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ABSTRACT

Cloud providers offer instances with similar compute capa-
bilities (for example, instances with different generations of
GPUs like K80s, P100s, V100s) across many regions, avail-
ability zones, and on-demand and spot markets, with prices
governed independently by individual supplies and demands.
In this paper, using machine learning model training as an
example application, we explore the potential cost reduc-
tions possible by leveraging this cross-cloud instance market.
We present quantitative results on how the prices of cloud
instances change with time, and how total costs can be de-
creased by considering this dynamic pricing market. Our
preliminary experiments show that a) the optimal instance
choice for a model is dependent on both the objective (e.g.,
cost, time, or combination) and the model’s performance
characteristics, b) the cost of moving training jobs between
instances is cheap, ¢) jobs do not need to be preempted more
frequently than once a day to leverage the benefits from spot
instance price variations, and d) the cost of training a model
can be decreased by as much as 3.5X compared to a static
policy. We also look at contexts where users specify higher-
level objectives over collections of jobs, show examples of
policies for these contexts, and discuss additional challenges
involved in making these cost reductions viable.

1. INTRODUCTION

Cloud providers like AWS, GCP, and Azure provide an
opportunity for users to rent instances of many different
types, in multiple regions and availability zones. In addition
to reserved and on-demand cloud markets for long-term and
guaranteed instances, many cloud providers offer a market
for accessing unclaimed machines at lower cost, often re-
ferred to as the spot market. These instances are priced in-
dependently and dynamically, according to instance-specific
supply and demand. In this paper, we explore the following
question, which to our knowledge has not been broadly stud-
ied yet: how much can a user benefit from a dynamic
multi-cloud instance market?

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by email-
ing authors. Copyright is held by the owner/author(s). Publication rights
licensed to the DISPA 2020. The workshop on Distributed Infrastructure,
Systems, Programming, and AI (DISPA), August 31, 2020.

The primary challenge in taking advantage of spot pric-
ing is that spot instances can be reclaimed or preempted at
any time. Applications running on spot instances thus need
to be easily stoppable; applications would then be restarted
on another instance. Deep Neural Network (DNN) model
training is a good example of an application suitable for
spot instances; its iterative nature makes it conducive to
preemption. DNN training is also compute-heavy, uses ex-
pensive instances with accelerators, and often uses a static
read-only training data set that can be easily copied across
clouds and availability zones. Consequently, we use DNN
training as a target workload through the rest of this paper,
and focus on answering three important questions.

How should cloud instances be chosen? A DNN
model can be trained in the cloud using many instance types,
with different accelerators (e.g., GPU generations like the
K80, P100, V100; dedicated ML chips like the TPU [20])
and varying prices. DNN models are extremely diverse with
many operator types, and show widely different performance
behavior across instance types. The most appropriate choice
of instance type depends on the model as well as the user’s
objective (e.g., throughput, cost, or a combination of the
two, such as minimizing cost subject to a performance SLO
like “complete job X in 10 hours”).

Furthermore, spot instances, which are a cheap alternative
to on-demand instances, are dynamic:

e Instances are priced differently across regions, avail-
ability zones, and cloud providers. These prices change
with time as supply and demand change.

e A spot instance may be preempted at any time.

e Instances with multiple accelerators may be in less de-
mand compared to an instance with a single accelera-
tor of the same type, and consequently may be cheaper
on a per-accelerator basis.

All these factors influence the optimal choice of instance.

How should higher-level objectives over multiple
jobs be taken into account? Many organizations use
public cloud instances to train models with the latest data
on a repeated (e.g., daily) schedule. In such a use case,
cost may not be the only objective to optimize for, e.g.,
some important jobs might have strict deadlines that must
be met, even at a higher cost.

We present examples of policies that optimize for various
higher-level objectives that can be specified over multiple
jobs. Policies can be re-run whenever spot prices change
to ensure that per-job allocations are computed using the



latest pricing information. Different policies can lead to dis-
similar allocations: the allocation from optimizing cost alone
with no job deadlines might place computation on slower in-
stances that are cheaper, while minimizing cost with strict
per-job deadlines might require some computation be exe-
cuted on more expensive but faster instances to ensure these
strict deadlines are met. Allocations must also respect real-
world constraints, such as instance quotas.

