Session: Full Paper

SPAA 20, July 15-17, 2020, Virtual Event, USA

Spectral Lower Bounds on the I/O Complexity of
Computation Graphs

Saachi Jain
saachi@cs.stanford.edu
Stanford University
Stanford, CA, USA

ABSTRACT

We consider the problem of finding lower bounds on the I/O com-
plexity of arbitrary computations in a two level memory hierarchy.
Executions of complex computations can be formalized as an eval-
uation order over the underlying computation graph. However,
prior methods for finding I/O lower bounds leverage the graph
structures for specific problems (e.g matrix multiplication) which
cannot be applied to arbitrary graphs. In this paper, we first present
a novel method to bound the I/O of any computation graph us-
ing the first few eigenvalues of the graph’s Laplacian. We further
extend this bound to the parallel setting. This spectral bound is
not only efficiently computable by power iteration, but can also be
computed in closed form for graphs with known spectra. We apply
our spectral method to compute closed-form analytical bounds on
two computation graphs (the Bellman-Held-Karp algorithm for the
traveling salesman problem and the Fast Fourier Transform), as well
as provide a probabilistic bound for random Erdés Rényi graphs.
We empirically validate our bound on four computation graphs,
and find that our method provides tighter bounds than current
empirical methods and behaves similarly to previously published
I/0O bounds.

CCS CONCEPTS

» Mathematics of computing — Spectra of graphs; - Theory
of computation — Lower bounds and information complexity; «
Software and its engineering — Input / output.

KEYWORDS
computational graphs, spectral graph theory, I/O lower bounds

ACM Reference Format:

Saachi Jain and Matei Zaharia. 2020. Spectral Lower Bounds on the I/O
Complexity of Computation Graphs. In Proceedings of the 32nd ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA °20), Fuly 15—
17, 2020, Virtual Event, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3350755.3400210

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPAA 20, July 15-17, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6935-0/20/07...$15.00
https://doi.org/10.1145/3350755.3400210

329

Matei Zaharia
matei@cs.stanford.edu
Stanford University
Stanford, CA, USA

1 INTRODUCTION

Many important applications are bottlenecked not by processing
speeds, but by I/O cost: the speed to transfer data items between
fast memory (e.g., registers or the CPU cache) and slow memory
(e.g., RAM or disk). There has thus been considerable interest in
designing I/O efficient algorithms and in understanding I/O lower
bounds [3, 8, 12, 14].

Past work on I/O lower bounds has largely focused on finding
bounds for specific algorithms, such as matrix multiplication or the
Fast Fourier Transform [3, 8, 12, 14]. However, these approaches
leverage properties specific to the tasks at hand, and do not translate
across tasks. In this paper, we explore methods that can be applied
to arbitrary computations and can be computed efficiently in an
automatic fashion. Such generic bounds can be used to characterize
the I/O cost of computations that are too complex to analyze by
hand. Our method also provides a new approach for finding closed
form theoretical bounds on computation graphs as long as the
Laplacian eigenvalues (or bounds on these values) are known.

We approach the problem of minimizing I/O for an arbitrary
computation as finding an optimal evaluation order on the under-
lying directed computation graph. In a computation graph, each
vertex represents a single operation: the parents of the vertex indi-
cate the operands of the operation. We assume a two-level memory
architecture with a fixed amount of fast memory and infinite slow
memory: I/O is incurred when transferring data between fast and
slow memory (Section 3).

We present a novel method to provide lower bounds on the
1/0 for any computation graph using the eigenvalues of the graph
Laplacian (Section 4). We further extend this bound to the parallel
setting. This spectral bound is efficiently computable and can be
applied to arbitrarily large and complex graphs. For graphs with
known spectra, this bound can also be computed in closed form.
We compute closed form bounds for two computation graphs: the
Bellman-Held-Karp algorithm for the traveling salesman problem
(TSP) as well as the Fast Fourier Transform (FFT). In the process,
we also present a novel result on the multiplicity of the eigenvalues
of the butterfly graph, which we use to complete the bound for the
FFT. We find that spectral bound for the FFT graph is at most a
factor of (1/log M) weaker than the previously published asymp-
totically tight bound (where M is the size of fast memory), which
was computed via direct inspection of the butterfly graph using S
partitions [14]. We additionally present a probabilistic bound for
random Erdés Rényi graphs.

We evaluate our method empirically by computing lower bounds
for four types of computation graphs: the Fast Fourier Transform,
matrix multiplication (naive and Strassen), and the Bellman-Held-
Karp algorithm (Section 6). We find that our bounds are tighter than

https://doi.org/10.1145/3350755.3400210
https://doi.org/10.1145/3350755.3400210
https://doi.org/10.1145/3350755.3400210

Session: Full Paper

current automatic methods [9] and behave similarly to published
analytical bounds.

2 RELATED WORK

Hong and Kung first framed the problem of I/O complexity as the
“red-blue pebble game" and used it to prove several bounds [14]. The
game represents slow memory as an infinite pool of blue pebbles
and fast memory as a finite set of red pebbles. An evaluation then
corresponds to pebbling each vertex of the graph according to the
game; I/O is incurred when placing a red pebble on top of a blue
pebble (reading from slow memory) or vice-versa (writing to slow
memory).

Lower bounds on naive matrix multiplication often use the
Loomis-Whitney theorem, which embeds operations in the voxels
of a computation cube [2, 12]. However, volume based arguments
such as Loomis-Whitney do not apply for more general compu-
tations. I/O bounding techniques for algorithms beyond matrix
multiplication generally focus on the computation graph itself.

