MIRA)

problem [53] also introduces the notion of effective through-
put similar to Gavel, but does not demonstrate how this can
be used to specify policies as optimization problems, does not
consider performance optimizations like space sharing and
placement sensitivity, and does not discuss how computed
allocations can be realized on physical resources.
Omega [50], Apollo [16], and Hydra [20] are schedulers

that take into account the fact that the target workload shows
heterogeneity in the number and duration of constituent tasks.

However, tasks largely take the same time on different CPUs,
and heterogeneity in memory capacities only impacts the
number and size of tasks that can be placed on a server. In our
work, the compute devices themselves are interchangeable
with sometimes large performance differences, and policies
decide the time fractions of resources each job should receive
while optimizing for various end objectives.

Dynamic Performance Estimation. As detailed in §6,
Gavel uses the approach proposed by Quasar [21] to esti-
mate co-located job performance online. In particular, Gavel
uses a mix of profiling and matrix completion to compute a
“fingerprint” against a set of reference models profiled offline.
In this work, we show that the techniques used by Quasar can
be successfully applied to this new setting.

Applicability to Other Settings. Even though we focused
this paper on allocating heterogeneous resources for DNN
training workloads, we believe that Gavel can be used for non-
DNN workloads as well. Other workloads that are amenable
to GPU execution, such as simulations, can be considered,
even though performance estimates for these applications will
be needed. We also believe the main technical insight pre-
sented in this paper – formulating diverse scheduling policies
as optimization problems – is broadly applicable, and can be
used to more easily deploy policies on homogeneous deep
learning clusters, and on CPU clusters as well.

9 Conclusion
In this paper, we proposed Gavel, a heterogeneity-aware clus-
ter scheduler that is able to optimize for many high-level
metrics like fairness, makespan, and cost. Gavel demonstrates
how existing policies can be expressed as optimization prob-
lems, and extends these policies to be heterogeneity-aware.
Gavel then uses a decoupled round-based scheduling mecha-
nism to ensure that the computed optimal allocation is real-
ized. Gavel’s heterogeneity-aware policies improve end objec-
tives both on a physical and simulated cluster. It can support
a higher average input job rate, while improving objectives
such as average job completion time by 3.5⇥, makespan by
2.5⇥, and cost by 1.4⇥.
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A Artifact Appendix
A.1 Abstract
Gavel is open sourced at https://github.com/
stanford-futuredata/gavel. We provide imple-
mentations for Gavel’s heterogeneity-aware policies, its
round-based scheduling mechanism, and the GavelIterator
interface, as well as implementations of relevant baselines
such as AlloX [37], a simulator, and code to reproduce the
graphs and other quantitative results shown in this paper.

A.2 Artifact check-list
• Algorithm: Heterogeneity-aware policies are expressed as op-

timization problems over allocations. Scheduling is performed
using a greedy round-based scheduling mechanism.

• Hardware: Experiments in simulation can run on a multi-core
server with Ubuntu 16.04. Experiments on a physical cluster
need Nvidia GPUs.

• Setup instructions: Setup instructions are available in the
README.md and EXPERIMENTS.md files provided in the artifact.

• Experiments: All results presented in this paper can be repro-
duced using the provided artifact.

• Required disk space: About 100 GB for logfiles when run-
ning simulated cluster experiments, about 10 GB for intermedi-
ate model checkpoints for physical cluster experiments, about
150 GB for datasets.

• Expected experiment run time: Days to a week for full
simulated experiments, shorter durations (hours to a day) for
scaled-down experiments (smaller cluster and trace).

• Public link: https://github.com/
stanford-futuredata/gavel.

• Code licenses: MIT License.

A.3 Description
A.3.1 How to access
The artifact is publicly available at https://github.com/
stanford-futuredata/gavel.

A.3.2 Hardware dependencies
Simulated experiments can be run on any multicore server.
We ran experiments on a 56-core server with Ubuntu 16.04.
Physical clusters need to have Nvidia GPU accelerators; other
accelerators supported by Deep Learning frameworks such as
PyTorch are supported as well by the scheduler.

A.3.3 Software dependencies
Software dependencies are specified at https:
//github.com/stanford-futuredata/gavel/blob/
master/README.md.

A.3.4 Datasets
Running the simulator does not require any external datasets.
When running physical cluster experiments, training data for
training jobs is needed. These are task-specific (for example,

image classification training jobs might use the ImageNet
dataset).
A.4 Installation
Installation instructions are specified at https:
//github.com/stanford-futuredata/gavel/blob/
master/README.md.

A.5 Experiment workflow
Experiments in simulation are triggered by a driver script that
instantiates the scheduler, and then adds jobs to the simulated
cluster either according to a pre-defined trace, or on-the-fly
using distributions with input parameters specified by the user.
The scheduler computes the optimal allocation for each active
job based on the desired policy and target objective, and then
assigns resources to jobs according to this computed allo-
cation using its round-based scheduling mechanism. Oracle
throughputs are used to estimate the progress of jobs given a
specified amount of time on the given resources. At the end
of a run, completion times of all jobs of interest are recorded.
Jobs of interest are usually a subset of all jobs submitted to the
cluster, since we want to study steady state behavior. An ex-
ception is made for makespan policies, which try to minimize
the total time taken by a collection of jobs; for this policy,
jobs are added once at the start of the trace, and then jobs are
allowed to drain from the cluster.
Experiments on physical clusters are also triggered by a

driver script run on the scheduler, but are different in one
key aspect: jobs are run on real accelerators for the specified
number of steps. Every round, the scheduler makes a schedul-
ing decision to decide what resources should be given to the
different jobs. As before, job completion times are recorded
when a job finishes executing.

A.6 Evaluation and expected result
Each experiment run results in an output logfile that records
the microtasks run every scheduling round, as well as
the completion times for each job. These logfiles can
then be parsed to produce the graphs and other quanti-
tative results presented in the evaluation section of this
paper. Code to parse and produce plots are available
at https://github.com/stanford-futuredata/gavel/
tree/master/scheduler/notebooks/figures.

A.7 Experiment customization
Experiments can be run with different seeds using the main
sweep scripts. Experiments can also be scaled down in differ-
ent ways to obtain results faster: a) smaller cluster, b) fewer
traces, c) smaller traces, and d) smaller set of jobs of interest
over which objectives (such as average JCT) are measured.

A.8 AE Methodology
Submission, reviewing and badging methodology is spec-
ified at https://www.usenix.org/conference/osdi20/
call-for-artifacts.
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