How can real systems realize these cost-saving op-
portunities? Leveraging the spot market comes with many
practical challenges, including dealing with instance pre-
emption, determining how to schedule jobs on instances
while respecting the computed allocation, responding to price
changes, and transparently allowing movement of jobs be-
tween instances without user intervention. Our paper touches
on these challenges in §5.

Summary of contributions. We measured the cost
benefits of leveraging the dynamic multi-cloud instance mar-
ket using AWS, GCP, and Azure instance prices collected
over a month. We highlight the following key takeaways:

e The optimal instance type for a given model is de-
pendent on both the target objective (cost, speed, or
both) and performance characteristics of the model,
even when using statically-priced instances.

e The cost of moving model checkpoints between in-
stances is cheap. Moving input datasets is more ex-
pensive, but can be amortized over many jobs.

e Jobs do not need to be preempted more frequently
than once a day to leverage the benefits from spot in-
stance price variations. We observe that cloud providers
today change instance prices at a much coarser gran-
ularity than before [3, 26]; this affects how systems
leveraging the dynamic spot market should be designed.

e Instances themselves are usually preempted fairly in-
frequently (on the order of hours). In such cases, re-
cent systems such as Spotnik [29], which provides fine-
grained resilience to transient instance failures for dis-
tributed training, are not needed.

e The cost of training a model can be reduced by up to
3.5% (in practice, thousands of dollars) by making use
of all available sources of price variation, including by
up to 1.4x when enabling movement of applications
across instances mid-computation.

Code and pricing data are open sourced at https://github.

com/stanford-futuredata/training_on_a_dime.

2. BACKGROUND

In this section, we provide some background on DNN
training and instance pricing in the public cloud.

Deep Neural Network (DNN) training. DNN train-
ing proceeds in iterations. In each iteration, the model pro-
cesses a collection of training data inputs (called a mini-
batch), and subsequently updates its parameters using gra-
dients derived from the minibatch. If training were inter-
rupted, the model’s parameters would need to be check-
pointed to stable storage; state-of-the-art DNNs can have

Dollar-norm.
Throughput
P100 V100 P100 V100

Transformer 3.3x 3.3x 1.0x 0.8x
A3C 1.2x  2.2x 0.4x 0.4x
CycleGAN 4.5x  9.3x 14x 1.7x
ResNet-18 4.0x 6.8x 1.2x 1.2X
ResNet-50 3.7x  9.6x 1.1x 1.8X

Throughput
Model

Table 1: Throughput and dollar-normalized throughput
(using GCP on-demand prices) speedups with respect to a
NVIDIA K80 GPU for various ML training workloads. The
magnitude of speedup across GPU generations varies signif-
icantly across models, with later GPU generations (V100)
faster. The V100 is no longer always optimal when con-
sidering dollar-normalized throughputs; dollar-normalized
speedups are smaller across all models.

millions to billions of parameters. These model checkpoints
then need to be loaded on the new worker to ensure that
training progress is not lost. On-premise DNN schedulers
leverage the fact that DNN training is iterative to suspend
and resume training at iteration boundaries [16, 30].

Pricing in public clouds. Cloud providers allow com-
pute instances to be rented by users at fine granularities.
The standard way to rent instances from public cloud providers
involves using on-demand instances, which are guaranteed
to be available at all times. Instances are hosted in different
regions; each region has multiple availability zones.

Using on-demand instances for long durations can be ex-
pensive. As a cheaper alternative, cloud providers offer spot
or preemptible instances, which can be preempted with lit-
tle warning. Cloud providers usually price these instances
in one of two ways: either the spot price changes (capped at
the on-demand price) as demand changes (AWS and Azure),
or the instances are offered at a constant price and can only
be run for < 24 hours (GCP).

3. QUANTITATIVE ANALYSIS OF CLOUD
PRICING

In this section, we pose two questions in the context of
training various DNN models on instances with accelerators
in the public cloud: (1) How should users go about picking
which instance and accelerator type to use? (2) Instance
pricing is dynamic, and changes across cloud providers, re-
gions, availability zones, and over time. Can jobs leverage
this information to achieve better allocations, as defined by
the user’s desired objective, by moving between instances
(on the same or different cloud) over the course of train-
ing? Is this practical, given the overheads of moving model
checkpoints and the associated input dataset?