Most current work on lower bounds via computation graphs
requires manual inspection of the graph. In [14], the authors find
a 2S partition of the computation graph to bound I/O—a proof
technique that is non-trivial for complex graphs. In [16] and [5], the
authors use path routing and dichotomy width respectively to find
lower bounds. In [3], the authors reduce the I/O problem to a graph
partitioning problem in order to find a lower bound for Strassen’s
matrix multiplication algorithm using the edge expansion of the
graph, which was computed by hand by recursively decomposing
the Strassen computation graph. None of these methods can easily
be computed automatically for arbitrary graphs. Instead, lower
bounds on each graph must be separately proved by inspecting the
specific graph, and are thus difficult to generalize. We instead focus
on methods that can automatically compute lower bounds for any
input graph, regardless of its structure.

To our knowledge, there are only two works that discuss auto-
mated methods for lower bounds for arbitrary graphs. In the first
work, the authors find automatic bounds by computing convex min
s-t cuts on the sub-graphs [9]. With a runtime O(n®) for a graph
with n nodes, this method is significantly slower than our spectral
method, which can be computed in O(n?). We compare against this
method in Section 6 and find that it yields looser bounds than our
proposed spectral method. The second work uses an Integer Lin-
ear Program (ILP) to solve for the 2S partition of the computation
graph [8]. This method is computationally expensive because it ne-
cessitates an exact ILP solver and is thus combinatorial in difficulty.
Since this ILP based method is intractable, we do not compare its
performance against the spectral bound as the method cannot be
performed for large graphs, instead limiting ourselves to methods
that can be computed in polynomial time.

3 COMPUTATION GRAPHS AND MEMORY
MODEL

A computation can be represented by an underlying directed com-
putation graph G. Each operation, including the inputs and outputs,
is represented by a vertex. An edge from u to v indicates that the op-
eration v was computed with u as an operand. The graph is acyclic,
with the inputs as sources and the outputs as sinks. For example,

330

SPAA 20, July 15-17, 2020, Virtual Event, USA

Figure 1: Computation graph of an inner product.

the inner product of two vectors with two elements each can be
represented as a 7 vertex graph: 4 vertices for inputs, 2 vertices for
the intermediate products, and a single vertex for the sum. (Figure
1).

We assume a two level memory hierarchy on a single processor
with infinite slow memory and a limited cache of fast memory of
size M elements, where the result of each operation in the computa-
tion graph is a single element. Every operation in the computation
graph must be evaluated. When a vertex v is evaluated, the parents
of v must be loaded into fast memory from slow memory if they are
not already present. As in [3, 8, 16], we disallow recomputation of
the same vertex: therefore, if a computed result is needed elsewhere
in the computation graph and is about to be evicted, the result must
first be written to slow memory.

I/O can be separated into trivial (reading inputs and writing
outputs) and non-trivial I/O. We focus on non-trivial I/O: we thus
do not directly include the cost of reading inputs or writing outputs.
Instead, we assume that inputs can be read from the user directly
into fast memory, and outputs are reported to the user immediately
as they are computed. However: if an input is evicted from fast
memory and is still needed elsewhere in the computation, it must be
written to slow memory. This assumption is inherent in the proof
in [3, 9]. Because we seek lower bounds, we do not constrain the
eviction policy of fast memory. I/O is incurred when, during com-
putation, an element is written to slow memory from fast memory
or read from slow memory into fast memory.

An evaluation order is then the order that operations are eval-
uated in the graph. Since a vertex can only be evaluated after its
parents, a valid evaluation order must be topological with respect
to the graph. We thus seek lower bounds on the I/O incurred by
the optimal evaluation order.

3.1 Optimization Task

Formally, let G = (V, E) be a computation graph with vertices V'
and edges E. Let n = |V| be the number of operations in the graph,
and let M be the size of fast memory. Note that each vertex in the
graph is evaluated exactly once; therefore, the total computation
takes exactly n time-steps.

We formalize an evaluation order on G as a permutation matrix
X € R™", where X;; is one if v; is computed at time-step i. Let
Og be the set of valid topological orders on G. Since vertices must
be evaluated after their operands, X € Og.

AnT/O is incurred every time an element must be read into fast
memory from slow memory or written to slow memory from fast
memory. Let J(X) be the number of nontrivial I/Os that were
incurred by evaluating G in the order specified by X on G. We seek
a lower bound on J,, the optimal I/O incurred by any evaluation

Session: Full Paper

()rder:
Y = inf X).
JG 1 OG]G()

4 SPECTRAL BOUNDS VIA THE GRAPH
LAPLACIAN

In this section, we find a lower bound based on the eigenvalues of
the graph Laplacian. We first link the problem to the edge expansion
of the graph, by counting the number of edges that cross boundaries
over a graph partition as in [3]. We frame this problem as a quadratic
program (QP) with respect to the graph Laplacian. Finally we use
the Laplacian’s spectra to find a lower bound on the solution to the
QP.

Notation: For v € V, let dj;(v),dous(v), and d(v) be the in-
degree, out-degree, and total degree of v respectively. Finally, for
any subset S C V, we define dS as the edge boundary of S: 95 =
{w,v)€eE|(ueSAvgS)V(veSAu¢s)}.

4.1 Counting Edges over Graph Partitions

For any evaluation X on G, we can choose a partition P C 2V
that divides V into disjoint subsets of vertices so each S € P is
contiguously ordered by X. P thus defines breakpoints on X. Figure
2 depicts an example of a partition on a graph. The numbers on
the vertices indicate the evaluation order determined by X. The
graph is then partitioned into green, yellow, and blue segments.
Each segment is contiguous with respect to the order.