3.1 Instance Type Choice for Various Models

Cloud providers like AWS, GCP, and Azure offer instances
with various GPU types. Models use a diverse set of oper-
ators, leading to vastly different performance behavior on
these hardware architectures. Table 1 shows the observed
throughput speedups for various models and GPU types
compared to a NVIDIA K80 GPU. While one of NVIDIA’s
more recent GPU offerings, the V100, out-performs other
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Model Dataset Model Dataset  Model Cloud Region GPU Type
Size (GB) Size (GB) Cost Cost Provider K80 P100 V100

ResNet-50 150 0.098 9.13%  0.006% Amazon (AWS) us-east-1 2.7x N/A 3.3x

BERT-Base 17 0.408 0.98%  0.025% Google (GCP) us-west-1 3.4x 3.4x  3.3X

Table 2: Dataset and model sizes for ResNet-50 and BERT-
Base architectures, along with the compute cost and egress
costs (as a fraction of compute cost) for a single dataset and
model transfer. Each transfer is from a North American
region to the Internet. Each model transfer is extremely
cheap. Dataset transfers are more expensive, but need to be
performed only once per (dataset, cloud provider) pair.

GPUs for every model type, the relative speedup compared
to the older K80 GPU is model-dependent, and varies from
2.2X t0 9.6 x. However, instances with V100 GPUs also cost
more than instances with K80 GPUs.

The cost-effectiveness of instances for a particular model
can be compared using the model’s cost-normalized through-
put. When normalizing by the GCP on-demand price (we
use GCP since AWS does not offer P100 GPUs), we see that
the K80 and P100 GPUs are superior compared to the V100
GPU for certain models, like A3C [15] and Transformer [18].
The best GPU for a given model on a cost basis can also
change over time if using spot instances, which have dy-
namic pricing.

Moreover, users might have more nuanced deployments,
where they have both cost and time budgets; in such situa-
tions, we may want to switch between instance types part-
way through training. For example, an optimal schedule
may have a job spend 60% of training time on a cheap K80
GPU and the remaining 40% on a faster V100 GPU to min-
imize cost while respecting the provided time budget.

3.2 Dynamic Pricing for Cost Reduction

We now consider the various costs incurred when dynam-
ically moving training jobs between instances.

3.2.1 Cost of Data Movement between Clouds

Moving workloads between instances is only economical
if the cost of the associated data transfer is less than the
compute savings achieved by switching to the new instance.
Table 2 lists the dataset and model sizes for two commonly
benchmarked models (ResNet-50 [17] and BERT-Base [12]),
as well as egress costs as a fraction of the cost of training
these models for 160 hours on V100 spot instances. We
use ImageNet [11] as the ResNet-50 dataset and English
Wikipedia [5] as the BERT-Base dataset. The compute
cost is measured as the cost of 160 V100-hours using spot
instances. We use AWS prices for these measurements but
find similar results across GCP and Azure. We approximate
the cost of a single model transfer by computing the cost of
10,000 model transfers and dividing by 10,000. Ingress into
each cloud is free, and does not need to be accounted for.

‘We observe that we can feasibly perform hundreds of trans-
fers for each model before reaching even 10% of the compute
cost, since the cost of transferring a single model checkpoint
is cheap (on the order of cents). Furthermore, while a sin-
gle dataset transfer is far more expensive than transferring
a model checkpoint, the dataset need only be transferred
once to each cloud during training and can be amortized

Microsoft (Azure) us-east-1 7.3x 8.0x 5.1x

Table 3: Best-case cost reduction moving from on-demand
instances to spot instances with a single GPU on each
cloud. The best-case cost reduction varies widely with cloud
provider; however, as we show later in Figure 2, availability
also varies with cloud provider and instance type.
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Figure 1: Per-hour price of AWS spot instances with var-
ious GPU accelerators in the us-east-1 region. Prices can
change with time and across availability zones, and are often
capped at the on-demand price (p2.xlarge, us-east-1f).
Some instances (p3.16xlarge) exhibit no price variation.

over many jobs that use the same dataset. This transfer cost
is zero if the user already has a copy of the input dataset
available on all target clouds.

3.2.2  Volatility in Spot Instance Pricing for Compute

We collected spot instance prices for AWS and Azure over
a month in February 2020; we were able to collect 3 months
of backfilled data for AWS. We only include the most inter-
esting graphs in this section; more graphs from our analysis
are available at https://github.com/stanford-futuredata/
training_on_a_dime.

Cost reduction from spot instances. Table 3 shows
the best-case cost reduction observed when moving from an
on-demand instance to a spot instance in the same region,
for different clouds. Cost reductions vary from 2.7x to 8x.

Variation of spot price with time. The price of spot
instances can change with time as demand changes. Figure 1
shows the variation in spot prices for various instances with
GPUs in the AWS us-east-1 region. We observe that price
changes across regions are not highly correlated with each
other, with some regions capped at the on-demand price.
The cheapest availability zone in a region can change with
time. We also observe that some instances show extremely
stable pricing (p3.16xlarge).


https://github.com/stanford-futuredata/training_on_a_dime
https://github.com/stanford-futuredata/training_on_a_dime

8xV100, us-east1-c
8xV100, us-east1-b
8xK80, us-east1-c| frti=t t HH #
8xK80, us-east1-b =
*g 1xV100, us-east1-c
— 1xV100, us-east1-b
1xK80, us-east1-c t HHH:

1xK80, us-east1-b - - ; ;
0.0 0.5 1.0 1.5 2.0
Time (days)

()
o
[ =

a

=t b

8xV100, us-west1-b t f
8xV100, us-central1-c
8xK80, us-east1-c =t =+ =+ == tH —

8xK80, us-central1-c t t

1xV100, us-west1-b A== f—t

1xV100, us-central-c ittt i t=—
1xK80, us-west1-b L
1xK80, us-east1-c i H—i-h - ——t-

0.0 0.5 1.0 1.5 2.0

Time (days)

Instance

(b) GCP.

Figure 2: Availability of AWS and GCP preemptible in-
stances. Vertical lines at the start of a horizontal line show
the time at which the request was granted, and vertical
lines at the end of a horizontal line show the time at which
the instance was preempted. The frequency of preemption
changes with both availability zone and instance type. GCP
preempts instances at least every 24 hours.
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Figure 3: Minimum and maximum spot price over all
availability zones and regions in the US for various cloud
providers. GCP uses a static pricing model. Instance types
have different relative orderings, and at any given time, the
ordering can change (e.g., as in Figure 3d).
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Figure 4: Normalized cost on a per-GPU basis for instances
with K80 and V100 GPUs. Instances with K80 GPUs have
1, 8, and 16 GPUs, while instances with V100 GPUs have
1, 4, and 8 GPUs. We found that instances with a greater
number of GPUs generally exhibit more stable pricing.

Availability. GCP adopts an alternate pricing model for
preemptible instances: prices stay constant, but instances
might be preempted when demand exceeds supply. Figure 2
shows timelines of availability for instances with GPUs on
AWS and GCP. Instances on AWS are more reliably avail-
able for longer (not capped at 24 hours). Instances in some
regions were preempted more often than others (greater fre-
quency of vertical lines); 8 X GPU instances were preempted
less frequently on GCP. Preemption is preceded by a 2-
minute warning which can be used to checkpoint the model.
For most regions and instance types on AWS, preemption is
relatively infrequent (order of hours instead of minutes).

Instance prices across clouds. Figure 3 shows the
price of the cheapest and most expensive instances with dif-
ferent numbers of accelerators across clouds. The cheapest
cloud provider changes with instance type. In some cases
(not shown), GCP is the cheapest option, but jobs are pre-
empted after at most 24 hours.

Per-GPU price for multi-GPU instances. We also
studied the variation of price on a per-GPU basis across
instances with different numbers of the same GPU type (e.g.,
AWS has 1x, 8x, and 16xK80 instances). As shown in
Figure 4, we found that on a per-GPU basis, instances with a
larger number of GPUs have more stable pricing. However, a
user may need to pack multiple jobs onto the larger instance
(or run a single multi-GPU job) to fully utilize it.