Let Px be the set of valid partitions on X according to the or-
dering constraint. We leverage the following key lemma from [3],
which divides the I/O cost of a subset of a computation graph into
reads (edges entering the subgraph), and writes (edges leaving the
subgraph). For each subset S € P, define the following sets:

Rs={veV|vé¢S 3v,u) € EstuecsS},
Wsg={veV]|veS Iv,u) € Estu¢S}
Rg is the vertices not in S with an edge into S, and W is the

vertices in S with an edge outside of S. Ballard et. al in [3] then
present the following lemma:

LEMMA 1 (EQUATION 6 FROM [3]).
Jo(X) > max | > [Rs|+[Ws|| - 2M|P|.
PePx Sep

ProoF. We summarize the proof of their lemma here. To evaluate
the nodes in S, the vertices in Rg must be read into fast memory
(or were already in fast memory before beginning computation of
S). Similarly, the vertices in Ws are freshly computed and needed
elsewhere in the evaluation and thus must be written out or left in
fast memory at the end of S. (Figure 3). Since the fast memory size
is only M, at least |Rg |+ |Ws| —2M I/O’s are incurred by evaluating
the nodes in S.

Summing over all S € P leads to a bound on the IO incurred by
G. Any P is valid so long as P splits V into components contiguous
in X. Specifically, if Px is the set of valid partitions with respect to

Jo(X) > max | > [Rs|+Ws|| - 2M|P|.
PEPX Sep

331

SPAA 20, July 15-17, 2020, Virtual Event, USA

Figure 2: A computation graph: the numbers indicate the
evaluation order and the colors are a valid partition.

Figure 3: We identify sets Rg and Ws that cause 1/0 for each
component S in partition P.

[m]

It is easier to compute the number of edges crossing into and
out of S rather than the vertex sets Rg and Wg. Ballard et. al use
this lemma to bound the I/O of the computation graph for Strassen
matrix multiplication. However, they make several assumptions that
weaken the bound for general graphs. Firstly, rather than computing
abound for all segments in the partition, they derive a bound for any
single n/|P| sized sub-graph within the Strassen computation graph.
They then compute this bound specifically for Strassen-like graphs,
and multiply this bound by |P| to achieve a bound for the entire
graph. This approach succeeds for the Strassen graph where the I/O
is evenly distributed across the graph. However, this relaxation can
be loose for graphs where the I/O is concentrated in a small portion
of the vertices. Secondly, they deal strictly with regular graphs by
adding loops to the computation graph. As a result, they link the
size of |Rs| + |Ws| to the size of the edge boundary by dividing by
the maximum undirected degree, i.e |Rg| + [Ws| > mw.ﬂ.
While this assumption is convenient for closed form bounds, it is
not necessary for automatic methods where we can retain access
to the graph.

The following theorem links the partition to the I/O cost. We
diverge from [3] by bounding over all segments and maintaining
access to the individual degrees of the vertices.

THEOREM 2. For fast memory size M and graph G, the optimal
I/O is lower bounded by:

J% > min max — 2M|P|. (1)
G XEOQ PePx SEP (1,0)€dS dout(u)
Proor. We bound |Rs| and |Wg| as:
Hu¢S,veSt H{ueS,ve¢ St
Rg| > —_—, |Ws| > —_—
IBs| Z dout(u) | | Z doyt(u)

(w,v)€E (u,v)€E

Session: Full Paper

Summing reads and writes, we have:

1
Rs| +[Ws| > > ——.
(u,0)€dS dout(u)

Minimizing over all X, we get the full bound

—2MIP|. (2

]52 min max —_—
XeOg PePx SEP (u,0)€dS dout(u)

]

Intuitively, an adversary picks some evaluation order X on G.
We pick a hard partition P on X to maximize the I/O incurred. In
the next section, we formalize Theorem 2 as a quadratic program
using the graph Laplacian of an out-degree normalized graph. We
then lower bound the I/O cost via the eigenvalues of the Laplacian.

4.2 Formulation via the Graph Laplacian

In Theorem 2, we solved for the minimum order over a maximum
partition. However, since any partition will give us a lower bound,
we can choose to split our graph into evenly sized segments. We pick
some k < n as our number of segments: splitting into k subsets
of as equally as possible (such that the first n mod k segments
have |n/k| + 1 vertices and the rest have | n/k] vertices). For an
evaluation order X, let PX-K) ¢ p 'x be the k-partition described
above. If PY-%) would be the above partition assuming an identity
evaluation order X = I, then we can define wk) ¢ rrxk 5
(W<k))ij =I{i € Pj(.I’k)}. Then XW*) e Rk 5 the partition
matrix for the k-partition PO-K).

We transform our graph directed G into a weighted undirected
graph as follows: for each directed edge (u,v) € G, we add the
undirected edge (u,v) to G with weight m Henceforth, we
indicate the degree function, degree matrix, and adjacency matrix
of the original G as d(v), D, and A respectively; we analogously
denote d~ D, A as the degree function, degree matrix, and adjacency
matrix of G.

Let L = D — A be the graph Laplacian of G. L is positive semi-
definite, so all of its eigenvalues are nonnegative. The Laplacian is
convenient for expressing the edge boundaries of vertex subsets.
Specifically, for subset S C V, let x € R” be the one-hot encoding
of S (i.e x; = I{v; € S}). Then:

1

T7 T 15 T
x Lx=x" Dx—-x" Ax = .
dout(u)

(u,v)€dS

®)

Using this property we can bound the edge crossing as:
1
doyt(u) ’

(WO XTIXwR) = 3
SepX.k) (u,v)edS
Letting wik) = W(k)W(k)T, and rewriting Equation 1 leads to

the following quadratic program:

THEOREM 3 (I/O BOUND viA GRAPH LAPLACIAN). For a computa-
tion graph G and any k < n with L and W) defined as above, JG is
lower bounded by the solution of:

minimizey m,?x tr(XTI:XW(k)) - 2kM

X € Og.

332

SPAA 20, July 15-17, 2020, Virtual Event, USA

In the next section, we relax the above optimization problem to
find a lower bound on the objective using the eigenvalues of L and
wik),

4.3 Spectral Bounds

We derive the following eigenvalue bound:

THEOREM 4 (SPECTRAL METHOD).

k
n ~
G2 |] DA - 2km 4
Joz ¢ 2 (@) @
ProoOF. We relax the topological constraint X € Og, and instead
constrain over orthogonal X. We thus have for any k:

T 2 eXTIxw®) —2kM st xTX = xxT = 1.

For symmetric L, W and orthogonal matrix X, where A1, ..., A5
and i1, ..., i are the eigenvalues in increasing order of L and W
respectively, we have tr(XTLXW) > > Aipin—i, or the minimal
dot product of A and y (see [10], Theorem 3). Here W) is a block
diagonal matrix, with n — k zero eigenvalues and k eigenvalues that
are at least | n/k]. Therefore, we apply our lower bound as a sum
of the first k eigenvalues of L:

k
J = max tr(XTIXW®) = 2kM > " |nfk] Ai(L) - 2kM,
i=1
O

This bound can be found in O(n?) time. We first find the eigenval-
ues A(L) in O(n3). We then iterate over possible values of k which
takes constant time per iteration to find the best eigenvalue. How-
ever, we generally only need small number of eigenvalues to find
a good k. Since any value of k is a lower bound, it suffices to find
the h smallest eigenvalues of L. These values can be found using
a method such as Lanczos-Arnoldi with time complexity O(hn?):
this complexity decreases even further with sparse L using sparse
eigenvalue solvers.

For closed form analysis, sometimes the exact form of the original
Laplacian spectra A(L) are known, but the spectra of our out-degree
normalized Laplacian A(L) are not. While A(L) can be easily com-
puted automatically, they can be harder to derive for closed form
analysis. We can naturally loosen the bound in Theorem 4 to be in
terms of L rather than L.

THEOREM 5 (SPECTRAL METHOD WITH ORIGINAL GRAPH LAPLA-
CIAN).
1 n k
Ty — H A:(L) - 2kM.)
¢ maxy ey dout(v) Lk ; '
Proor. We follow the same steps of Theorem 4, but we bound
Equation 1 as

|95

— | - 2M|P|.
maXqyev dout(v)) 1Pl

J5 > min max Z
97 xXeog Perx \ &
We can then reframe Equation 3 in terms of L, noting that, if

x € R™ is the one-hot encoding of § C V, then x” Lx = |3S|. Using

Session: Full Paper

the same partitioning argument and definition of W), we can
reframe the quadratic program in Theorem 3 with L instead of L:

. tr(xT Lxwk))
minimize x max —mm————— —
k maXgpev dout(v)
X € Og.

Then, following the same spectral argument as in Theorem 4,
we arrive at a looser, but more convenient bound:

k
" 1 n Ty
JG = maxy ey dout (V) \J(J ;AI(L) 2kM.

4.4 Parallel Spectral Bounds

We generalize Theorem 4 to the parallel setting as follows. Suppose
that we have p processors, each with memory M. As in [3, 12] we
count I/O as the communication with a processor to slow mem-
ory or between processors. We make no assumptions about the
distribution of the workload.

THEOREM 6 (PARALLEL SPECTRAL BOUND). For a computation
graph G distributed across p processors, at least one of the processors

has I/O J¢, lower bounded by:

k
o> %J ZA,(L) — 2kM. ©)
i=1

Proor. For a given evaluation of G, each vertex in G is evaluated
by one processor. Let V1, ..., Vp be the vertex sets associated with
each processor. Then given the optimal evaluation order X we
can define p evaluation orders Xi, o Xp where X; indicates the
evaluation order of processor i on its vertex set V;. Since memory
is local to each processor, we can use the same graph partitioning
machinery in Theorem 4 per-processor. For processor i, if Py is
the set of valid partitions over X;, the I/O of processor i is lower

bounded by

J6(X;) > max (Z IRs| + |w5|) —2MP).
PePxi \§ep
There must exist one processor i* for which |V;=| > n/p. For this
processor, we can partition Vj+ into k equal parts of % vertices
each (call this partition P). Since any partition of V;+ is a lower
bound, we have

JoXi) = |) — 2kM.

§ob (u5es Tour @)

However, as a looser lower bound, instead of restricting P to
equal partitions of V;+, we can consider the set of equal partitions of
the entire graph into kp parts of ip and simply pick the k sections
incurring the least I/O cost. This is then equivalent to the bound in
Theorem 4 with kp partitions, but we only count I/O from the first
k parts (which correspond to the smallest k eigenvalues). We then
have

JG 2

k
n ~
— (D) = 2kM.
ka;_lA() k

333

SPAA 20, July 15-17, 2020, Virtual Event, USA

e

(2)
fob

Figure 4: Bellman-Held-Karp computation graph with 3
cities. The graph is a 3 dimensional boolean hypercube, with
starting point 000 and ending point 111.

5 ANALYTICAL BOUNDS FOR SPECIFIC
GRAPHS

For computation graphs with known eigenvalues, we can compute
the bound in Theorem 5 directly. We perform this analysis for the
Bellman-Held-Karp algorithm for the Traveling Salesman Problem
and as well as the Fast Fourier Transform, which have a hypercube
and butterfly computation graph respectively. For both of these
problems, we consider solely nontrivial I/O, which does not count
reading inputs or writing outputs. In the process, we derive the
spectrum of the FFT graph; to our knowledge, this is the first closed
form of the spectrum of the unwrapped butterfly graph that includes
multiplicity. Finally, we present a probabilistic bound on the I/O of
a random Erdés Rényi graph.

12!)
log M

for a 2! point FFT through manual inspection of 2 partitions. We

find that our spectral bound of Q(10?1\4

off from this published tight bound.