3.2.3 End-to-end Cost Reduction

We show the net reduction in compute cost of training
a single ML model using all these sources of price varia-
tion in Figure 5. Each ML training job takes 4 days to
complete, and we show price reductions for single-GPU jobs
for simplicity. All strategies before multi-cloud use AWS
instances with GPUs in the us-east-1 region; multi-cloud
and dynamic pick instances across AWS and Azure. GPU
type chooses the GPU with best cost-normalized through-
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Figure 5: Average cost reduction to run the same number of training iterations (4 V100-days of computation), while
cumulatively adding more sources of price variation. 1x V100 uses the cheapest 1x V100 instance within the us-east-1 AWS
region, GPU type chooses the GPU with highest cost-normalized throughput, multi-GPU picks instances with multiple
GPUs if they are cheaper on a per-GPU basis; all these strategies use AWS instances only. The multi-cloud strategy picks
the cheapest instance across AWS and Azure at the start of training, and then sticks with this choice throughout training.
Dynamic continually picks the cheapest instance across AWS and Azure through training as prices change. Costs reduce as

sources of price variation are added.
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Figure 6: Average cost reduction from allowing dynamic
switching of instance type, cloud, and availability zone dur-
ing training, while varying job duration. Longer jobs are
able to make use of greater variability in prices over longer
horizons, consequently leading to larger cost reductions.
The right two bars in Figure 5 shows the impact of dynamic
switching for jobs with a duration of 4 V100-days.

put (instead of 1xV100 instances) when the job starts and
then sticks with that choice throughout, multi-GPU picks
instances with multiple accelerators if they are cheaper on a
per-GPU basis, and dynamic adapts the choice of instance
through training as prices change. All results assume that
datasets are available on each cloud.

We can reduce costs by up to 3.5x compared to the base-
line of using the cheapest 1xV100 instance. The effective-
ness of each strategy depends on the GPU type where the
model has the highest cost-normalized throughput (Table 1),
which can change with time depending on the pricing behav-
ior of these instance types across AWS and Azure. For ex-
ample, ResNet-50 [17] is always cheapest on V100 instances,
which show stable pricing; consequently, cost reductions are
minimal. We note that the movement of checkpoints is ex-
tremely cheap (cents / transfer) and the number of transfers
is small, since prices change only daily and not every price
change leads to an instance switch.

Impact of job duration on effectiveness of dynamic
scheduling. We further study the impact of job duration
on cost savings when using dynamic scheduling, where jobs
can be moved between instances as training proceeds and
the initial instance choice is not locked in through the du-
ration of training. In Figure 6, we show the cost reduction
of switching instances across GPU types, availability zones,
and clouds during training as job duration changes com-
pared to using the best option across cloud providers at the

start of training and sticking with this choice (red and pur-
ple bars in Figure 5). We see a cost reduction of up to 1.4x
for long-duration jobs that can take advantage of pricing
over longer horizons. Long-duration training jobs are com-
mon as models become larger. For example, the recently
released GPT-3 model [9] requires about 100 V100-years of
training computation.

Cost reductions vary across models since cost-normalized
throughputs for different models can change with time, e.g.,
the Transformer model switches between the Azure K80 and
P100 instances. Cost reductions are small for short-duration
jobs since instance pricing is stable over the short term (< 2
days). The number of switches between instances needed for
these cost savings is small (< 3). We note that even though
we only looked at single-GPU jobs in this section, the cost
savings are valid even for multi-GPU jobs. In particular, the
durations of distributed jobs which use many GPUs is still
often on the order of weeks to months [9].

4. HIGHER-LEVEL OBJECTIVES

When training a collection of ML models, users might
want to allocate resources while optimizing for higher-level
objectives. For example, users might want to minimize cost
alone, or minimize cost subject to performance SLOs (e.g.,
complete training in the next 12 hours), or minimize the
time needed to complete a collection of training jobs with a
given cost budget.

Representing allocations and throughputs. As we
noted earlier, optimizing more complex objectives might re-
sult in allocations where jobs move dynamically between
instance types. As a result, allocations need to specify the
fraction of wall clock time a training job should spend on
each instance type. We represent these allocations as alloca-
tion matrices X. X,,; is the fraction of time model m should
spend on instance type j. As we shall show, scheduling poli-
cies can be expressed as optimization problems involving X
that try to maximize or minimize an appropriate objective
function. Objective functions can be written in terms of ef-
fective throughput [22], the time-weighted average through-
put across instance types; given the relative performance of
each job on each instance type (T), the effective throughput
of a model m, throughput,(m, X), is simply Zj Trj - Xmj-
Since ML training is iterative with stable performance across
iterations, T' can be estimated from short timing runs.