Previously, [14] found an asymptotically tight bound of Q(

) is only a factor of 1/log M

5.1 Hypercube Graph

The hypercube is a computation graph that appears as a result
of many hard dynamic programming problems [1]. For example,
consider the well-known Bellman-Held-Karp algorithm which uses
dynamic programming to solve the traveling salesman problem
[4, 11]. The approach solves for the optimal path visiting a subset
of the cities by leveraging the computed optimal paths through
adjacent subsets with one fewer city.

The Bellman-Held-Karp algorithm with [cities can be naturally
formulated as an iteration on the vertices of a boolean hypercube.
We encode “cities visited” as a length [binary string. Let Q; be a
boolean [-dimensional hypercube, where each vertex k is a length [
binary string, and (k1, k2) € E if kp can be constructed by setting
a 0in k; to 1. Let S(k, i) be the shortest path visiting all the cities
active in k and ending up at the i’th city. Then to solve TSP, we seek
to find the solution set Y[k] = {S(k, i) | k[i] = 1} for each vertex
k in the boolean hypercube Q;. For example, Y[01101] contains
three paths that have traversed cities 2, 3, and 5, where each path
has a different ending point. Y[k] can be easily computed given
the results of k’s incoming neighbors in Q;, and Y[{1}}] gives the
solution to the TSP. Thus Q; represents the computation graph for
the under this formulation of the Bellman-Held-Karp algorithm.
An example of this graph can be seen in Figure 4.

Session: Full Paper

Figure 5: Computation graph for a 2! = 4 point Fast Fourier
Transform.

The I/O bound for this formulation of the Bellman-Held-Karp
algorithm can then be found via our spectral method, because the
hypercube has relatively simple eigenvalues. The [-dimensional
hypercube has n = 2! vertices and Laplacian eigenvalues 2i for
i =0,...,] with multiplicity (f) If we choose k to encompass the
top eigenvalues up to i = @, we have k = X% (i) The maximal
out degree is I. For any o < 2l

P 1 2l Z“:i(l)_ZMZ“:(I)
T du zr, h N g

i

While any a < [would be a lower bound, for simplicity we here
choosea =1(iek =1+1):

\%

I+1

2
]g; > m —-2M(l +1).

For a tighter bound we can optimize more specifically over a. We

I
see that this bound is nontrivial as long as M < (li_l)z

5.2 Fast Fourier Transform Graph

The Fast Fourier Transform (FFT) computation graph is a butterfly
graph. For a 2! point FFT, the butterfly graph B; has (I + 1)2 vertices,
which can be arranged into [+ 1 columns. A 2l =4 point FFT can
be seen in Figure 5. The butterfly graph can be defined inductively:
allow By to be defined as a single vertex. Then B; can be constructed
as two copies of B;_; that are joined by an extra final column of
(I + 1) vertices.

We derive the eigenvalues of the Laplacian of B; (see the Ap-
pendix of the full version of this paper, [13]). To our knowledge,
closed forms with multiplicities were only previously known for
the wrapped butterfly graph [7]. The eigenvalues we derive are:

j . o
4-4 —|,Vj=0,..,1 Itiplicity 1
COS(1+1)] mu lpICly
2+ 1 .
4-4cos (%) Vi=1,..,01j=0,..i-1; multiplicity 2/
1

4 —4cos (%) Vi=1,..,1-1;j =1,..., i;multiplicity (I — i)ZI_i_l.
i

The smallest eigenvalue is 0 (from the first expression), but the
next eigenvalues are governed by the second expression with j = 0

SPAA 20, July 15-17, 2020, Virtual Event, USA

as long as 2i + 1 > [+ 1. We choose some « and set k = 29+1, We
compute the lowest k eigenvalues of the Laplacian of B;. Of these
eigenvalues, 2% have (with i =1 — a):

1= /4

=4-—4cos (m) .

To compute our lower bound, we assume the other eigenvalues
are 0. We note thatn = (I + 1)21. Then we have (dividing by our
maximal out-degree 2):

* 1 4 a+2
JGZ(I+1)2 (1—C05(m))—2 M.

Suppose that we set « = [— log, M, under the assumption that
M < I. Then:

Foea+n2 (1-cos|—F |- 2

G= 2log,M+1) 1+1)°
To see how this behaves, we can use the small angle approximation
62/2 =~ 1 — cos(f) for small 0 to get:

T 4

JE> A+t —— - — .

g=(+D glogM 1+1
Thus, for large M and [where M < I, our bound behaves at least

12!
log® M
than the tight lower bound for butterfly graphs: Q(lolg%), which
is computed by inspection on the specific graph using S-partitions
[14].

as well as Q(). This bound is only a 1/log, M factor worse

5.3 Random Graphs

The spectral bound is flexible, and can perform well on most graphs
with high connectivity regardless of its structure. In the following
section, we characterize the performance of this spectral bound
given a random graph, and show that the spectral bound provides
nontrivial results for as long as the graph is well-connected. While
this graph is not a specific computation graph, examining random
graphs allows us to understand the performance of the bound as
we increase the connectivity of the graph.

We consider an Erdés Rényi graph G(n, p) on n vertices, where
each edge is determined by flipping a coin with probability p. We
will only deal with the regime where p > k’%, where the graph is
almost surely connected [15].

We begin with the case where p = @(Ioin), but the graph is
still connected. More specifically, we specify p = po lﬁg_;l for some

po > 6. By [15], in this regime:

Jo ~ pologn|1— | = +0(L) + O(——0)
eoloenlic 12 v oty s ot
2T hoTos bo bo Vpologn

We first concentrate the maximum degree of the graph using
Chernoff’s bound as in [6]. We first note that the degree d of a single
vertex is governed by the sum of n — 1 Bernoulli random variables
with probability p. The expected degree is p = p(n — 1) = pp log n.
Then using Chernoff’s bound, we have:

P(d > (1+8)p) < exp(—pd?/3)

2po logn

P(d = (1+ d)pologn) < exp(_5 3).

Session: Full Paper

If we set & = 1/6/po, we concentrate individual degrees as P(d >
(1 ++/6/po)po log n) < 1/n?. Then, using the union bound, we can

concentrate the maximum degree as:

P(dmax = (1++/6/po)pologn) < 1/n
Thus, with high probability (1/n — 0 as n — o), we have

dmax = (1 + \/6/p0)p0 log n.
Setting k = 2 in Theorem 5, we have with high probability:

n 2 1 1
s ———[1-4]—+0(—) + O(———) | — 4M.
¢ (1+M>(oo ™ 0" YpoTogn
As n — oo this bound scales roughly with n + —2—, and is
n

linear in M. Our bound becomes weaker, but still nontrivial, when
we consider regimes with higher p. This is because as p increases,
the maximum degree scales to almost np (and our bound requires
dividing by the maximum out degree). For example, consider the
l:gp ~ — 0, as in this regime the graph is essentially
regular with degree np. Then from [15], we have that with high
probability as n — oo:

A2(L) = np + O(\/nplog n).

We then can apply Theorem 5 to lower bound the non-trivial I/O
(setting k = 2) and dividing by the max degree np:

s n flogn
JG > 5(1 +O(F))—‘lM

logn
np

case where

Asn — o0, O(
in n.

) will decay to zero resulting in a bound linear

6 EVALUATION
6.1 Solver

We evaluate our two lower bounds on four common computation
graphs. To facilitate our evaluation, we develop a solver that traces
operations during a Python computation and thus extracts a compu-
tation graph 1. The solver inter-operates with standard arithmetic
operations and supports the inclusion of custom operations.

When computing Theorem 4, any choice of k < n produces a
valid bound. We set h = 100, computing up to the first 100 values
of the graph Laplacian, and choose the optimal k from k € {2...h}.
We discuss this choice in Section 6.5.

6.2 Evaluation Computation Graphs

We evaluate the following graphs. Examples of these graphs can be
found in Figure 6.

(1) Fast Fourier Transform (FFT): We evaluate the I level FFT of
an 2! element array, which is a butterfly graph. This graph
has a published bound [14] of

Q (lzl/logM) .

10ur code can be found at https://github.com/stanford-futuredata/graphIO

335

SPAA 20, July 15-17, 2020, Virtual Event, USA

Figure 6: Computation Graphs for (top to bottom): 8 point
FFT, 2 X 2 Naive Multiplication, 2 X 2 Strassen Multiplication,
5 city Bellman-Held-Karp algorithm for TSP

(2) Naive Matrix Multiplication: We evaluate the graph formed
by naive multiplication of two n X n matrices C = AB. Specif-
ically, we compute C;; as the dot product of the ith row of A
and the jth column of B. This graph has a published bound
(12]

Q (n3 / \/M) .
Strassen Multiplication We evaluate the graph formed by
multiplying to n X n matrices C = AB via Strassen’s method.
Since Strassen’s method is a recursive method that splits

matrices into quadrants, we evaluate on values of n that are
powers of 2. This graph has a published bound [3] of

Q ((n/\/]_/[)log27M) .

—
[SY)
=

o

=

Bellman-Held-Karp We evaluate the hypercube computation
graph formed by performing the Bellman-Held-Karp algo-
rithm for a [city TSP. We could not find a prior I/O bound for
this problem in the current literature. However, in Section

https://github.com/stanford-futuredata/graphIO

Session: Full Paper

1/O bound vs [for 2' point FFT

10004 —%— Spectral, M=4
—— Convex Min-cut, M=4
—Cg 800 1 -4-- Spectral, M=8
5) -—-- Convex Min-cut, M=8 ,’
1
M <-4+ Spectral, M=16 /
Q 6007 e Convex Min-cut, M=16 ,'I s
—_— R
&
Q
= 4001
z
O 200
0] $————————t
3 4 5 6 7 8 9 10 11 12
l
1/O bound vs (2 for 2 point FFT
14000 —4— Spectral, M=4
120001 -4-- Spectral, M=8 '
= 4= Spectral, M=16
5 100001
m
Q8000
=
= 6000
~+
=
=" 40001
o
O 2000
OA
0 200000 400000 600000 800000 1000000
12!

Figure 7: FFT: Bound vs [(top) and 12! (bottom) for M =
4,8,16; | = FFT Level. Max in-degree 2

5.1 we derive using the spectral method a bound of:

Q ((2’/1) - 2Ml) .

6.3 Baselines

The only current methods for creating automatic lower bounds
for any arbitrary graph that we could find are the convex min-cut
method [9] and the 2S partition method [8] (see Section 2). The 2S
partition method involves solving a Mixed Integer Program, and
is combinatorial in complexity: we could thus not perform this
method for large graphs. The convex min-cut method is polynomial
in time but still extremely expensive at O(n’). We evaluate the
convex min-cut method for as large graphs as possible, cutting off
evaluation at 1 day.