4.1 Baseline: Maximizing Total Throughput

Maximizing the total effective throughput achieved by a
collection of jobs can be achieved by solving the following
optimization problem.

Maximizex Z throughput(m, X)
m

We add the following constraints to ensure that each job is
not over-allocated, and worker quotas are not exceeded.

Zj KXmj <1 vm
> m Xmj < quota; Vj

4.2 Minimizing Total Cost
The above policy can be extended to incorporate cost. To
minimize total cost of training, one can optimize,
throughput,(m, X)
cost(m, X)

Maximize x E
m

Here, cost(m, X) is effective cost, computed as >~ ¢; - X,
where c¢; is the per-hour cost of instance type j.

The numerator in each objective term represents the effec-
tive throughput in samples per unit time, the denominator
represents the effective cost in dollars per unit time, and the
resulting fraction is the effective normalized throughput in
samples per dollar.

4.3 Objectives with Both Throughput and Cost

Jobs can have time SLOs as well, e.g., certain high-priority
jobs might need to complete every 12 hours. We can add ad-
ditional constraints: given SLO,, for each model m (models
without SLOs can have SLO,, set to 00),

throughput(m, X) > num_iterations,, /SLO,

Similarly, one could also formulate policies with a mini-
mize makespan (time taken to complete all jobs in a collec-
tion) objective, while keeping the cost within a prescribed
cost budget B. The objective here would be,

Minimize x M

M is the makespan. In addition to the constraints above
that ensure that each job is not-allocated and worker quotas
are not exceeded, we need constraints that ensure that every
job completes within this makespan M, while also staying
within the cost budget B,

num-_iterations,,
M
M- (3, costr(m, X)) < B

< throughput,(m, X) Vm

This can be solved by binary searching for the smallest M
with a feasible solution satisfying the above constraints.

S. SYSTEM DESIGN CONSIDERATIONS &
DISCUSSION

In this section, we discuss important design considerations
that real systems need to address to be able to deliver these
cost reductions in a transparent way. We also highlight some
open questions that we think are worth reflecting on.

Scheduling of applications on physical instances.
Given a theoretical allocation computed from a policy, how

should resources be allocated to applications, considering
quotas on instances and applications that span multiple ac-
celerators? In multi-cloud settings, how should datasets be
streamed between clouds when not already available? How
should instance preemptions be handled?

API between the scheduler and applications. An
application can be moved either when the scheduler decides
to take advantage of a pricing change, or when a spot in-
stance is preempted by the cloud provider. How can we en-
able the movement of applications between clouds, regions,
and availability zones seamlessly without user involvement?

These questions are especially pertinent with distributed
training where state, such as IP addresses of participating
workers, needs to be reset when preemptions occur. For-
tunately, both forced and voluntary preemptions are rela-
tively infrequent (as can be seen in Figure 2 and §3.2.3),
meaning the cost of reconfiguration can be easily amortized
away without using sophisticated failover mechanisms like
those proposed in Spotnik [29]. Recent work [24] has demon-
strated how state in the Horovod communication library [25]
can be reset with minimal user intervention when using elas-
tic resources; similar techniques can be used for other com-
munication libraries as well.

Instance preemption. Spot instances are preempted at
different rates (Figure 2). How should one model the pre-
emptions of instances? This is important since users might
be willing to pay more for a more reliable instance. Can we
estimate the mean time to failure to decide which instance
types to use?

Spot instance pricing. Our measurements raise the fol-
lowing questions about how spot instances are priced: Why
do availability zones in the same region show different pric-
ing? Why do instance preemptions happen even when the
instantaneous spot price is lower than the on-demand price?

Market movement. What happens if all cloud users
exploit the cost inefficiencies described in this paper, and
use regions and availability zones with cheaper and / or
more stable pricing? Can this help with price smoothing,
with each of the different AZs showing more similar pricing
as demand equalizes? In other words, will drastic changes in
demand based on the movement of applications to cheaper
regions and availability zones cause prices to shift?