Convex-Min Cut: The convex min-cut method transforms the
graph with respect to a vertex v into a flow problem and then

SPAA 20, July 15-17, 2020, Virtual Event, USA

[/O bound vs n for n x n Naive Matmult

5 —4— Spectral, M=32 //’

2007 Convex Min-cut, M=32 /
E -4~ Spectral, M=64 //’ N
8 20009 -=- Convex Min-cut, M=64 /
M -4+ Spectral, M=128 ,'/ ‘,5.
Q 15004 -+ Convex Min-cut, M=128 /’ 4
—
=
o)
= 1000 1
=
=
S 500

0_

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
n

1/O bound vs n? for n x n Naive Matmult

—4— Spectral, M=32 /"‘
25001 --4- Spectral, M=64 *,/’
F% -4+ Spectral, M=128 el N
Z 20001 - '
?} o R
< 15001
= s
= -
(]
= 1000 A
o,
g
S 500
0_
0 50000 100000 150000 200000 250000
3

n

Figure 8: Naive matrix multiplication: Bound vs n (top) and
n3 (bottom) for M = [32,64,128]; n = side length. Max in-
degree n.

finds the minimum s-t cut of the transformed graph. The method
maximizes over all v in the graph. The method decomposes trivial
(reading inputs and writing outputs) and non-trivial I/O, and thus
fits well with our problem set-up. The runtime of this bound is O(n®)
where n is the number of vertices in the graph. In order to reduce
runtime, the authors suggest loosening the bound by partitioning
the graph into smaller sub-graphs using METIS and running convex
min-cut on each sub-graph. If C(v, G) is the minimum convex cut
for G transformed with respect to v, and P is the partition reported
by METIS, the authors report the bound:

TG > Z max max(0, 2 (C(v, G) — M)).
PeP veb

More details can be found in their paper. The authors suggest
that each sub-graph have at most 2 * M vertices, and evaluate their
bounds on a series of small, simple computation graphs with very
uniform structure. However, when evaluating on more complex

Session: Full Paper

[/O bound vs n for n x n Strassen Matmult

—4— Spectral, M=8

2001 —— Convex Min-cut, M=8
E -<4- Spectral, M=16
g Convex Min-cut, M=16
M 150
o
~
—
2 100
+—
=
=
o 507
O

0] =zt

—4— Spectral, M=8
--4- Spectral, M=16 o
= 4000
S
= 3000 1
o
=
e
55 2000 1
2,
=
) i
3 1000
0

60000 80000 100000

nl()g,2 7

0 20000 40000

Figure 9: Strassen: Bound vs n (top) and nl°€:7 (bottom) for
M = [8,16]; n = side length. Max in-degree 4.

computation graphs such as matrix multiplication or FFT, we found
that the above bound gave trivial results (J* > 0) for every one of
the graphs. We hypothesize that the prescribed sub-graph size of
2 % M is too small for more complex graphs . In our evaluation, we
display results of the convex min-cut method run over the entire
graph (without partitioning):

J& = maxmax(0, 2 * (C(v, G) — M)).
veV

The above bound is linear in M for any graph. In the worst case,
this bound can take O(n°) time to compute.

6.4 Bound Behavior vs Graph Sizes

We examine graph behavior for varying graph sizes and varying M.
We plot the the spectral method and the convex min-cut method
against the graph size parameter (I for the 2! FFT, the matrix side
length n for matrix multiplication, and the number of cities for the
TSP).

16

120000

337

SPAA 20, July 15-17, 2020, Virtual Event, USA

/O bound vs [for [city TSP

5 —4— Spectral, M=16
120009 Convex Min-cut, M=16
= ——— e N—
g 10000 1 <4~ Spectral, 1\.1—32 ’
C% ---- Convex Min-cut, M=32 H
1
o 8000 1 -4+ Spectral, M=64 I,"
N -+« Convex Min-cut, M=64 Fan
= 6000 ’
)
=
244000 4
g
O 20001
01 & 4 + -
6 7 8 9
1/0 bound vs 2!/ for [city TSP
175 —4— Spectral, M=16 /
5000 -+4- Spectral, M=32 ’
'_g 1500004 “® Spectral, M=64 ’
3
A 125000 1
@)
= 100000
=
+~ 75000 1
=
=
= 50000 1
S
25000
0_
0 5000 10000 15000 20000 25000
21/1

Figure 10: Bellman-Held-Karp for TSP: Bound vs [(top) and
2!/1 (bottom) for M = 16,32, 64; | = number of cities. Max in-
degree |

To compare against the published bounds, we also plot the com-
puted I/O for the spectral bound against the graph parameter term
in the analytical bounds in Section 6.2. For example, we plot the
computed I/O for the 2! point FFT graph against 12! If our bounds
follow the growth patterns of the analytical bounds, then these
plots should be roughly linear. We do not display points where the
maximum in-degree is greater than M, because then the computa-
tion of some operations would not fit all their operands inside fast
memory.

For all four graphs, we find that the bound computed from the
spectral method is both tighter and more scalable than the convex
min-cut method. In particular, the convex min-cut method is trivial
for the naive matrix multiplication graph.

Moreover, we find that our bounds roughly match the analytical
growth of the published bounds, as the I/O vs the published bound
is roughly linear for all four graphs. Finally, we note that our bound

Session: Full Paper

Runtime (s) vs [for [city TSP

300001 —4— Spectral
—s— Convex Min-cut
25000 A
7%= 20000
D)
g 15000 A
§=
=
A2 10000
5000 A
0 4
6 7 8 9 10 11 12 13 14 15
l

Figure 11: Runtime in seconds for computing the lower
bound for Bellman-Held-Karp on a [city TSP for various /.

does not significantly degrade with M, and can thus be computed
for large memory sizes.

6.5 Scalability

Our spectral method is fast to compute, with a runtime complexity
of O(hn?) where h < n is the number of eigenvalues computed.
Since any number of partitions k in Theorem 4 gives a valid lower
bound, & can be set to trade off the bound strength with runtime
complexity, with a maximum runtime of O(n®) by computing all
the eigenvalues of the graph Laplacian. However, empirically we
found that even when computing all of the eigenvalues, the best k
is usually far below 100 even for large graphs, so the higher level
eigenvalues remain unused: we therefore can set h = 100 without
losing bound strength. In contrast, the convex min-cut method has
runtime complexity of O(n°), which does not scale well to large
graphs. In Figure 11, we plot the runtime in seconds of computing
the convex min-cut and the spectral method for successively larger
I for evaluating Bellman-Held-Karp on an [city TSP. We find that
the convex-min-cut runtime explodes, taking close to 8.5 hours for
the 15 city TSP, while our spectral method takes 98 seconds.