Incentivizing easier and more efficient multi-cloud
deployments. In times of high demand, cloud providers
can preempt spot instances. In such cases, it might make
sense for a user to take their computation to a different
cloud provider — this not only could give the user a better
experience, but can also improve the experience of all other
users by reducing demand and consequently the likelihood
of preemption. An auction system where cloud providers
can bid for a small fraction of another cloud provider’s jobs
could solve this problem — the original cloud can receive a
small commission for forwarding the job to another cloud
while also partially alleviating demand, the bidding cloud
receives additional business that it might not have otherwise
received, and users receives better service.

ML inference. Even though we only considered ML
training as a target application in this paper, we believe ML
inference is an interesting target application as well. ML in-



ference, however, introduces different challenges: in partic-
ular, instances need to be provisioned keeping system load
in mind, since system load has downstream ramifications
on other metrics of interest like application latency. Unlike
training, where users mostly care about just throughput and
consequently total time needed to train a model end-to-end,
inference applications have a number of performance-related
metrics of interest, such as average latency, tail latency,
throughput, and throughput subject to latency constraints.
Each of these performance metrics can be combined with
cost. How does one optimize for these different objectives?
Additionally, serverless offerings such as AWS Lambda and
Google Cloud Functions [2, 6] can be used in the inference
context; however, these do not come with accelerators at-
tached. Can inference on cheap CPU cores for short dura-
tions compete with more expensive but faster accelerators?

Packing multiple applications onto a single accel-
erator. Concurrently executing multiple models on the
same GPU using NVIDIA’s Multi Process Service (MPS),
CUDA streams, or new features like Multi-Instance GPU
(MIG) on the just released A100 GPU can help improve
utilization [19, 1, 23, 7]. Can this be used to further reduce
cost and improve resource utilization for end users?

Performance modeling of applications. Instead of
relying on timing runs for each application on each instance
type, can we learn a performance model that predicts run-
times of applications? Can we use this in settings where
multiple applications are packed onto a single instance?

Other applications. What other applications are long-
lived and amenable to such optimizations? For example, are
physical simulations a good fit? How can one get around the
fact that performance in other applications might be less
predictable, making optimization more challenging?

6. RELATED WORK

Existing work has looked at two ways to minimize cloud
costs: performance modeling for instance sizing, and lever-
aging the spot market. However, no prior work considers
both; prior work also does not specify how objectives over
multiple jobs can be specified and acted upon in this setting.

Minimizing costs in the cloud. Existing systems,
such as LLOOVIA [13, 14] and other resource provisioning
systems [27], have taken advantage of multi-cloud to min-
imize costs, but have focused on on-demand and reserved
cloud markets. AWS offers EC2 Fleet [4], a service that
can launch multiple on-demand and spot instances within
a maximum budget. Other systems have proposed using
spot instances for DNN training. DeepSpotCloud [21] takes
advantage of price differences within availability zones and
regions. HotSpot [26] and Stratus [10] are cost-aware sched-
ulers that move CPU jobs between spot instances to take
advantage of dynamic pricing. However, all of these sys-
tems use instances of pre-specified types, do not account for
the heterogeneity of application performance across instance
types, and cannot determine the optimal instance type for
a given job and objective.

Selecting instance types. Existing work has looked at
picking the right instance type for different classes of ap-
plications. Ernest [28] and CherryPick [8] try to predict

the runtime performance of various applications on instance
types available in the cloud, but do not consider spot pricing
of instances, and do not specify how these performance mod-
els can be used downstream to optimize for various higher-
level objectives.

7. CONCLUSION

In this paper, we analyzed the impact of the dynamic
pricing market in public clouds on the cost of performing
ML training. We found that moving jobs between instances
is cheap, that jobs can be preempted fairly rarely (once a
day) to leverage the benefits from price variations, that jobs
themselves are preempted fairly rarely by the cloud provider,
and that the cost of end-to-end training for a given model
can be reduced by up to 3.5x by exploiting the different
sources of price variation. We also showed how one can
write policies that optimize combinations of speed and cost
for collections of jobs. We believe this is is an exciting area
of future work, with applications to many other domains
besides ML training.
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