7 CONCLUSION

Finding I/O bounds for general computations remains a challenging
problem. In this paper, we propose a novel method to find I/O
bounds for computation graphs, using the spectra of the graph
Laplacian. The spectra can be computed efficiently even for large
graphs and can also be computed in closed form for some graphs,
yielding a proof technique to find new closed-form bounds. We used
the spectral method to derive closed-form bounds for several graphs,
including the hypercube for the Bellman-Held-Karp algorithm and
the butterfly graph for the Fast Fourier Transform. We evaluated
our method empirically on four computation graphs and showed
that it finds tighter bounds than previous automated methods at a

338

SPAA 20, July 15-17, 2020, Virtual Event, USA

fraction of the runtime and behaves similarly to published analytical
bounds.

ACKNOWLEDGMENTS

We thank Pratiksha Thaker, Moses Charikar, and Guillermo Angeris
for their advice and feedback on this work.

This research was supported in part by affiliate members and
other supporters of the Stanford DAWN project—Ant Financial,
Facebook, Google, Infosys, NEC, and VMware—as well as Cisco,
SAP, and the NSF under CAREER grant CNS-1651570. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

REFERENCES

[1] Andris Ambainis, Kaspars Balodis, Janis Iraids, Martins Kokainis, Krigjanis Prasis,
and Jevgenijs Vihrovs. 2019. Quantum speedups for exponential-time dynamic
programming algorithms. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 1783-1793.
Grey Ballard, Aydin Buluc, James Demmel, Laura Grigori, Benjamin Lipshitz,
Oded Schwartz, and Sivan Toledo. 2013. Communication optimal parallel mul-
tiplication of sparse random matrices. In Proceedings of the twenty-fifth annual
ACM symposium on Parallelism in algorithms and architectures. ACM, 222-231.
Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. 2012. Graph
expansion and communication costs of fast matrix multiplication. Journal of the
ACM (JACM) 59, 6 (2012), 32.
Richard Bellman. 1962. Dynamic programming treatment of the travelling sales-
man problem. Journal of the ACM (JACM) 9, 1 (1962), 61-63.
Gianfranco Bilardi and Franco P Preparata. 1999. Processor-Time Tradeoffs
under Bounded-Speed Message Propagation: Part II, Lower Bounds. Theory of
Computing Systems 32, 5 (1999), 531-559.
Fan Chung and Mary Radcliffe. 2011. On the spectra of general random graphs.
the electronic journal of combinatorics (2011), P215-P215.
Francesc Comellas, Miquel Angel Fiol, Joan Gimbert, and Margarida Mitjana.
2003. The spectra of wrapped butterfly digraphs. Networks: An International
Journal 42, 1 (2003), 15-19.
Venmugil Elango. 2016. Techniques for Characterizing the Data Movement Com-
plexity of Computations. Ph.D. Dissertation. The Ohio State University.
Venmugil Elango, Fabrice Rastello, Louis-Noél Pouchet,] Ramanujam, and P
Sadayappan. 2013. Data access complexity: The red/blue pebble game revisited.
Technical Report. Technical Report OSU-CISRC-7/13-TR16, Ohio State Univer-
sity.
Gerd Finke, Rainer E Burkard, and Franz Rendl. 1987. Quadratic assignment
problems. In North-Holland Mathematics Studies. Vol. 132. Elsevier, 61-82.
Michael Held and Richard M Karp. 1962. A dynamic programming approach to
sequencing problems. Journal of the Society for Industrial and Applied mathematics
10, 1 (1962), 196-210.
Dror Irony, Sivan Toledo, and Alexander Tiskin. 2004. Communication lower
bounds for distributed-memory matrix multiplication. j. Parallel and Distrib.
Comput. 64, 9 (2004), 1017-1026.
Saachi Jain and Matei Zaharia. 2020. Spectral Lower Bounds on the I/O Complex-
ity of Computation Graphs. arXiv preprint arXiv:1909.09791 (2020).
Hong Jia-Wei and Hsiang-Tsung Kung. 1981. 1/O complexity: The red-blue
pebble game. In Proceedings of the thirteenth annual ACM symposium on Theory
of computing. ACM, 326-333.
Theodore Kolokolnikov, Braxton Osting, and James Von Brecht. 2014. Algebraic
connectivity of Erdos-Rényi graphs near the connectivity threshold. Manuscript
in preparation (2014).
[16] Jacob Scott, Olga Holtz, and Oded Schwartz. 2015. Matrix multiplication I/O-
complexity by path routing. In Proceedings of the 27th ACM symposium on Paral-
lelism in Algorithms and Architectures. ACM, 35-45.

—_
2,

(10]

[11

(12]

(13]

(14]

[15]

	Abstract
	1 Introduction
	2 Related Work
	3 Computation Graphs and Memory Model
	3.1 Optimization Task

	4 Spectral Bounds via the Graph Laplacian
	4.1 Counting Edges over Graph Partitions
	4.2 Formulation via the Graph Laplacian
	4.3 Spectral Bounds
	4.4 Parallel Spectral Bounds

	5 Analytical Bounds for Specific Graphs
	5.1 Hypercube Graph
	5.2 Fast Fourier Transform Graph
	5.3 Random Graphs

	6 Evaluation
	6.1 Solver
	6.2 Evaluation Computation Graphs
	6.3 Baselines
	6.4 Bound Behavior vs Graph Sizes
	6.5 Scalability

	7 Conclusion
	Acknowledgments
	References

